JP2004003717A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004003717A
JP2004003717A JP2002158992A JP2002158992A JP2004003717A JP 2004003717 A JP2004003717 A JP 2004003717A JP 2002158992 A JP2002158992 A JP 2002158992A JP 2002158992 A JP2002158992 A JP 2002158992A JP 2004003717 A JP2004003717 A JP 2004003717A
Authority
JP
Japan
Prior art keywords
receiver
lev
refrigerant
heat exchanger
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002158992A
Other languages
Japanese (ja)
Other versions
JP4100052B2 (en
Inventor
Masanori Aoki
青木 正則
Takeshi Kosakai
小坂井 毅
Yoshihiro Takahashi
高橋 佳宏
Toshiya Fuse
布施 敏也
Masanobu Baba
馬場 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002158992A priority Critical patent/JP4100052B2/en
Publication of JP2004003717A publication Critical patent/JP2004003717A/en
Application granted granted Critical
Publication of JP4100052B2 publication Critical patent/JP4100052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that in an air conditioner using an electronic linear expansion valve (LEV) as a decompression device, flow of cooling medium is reversed at cooling / heating operation by switching a four-way valve, but on structure of LEV, a counter pressure valve-opening pressure gap before and after the LEV to the flow from the opposite direction is high, and stability can not be obtained at low opening-valve pulse of the LEV and control of cooling medium flow might be disabled. <P>SOLUTION: In an air conditioner having a decompression device provided on cooling medium piping connected to the upstream and the downstream of a receiver for storing surplus cooling medium, the decompressing device made of the LEV is used and the LEV on the receiver downstream side is connected in the forward direction flow so that inflow / outflow opposing the receiver can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機等の冷凍サイクルに関するものである。
【0002】
【従来の技術】
図6は特開2001−174091号公報に記載された従来の空気調和機の冷媒回路図を示す、ブロック図である。図において、圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通って室外熱交換器3(冷房時凝縮器)に入る。このガス冷媒は室外熱交換器3により外気と熱交換されて液状の冷媒となり第1の絞り4aを介して減圧されてレシーバ7内に入る。レシーバ7に入った低乾き度の高温二相冷媒は、レシーバ7の中に設置された吸入配管9の内部を流れる低温低圧の冷媒により、飽和液状態まで冷却されてレシーバ7を流出し、第2の絞り4bを介し減圧された後、室内熱交換器5(冷房時蒸発器)へ流れる。また冷房・暖房の切り替えは四方弁により実施し、冷媒の流れが逆転する。
【0003】
また、減圧装置として電子リニア膨張弁(LEV)を使用する場合、LEVへの冷媒流入経路としては、図4に示す様に、LEV本体に対し、横(A)からと下(B)からの2箇所が存在する。図4において、21は弁棒と弁座からなる冷媒の絞り機構部を内蔵する弁本体、22は弁棒を駆動させるための電磁コイル、23は電磁コイルへ通電するリード線、24は弁本体21の横側から接続された横銅管、25は弁本体21の弁棒駆動方向の下側から接続された下銅管である。冷房・暖房の切り替え運転をする際、冷媒の流れとしては、弁本体に対して横→下(正方向と定義する)の流れと、下→横(逆方向と定義する)の流れが発生する事となる。ここで、図5にLEVの内部構造図を示す。図において、21は弁本体、26は弁本体に固定された弁座、27は先端部が円錐状をし、弁座26に対して近づき又は離れる動作を行う弁棒、28は弁本体内に設けられ冷媒が流通する空間部である。そして、このLEVでの冷媒流量調節方法は、弁棒27が上下(図5における)方向に作動する事により弁棒27と弁本体21に固定された弁座26との隙間面積が変化し、そこを通過する冷媒の流量調節が行われる事になる。その際、LEVの流入と流出の間における前後差圧がある一定値以上となると弁棒本体の駆動制御が不能となり、弁棒位置が固定されず流量調整が不可能となる場合があるため、一般的には使用圧力差範囲が規定されている。また冷媒の流れが逆方向流れ(弁本体に対して下→横の流れ)の場合の方が、正方向流れ(弁本体に対して横→下の流れ)よりも冷媒の圧力の影響を受けやすい構造であるため、逆方向流れについては更に低い圧力差での使用が規定されている。この圧力条件値を、逆圧開弁圧力差と規定しており、更にその圧力値制限が、LEVの開度パルスによって、変化する場合がある。これを図2に示すLEV開度と逆圧開弁圧力差の関係図から説明する。図において、横軸にLEVの開弁パルス、縦軸に逆圧開弁圧力差をとり、開弁パルスの下限設定の値を境に低開弁パルス側ではP2の逆圧開弁圧力差となり、下限設定値より高開弁パルス側では逆圧開弁圧力差がP1(P2<P1)と高くなる特性を有している。
【0004】
【発明が解決しようとする課題】
上記のような従来の空気調和機の冷媒回路においては、四方弁により冷房暖房運転の切り替えを行うため冷媒の流れは逆転することになり、減圧装置として電子リニア膨張弁(LEV)を使用する場合、LEV内の冷媒の流れについては、正方向流れ(弁本体に対して横→下の流れ)及び逆方向流れ(LEV弁本体に対して下→横の流れ)の両方の状態が必ず起こることになる。減圧装置としてLEVを使用する際、上記逆方向の流れ状態においては、特に絞り気味(低開弁パルス)の場合、逆圧開弁圧力差が小さくなるため、LEV前後の冷媒流れにおける差圧が使用するLEVが有する逆圧開弁圧力差を超えるとき、LEVの開弁パルスが安定せず、冷媒流量の制御不能状態に陥ることによる圧縮機信頼性確保が困難になる等の問題があった。
【0005】
本発明は上記のような問題点を解決するためになされたもので、余剰冷媒貯留用のレシーバの前後に減圧装置を有する冷媒回路からなる空気調和機において、冷媒流量の不安定等の制御不能状態に陥ること無く、常に安定した運転が行える空気調和機を得ることを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に係る空気調和機は、圧縮機と、この圧縮機に管を介して接続された四方切替弁と、この四方切替弁に管を介して接続された室外熱交換器と、前記四方切替弁に管を介して接続された室内熱交換器と、一方が前記室外熱交換器に、他方が前記室内熱交換器にそれぞれ管を介して接続され、余剰冷媒を貯留するレシーバと、このレシーバと前記室外熱交換器との間に設けられた第1絞り装置と、前記レシーバと前記室内熱交換器との間に設けられた第2絞り装置とを備え、前記第1及び第2絞り装置に電子リニア膨張弁(LEV)を使用するとともに、前記レシーバの下流側に設ける電子リニア膨張弁(LEV)を正方向流れ向きに配設したものである。
【0007】
本発明の請求項2に係る空気調和機は、レシーバの上流側に設けた前記電子リニア膨張弁を逆圧開弁圧力差が制限される開度パルス以下にならにように制御する制御装置を備えたものである。
【0008】
本発明の請求項3に係る空気調和機は、圧縮機の起動後、所定時間レシーバ上流側に設けた前記電子リニア膨張弁の開度パルスを大きく開き気味に固定し、前記レシーバ下流側に設けた電子リニア膨張弁より絞り込み動作を開始し、前記レシーバ上流側に設けた前記電子リニア膨張弁の流出入口間差圧が所定圧力以下となると、前記上流側に設けた電子リニア膨張弁の絞り込み動作制御を行う制御装置を設けたものである。
【0009】
本発明の請求項4に係る空気調和機は、レシーバ内部を貫通する吸入配管の一部が、レシーバに貯留された余剰冷媒と熱交換するように配設したものである。
【0010】
本発明の請求項5に係る空気調和機は、冷媒としてHFC冷媒を使用するものである。
【0011】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1について説明する。図1は、この実施の形態1の空気調和機の冷媒回路図を示すものである。1は圧縮機、2は冷房暖房運転を切りかえる四方切替弁(四方弁)、3は室外熱交換器、4a,4bは絞り装置である電子リニア膨張弁(LEV)、5は室内熱交換器、6は吐出配管、7は余剰冷媒貯留用のレシーバ、8は吐出配管6に設けられた吐出温度サーミスタ、9は吸入配管、10は室外熱交換器温度サーミスタ、11は室内熱交換器温度サーミスタである。
【0012】
上記冷媒回路のレシーバ7の上流側と下流側に第1・第2の絞り装置を、それぞれ室外熱交換器とレシーバ間の接続配管上、室内熱交換器とレシーバ間の接続配管上に設けている。絞り装置として使用する電子リニア膨張弁(LEV)は、前述の図4及び図5にて説明したように、弁本体の横側から配管接続する横銅管と弁本体の下側の下銅管の2箇所から冷媒が相互に流通するように接続する構造となっている。図1に示すように、第1・第2の絞り装置(LEV)共にレシーバ側に配管接続する方を上記横銅管から流出入する向きに、そしてLEV出入口のその反対側である下銅管側は室内又は室外熱交換器側に接続固定されている。上記構成により、レシーバ下流側に配設したLEVが冷媒の流れに対して正方向流れの向きになるように設けられている。
【0013】
次に、この冷媒回路による空気調和機の動作を説明する。圧縮機1から吐出される高温高圧のガス冷媒は吐出配管6を通り四方切替弁2に入る。冷房運転時には実線で示すように四方切替弁2から室外機熱交換器3(凝縮器として働く)に流入し、室外空気と熱交換して冷却され凝縮液化した後電子膨張弁4aに至る。電子膨張弁4aにより減圧され湿り状態の冷媒になった後レシーバ7に入る。レシーバ7の内部には、レシーバ7の上部を貫通して四方切替弁2から圧縮機11の吸入部に接続される吸入配管9の一部が配設され、吸入配管9の内部を流れる低温低圧の冷媒により、レシーバに貯留された余剰冷媒は飽和液状態まで冷却され、レシーバ7から流出する。そして、電子膨張弁4bを通過して再度減圧された後、室内機熱交換器(蒸発器として働く)に流入し、室内空気と熱交換して加熱され蒸発した後、四方切替弁2を経て吸入配管9を通り、レシーバ内の余剰冷媒と熱交換を行った後、圧縮機1に戻る。レシーバ7内部に吸入配管9の一部が貯留された余剰冷媒と熱交換するように配設しているので、運転効率の良い空気調和機を得ることができる。
【0014】
図1中の吐出温度サーミスタ8は圧縮機1から吐出される吐出ガス冷媒の温度を検知するためのものであり、ここで検知する吐出温度が所定値となるよう、室外機に設けた制御装置(図示せず)によりレシーバ下流側に位置するLEVの開弁パルスを制御する。吐出温度サーミスタ8で検知される圧縮機吐出温度を、運転状態に応じて予め決められた所定値以上に制御することは、圧縮機への液冷媒戻りを抑制し、圧縮機の信頼性や性能の確保のため、非常に重要となる。従って吐出温度サーミスタ8により圧縮機1からの吐出冷媒温度を検知し、レシーバ下流側LEV(冷房時:4b、暖房時:4a)の開弁度パルスを制御することにより、制御するLEVにおいて常に冷媒の流れが正方向流れ(LEV弁本体に対して横→下の流れ)となるため、逆圧開弁圧力差の影響を受けることなく、安定した制御特性を得ることができる。
【0015】
また、制御するLEVがレシーバ上流側の絞り装置となる場合には、図2に示すような開度パルスと逆圧開弁圧力差の関係より、逆圧開弁圧力差が小さくなる開度パルス以下にならないよう、開度パルス変化の制限として下限設定値を設けることで、安定した制御特性を得ることができる。
【0016】
また、レシーバ上流側LEVの開度パルス変化制御を行う際は、室外機熱交換器3の中央部に設置された二相冷媒温度を検知する室外熱交換器温度サーミスタ10及び室内機熱交換器5の中央部に設置された二相冷媒温度を検知する室内熱交換器温度サーミスタ11により、冷媒の凝縮温度及び蒸発温度を検知し、それぞれの温度より凝縮圧力及び蒸発圧力を換算し冷媒回路における吐出側と吸入側の間の高低圧差を算出する。また、LEV開度パルスと冷媒流れによるLEV前後の圧力差との特性から、レシーバ上流側LEV開度パルス及びレシーバ下流側LEV開度パルスより上流側LEVの入口・出口の前後差圧を推定し、逆圧開弁圧力差の制限値以下となるように、上流側LEV開度パルス制御を行うことで、安定した制御特性を得ることができる。
【0017】
図3に上述のLEV開度パルスの制御動作を説明するタイムチャート図を示す。図において、横軸に時間、縦軸にLEV開度パルス(冷媒流量に対応)をとり、冷房運転時におけるLEV1(レシーバ上流側)及びLEV2(レシーバ下流側)の開度パルスの変化状態を示す。まず、室外機に設けた制御装置により、運転開始時は所定開弁パルスLo(開き気味開度)に設定制御されており、圧縮機が起動して冷媒が流れて高低圧に圧力差がついてくると、図中のC点からLEV2の開弁パルス量を下げて絞り動作を行い、この間はLEV1は開度パルスを大きく開き気味で固定しているが、その後LEV1を図中のD点から開弁パルスを下げて絞り動作を進めていく制御動作を行う。これにより、レシーバ下流側のLEVにて絞り量を絞り気味にし(開度を少なめ)、一方レシーバ上流側のLEVでは絞り量を緩めの開き気味(開度を多きめ)とするLEV開度制御の動作となる。
【0018】
なお、上記実施の形態では、圧縮機吸入配管をレシーバ内に貫通させ、レシーバ内余剰冷媒と吸入配管内冷媒とで熱交換をさせる冷媒回路での説明をしたが、本発明はかかる実施の形態に限定されるものではなく、レシーバ内に配設した吸入配管による高低圧熱交換部の有無に係わらず適用する事ができる。
【0019】
この実施の形態1における空気調和機は、冷媒としてHFC系冷媒(例えばR407C,R410A等)、冷凍機油として冷媒と非相溶性の冷凍機油を使用する。従来の冷凍サイクルのようにアキュムレータに余剰冷媒を貯留する場合、余剰冷媒の温度が低いため、溶解度が低く、冷凍機油が分離して冷媒の上層に浮いて圧縮機へ返油できなくなってしまうが、本実施の形態に示すようにレシーバに余剰冷媒を貯留すると、余剰冷媒の温度が50℃程度と高いため通常油が分離することなく圧縮機に返油することが可能となり、信頼性が向上する。
【0020】
さらに、上記実施の形態では冷媒にHFC冷媒を使用した空気調和機に適用した例について説明したが、本発明はかかる例に限定されるものではなく、冷媒の種類に関わりなく適用する事ができる。
【0021】
【発明の効果】
以上のように本発明の請求項1に係る空気調和機は、圧縮機と、この圧縮機に管を介して接続された四方切替弁と、この四方切替弁に管を介して接続された室外熱交換器と、前記四方切替弁に管を介して接続された室内熱交換器と、一方が前記室外熱交換器に、他方が前記室内熱交換器にそれぞれ管を介して接続され、余剰冷媒を貯留するレシーバと、このレシーバと前記室外熱交換器との間に設けられた第1絞り装置と、前記レシーバと前記室内熱交換器との間に設けられた第2絞り装置とを備え、前記第1及び第2絞り装置に電子リニア膨張弁(LEV)を使用するとともに、前記レシーバの下流側に設ける電子リニア膨張弁(LEV)を正方向流れ向きに配設したので、冷房及び暖房いずれの回路においても、レシーバ下流側LEVの向きを正方向とする事ができ、開度パルスを小さくした場合も逆圧開弁圧力差以上となった場合の開度不安定等の影響を考慮する必要も無く、安定した制御システムを得る事ができる。
【0022】
また、本発明の請求項2に係る空気調和機は、レシーバの上流側に設けた前記電子リニア膨張弁を逆圧開弁圧力差が制限される開度パルス以下にならにように制御する制御装置を備えたので、レシーバ上流側LEVについても逆圧開弁圧力差が小さくなる、開度パルス以下になるのを防ぐことにより、冷媒流量の不安定化等を防ぎ、安定した制御システムを得る事ができる。
【0023】
また、本発明の請求項3に係る空気調和機は、圧縮機の起動後、所定時間レシーバ上流側に設けた前記電子リニア膨張弁の開度パルスを大きく開き気味に固定し、前記レシーバ下流側に設けた電子リニア膨張弁より絞り込み動作を開始し、前記レシーバ上流側に設けた前記電子リニア膨張弁の流出入口間差圧が所定圧力以下となると、前記上流側に設けた電子リニア膨張弁の絞り込み動作制御を行う制御装置を設けたので、冷媒流量の不安定化等を防ぎ、安定した制御システムを得る事ができる。
【0024】
また、本発明の請求項4に係る空気調和機は、レシーバ内部を貫通する吸入配管の一部が、レシーバに貯留された余剰冷媒と熱交換するように配設したので、運転効率の良い空気調和機が得られる。
【0025】
また、請求項5の発明によれば、冷媒としてHFC冷媒を使用するので、信頼性を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る空気調和機の冷媒配管系統図である。
【図2】本発明の実施の形態1に係るLEV開度と逆圧開弁圧力差の関係図である。
【図3】本発明の実施の形態1に係る上段側LEV及び下段側LEV開度パルス変化のタイムチャート図である。
【図4】本発明の実施の形態1による電子リニア膨張弁の外形図である。
【図5】本発明の実施の形態1に係る電子リニア膨張弁の内部構造図である。
【図6】従来の空気調和機の冷媒回路図である。
【符号の説明】
1 圧縮機、 2 四方切替え弁、 3 室外熱交換器、 4a,4b 電子リニア膨張弁、 5 室内熱交換器、 6 吐出配管、 7 レシーバ、 8 吐出温度サーミスタ、 9 吸入配管、 10 室外熱交換器温度サーミスタ、11 室内熱交換器温度サーミスタ、 21 弁本体、 22 電磁コイル、23 リード線、 24 横銅管、25 下銅管、 26 弁座、 27 弁棒、 28 空間部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle for an air conditioner or the like.
[0002]
[Prior art]
FIG. 6 is a block diagram showing a refrigerant circuit diagram of a conventional air conditioner described in JP-A-2001-174091. In the figure, a high-temperature and high-pressure gas refrigerant is discharged from a compressor 1 and enters an outdoor heat exchanger 3 (cooling condenser) through a four-way valve 2. This gas refrigerant is heat-exchanged with the outside air by the outdoor heat exchanger 3 to become a liquid refrigerant, which is decompressed through the first throttle 4a and enters the receiver 7. The low-dryness high-temperature two-phase refrigerant that has entered the receiver 7 is cooled to a saturated liquid state by the low-temperature low-pressure refrigerant flowing inside the suction pipe 9 installed in the receiver 7 and flows out of the receiver 7. After the pressure is reduced through the second throttle 4b, it flows to the indoor heat exchanger 5 (evaporator during cooling). Switching between cooling and heating is performed by a four-way valve, and the flow of the refrigerant is reversed.
[0003]
When an electronic linear expansion valve (LEV) is used as a pressure reducing device, the refrigerant inflow path to the LEV is, as shown in FIG. 4, from the side (A) and from below (B) to the LEV main body. There are two places. In FIG. 4, reference numeral 21 denotes a valve main body having a built-in refrigerant throttle mechanism including a valve rod and a valve seat, 22 denotes an electromagnetic coil for driving the valve rod, 23 denotes a lead wire for supplying current to the electromagnetic coil, and 24 denotes a valve main body. Reference numeral 21 denotes a horizontal copper pipe connected from the lateral side, and reference numeral 25 denotes a lower copper pipe connected from the lower side of the valve body 21 in the valve rod driving direction. When performing the cooling / heating switching operation, the flow of the refrigerant includes a flow from the side to the bottom (defined as the forward direction) and a flow from the bottom to the side (defined as the reverse direction) with respect to the valve body. It will be. Here, FIG. 5 shows an internal structure diagram of the LEV. In the figure, 21 is a valve body, 26 is a valve seat fixed to the valve body, 27 is a valve stem that has a conical tip and moves toward or away from the valve seat 26, and 28 is inside the valve body. It is a space provided and through which the refrigerant flows. In the method of adjusting the flow rate of the refrigerant in the LEV, the gap area between the valve stem 27 and the valve seat 26 fixed to the valve body 21 is changed by operating the valve stem 27 in the vertical direction (in FIG. 5). The flow rate of the refrigerant passing therethrough is adjusted. At this time, if the pressure difference between the front and rear of the LEV exceeds a certain value, the drive control of the valve stem body becomes impossible, and the valve stem position is not fixed, so that the flow rate adjustment may be impossible. Generally, a working pressure difference range is defined. In addition, the refrigerant flow is more affected by the refrigerant pressure in the case of the reverse flow (downward → lateral flow with respect to the valve body) than in the forward direction flow (lateral → downward flow with respect to the valve body). Due to its easy structure, the use of a reverse flow is specified at a lower pressure difference. This pressure condition value is defined as the back pressure opening pressure difference, and the pressure value limit may be changed by the opening pulse of the LEV. This will be described with reference to the relationship diagram between the LEV opening and the back pressure opening pressure difference shown in FIG. In the figure, the horizontal axis indicates the LEV valve opening pulse, and the vertical axis indicates the reverse pressure opening pressure difference. On the low valve opening pulse side, the reverse pressure opening pressure difference of P2 is obtained from the lower limit value of the valve opening pulse. On the other hand, on the valve opening pulse side higher than the lower limit set value, the reverse pressure valve opening pressure difference has a characteristic of increasing to P1 (P2 <P1).
[0004]
[Problems to be solved by the invention]
In the refrigerant circuit of the conventional air conditioner as described above, the flow of the refrigerant is reversed because the cooling / heating operation is switched by the four-way valve, and the electronic linear expansion valve (LEV) is used as the pressure reducing device. , The flow of the refrigerant in the LEV must be in both forward flow (flow from side to bottom with respect to the valve body) and reverse flow (flow down from side to side with respect to the LEV valve body). become. When an LEV is used as a pressure reducing device, in the above-described reverse flow state, particularly in the case of a slight throttle (low valve opening pulse), the differential pressure in the refrigerant flow before and after the LEV decreases because the reverse pressure valve opening pressure difference becomes small. When the back pressure opening pressure difference of the LEV used exceeds the valve opening pulse of the LEV, there is a problem that the valve opening pulse of the LEV is not stabilized, and it becomes difficult to secure the compressor reliability due to a state in which the refrigerant flow cannot be controlled. .
[0005]
The present invention has been made in order to solve the above-described problems, and in an air conditioner including a refrigerant circuit having a pressure reducing device before and after a receiver for storing excess refrigerant, it is impossible to control the refrigerant flow instability and the like. It is an object of the present invention to obtain an air conditioner that can always operate stably without falling into a state.
[0006]
[Means for Solving the Problems]
The air conditioner according to claim 1 of the present invention includes a compressor, a four-way switching valve connected to the compressor via a pipe, and an outdoor heat exchanger connected to the four-way switching valve via a pipe. An indoor heat exchanger connected to the four-way switching valve via a pipe, a receiver connected to the outdoor heat exchanger on one side and the indoor heat exchanger on the other side via a pipe, and storing excess refrigerant. A first throttle device provided between the receiver and the outdoor heat exchanger, and a second throttle device provided between the receiver and the indoor heat exchanger, An electronic linear expansion valve (LEV) is used for the second throttle device, and the electronic linear expansion valve (LEV) provided downstream of the receiver is arranged in the forward flow direction.
[0007]
The air conditioner according to claim 2 of the present invention is a control device that controls the electronic linear expansion valve provided on the upstream side of the receiver so that the pressure difference is equal to or less than an opening pulse in which a back pressure opening pressure difference is limited. It is provided.
[0008]
In the air conditioner according to claim 3 of the present invention, after starting the compressor, the opening pulse of the electronic linear expansion valve provided on the upstream side of the receiver for a predetermined time is fixed to be slightly open and provided on the downstream side of the receiver. Starting the throttle operation from the electronic linear expansion valve, and when the differential pressure between the outlet and the inlet of the electronic linear expansion valve provided on the upstream side of the receiver becomes equal to or lower than a predetermined pressure, the throttle operation of the electronic linear expansion valve provided on the upstream side. A control device for performing control is provided.
[0009]
In the air conditioner according to a fourth aspect of the present invention, a part of a suction pipe penetrating through the inside of the receiver is disposed so as to exchange heat with surplus refrigerant stored in the receiver.
[0010]
The air conditioner according to claim 5 of the present invention uses an HFC refrigerant as a refrigerant.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described. FIG. 1 shows a refrigerant circuit diagram of the air conditioner according to the first embodiment. 1 is a compressor, 2 is a four-way switching valve (four-way valve) for switching between cooling and heating operations, 3 is an outdoor heat exchanger, 4a and 4b are electronic linear expansion valves (LEVs) as expansion devices, 5 is an indoor heat exchanger, 6 is a discharge pipe, 7 is a receiver for storing excess refrigerant, 8 is a discharge temperature thermistor provided in the discharge pipe 6, 9 is a suction pipe, 10 is an outdoor heat exchanger temperature thermistor, and 11 is an indoor heat exchanger temperature thermistor. is there.
[0012]
First and second expansion devices are provided on the connection pipe between the outdoor heat exchanger and the receiver and on the connection pipe between the indoor heat exchanger and the receiver, respectively, on the upstream side and the downstream side of the receiver 7 of the refrigerant circuit. I have. The electronic linear expansion valve (LEV) used as the expansion device is, as described with reference to FIGS. 4 and 5 described above, a cross copper pipe connected from the side of the valve body and a lower copper pipe below the valve body. The structure is such that the refrigerant is connected so as to circulate from the two locations. As shown in FIG. 1, both the first and second expansion devices (LEVs) are connected to the receiver side with the pipes connected in the direction of inflow / outflow from the horizontal copper pipes, and the lower copper pipes on the opposite side of the LEV entrance / exit. The side is connected and fixed to the indoor or outdoor heat exchanger side. With the above configuration, the LEV disposed downstream of the receiver is provided so as to be in the forward flow direction with respect to the flow of the refrigerant.
[0013]
Next, the operation of the air conditioner using this refrigerant circuit will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the four-way switching valve 2 through the discharge pipe 6. During the cooling operation, as shown by a solid line, the air flows from the four-way switching valve 2 into the outdoor unit heat exchanger 3 (working as a condenser), exchanges heat with outdoor air to be cooled and condensed and liquefied, and then reaches the electronic expansion valve 4a. After the pressure is reduced by the electronic expansion valve 4a to become a wet refrigerant, the refrigerant enters the receiver 7. Inside the receiver 7, a part of a suction pipe 9 penetrating through the upper part of the receiver 7 and connected to the suction part of the compressor 11 from the four-way switching valve 2 is disposed. The excess refrigerant stored in the receiver is cooled to a saturated liquid state by the refrigerant, and flows out of the receiver 7. After passing through the electronic expansion valve 4b and being decompressed again, it flows into an indoor unit heat exchanger (working as an evaporator), exchanges heat with indoor air, is heated and evaporated, and then passes through the four-way switching valve 2. After passing through the suction pipe 9 and performing heat exchange with the excess refrigerant in the receiver, the flow returns to the compressor 1. Since a part of the suction pipe 9 is arranged inside the receiver 7 so as to exchange heat with the stored excess refrigerant, an air conditioner with good operation efficiency can be obtained.
[0014]
The discharge temperature thermistor 8 in FIG. 1 is for detecting the temperature of the discharge gas refrigerant discharged from the compressor 1, and a control device provided in the outdoor unit so that the discharge temperature detected here becomes a predetermined value. (Not shown) controls the valve opening pulse of the LEV located downstream of the receiver. Controlling the compressor discharge temperature detected by the discharge temperature thermistor 8 to a value equal to or higher than a predetermined value according to the operation state suppresses the return of the liquid refrigerant to the compressor, and improves the reliability and performance of the compressor. It is very important to secure Accordingly, by detecting the temperature of the refrigerant discharged from the compressor 1 by the discharge temperature thermistor 8 and controlling the valve opening degree pulse of the LEV on the downstream side of the receiver (cooling: 4b, heating: 4a), the refrigerant is always controlled by the controlled LEV. Flow becomes a forward flow (flow from the side to the bottom with respect to the LEV valve main body), so that stable control characteristics can be obtained without being affected by the differential pressure for opening the reverse pressure valve.
[0015]
Further, when the LEV to be controlled is a throttle device on the upstream side of the receiver, the opening pulse having a small back pressure opening pressure difference is obtained from the relationship between the opening pulse and the back pressure opening pressure difference as shown in FIG. By providing the lower limit set value as the limit of the opening pulse change so as not to be below, stable control characteristics can be obtained.
[0016]
Further, when performing the opening pulse change control of the receiver upstream LEV, the outdoor heat exchanger temperature thermistor 10 that detects the temperature of the two-phase refrigerant installed at the center of the outdoor unit heat exchanger 3 and the indoor unit heat exchanger The indoor heat exchanger temperature thermistor 11, which detects the temperature of the two-phase refrigerant, is installed at the center of 5 to detect the condensing temperature and the evaporating temperature of the refrigerant, convert the condensing pressure and the evaporating pressure from the respective temperatures, and convert Calculate the high / low pressure difference between the discharge side and the suction side. Further, from the characteristics of the LEV opening pulse and the pressure difference before and after the LEV due to the refrigerant flow, the differential pressure between the inlet and the outlet of the upstream LEV is estimated from the receiver upstream LEV opening pulse and the receiver downstream LEV opening pulse. By performing the upstream LEV opening pulse control so as to be equal to or less than the limit value of the back pressure opening pressure difference, stable control characteristics can be obtained.
[0017]
FIG. 3 is a time chart illustrating the control operation of the above-described LEV opening pulse. In the figure, the horizontal axis represents time, and the vertical axis represents the LEV opening pulse (corresponding to the refrigerant flow rate), and shows the changing state of the opening pulse of LEV1 (receiver upstream) and LEV2 (receiver downstream) during cooling operation. . First, at the start of operation, the control device provided in the outdoor unit is set and controlled to a predetermined valve opening pulse Lo (opening degree slightly open), the compressor is started, the refrigerant flows, and a pressure difference between high and low pressures is generated. When it comes, the valve opening pulse amount of LEV2 is lowered from the point C in the figure to perform the throttle operation. During this time, the opening pulse of the LEV1 is slightly widened and fixed, but then the LEV1 is moved from the point D in the figure. A control operation for lowering the valve opening pulse to advance the throttle operation is performed. Thus, the LEV on the downstream side of the receiver makes the throttle amount slightly open (small opening), while the LEV on the upstream side of the receiver makes the throttle amount slightly open (large opening), so that the LEV opening control is performed. Operation.
[0018]
In the above-described embodiment, the description has been given of the refrigerant circuit in which the compressor suction pipe is penetrated into the receiver and heat is exchanged between the surplus refrigerant in the receiver and the refrigerant in the suction pipe. However, the present invention is not limited to this, and can be applied regardless of the presence or absence of the high / low pressure heat exchange unit using the suction pipe provided in the receiver.
[0019]
The air conditioner according to the first embodiment uses an HFC-based refrigerant (for example, R407C, R410A or the like) as the refrigerant, and uses a refrigerant oil incompatible with the refrigerant as the refrigerant oil. When the excess refrigerant is stored in the accumulator as in the conventional refrigeration cycle, the temperature of the excess refrigerant is low, so the solubility is low, and the refrigerating machine oil separates and floats on the upper layer of the refrigerant, so that it cannot be returned to the compressor. However, when the excess refrigerant is stored in the receiver as shown in the present embodiment, the temperature of the excess refrigerant is as high as about 50 ° C., so that the normal oil can be returned to the compressor without being separated, and the reliability is improved. I do.
[0020]
Furthermore, in the above-described embodiment, an example in which the present invention is applied to an air conditioner using an HFC refrigerant as a refrigerant has been described. However, the present invention is not limited to such an example, and can be applied regardless of the type of refrigerant. .
[0021]
【The invention's effect】
As described above, the air conditioner according to claim 1 of the present invention includes a compressor, a four-way switching valve connected to the compressor via a pipe, and an outdoor connected to the four-way switching valve via a pipe. A heat exchanger, an indoor heat exchanger connected to the four-way switching valve via a pipe, one of which is connected to the outdoor heat exchanger, and the other of which is connected to the indoor heat exchanger via a pipe, respectively. A first throttle device provided between the receiver and the outdoor heat exchanger, and a second throttle device provided between the receiver and the indoor heat exchanger, An electronic linear expansion valve (LEV) is used for the first and second expansion devices, and an electronic linear expansion valve (LEV) provided downstream of the receiver is disposed in the forward flow direction. In the circuit shown in FIG. The opening angle can be set to the positive direction, and even if the opening pulse is reduced, there is no need to consider the influence of opening degree instability when the opening pressure difference exceeds the reverse pressure valve opening pressure, and a stable control system is obtained. Can do things.
[0022]
In the air conditioner according to claim 2 of the present invention, the electronic linear expansion valve provided on the upstream side of the receiver is controlled so as to control the pressure difference to be equal to or less than the opening pulse in which the reverse pressure opening pressure difference is limited. Since the device is provided, the reverse pressure valve opening pressure difference of the receiver upstream LEV is also reduced, and by preventing it from becoming smaller than the opening pulse, it is possible to prevent the refrigerant flow from becoming unstable and to obtain a stable control system. Can do things.
[0023]
Further, in the air conditioner according to claim 3 of the present invention, after the compressor is started, the opening pulse of the electronic linear expansion valve provided upstream of the receiver for a predetermined time is fixed so as to be wide open and the downstream side of the receiver. The throttle operation is started from the electronic linear expansion valve provided on the electronic linear expansion valve provided on the upstream side, and when the differential pressure between the outlet and the inlet of the electronic linear expansion valve provided on the upstream side of the receiver becomes equal to or lower than a predetermined pressure, the electronic linear expansion valve provided on the upstream side Since the control device for controlling the narrowing-down operation is provided, it is possible to prevent the refrigerant flow from becoming unstable and to obtain a stable control system.
[0024]
Also, in the air conditioner according to claim 4 of the present invention, a part of the suction pipe penetrating the inside of the receiver is disposed so as to exchange heat with the surplus refrigerant stored in the receiver. A harmony machine is obtained.
[0025]
Further, according to the invention of claim 5, since the HFC refrigerant is used as the refrigerant, reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a refrigerant piping system diagram of an air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a relationship diagram between an LEV opening and a back pressure opening pressure difference according to the first embodiment of the present invention.
FIG. 3 is a time chart of changes in the upper LEV and lower LEV opening pulse according to Embodiment 1 of the present invention;
FIG. 4 is an external view of the electronic linear expansion valve according to the first embodiment of the present invention.
FIG. 5 is an internal structure diagram of the electronic linear expansion valve according to the first embodiment of the present invention.
FIG. 6 is a refrigerant circuit diagram of a conventional air conditioner.
[Explanation of symbols]
Reference Signs List 1 compressor, 2 four-way switching valve, 3 outdoor heat exchanger, 4a, 4b electronic linear expansion valve, 5 indoor heat exchanger, 6 discharge pipe, 7 receiver, 8 discharge temperature thermistor, 9 suction pipe, 10 outdoor heat exchanger Temperature thermistor, 11 indoor heat exchanger temperature thermistor, 21 valve body, 22 electromagnetic coil, 23 lead wire, 24 cross copper pipe, 25 lower copper pipe, 26 valve seat, 27 valve stem, 28 space.

Claims (5)

圧縮機と、この圧縮機に管を介して接続された四方切替弁と、この四方切替弁に管を介して接続された室外熱交換器と、前記四方切替弁に管を介して接続された室内熱交換器と、一方が前記室外熱交換器に、他方が前記室内熱交換器にそれぞれ管を介して接続され、余剰冷媒を貯留するレシーバと、このレシーバと前記室外熱交換器との間に設けられた第1絞り装置と、前記レシーバと前記室内熱交換器との間に設けられた第2絞り装置とを備え、前記第1及び第2絞り装置に電子リニア膨張弁(LEV)を使用するとともに、前記レシーバの下流側に設ける電子リニア膨張弁(LEV)を正方向流れ向きに配設したことを特徴とする空気調和機。A compressor, a four-way switching valve connected to the compressor via a pipe, an outdoor heat exchanger connected to the four-way switching valve via a pipe, and a pipe connected to the four-way switching valve. An indoor heat exchanger, one of which is connected to the outdoor heat exchanger, and the other of which is connected to the indoor heat exchanger via pipes, respectively, and a receiver for storing excess refrigerant, between the receiver and the outdoor heat exchanger. And a second throttle device provided between the receiver and the indoor heat exchanger. An electronic linear expansion valve (LEV) is provided for the first and second throttle devices. An air conditioner, wherein an electronic linear expansion valve (LEV) provided downstream of the receiver is disposed in a forward direction. 前記レシーバの上流側に設けた前記電子リニア膨張弁を逆圧開弁圧力差が制限される開度パルス以下にならにように制御する制御装置を備えたことを特徴とする請求項1記載の空気調和機。2. The control device according to claim 1, further comprising a control device that controls the electronic linear expansion valve provided on the upstream side of the receiver so that the reverse pressure valve opening pressure difference is equal to or less than an opening pulse that is limited. Air conditioner. 前記圧縮機の起動後、所定時間レシーバ上流側に設けた前記電子リニア膨張弁の開度パルスを大きく開き気味に固定し、前記レシーバ下流側に設けた電子リニア膨張弁より絞り込み動作を開始し、前記レシーバ上流側に設けた前記電子リニア膨張弁の流出入口間差圧が所定圧力以下となると、前記上流側に設けた電子リニア膨張弁の絞り込み動作制御を行う制御装置を設けたことを特徴とする請求項1または請求項2記載の空気調和機。After starting the compressor, the opening degree pulse of the electronic linear expansion valve provided on the receiver upstream side for a predetermined time is fixed to be slightly open, and a throttle operation is started from the electronic linear expansion valve provided on the receiver downstream side, When the differential pressure between the outlet and the inlet of the electronic linear expansion valve provided on the upstream side of the receiver becomes equal to or less than a predetermined pressure, a control device for controlling the throttle operation of the electronic linear expansion valve provided on the upstream side is provided. The air conditioner according to claim 1 or 2, wherein 前記レシーバ内部を貫通する吸入配管の一部が、前記レシーバに貯留された余剰冷媒と熱交換するように配設したことを特徴とする請求項1乃至請求項3のいずれかに記載の空気調和機。The air conditioner according to any one of claims 1 to 3, wherein a part of a suction pipe passing through the inside of the receiver is arranged to exchange heat with surplus refrigerant stored in the receiver. Machine. 冷媒としてHFC冷媒を使用したことを特徴とする請求項1乃至請求項4のいずれかに記載の空気調和機。The air conditioner according to any one of claims 1 to 4, wherein an HFC refrigerant is used as the refrigerant.
JP2002158992A 2002-05-31 2002-05-31 Air conditioner Expired - Fee Related JP4100052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158992A JP4100052B2 (en) 2002-05-31 2002-05-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158992A JP4100052B2 (en) 2002-05-31 2002-05-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004003717A true JP2004003717A (en) 2004-01-08
JP4100052B2 JP4100052B2 (en) 2008-06-11

Family

ID=30428958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158992A Expired - Fee Related JP4100052B2 (en) 2002-05-31 2002-05-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP4100052B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
CN102022853A (en) * 2010-11-18 2011-04-20 海尔集团公司 Air conditioner system
JP2011085368A (en) * 2009-10-19 2011-04-28 Sharp Corp Heat exchanger and air conditioner equipped with the same
WO2014199788A1 (en) * 2013-06-11 2014-12-18 ダイキン工業株式会社 Air-conditioning device
WO2015060384A1 (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration device
JP2015209979A (en) * 2014-04-23 2015-11-24 ダイキン工業株式会社 Air conditioner
WO2016046876A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
JP2017138096A (en) * 2017-03-09 2017-08-10 三菱電機株式会社 Refrigeration cycle device
CN115013940A (en) * 2022-06-14 2022-09-06 宁波奥克斯电气股份有限公司 Installation detection method and device of electronic expansion valve, air conditioner and medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850389B2 (en) 2011-07-12 2016-02-03 株式会社リコー Toner set for electrophotography and image forming method and apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
JP2011085368A (en) * 2009-10-19 2011-04-28 Sharp Corp Heat exchanger and air conditioner equipped with the same
CN102022853A (en) * 2010-11-18 2011-04-20 海尔集团公司 Air conditioner system
WO2014199788A1 (en) * 2013-06-11 2014-12-18 ダイキン工業株式会社 Air-conditioning device
WO2015060384A1 (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration device
JP2015083894A (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration unit
JP2015209979A (en) * 2014-04-23 2015-11-24 ダイキン工業株式会社 Air conditioner
WO2016046876A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
JP5921776B1 (en) * 2014-09-22 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
JP2017138096A (en) * 2017-03-09 2017-08-10 三菱電機株式会社 Refrigeration cycle device
CN115013940A (en) * 2022-06-14 2022-09-06 宁波奥克斯电气股份有限公司 Installation detection method and device of electronic expansion valve, air conditioner and medium
CN115013940B (en) * 2022-06-14 2023-09-01 宁波奥克斯电气股份有限公司 Method and device for detecting installation of electronic expansion valve, air conditioner and medium

Also Published As

Publication number Publication date
JP4100052B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
TWI272362B (en) Refrigeration system
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP2013257121A (en) Refrigerating device
JP2011085320A (en) Heat pump device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP5449266B2 (en) Refrigeration cycle equipment
JP2014214913A (en) Oil return controller and refrigerator
JP2004003717A (en) Air conditioner
JP2010255859A (en) Refrigerating device
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP3738299B2 (en) Heat pump type heat supply device
JP4082435B2 (en) Refrigeration equipment
JP6091616B2 (en) Refrigeration cycle equipment
JP2002257427A (en) Refrigerating air conditioner and its operating method
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4031560B2 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP2005274039A (en) Air-conditioner with defrosting function
JPH04340046A (en) Operation control device of air conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP7450745B2 (en) Heat pump systems and methods for controlling heat pump systems
JP2009293887A (en) Refrigerating device
JP4274250B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4100052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees