JP3738299B2 - Heat pump type heat supply device - Google Patents

Heat pump type heat supply device Download PDF

Info

Publication number
JP3738299B2
JP3738299B2 JP2000141338A JP2000141338A JP3738299B2 JP 3738299 B2 JP3738299 B2 JP 3738299B2 JP 2000141338 A JP2000141338 A JP 2000141338A JP 2000141338 A JP2000141338 A JP 2000141338A JP 3738299 B2 JP3738299 B2 JP 3738299B2
Authority
JP
Japan
Prior art keywords
heat exchanger
pressure
compressor
switching valve
way switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000141338A
Other languages
Japanese (ja)
Other versions
JP2001324234A (en
Inventor
浩二 伊藤
昭治 菊地
満 小松
良和 石木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000141338A priority Critical patent/JP3738299B2/en
Publication of JP2001324234A publication Critical patent/JP2001324234A/en
Application granted granted Critical
Publication of JP3738299B2 publication Critical patent/JP3738299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はヒートポンプ式熱供給装置に係り、特に、冷水および温水を空気調和装置等に切り換えて供給することのできるヒートポンプ式熱供給装置に関する。
【0002】
【従来の技術】
ヒートポンプ式熱供給装置には空気側熱交換器、減圧器および水側熱交換器が設けられ、空気側熱交換器は冷媒と外気との間で熱交換を行い、水側熱交換器は冷媒と内部を通流する水との間で熱交換を行うようになっている。そして、圧縮機からの冷媒を室外側熱交換器、減圧器および室内側熱交換器の順に流すと、水側熱交換器内を通流する水は冷却され冷水として供給される。また、逆に圧縮機からの冷媒を室内側熱交換器、減圧器および室外側熱交換器の順に流すと、水側熱交換器内を通流する水は加温され温水として供給される。冷水にするか温水にするかは、圧縮機の吐出側配管に取り付けられた四方切換弁を切り換えることにより行われる。
【0003】
ところで、四方切換弁を切り換えた際に、四方切換弁が正常に切り換わらないで弁体が中間位置で止まったりしていると、装置の運転を正常に行うことができず、運転を停止せざるを得なくなる。
【0004】
空気調和機についての技術であるが、例えば特開平8−128749号公報には、四方切換弁を切り換えた際に、その切換前後の配管温度を検出して切換前後の温度差を見ることにより、四方切換弁が正常に切り換わったか否かを判定することが提案されている。しかし、四方切換弁が正常に切り換わったか否かを単に判定するだけでは、正常に切り換わっていない場合は、正常な運転を継続できないことになり、結局、空気調和装置の運転を停止させなければならない。
【0005】
そこで、特開平5−322355号公報には、四方切換弁の弁体が中間位置で止まるのを防止するようにした空気調和機が提案されている。この空気調和機においては、四方切換弁は圧縮機の吐出側と吸込側との圧力差を利用して冷媒の流れを変えるものであり、また圧縮機の吐出側と吸込側間には四方切換弁をバイパスしてバイパス回路が設けられている。そして、バイパス回路には開閉弁が取り付けられており、暖房運転時に圧縮機の起動と同時にこの開閉弁を開けると、四方切換弁にかかる圧力差が小さくなって四方切換弁の弁体が中間位置に止まってしまうので、前記開閉弁を10秒間遅らせてから開けるようにして、弁体が中間位置に止まるのを防止している。
【0006】
【発明が解決しようとする課題】
ここで、上記のように開閉弁を10秒間遅らせてから開けることをヒートポンプ式熱供給装置に適用しても、四方切換弁の動作不良を完全に無くすことはできない。すなわち、起動時には圧縮機の吐出側と吸込側との圧力差に大きなバラツキがあるので、開閉弁を10秒間遅らせてから開けるようにしても、四方切換弁が正常に動作するとは限らず、中間位置に止まってしまう可能性が大きい。
【0007】
また、上述のように圧縮機の吐出側と吸込側との圧力差に大きなバラツキがあると、四方切換弁の切換時に弁体に大きな力が加わって、弁体が割れてしまう恐れもある。
【0008】
本発明の目的は、四方切換弁を適正に切り換えることのできるヒートポンプ式熱供給装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮機、第1の熱交換器、減圧器、第2の熱交換器、及び四方切換弁が順次接続された冷凍サイクルを備え、第1の熱交換器は該熱交換器外側を流れる空気と冷凍サイクル内を循環する冷媒との間で熱交換を行い、第2の熱交換器は該熱交換器内を通流する流体と前記冷媒との間で熱交換を行って、四方切換弁を切り換えて、前記冷媒を第1の熱交換器、減圧器および第2の熱交換器の順に流したときに前記流体が冷却されて供給され、四方切換弁を逆に切り換えて、前記冷媒を第2の熱交換器、減圧器および第1の熱交換器の順に流したときに前記流体が加温されて供給されるヒ−トポンプ式熱供給装置において、圧縮機の吐出側圧力と吸込側圧力を検出する圧力検出手段と、圧力検出手段から検出結果を取り込んで圧縮機の吐出側圧力と吸込側圧力との差圧を演算するとともに、四方切換弁を切り換える際に、前記差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲外の場合は、圧縮機の吐出量を変化させ前記差圧が適正値範囲内に入ってから四方切換弁の切換を行う制御手段と、を備えたことを特徴としている。
【0010】
上記構成によれば、四方切換弁を切り換える際に、制御手段は、圧縮機の吐出圧力と吸込側圧力との差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲に入っていれば直ちに四方切換弁の切換を行うが、適正範囲外の場合、圧縮機の吐出量を変化させて差圧が適正値範囲内に入ってから、四方切換弁の切換を行う。これにより、四方切換弁に大きな圧力差が加わるのを回避できるので、弁体に割れや損傷が発生するのを防ぐことができる。さらに、圧力差が小さすぎて四方切換弁の弁体が中間位置で止まってしまうことも防ぐことができる。
【0011】
実際に、制御手段は、適正範囲の上限値を越えている場合は圧縮機の吐出量を減少させ、差圧が適正範囲の下限値未満の場合は圧縮機の吐出量を増加させて、差圧が適正値範囲内に入ってから四方切換弁の切換を行うよう制御する。
【0012】
適正範囲は、差圧に応じて定まる四方切換弁の切換回数の寿命特性から決定される。
【0013】
また、本発明では、圧縮機の吐出量を減少もしくは増加させても前記差圧が適正範囲内に入らない場合は、圧縮機を停止させるとともに警報表示するよう構成されている。この場合、差圧が適正範囲に入ったら、圧縮機を再起動するようにする。
【0014】
さらに、四方切換弁を切り換えた後に、圧力検出手段から検出結果を取り込んで圧縮機の吐出側圧力と吸込側圧力との差圧を演算し、その差圧が異常値の場合は、圧縮機を停止させるよう構成することもできる。この場合、圧縮機を停止させて所定時間経過後に、圧縮機を再起動させるとともに前記差圧を演算し、その差圧が異常値の場合は圧縮機を停止させる。また、圧縮機の起動と停止を所定回数繰り返したとき、警報表示を行うようにする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
(実施の形態1)
図1は本発明に係るヒ−トポンプ式熱供給装置の構成図である。図に示すように、圧縮機1、四方切換弁2、第1の熱交換器3、膨張弁4、第2の熱交換器5、および四方切換弁2が順次接続されて冷凍サイクルが形成されている。すなわち、圧縮機1の吐出側は冷媒流路L1を介して四方切換弁2に接続され、四方切換弁2は冷媒流路L2を介して第1の熱交換器3に、第1の熱交換器3は冷媒流路L3を介して膨張弁4にそれぞれ接続されている。また、膨張弁4は冷媒流路L4を介して第2の熱交換器5に、第2の熱交換器5は冷媒流路L5を介して四方切換弁2に、四方切換弁2は冷媒流路L6を介して圧縮機1の吸込側にそれぞれ接続されている。
【0016】
第1の熱交換器3は熱源側の熱交換器で、冷却ファン6によって空冷される。また第2の熱交換器5は利用側の熱交換器で、流入管5Aおよび流出管5Bが取り付けられ、流入管5Aから流入した水が内部を通流し、その後、流出管5Bから流出する。
【0017】
上記冷凍サイクル内は冷媒が循環し、第2の熱交換器5内を通流する水を冷却する運転(以下、冷水供給運転という)時には冷媒は図の実線矢印のように流れ、加温する運転(以下、温水供給運転という)時には冷媒は図の破線矢印のように流れる。また四方切換弁2は、冷媒の流れる流路が冷水供給運転時には実線のように、温水供給運転時には破線のようにそれぞれ切り換えられる。
【0018】
また、冷媒流路L1には圧縮機1の吐出側冷媒圧力を検出する圧力センサ7が、冷媒流路L6には圧縮機1の吸込側冷媒圧力を検出する圧力センサ8がそれぞれ設けられ、これら圧力センサ7,8での検出信号が入力される制御装置9が設置されている。
【0019】
上記構成において、冷水供給運転時には、圧縮機1で圧縮された高温高圧のガス冷媒は、冷媒流路L1を介して四方切換弁2に導かれ、この四方切換弁2を実線の流路に沿って流れた後、冷媒流路L2を介して第1の熱交換器3に導かれる。第1の熱交換器3において、高温高圧のガス冷媒は冷却ファン6によって送風される空気と熱交換して凝縮され、高温高圧の液冷媒となる。その高温高圧の液冷媒は冷媒流路L3を介して膨張弁4に導かれ、この膨張弁4によって減圧されて低温低圧の二相冷媒となり、さらに冷媒流路L4を介して第2の熱交換器5に導かれる。そして第2の熱交換器5において、低温低圧の二相冷媒は、第2の熱交換器5内を通流する水と熱交換して、その水を冷却する。これにより、第2の熱交換器5からは冷水を得ることができる。
【0020】
第2の熱交換器5で水と熱交換した低温低圧の二相冷媒は蒸発して低温低圧のガス冷媒となり、冷媒流路L5を介して四方切換弁2に導かれ、この四方切換弁2を通過後に、冷媒流路L6を介して圧縮機1に戻され、圧縮機1で再び圧縮される。
【0021】
温水供給運転時には、圧縮機1で圧縮された高温高圧のガス冷媒は、冷媒流路L1を介して四方切換弁2に導かれ、この四方切換弁2を破線の流路に沿って流れた後、冷媒流路L5を介して第2の熱交換器5に導かれる。第2の熱交換器5において、高温高圧のガス冷媒は第2の熱交換器5内を通流する水と熱交換して、その水を加温する。これにより、第2の熱交換器5からは温水を得ることができる。
【0022】
第2の熱交換器5で水と熱交換した高温高圧のガス冷媒は凝縮して高温高圧の液冷媒となる。その高温高圧の液冷媒は冷媒流路L4を介して膨張弁4に導かれ、この膨張弁4によって減圧されて低温低圧の二相冷媒となり、さらに冷媒流路L3を介して第1の熱交換器3に導かれる。第1の熱交換器3において、低温低圧の二相冷媒は冷却ファン6によって送風される空気と熱交換して蒸発し、低温低圧のガス冷媒となる。そして、その低温低圧のガス冷媒は冷媒流路L2を介して四方切換弁2に導かれ、この四方切換弁2を通過後、冷媒流路L6を介して圧縮機1に戻され、圧縮機1で再び圧縮される。
【0023】
図2および図3は四方切換弁2の構成とその駆動機構で、図2は冷水供給運転時の状態を、図3は温水供給運転時の状態をそれぞれ示している。
図2および図3に示すように、四方切換弁2には流路接続部2A,2B,2C,2Dが設けられ、流路接続部2Aは冷媒流路L1に、流路接続部2Bは冷媒流路L5に、流路接続部2Cは冷媒流路L6に、流路接続部2Dは冷媒流路L2にそれぞれ接続されている。また、四方切換弁2には、その内部に断面半円状の弁体2Eが移動自在に設けられ、この弁体2Eは、その両側に配置されたピストン2F,2Gに連結され、ピストン2F,2Gが四方切換弁2の内部を図の左右方向に移動すると、それに連動して左右方向に移動する。これによって、図2のように流路接続部2Aを流路接続部2Dに、流路接続部2Cを流路接続部2Bに接続することができ、また、図3のように流路接続部2Aを流路接続部2Bに、流路接続部2Cを流路接続部2Dに接続することができる。
【0024】
また、流路切換制御弁10が設けられ、この流路切換制御弁10を切換操作して流路接続部2A内の圧力を四方切換弁2の圧力室2Hもしくは圧力室2Iに、または流路接続部2C内の圧力を圧力室2Hもしくは圧力室2Iに伝達することにより、ピストン2F,2Gは四方切換弁2の内部を図の左右方向に移動する。
【0025】
冷水供給運転時には、流路切換制御弁10が図2のように切り換えられる。流路接続部2Aには圧縮機1によって圧縮された高温高圧のガス冷媒が、流路接続部2Cには圧縮機1によって吸引される低温低圧のガス冷媒が流れているので、圧力室2Iは高圧側に、圧力室2Hは低圧側となって、ピストン2F,2Gは図の左方向に押され弁体2Eも同方向に移動する。これによって、高温高圧のガス冷媒は流路接続部2Aから流路接続部2Dへと流れ、低温低圧のガス冷媒は流路接続部2Bから流路接続部2Cへと流れる。
【0026】
温水供給運転時には、流路切換制御弁10が図3のように切り換えられる。この場合は、圧力室2Iは低圧側に、圧力室2Hは高圧側となって、ピストン2F,2Gは図の右方向に押され弁体2Eも同方向に移動する。これによって、高温高圧のガス冷媒は流路接続部2Aから流路接続部2Bへと流れ、低温低圧のガス冷媒は流路接続部2Dから流路接続部2Cへと流れる。
【0027】
図4は、本実施の形態におけるヒートポンプ式熱供給装置の動作フロ−チャ−トを示している。圧縮機1は吐出量を50%、75%、100%と段階的に切り換える機能を備えたものである。ここで、冷凍サイクルを冷水供給運転から温水供給運転、もしくは温水供給運転から冷水供給運転に切り換える際に、圧縮機1の吐出側圧力Pdを圧力センサ7により検出し、吸込側圧力Psを圧力センサ8により検出する。圧力センサ7,8での検出信号は制御装置9に入力され、制御装置9は、入力された検出信号に基づいて差圧ΔP=Pd−Psを演算する。そして、制御装置9は差圧ΔPが適正範囲に入っているか否か判定し、差圧ΔPが0.075MPaを越えている場合は、圧縮機1の吐出量を75%に減少させる。その結果、熱交換器3,5の伝熱面積に余裕ができ、吐出側圧力Pdが低下し、吸込側圧力Psが上昇して、差圧ΔPは小さくなる。そして所定時間経過後、再度、差圧ΔPを演算し、0.075MPa以下であれば四方切換弁2を切り換える。まだ0.075MPaを越えている場合は圧縮機1の吐出量を50%に減少させて差圧ΔPを小さくし、0.075MPa以下になれば四方切換弁2を切り換える。
【0028】
一方、差圧ΔPが0.035MPa未満の場合は、圧縮機1の吐出量を75%、100%と増加させることにより差圧ΔPを増加させ、0.035MPa以上となれば四方切換弁2を切り換える。
【0029】
なお、圧縮機1の吐出量を減少もしくは増加させても、差圧ΔPが0.035MPa≦ΔP≦0.075MPaの範囲内に入らない場合は、圧縮機1を停止させるとともに警報表示する。
【0030】
また、四方切換弁2を切り換えた後の差圧ΔPを演算し、その差圧ΔPが異常値、例えば0〜0.02MPaの場合は、四方切換弁2の弁体が中間位置に停止、もしくは弁体の切り換え不良と判断し、冷凍サイクルの運転を停止する。
【0031】
その停止から所定時間経ったら、再運転の再開を行い、差圧ΔPが0.02MPaを越えていれば運転を継続し、0〜0.02MPaの場合は運転を停止させる。そして、運転の再開・停止を所定回数を繰り返したときは、四方切換弁2に異常があるとの警報表示を行い、冷凍サイクル運転を完全停止させる。
【0032】
上記のように、本実施の形態では、差圧ΔPが0.035MPa≦ΔP≦0.075MPaの範囲内で、四方切換弁2を切り換えるよう圧縮機1の吐出量を調整するとともに、四方切換弁2を切り換えた後の差圧ΔPが異常値の場合、運転を停止させ、所定回数再運転をした後、警報表示して運転を停止させる。
【0033】
図5は、四方切換弁の動作時差圧ΔPと切換回数による寿命との関係を示している。図から分かるように、差圧ΔPが大きければ、四方切換弁は切換回数が小さくても故障しやすく、寿命が低下する。逆に、差圧ΔPが小さければ、四方切換弁は切換回数が大きくても故障しにくく、長寿命化となる。そこで、本実施の形態では、四方切換弁の機械的、強度的寿命特定を鑑み、適正な差圧範囲で四方切換弁の切換を行うよう制御する。
【0034】
本実施の形態によれば、四方切換弁2に加わる差圧を制御することにより、四方切換弁2を切り換える際に弁体には適正な差圧が加えられるため、弁体の割れ、破損等を防止することができ、四方切換弁2の長寿命化を図ることができる。
【0035】
また、四方切換弁2を切り換えた後の差圧を求めることにより、四方切換弁2の弁体が中間位置に停止しているか否かを検知することができ、もし弁体が中間位置に停止していれば運転を停止させ、所定時間経ってから運転を自動的に再開することで冷凍サイクルが保護され、システム全体の信頼性向上につながる。
【0036】
なお、本実施の形態では差圧ΔPが0.035MPa≦ΔP≦0.075MPaの範囲内で四方切換弁2の切換を行うようにしたが、どの位の切換回数を寿命とするかによって差圧ΔPを変更することができる。
【0037】
また、第2の熱交換器5内を通流する流体は水に限らず、他の流体であってもよい。
【0038】
(実施の形態2)
図6は、本発明の実施の形態2を示している。本実施の形態では、圧縮機1は所定の吐出量を連続的に変えることができるように構成されたものである。他の構成は、実施の形態1と同じである。すなわち、冷凍サイクルの構成は図1に示したものと同じであり、また四方切換弁2の構成も図2および図3に示したものと同じである。
【0039】
本実施の形態では、制御装置9は四方切換弁2を切り換える差圧ΔPを演算し、差圧ΔPが0.075MPaを越えている場合は、圧縮機1の吐出量を所定量、例えば5%減少させる(なお、所定量は任意の値である)。そして、所定時間経過後に、再度、差圧ΔPを演算し、0.075MPaを越えていれば、同様に吐出量を5%減少させ、差圧ΔPが0.075MPa以下となるよう調整する。
【0040】
また、差圧ΔPが0.035MPa未満の場合も、同様に圧縮機1の吐出量を所定量増加させ、差圧ΔPが0.035MPa以上となれば四方切換弁2を切り換える。
【0041】
本実施の形態によれば、四方切換弁1に加わる差圧を検知し、圧縮機1の吐出量を所定量変化させることにより、実施の形態1と同様に、四方切換弁2の弁体の割れや破損の防止、並びに弁体が中間位置に停止するのを防止できる。さらに、本実施の形態では、圧縮機1からの吐出量が所定量で連続的に制御されるので、減容遅れによる必要以上の容量制限を加える必要がない。つまり、冷水または温水を供給する能力低下を最小限に抑えることができる。
【0042】
(実施の形態3)
次に、図7を用いて実施の形態3について説明する。圧縮機1は、実施の形態1の場合と同様、吐出量を50%、75%、100%と段階的に切り換える機能を備えたものである。ここで、温水供給運転から除霜運転に切り換える際に、圧縮機1の吐出側圧力Pdを圧力センサ7により検出し、吸込側圧力Psを圧力センサ8により検出する。圧力センサ7,8での検出信号は制御装置9に入力され、制御装置9は差圧ΔP=Pd−Psを演算する。そして、制御装置9は差圧ΔPがΔPmax以下であるか否か判定し、ΔPmaxを越えている場合は、圧縮機1の吐出量を変化させる(例えば、吐出量を75%に減少させる)。ある一定時間経過後、再度、差圧ΔPを演算し、ΔPmax以下であれば四方切換弁2を切り換える。まだ、ΔPmaxを越えていれば、圧縮機1の吐出量を更に変化させる(例えば、吐出量を50%に減少させる)。そして、ΔPmax以下になれば四方切換弁2を切り換える。
【0043】
また、四方切換弁2を切り換えた後の差圧ΔPを演算し、その差圧ΔPが異常値ΔPmin未満の場合は、四方切換弁2の弁体が中間位置に停止、もしくは弁体の切り換え不良と判断されるので、冷凍サイクルの運転(すなわち、圧縮機1の運転)を停止する。
【0044】
その停止から所定時間経ったら、再運転の再開を行い、差圧ΔPがΔPmin以上であれば運転を継続し、ΔPmin未満であれば運転を停止させる。そして、運転の再開・停止を所定回数を繰り返したとき、四方切換弁2に異常があるとの警報表示を行い、冷凍サイクル運転を完全停止させる。なお、ΔPmaxおよびΔPminの具体例は図5の示してある。
【0045】
上記のように本実施の形態では、差圧ΔPをΔPmin〜ΔPmaxの範囲内で四方切換弁を切り換えるよう圧縮機の吐出量を調整し、差圧ΔPが異常値の場合、運転を停止させ、所定回数再運転をした後、警報表示して運転を停止させる。
本実施の形態によれば、実施の形態1と同様な効果を得ることができる。
【0046】
(実施の形態4)
次に、図8を用いて実施の形態4について説明する。圧縮機1は、実施の形態2と同様に、所定の吐出量を連続的に変えることのできるようになっている。
【0047】
本実施の形態では、制御装置9は四方切換弁2を切り換える差圧ΔPを演算し、差圧ΔPがΔPmaxを越えている場合は、圧縮機1の吐出量を所定量に変化させ、例えば5%減少させる。そして、所定時間経過後に、再度、差圧ΔPを演算し、ΔPmax以下であれば四方切換弁2を切り換え、ΔPmaxを越えていれば圧縮機1の吐出量を所定量変化(減少)させて差圧ΔPを小さくし、ΔPmax以下になるよう繰り返し調整する。
本実施の形態によれば、実施の形態2と同様な効果を得ることができる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、四方切換弁を切り換える差圧を演算し、適正な差圧状態にて四方切換弁を切り換えることにより、弁体の割れや破損を防止でき、また弁体が中間位置に停止することも防止できる。その結果、四方切換弁の信頼性が向上して、長寿命化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係るヒートポンプ式熱供給装置の構成図である。
【図2】四方切換弁の冷水供給運転時の状態を示した図である。
【図3】四方切換弁の温水供給運転時の状態を示した図である。
【図4】本発明の実施の形態1による動作フロ−チャ−トである。
【図5】四方切換弁の寿命線図である。
【図6】本発明の実施の形態2による動作フロ−チャ−トである。
【図7】本発明の実施の形態3による動作フロ−チャ−トである。
【図8】本発明の実施の形態4による動作フロ−チャ−トである。
【符号の説明】
1 圧縮機
2 四方切換弁
3 第1の熱交換器
4 膨張弁
5 第2の熱交換器
6 冷却ファン
7,8 圧力センサ(圧力検出手段)
9 制御装置(制御手段)
10 流路切換制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump heat supply device, and more particularly, to a heat pump heat supply device that can supply cold water and hot water by switching to an air conditioner or the like.
[0002]
[Prior art]
The heat pump heat supply device is provided with an air-side heat exchanger, a decompressor, and a water-side heat exchanger. The air-side heat exchanger exchanges heat between the refrigerant and the outside air, and the water-side heat exchanger is a refrigerant. Heat exchange with the water flowing through the inside. And if the refrigerant | coolant from a compressor is flowed in order of an outdoor side heat exchanger, a pressure reduction device, and an indoor side heat exchanger, the water which flows through the inside of a water side heat exchanger will be cooled and supplied as cold water. Conversely, when the refrigerant from the compressor is flowed in the order of the indoor heat exchanger, the decompressor, and the outdoor heat exchanger, the water flowing through the water heat exchanger is heated and supplied as hot water. Whether to use cold water or hot water is performed by switching a four-way switching valve attached to the discharge side piping of the compressor.
[0003]
By the way, when the four-way switching valve is switched, if the four-way switching valve does not switch normally and the valve body stops at the intermediate position, the operation of the device cannot be performed normally and the operation is stopped. It must be.
[0004]
For example, in Japanese Patent Application Laid-Open No. 8-128749, when a four-way switching valve is switched, a pipe temperature before and after the switching is detected and a temperature difference before and after the switching is observed. It has been proposed to determine whether the four-way switching valve has been switched normally. However, simply determining whether or not the four-way selector valve has been switched normally will not allow normal operation to continue if it has not switched normally, and eventually the operation of the air conditioner must be stopped. I must.
[0005]
Japanese Patent Laid-Open No. 5-322355 proposes an air conditioner that prevents the valve body of the four-way switching valve from stopping at an intermediate position. In this air conditioner, the four-way switching valve changes the refrigerant flow by utilizing the pressure difference between the discharge side and the suction side of the compressor, and switches between the discharge side and the suction side of the compressor. A bypass circuit is provided to bypass the valve. An opening / closing valve is attached to the bypass circuit. When the opening / closing valve is opened simultaneously with the start of the compressor during heating operation, the pressure difference applied to the four-way switching valve is reduced and the valve body of the four-way switching valve is in the intermediate position. Therefore, the valve body is prevented from being stopped at the intermediate position by opening the on-off valve after being delayed for 10 seconds.
[0006]
[Problems to be solved by the invention]
Here, even if the opening of the on-off valve is delayed for 10 seconds as described above and applied to the heat pump heat supply device, the malfunction of the four-way switching valve cannot be completely eliminated. That is, since there is a large variation in the pressure difference between the discharge side and the suction side of the compressor at the time of starting, even if the on-off valve is opened after being delayed for 10 seconds, the four-way switching valve does not always operate normally, There is a high possibility of stopping in position.
[0007]
Further, as described above, if there is a large variation in the pressure difference between the discharge side and the suction side of the compressor, a large force is applied to the valve body when the four-way switching valve is switched, and the valve body may be broken.
[0008]
An object of the present invention is to provide a heat pump type heat supply device capable of appropriately switching a four-way switching valve.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises a refrigeration cycle in which a compressor, a first heat exchanger, a decompressor, a second heat exchanger, and a four-way switching valve are sequentially connected, and the first heat The exchanger exchanges heat between the air flowing outside the heat exchanger and the refrigerant circulating in the refrigeration cycle, and the second heat exchanger exchanges the fluid flowing through the heat exchanger with the refrigerant. The fluid is cooled and supplied when the refrigerant flows in the order of the first heat exchanger, the decompressor, and the second heat exchanger. A heat pump type heat supply device in which the fluid is heated and supplied when the switching valve is switched in the reverse direction and the refrigerant flows in the order of the second heat exchanger, the decompressor, and the first heat exchanger. Pressure detection means for detecting the discharge side pressure and suction side pressure of the compressor, and detection from the pressure detection means The result is taken in and the differential pressure between the discharge side pressure and the suction side pressure of the compressor is calculated, and when the four-way switching valve is switched, it is determined whether or not the differential pressure is within a preset appropriate range. In the case where it is out of the proper range, there is provided control means for changing the discharge amount of the compressor and switching the four-way switching valve after the differential pressure falls within the proper value range.
[0010]
According to the above configuration, when switching the four-way switching valve, the control means determines whether or not the differential pressure between the discharge pressure of the compressor and the suction side pressure is within a preset proper range, and the proper range. If it is, the four-way switching valve is immediately switched. If it is out of the proper range, the discharge amount of the compressor is changed and the differential pressure enters the proper value range, and then the four-way switching valve is switched. Thereby, since it can avoid that a big pressure difference is added to a four-way selector valve, it can prevent that a crack and damage generate | occur | produce in a valve body. Furthermore, it is possible to prevent the pressure difference from being too small and stopping the valve body of the four-way switching valve at the intermediate position.
[0011]
Actually, the control means decreases the discharge rate of the compressor if the upper limit value of the appropriate range is exceeded, and increases the discharge rate of the compressor if the differential pressure is less than the lower limit value of the proper range. Control is performed so that the four-way switching valve is switched after the pressure falls within the appropriate value range.
[0012]
The appropriate range is determined from the life characteristics of the number of switching times of the four-way switching valve determined according to the differential pressure.
[0013]
Further, in the present invention, when the differential pressure does not fall within the proper range even if the discharge amount of the compressor is decreased or increased, the compressor is stopped and an alarm is displayed. In this case, when the differential pressure is within an appropriate range, the compressor is restarted.
[0014]
Furthermore, after switching the four-way switching valve, the detection result is taken from the pressure detection means, the differential pressure between the discharge side pressure and the suction side pressure of the compressor is calculated, and if the differential pressure is an abnormal value, the compressor is It can also be configured to stop. In this case, after the compressor is stopped and a predetermined time elapses, the compressor is restarted and the differential pressure is calculated. If the differential pressure is an abnormal value, the compressor is stopped. Also, when the compressor is started and stopped a predetermined number of times, an alarm display is performed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump heat supply apparatus according to the present invention. As shown in the figure, the compressor 1, the four-way switching valve 2, the first heat exchanger 3, the expansion valve 4, the second heat exchanger 5, and the four-way switching valve 2 are sequentially connected to form a refrigeration cycle. ing. That is, the discharge side of the compressor 1 is connected to the four-way switching valve 2 via the refrigerant flow path L1, and the four-way switching valve 2 is connected to the first heat exchanger 3 via the refrigerant flow path L2 for the first heat exchange. The vessel 3 is connected to the expansion valve 4 via the refrigerant flow path L3. The expansion valve 4 is connected to the second heat exchanger 5 via the refrigerant flow path L4, the second heat exchanger 5 is connected to the four-way switching valve 2 via the refrigerant flow path L5, and the four-way switching valve 2 is connected to the refrigerant flow. Each is connected to the suction side of the compressor 1 via a path L6.
[0016]
The first heat exchanger 3 is a heat exchanger on the heat source side and is air-cooled by the cooling fan 6. In addition, the second heat exchanger 5 is a heat exchanger on the use side, to which the inflow pipe 5A and the outflow pipe 5B are attached, and the water flowing in from the inflow pipe 5A flows through the inside, and then flows out from the outflow pipe 5B.
[0017]
The refrigerant circulates in the refrigeration cycle, and the refrigerant flows as shown by the solid line arrow in the drawing during the operation of cooling the water flowing through the second heat exchanger 5 (hereinafter referred to as the cold water supply operation). During operation (hereinafter referred to as hot water supply operation), the refrigerant flows as indicated by the broken-line arrows in the figure. The four-way switching valve 2 is switched as indicated by a solid line during cold water supply operation and as indicated by a broken line during hot water supply operation.
[0018]
The refrigerant flow path L1 is provided with a pressure sensor 7 for detecting the discharge side refrigerant pressure of the compressor 1, and the refrigerant flow path L6 is provided with a pressure sensor 8 for detecting the suction side refrigerant pressure of the compressor 1. A control device 9 to which detection signals from the pressure sensors 7 and 8 are input is installed.
[0019]
In the above configuration, during the cold water supply operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is guided to the four-way switching valve 2 via the refrigerant flow path L1, and the four-way switching valve 2 is moved along the solid flow path. Then, it is guided to the first heat exchanger 3 through the refrigerant flow path L2. In the first heat exchanger 3, the high-temperature and high-pressure gas refrigerant is condensed by exchanging heat with the air blown by the cooling fan 6, and becomes a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant is guided to the expansion valve 4 through the refrigerant flow path L3, and is decompressed by the expansion valve 4 to become a low-temperature and low-pressure two-phase refrigerant. Further, the second heat exchange is performed through the refrigerant flow path L4. Guided to vessel 5. In the second heat exchanger 5, the low-temperature and low-pressure two-phase refrigerant exchanges heat with water flowing through the second heat exchanger 5 to cool the water. Thereby, cold water can be obtained from the second heat exchanger 5.
[0020]
The low-temperature and low-pressure two-phase refrigerant that has exchanged heat with water in the second heat exchanger 5 evaporates to become a low-temperature and low-pressure gas refrigerant, and is led to the four-way switching valve 2 via the refrigerant flow path L5. , The refrigerant is returned to the compressor 1 through the refrigerant flow path L6 and compressed again by the compressor 1.
[0021]
During the hot water supply operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is guided to the four-way switching valve 2 through the refrigerant flow path L1, and flows through the four-way switching valve 2 along the broken flow path. Then, it is guided to the second heat exchanger 5 through the refrigerant flow path L5. In the second heat exchanger 5, the high-temperature and high-pressure gas refrigerant exchanges heat with water flowing through the second heat exchanger 5 to heat the water. Thereby, warm water can be obtained from the second heat exchanger 5.
[0022]
The high-temperature and high-pressure gas refrigerant exchanged with water in the second heat exchanger 5 is condensed to become a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant is guided to the expansion valve 4 through the refrigerant flow path L4, and is decompressed by the expansion valve 4 to become a low-temperature and low-pressure two-phase refrigerant, and further, the first heat exchange is performed through the refrigerant flow path L3. Guided to vessel 3. In the first heat exchanger 3, the low-temperature and low-pressure two-phase refrigerant evaporates by exchanging heat with the air blown by the cooling fan 6 and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant is guided to the four-way switching valve 2 via the refrigerant flow path L2, passes through the four-way switching valve 2, and then returns to the compressor 1 via the refrigerant flow path L6. Is compressed again.
[0023]
2 and 3 show the configuration of the four-way switching valve 2 and its driving mechanism. FIG. 2 shows the state during the cold water supply operation, and FIG. 3 shows the state during the hot water supply operation.
As shown in FIGS. 2 and 3, the four-way switching valve 2 is provided with flow path connecting portions 2A, 2B, 2C, 2D, the flow path connecting portion 2A is a refrigerant flow path L1, and the flow path connecting section 2B is a refrigerant. In the flow path L5, the flow path connection portion 2C is connected to the refrigerant flow path L6, and the flow path connection portion 2D is connected to the refrigerant flow path L2. The four-way switching valve 2 is provided with a semicircular valve body 2E in a movable manner inside, and the valve body 2E is connected to pistons 2F and 2G arranged on both sides thereof, and the piston 2F, When 2G moves inside the four-way switching valve 2 in the left-right direction in the figure, it moves in the left-right direction in conjunction with it. As a result, the flow path connection portion 2A can be connected to the flow path connection portion 2D as shown in FIG. 2, and the flow path connection portion 2C can be connected to the flow path connection portion 2B. Also, as shown in FIG. 2A can be connected to the flow path connection portion 2B, and the flow path connection portion 2C can be connected to the flow path connection portion 2D.
[0024]
Further, a flow path switching control valve 10 is provided, and the flow path switching control valve 10 is operated to switch the pressure in the flow path connection portion 2A to the pressure chamber 2H or the pressure chamber 2I of the four-way switching valve 2, or the flow path. By transmitting the pressure in the connecting portion 2C to the pressure chamber 2H or the pressure chamber 2I, the pistons 2F and 2G move inside the four-way switching valve 2 in the left-right direction in the figure.
[0025]
During the cold water supply operation, the flow path switching control valve 10 is switched as shown in FIG. Since the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows in the flow path connection portion 2A, and the low-temperature and low-pressure gas refrigerant sucked by the compressor 1 flows in the flow path connection portion 2C, the pressure chamber 2I On the high-pressure side, the pressure chamber 2H becomes the low-pressure side, and the pistons 2F and 2G are pushed in the left direction in the figure, and the valve body 2E also moves in the same direction. Thereby, the high-temperature and high-pressure gas refrigerant flows from the flow path connection portion 2A to the flow path connection portion 2D, and the low-temperature and low-pressure gas refrigerant flows from the flow path connection portion 2B to the flow path connection portion 2C.
[0026]
During the hot water supply operation, the flow path switching control valve 10 is switched as shown in FIG. In this case, the pressure chamber 2I is on the low pressure side, the pressure chamber 2H is on the high pressure side, the pistons 2F and 2G are pushed rightward in the figure, and the valve body 2E is also moved in the same direction. Thereby, the high-temperature and high-pressure gas refrigerant flows from the flow path connection portion 2A to the flow path connection portion 2B, and the low-temperature and low-pressure gas refrigerant flows from the flow path connection portion 2D to the flow path connection portion 2C.
[0027]
FIG. 4 shows an operation flowchart of the heat pump type heat supply apparatus in the present embodiment. The compressor 1 has a function of switching the discharge amount stepwise between 50%, 75%, and 100%. Here, when the refrigeration cycle is switched from the cold water supply operation to the hot water supply operation, or from the hot water supply operation to the cold water supply operation, the discharge side pressure Pd of the compressor 1 is detected by the pressure sensor 7 and the suction side pressure Ps is detected by the pressure sensor. 8 to detect. Detection signals from the pressure sensors 7, 8 are input to the control device 9, and the control device 9 calculates a differential pressure ΔP = Pd−Ps based on the input detection signals. Then, the control device 9 determines whether or not the differential pressure ΔP is within an appropriate range. If the differential pressure ΔP exceeds 0.075 MPa, the discharge amount of the compressor 1 is reduced to 75%. As a result, there is room in the heat transfer area of the heat exchangers 3 and 5, the discharge side pressure Pd decreases, the suction side pressure Ps increases, and the differential pressure ΔP decreases. And after predetermined time progress, differential pressure (DELTA) P is calculated again, and if it is 0.075 Mpa or less, the four-way selector valve 2 will be switched. When the pressure still exceeds 0.075 MPa, the discharge amount of the compressor 1 is reduced to 50% to reduce the differential pressure ΔP, and when it becomes 0.075 MPa or less, the four-way switching valve 2 is switched.
[0028]
On the other hand, when the differential pressure ΔP is less than 0.035 MPa, the differential pressure ΔP is increased by increasing the discharge amount of the compressor 1 to 75% and 100%. Switch.
[0029]
If the differential pressure ΔP does not fall within the range of 0.035 MPa ≦ ΔP ≦ 0.075 MPa even if the discharge amount of the compressor 1 is decreased or increased, the compressor 1 is stopped and an alarm is displayed.
[0030]
Further, the differential pressure ΔP after switching the four-way switching valve 2 is calculated, and when the differential pressure ΔP is an abnormal value, for example, 0 to 0.02 MPa, the valve body of the four-way switching valve 2 stops at an intermediate position, or The operation of the refrigeration cycle is stopped because it is determined that the valve body is not properly switched.
[0031]
When a predetermined time has elapsed from the stop, the re-operation is resumed. If the differential pressure ΔP exceeds 0.02 MPa, the operation is continued, and if it is 0 to 0.02 MPa, the operation is stopped. When the operation is restarted / stopped a predetermined number of times, an alarm is displayed that the four-way switching valve 2 is abnormal, and the refrigeration cycle operation is completely stopped.
[0032]
As described above, in the present embodiment, the discharge amount of the compressor 1 is adjusted so as to switch the four-way switching valve 2 within the range where the differential pressure ΔP is 0.035 MPa ≦ ΔP ≦ 0.075 MPa, and the four-way switching valve. If the differential pressure ΔP after switching 2 is an abnormal value, the operation is stopped, the operation is restarted a predetermined number of times, an alarm is displayed, and the operation is stopped.
[0033]
FIG. 5 shows the relationship between the differential pressure ΔP during operation of the four-way switching valve and the service life depending on the number of switching times. As can be seen from the figure, if the differential pressure ΔP is large, the four-way switching valve is liable to fail even if the number of switching is small, and the life is shortened. On the other hand, if the differential pressure ΔP is small, the four-way switching valve is less likely to fail even if the number of switching is large, and the life is extended. Therefore, in the present embodiment, in consideration of specifying the mechanical and strength life of the four-way switching valve, control is performed so that the four-way switching valve is switched within an appropriate differential pressure range.
[0034]
According to the present embodiment, by controlling the differential pressure applied to the four-way switching valve 2, an appropriate differential pressure is applied to the valve body when the four-way switching valve 2 is switched. Can be prevented, and the life of the four-way switching valve 2 can be extended.
[0035]
Further, by obtaining the differential pressure after switching the four-way switching valve 2, it is possible to detect whether or not the valve body of the four-way switching valve 2 is stopped at the intermediate position, and the valve body is stopped at the intermediate position. If this is the case, the operation is stopped, and the operation is automatically resumed after a predetermined time, thereby protecting the refrigeration cycle and improving the reliability of the entire system.
[0036]
In the present embodiment, the four-way switching valve 2 is switched within the range where the differential pressure ΔP is 0.035 MPa ≦ ΔP ≦ 0.075 MPa. However, the differential pressure depends on how many times the switching is performed. ΔP can be changed.
[0037]
Further, the fluid flowing through the second heat exchanger 5 is not limited to water but may be other fluids.
[0038]
(Embodiment 2)
FIG. 6 shows a second embodiment of the present invention. In the present embodiment, the compressor 1 is configured so that a predetermined discharge amount can be continuously changed. Other configurations are the same as those of the first embodiment. That is, the configuration of the refrigeration cycle is the same as that shown in FIG. 1, and the configuration of the four-way switching valve 2 is also the same as that shown in FIGS.
[0039]
In the present embodiment, the control device 9 calculates a differential pressure ΔP for switching the four-way switching valve 2, and when the differential pressure ΔP exceeds 0.075 MPa, the discharge amount of the compressor 1 is set to a predetermined amount, for example, 5%. Decrease (Note that the predetermined amount is an arbitrary value). Then, after a predetermined time has elapsed, the differential pressure ΔP is calculated again, and if it exceeds 0.075 MPa, the discharge amount is similarly reduced by 5%, and the differential pressure ΔP is adjusted to 0.075 MPa or less.
[0040]
Similarly, when the differential pressure ΔP is less than 0.035 MPa, the discharge amount of the compressor 1 is similarly increased by a predetermined amount, and the four-way switching valve 2 is switched when the differential pressure ΔP becomes 0.035 MPa or more.
[0041]
According to the present embodiment, the differential pressure applied to the four-way switching valve 1 is detected, and the discharge amount of the compressor 1 is changed by a predetermined amount, so that the valve body of the four-way switching valve 2 is changed as in the first embodiment. It is possible to prevent cracking and breakage and to prevent the valve body from stopping at an intermediate position. Furthermore, in the present embodiment, since the discharge amount from the compressor 1 is continuously controlled by a predetermined amount, it is not necessary to add a capacity limit more than necessary due to a delay in volume reduction. That is, it is possible to minimize a decrease in the ability to supply cold water or hot water.
[0042]
(Embodiment 3)
Next, Embodiment 3 will be described with reference to FIG. As in the case of the first embodiment, the compressor 1 has a function of switching the discharge amount in steps of 50%, 75%, and 100%. Here, when switching from the hot water supply operation to the defrosting operation, the discharge side pressure Pd of the compressor 1 is detected by the pressure sensor 7, and the suction side pressure Ps is detected by the pressure sensor 8. Detection signals from the pressure sensors 7, 8 are input to the control device 9, and the control device 9 calculates a differential pressure ΔP = Pd−Ps. Then, the control device 9 determines whether or not the differential pressure ΔP is equal to or less than ΔPmax, and if it exceeds ΔPmax, the discharge amount of the compressor 1 is changed (for example, the discharge amount is reduced to 75%). After a certain time elapses, the differential pressure ΔP is calculated again, and if it is equal to or less than ΔPmax, the four-way switching valve 2 is switched. If it still exceeds ΔPmax, the discharge amount of the compressor 1 is further changed (for example, the discharge amount is reduced to 50%). And if it becomes below (DELTA) Pmax, the four-way selector valve 2 will be switched.
[0043]
Further, the differential pressure ΔP after switching the four-way switching valve 2 is calculated, and when the differential pressure ΔP is less than the abnormal value ΔPmin, the valve body of the four-way switching valve 2 stops at the intermediate position, or the switching of the valve body is poor. Therefore, the operation of the refrigeration cycle (that is, the operation of the compressor 1) is stopped.
[0044]
When a predetermined time has elapsed from the stop, the re-operation is resumed. If the differential pressure ΔP is equal to or greater than ΔPmin, the operation is continued, and if it is less than ΔPmin, the operation is stopped. When the operation is restarted / stopped a predetermined number of times, an alarm is displayed that the four-way switching valve 2 is abnormal, and the refrigeration cycle operation is completely stopped. Specific examples of ΔPmax and ΔPmin are shown in FIG.
[0045]
As described above, in the present embodiment, the discharge amount of the compressor is adjusted so that the differential pressure ΔP is switched between the four-way switching valves within the range of ΔPmin to ΔPmax, and when the differential pressure ΔP is an abnormal value, the operation is stopped. After restarting a predetermined number of times, an alarm is displayed and the operation is stopped.
According to the present embodiment, the same effect as in the first embodiment can be obtained.
[0046]
(Embodiment 4)
Next, Embodiment 4 will be described with reference to FIG. As in the second embodiment, the compressor 1 can continuously change the predetermined discharge amount.
[0047]
In the present embodiment, the control device 9 calculates a differential pressure ΔP for switching the four-way switching valve 2, and when the differential pressure ΔP exceeds ΔPmax, the discharge amount of the compressor 1 is changed to a predetermined amount, for example, 5 % Decrease. Then, after a predetermined time has elapsed, the differential pressure ΔP is calculated again, and if it is equal to or less than ΔPmax, the four-way switching valve 2 is switched, and if it exceeds ΔPmax, the discharge amount of the compressor 1 is changed (decreased) by a predetermined amount. The pressure ΔP is reduced and adjusted repeatedly so as to be equal to or less than ΔPmax.
According to the present embodiment, the same effect as in the second embodiment can be obtained.
[0048]
【The invention's effect】
As described above, according to the present invention, by calculating the differential pressure for switching the four-way switching valve and switching the four-way switching valve in an appropriate differential pressure state, it is possible to prevent the valve body from being cracked or damaged. It is also possible to prevent the body from stopping at an intermediate position. As a result, the reliability of the four-way switching valve is improved and the life can be extended.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump heat supply device according to the present invention.
FIG. 2 is a diagram showing a state of a four-way switching valve during a cold water supply operation.
FIG. 3 is a diagram showing a state of a four-way switching valve during a hot water supply operation.
FIG. 4 is an operation flowchart according to the first embodiment of the present invention.
FIG. 5 is a life diagram of a four-way switching valve.
FIG. 6 is an operation flowchart according to the second embodiment of the present invention.
FIG. 7 is an operation flowchart according to the third embodiment of the present invention.
FIG. 8 is an operation flowchart according to the fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way selector valve 3 1st heat exchanger 4 Expansion valve 5 2nd heat exchanger 6 Cooling fan 7, 8 Pressure sensor (pressure detection means)
9 Control device (control means)
10 Channel switching control valve

Claims (5)

圧縮機、第1の熱交換器、減圧器、第2の熱交換器、及び四方切換弁が順次接続された冷凍サイクルを備え、前記第1の熱交換器は該熱交換器外側を流れる空気と前記冷凍サイクル内を循環する冷媒との間で熱交換を行い、前記第2の熱交換器は該熱交換器内を通流する流体と前記冷媒との間で熱交換を行って、前記四方切換弁を切り換えて、前記冷媒を前記第1の熱交換器、前記減圧器および前記第2の熱交換器の順に流したときに前記流体が冷却されて供給され、前記四方切換弁を逆に切り換えて、前記冷媒を前記第2の熱交換器、前記減圧器および前記第1の熱交換器の順に流したときに前記流体が加温されて供給されるヒ−トポンプ式熱供給装置において、
前記圧縮機の吐出側圧力と吸込側圧力を検出する圧力検出手段と、
前記圧力検出手段から検出結果を取り込んで前記圧縮機の吐出側圧力と吸込側圧力との差圧を演算するとともに、前記四方切換弁を切り換える際に、前記差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲外の場合は、前記圧縮機の吐出量を変化させ前記差圧が適正値範囲内に入ってから前記四方切換弁の切換を行う制御手段とを備え、前記適正範囲は、前記差圧に応じて定まる前記四方切換弁の切換回数の寿命特性から決定されることを特徴とするヒ−トポンプ式熱供給装置。
A compressor, a first heat exchanger, a decompressor, a second heat exchanger, and a refrigeration cycle to which a four-way switching valve is sequentially connected, wherein the first heat exchanger flows outside the heat exchanger And the refrigerant circulating in the refrigeration cycle, the second heat exchanger exchanges heat between the fluid flowing through the heat exchanger and the refrigerant, and When the four-way switching valve is switched and the refrigerant flows in the order of the first heat exchanger, the pressure reducer, and the second heat exchanger, the fluid is cooled and supplied, and the four-way switching valve is reversed. In the heat pump type heat supply device in which the fluid is heated and supplied when the refrigerant flows in the order of the second heat exchanger, the decompressor, and the first heat exchanger. ,
Pressure detecting means for detecting a discharge side pressure and a suction side pressure of the compressor;
The detection result is taken in from the pressure detection means to calculate the differential pressure between the discharge side pressure and the suction side pressure of the compressor, and when the four-way switching valve is switched, the differential pressure is within a preset appropriate range. determines whether or not contained, in the case of out of the proper range, and control means for switching the four-way selector valve from entering into the differential pressure appropriate value range by changing the discharge amount of the compressor The appropriate range is determined from a life characteristic of the number of switching times of the four-way switching valve determined according to the differential pressure .
圧縮機、第1の熱交換器、減圧器、第2の熱交換器、及び四方切換弁が順次接続された冷凍サイクルを備え、前記第1の熱交換器は該熱交換器外側を流れる空気と前記冷凍サイクル内を循環する冷媒との間で熱交換を行い、前記第2の熱交換器は該熱交換器内を通流する流体と前記冷媒との間で熱交換を行って、前記四方切換弁を切り換えて、前記冷媒を前記第1の熱交換器、前記減圧器および前記第2の熱交換器の順に流したときに前記流体が冷却されて供給され、前記四方切換弁を逆に切り換えて、前記冷媒を前記第2の熱交換器、前記減圧器および前記第1の熱交換器の順に流したときに前記流体が加温されて供給されるヒ−トポンプ式熱供給装置において、
前記圧縮機の吐出側圧力と吸込側圧力を検出する圧力検出手段と、
前記圧力検出手段から検出結果を取り込んで前記圧縮機の吐出側圧力と吸込側圧力との差圧を演算するとともに、前記四方切換弁を切り換える際に、前記差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲の上限値を越えている場合は前記圧縮機の吐出量を減少させ、適正範囲の下限値未満の場合は前記圧縮機の吐出量を増加させて、前記差圧が適正値範囲内に入ってから前記四方切換弁の切換を行う制御手段とを備え、前記適正範囲は、前記差圧に応じて定まる前記四方切換弁の切換回数の寿命特性から決定されることを特徴とするヒ−トポンプ式熱供給装置。
A compressor, a first heat exchanger, a decompressor, a second heat exchanger, and a refrigeration cycle to which a four-way switching valve is sequentially connected, wherein the first heat exchanger flows outside the heat exchanger And the refrigerant circulating in the refrigeration cycle, the second heat exchanger exchanges heat between the fluid flowing through the heat exchanger and the refrigerant, and When the four-way switching valve is switched and the refrigerant flows in the order of the first heat exchanger, the pressure reducer, and the second heat exchanger, the fluid is cooled and supplied, and the four-way switching valve is reversed. In the heat pump type heat supply device in which the fluid is heated and supplied when the refrigerant flows in the order of the second heat exchanger, the decompressor, and the first heat exchanger. ,
Pressure detecting means for detecting a discharge side pressure and a suction side pressure of the compressor;
The detection result is taken in from the pressure detection means to calculate the differential pressure between the discharge side pressure and the suction side pressure of the compressor, and when the four-way switching valve is switched, the differential pressure is within a preset appropriate range. Determine whether or not, if it exceeds the upper limit of the appropriate range, decrease the discharge amount of the compressor, if less than the lower limit value of the appropriate range, increase the discharge amount of the compressor, Control means for switching the four-way switching valve after the differential pressure falls within an appropriate value range, and the appropriate range is determined from the life characteristics of the number of switching times of the four-way switching valve determined according to the differential pressure. A heat pump type heat supply device.
圧縮機、第1の熱交換器、減圧器、第2の熱交換器、及び四方切換弁が順次接続された冷凍サイクルを備え、前記第1の熱交換器は該熱交換器外側を流れる空気と前記冷凍サイクル内を循環する冷媒との間で熱交換を行い、前記第2の熱交換器は該熱交換器内を通流する流体と前記冷媒との間で熱交換を行って、前記四方切換弁を切り換えて、前記冷媒を前記第1の熱交換器、前記減圧器および前記第2の熱交換器の順に流したときに前記流体が冷却されて供給され、前記四方切換弁を逆に切り換えて、前記冷媒を前記第2の熱交換器、前記減圧器および前記第1の熱交換器の順に流したときに前記流体が加温されて供給されるヒ−トポンプ式熱供給装置において、
前記圧縮機の吐出側圧力と吸込側圧力を検出する圧力検出手段と、
前記圧力検出手段から検出結果を取り込んで前記圧縮機の吐出側圧力と吸込側圧力との差圧を演算するとともに、前記四方切換弁を切り換える際に、前記差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲外の場合は、前記圧縮機の吐出量を変化させ前記差圧が適正値範囲内に入ってから前記四方切換弁の切換を行う制御手段とを備え、前記制御手段は、前記圧縮機の吐出量を減少もしくは増加させても前記差圧が適正範囲内に入らない場合は、前記圧縮機を停止させるとともに警報表示することを特徴とするヒ−トポンプ式熱供給装置。
A compressor, a first heat exchanger, a decompressor, a second heat exchanger, and a refrigeration cycle to which a four-way switching valve is sequentially connected, wherein the first heat exchanger flows outside the heat exchanger And the refrigerant circulating in the refrigeration cycle, the second heat exchanger exchanges heat between the fluid flowing through the heat exchanger and the refrigerant, and When the four-way switching valve is switched and the refrigerant flows in the order of the first heat exchanger, the pressure reducer, and the second heat exchanger, the fluid is cooled and supplied, and the four-way switching valve is reversed. In the heat pump type heat supply device in which the fluid is heated and supplied when the refrigerant flows in the order of the second heat exchanger, the decompressor, and the first heat exchanger. ,
Pressure detecting means for detecting a discharge side pressure and a suction side pressure of the compressor;
The detection result is taken in from the pressure detection means to calculate the differential pressure between the discharge side pressure and the suction side pressure of the compressor, and when the four-way switching valve is switched, the differential pressure is within a preset appropriate range. Control means for switching the four-way switching valve after changing the discharge amount of the compressor and entering the appropriate pressure range when the pressure difference is within the appropriate value range. When the pressure difference does not fall within an appropriate range even if the discharge amount of the compressor is decreased or increased, the control means stops the compressor and displays a warning. Type heat supply device.
圧縮機、第1の熱交換器、減圧器、第2の熱交換器、及び四方切換弁が順次接続された冷凍サイクルを備え、前記第1の熱交換器は該熱交換器外側を流れる空 気と前記冷凍サイクル内を循環する冷媒との間で熱交換を行い、前記第2の熱交換器は該熱交換器内を通流する流体と前記冷媒との間で熱交換を行って、前記四方切換弁を切り換えて、前記冷媒を前記第1の熱交換器、前記減圧器および前記第2の熱交換器の順に流したときに前記流体が冷却されて供給され、前記四方切換弁を逆に切り換えて、前記冷媒を前記第2の熱交換器、前記減圧器および前記第1の熱交換器の順に流したときに前記流体が加温されて供給されるヒ−トポンプ式熱供給装置において、
前記圧縮機の吐出側圧力と吸込側圧力を検出する圧力検出手段と、
前記圧力検出手段から検出結果を取り込んで前記圧縮機の吐出側圧力と吸込側圧力との差圧を演算するとともに、前記四方切換弁を切り換える際に、前記差圧が予め設定された適正範囲に入っているか否かを判定し、適正範囲の上限値を越えている場合は前記圧縮機の吐出量を減少させ、適正範囲の下限値未満の場合は前記圧縮機の吐出量を増加させて、前記差圧が適正値範囲内に入ってから前記四方切換弁の切換を行う制御手段とを備え、前記制御手段は、前記圧縮機の吐出量を減少もしくは増加させても前記差圧が適正範囲内に入らない場合は、前記圧縮機を停止させるとともに警報表示することを特徴とするヒ−トポンプ式熱供給装置。
A compressor, a first heat exchanger, a decompressor, a second heat exchanger, and a refrigeration cycle sequentially connected to the four-way switching valve, wherein the first heat exchanger is an empty air flowing outside the heat exchanger; Heat exchange between the refrigerant circulating in the refrigeration cycle and the second heat exchanger exchanges heat between the fluid flowing through the heat exchanger and the refrigerant, The fluid is cooled and supplied when the four-way switching valve is switched and the refrigerant flows in the order of the first heat exchanger, the pressure reducer, and the second heat exchanger. The heat pump type heat supply device is switched to the reverse, and the fluid is heated and supplied when the refrigerant flows in the order of the second heat exchanger, the pressure reducer, and the first heat exchanger. In
Pressure detecting means for detecting a discharge side pressure and a suction side pressure of the compressor;
The detection result is taken in from the pressure detection means to calculate the differential pressure between the discharge side pressure and the suction side pressure of the compressor, and when the four-way switching valve is switched, the differential pressure is within a preset appropriate range. Determine whether or not, if it exceeds the upper limit of the appropriate range, decrease the discharge amount of the compressor, if less than the lower limit value of the appropriate range, increase the discharge amount of the compressor, Control means for switching the four-way switching valve after the differential pressure is within an appropriate value range, and the control means can maintain the differential pressure within an appropriate range even if the discharge amount of the compressor is decreased or increased. When the heat pump does not enter the heat pump , the compressor is stopped and a warning is displayed .
請求項3又は4に記載のヒ−トポンプ式熱供給装置において、
前記制御手段は、前記差圧が適正範囲に入ったら、前記圧縮機を再起動させることを特徴とするヒ−トポンプ式熱供給装置。
In the heat pump type heat supply device according to claim 3 or 4,
The heat pump type heat supply device, wherein the control means restarts the compressor when the differential pressure is within an appropriate range.
JP2000141338A 2000-05-15 2000-05-15 Heat pump type heat supply device Expired - Lifetime JP3738299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141338A JP3738299B2 (en) 2000-05-15 2000-05-15 Heat pump type heat supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141338A JP3738299B2 (en) 2000-05-15 2000-05-15 Heat pump type heat supply device

Publications (2)

Publication Number Publication Date
JP2001324234A JP2001324234A (en) 2001-11-22
JP3738299B2 true JP3738299B2 (en) 2006-01-25

Family

ID=18648469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141338A Expired - Lifetime JP3738299B2 (en) 2000-05-15 2000-05-15 Heat pump type heat supply device

Country Status (1)

Country Link
JP (1) JP3738299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968494A (en) * 2013-01-25 2014-08-06 珠海格力电器股份有限公司 Control method of air-conditioning system and air-conditioning system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535674B1 (en) * 2004-02-25 2005-12-09 엘지전자 주식회사 4-way valve control method for multi-heat pump
JP2007170706A (en) * 2005-12-20 2007-07-05 Sanyo Electric Co Ltd Refrigeration system
JP5324768B2 (en) * 2007-09-26 2013-10-23 アイシン精機株式会社 Air conditioner
KR101357150B1 (en) * 2011-12-30 2014-02-04 이근형 Heat pump system of electronics vehicle
CN104930637B (en) * 2014-03-18 2018-02-09 珠海格力电器股份有限公司 Four-way valve reverse control method, device and air-conditioning system
JP2016044937A (en) * 2014-08-26 2016-04-04 株式会社富士通ゼネラル Air conditioner
CN108954669B (en) * 2018-07-06 2020-05-22 广东美的暖通设备有限公司 Four-way valve fault detection method, refrigerating and heating equipment and readable storage medium
CN109539401B (en) * 2018-11-13 2023-09-12 珠海格力电器股份有限公司 Air conditioner and control method
CN110411057B (en) * 2019-08-14 2021-05-25 珠海格力电器股份有限公司 Four-way valve reversing monitoring method and device and air conditioning system
CN110726266A (en) * 2019-10-17 2020-01-24 珠海格力电器股份有限公司 Four-way valve liquid impact prevention control method and device and four-way valve
WO2022015154A1 (en) * 2020-07-15 2022-01-20 Low Wai Koon System heating and cooling air
CN114151944B (en) * 2021-12-06 2022-11-15 珠海格力电器股份有限公司 Control method and device of air conditioner, storage medium and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968494A (en) * 2013-01-25 2014-08-06 珠海格力电器股份有限公司 Control method of air-conditioning system and air-conditioning system
CN103968494B (en) * 2013-01-25 2016-08-03 珠海格力电器股份有限公司 The control method of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JP2001324234A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP5169295B2 (en) Refrigeration equipment
US7856836B2 (en) Refrigerating air conditioning system
CN101233375B (en) Method for preventing spill start in heat pump and controller
EP2565555A1 (en) Refrigeration cycle device
CN101512249B (en) Refrigeration device
JP3738299B2 (en) Heat pump type heat supply device
JP5976333B2 (en) Air conditioner and four-way valve control method for air conditioner
TWI272362B (en) Refrigeration system
JP2006242476A (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
JP5274174B2 (en) Air conditioner
JP2008116156A (en) Air conditioner
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
JP6545252B2 (en) Refrigeration cycle device
CN115038917A (en) Air conditioner
JP5020114B2 (en) Air conditioner
JPH0571822A (en) Air-conditioner
JP4269476B2 (en) Refrigeration equipment
JP2004003717A (en) Air conditioner
JP3290251B2 (en) Air conditioner
JP4687326B2 (en) Air conditioner
JP4021374B2 (en) Heat pump water heater
JP2005214442A (en) Refrigerator
KR100698373B1 (en) System for heat pump with four check valve for defrosting
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3738299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term