JP2010255859A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010255859A
JP2010255859A JP2009102635A JP2009102635A JP2010255859A JP 2010255859 A JP2010255859 A JP 2010255859A JP 2009102635 A JP2009102635 A JP 2009102635A JP 2009102635 A JP2009102635 A JP 2009102635A JP 2010255859 A JP2010255859 A JP 2010255859A
Authority
JP
Japan
Prior art keywords
oil
compressor
amount
refrigerant
outdoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102635A
Other languages
Japanese (ja)
Other versions
JP4920717B2 (en
Inventor
Tomotaka Ishikawa
智隆 石川
Takashi Okazaki
多佳志 岡崎
Hirosuke Shimazu
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009102635A priority Critical patent/JP4920717B2/en
Publication of JP2010255859A publication Critical patent/JP2010255859A/en
Application granted granted Critical
Publication of JP4920717B2 publication Critical patent/JP4920717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent lowering of oil concentration in a compressor when liquid return to an outdoor unit occurs, and to improve reliability in an operation of a refrigerating machine by preventing failure of the compressor. <P>SOLUTION: This refrigerating device includes two outdoor units 2a, 2b, two distributors 8a, 8b for distributing a refrigerant flowing out from an evaporator 7 to each of the outdoor units, oil amount detecting means of temperature sensors 12a, 12b detecting amounts of oil in the compressors, a return liquid amount adjusting means of flow rate adjustment valves 15a, 15b for adjusting amounts of return liquid to the outdoor units, and a control device 18 for controlling the return liquid amount adjusting means to adjust the amounts of return liquid to the outdoor units on the basis of the amounts of oil in the compressors detected by the oil amount detecting means, before an evaporator fan is started during fan delay control for delaying the start of the evaporator fan with respect to the start of the compressor after the termination of a defrosting operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、室外機ユニットを複数台組合わせて使用する組合わせマルチ冷凍装置に係り、特に、液戻りによる冷凍機油濃度低下を防止する冷媒回路の構成及び運転制御に関するものである。   The present invention relates to a combined multi-refrigeration apparatus that uses a plurality of outdoor unit units in combination, and particularly relates to the configuration and operation control of a refrigerant circuit that prevents a decrease in refrigeration machine oil concentration due to liquid return.

従来の複数台の圧縮機に冷凍機油を適切に供給する方法を実施する空気調和装置は、圧縮機、油分離器、室外熱交換器、アキュムレータを搭載した複数の室外機が並列に接続され、さらに膨張弁、室内熱交換器を搭載した室内機を接続してなる冷凍サイクルを形成する。
また、油回路は、油分離器で分離した冷凍機油を圧縮機に返油し、余剰の冷凍機油を全室外機共通の油容器、そして各室外機に搭載される各アキュムレータに貯留する。
各アキュムレータには油戻し穴が設置され、各アキュムレータ内に貯留された冷凍機油はそれぞれ各圧縮機へ返油される。
共通油容器と各アキュムレータ間に室外機台数に応じた絞り装置を設置して、各アキュムレータに適切な給油を行い、各室外機間の圧縮機内油量にばらつきが生じても、自然に均油できるようにしていた(例えば、特許文献1参照)。
An air conditioner that implements a method of appropriately supplying refrigeration oil to a plurality of conventional compressors, a plurality of outdoor units equipped with a compressor, an oil separator, an outdoor heat exchanger, and an accumulator are connected in parallel, Furthermore, a refrigeration cycle is formed by connecting an indoor unit equipped with an expansion valve and an indoor heat exchanger.
The oil circuit returns the refrigerating machine oil separated by the oil separator to the compressor, and stores surplus refrigerating machine oil in an oil container common to all outdoor units and in each accumulator mounted on each outdoor unit.
Each accumulator is provided with an oil return hole, and the refrigeration oil stored in each accumulator is returned to each compressor.
Install a throttling device according to the number of outdoor units between the common oil container and each accumulator so that each accumulator is properly lubricated. (See, for example, Patent Document 1).

特許第3413044号公報(第1頁、図1)Japanese Patent No. 3413044 (first page, FIG. 1)

従来の複数台の圧縮機に冷凍機油を適切に供給する方法を実施する空気調和装置は、除霜運転終了時の温風吹出し防止のため、圧縮機起動より蒸発器ファン起動を遅延させるファン遅延制御を導入している。
このファン遅延制御時に各室外機へ多量の液冷媒が流入するが、特に各室外機へ冷媒を分配する分配器の設置角度にばらつきが生じると、ファン遅延制御時に液戻り量が極端に多い室外機が現れるものであった。
また、油容器を持たず、余剰油を全てアキュムレータに保有する空気調和装置では、油分離器の油分離効率にばらつきが生じると、極端にアキュムレータ内の油保有量が少ない室外機が現れる。
このようにファン遅延制御時に液戻り量が多く油保有量が少ない室外機は、圧縮機内油濃度が圧縮機運転に必要な油濃度以下に低下するため、圧縮機故障の要因となるという問題があった。
The conventional air conditioner that implements the method of properly supplying refrigeration oil to multiple compressors is a fan delay that delays the start of the evaporator fan from the start of the compressor in order to prevent hot air blowing at the end of the defrosting operation. Introducing control.
A large amount of liquid refrigerant flows into each outdoor unit during this fan delay control, but especially when there is a variation in the installation angle of the distributor that distributes the refrigerant to each outdoor unit, the outdoor unit has an extremely large amount of liquid return during the fan delay control. A machine appeared.
In addition, in an air conditioner that does not have an oil container and retains all excess oil in an accumulator, when the oil separation efficiency of the oil separator varies, an outdoor unit that has an extremely small amount of oil in the accumulator appears.
As described above, the outdoor unit with a large liquid return amount and a small oil holding amount during the fan delay control has a problem that the oil concentration in the compressor falls below the oil concentration necessary for the compressor operation, which causes a compressor failure. there were.

本発明はかかる問題点を解決するためになされたもので、室外機へ液戻りが生じた際に、圧縮機内の油濃度低下を回避し、圧縮機故障を防止することで冷凍機運転の信頼性向上を図ることができる冷凍装置を得ることを目的とする。   The present invention has been made to solve such problems, and when liquid returns to the outdoor unit, the oil concentration in the compressor is avoided and the compressor malfunction is prevented by preventing the compressor failure. An object of the present invention is to obtain a refrigeration apparatus capable of improving the performance.

本発明の冷凍装置は、室外機と室内機とを備え、前記室外機は、冷媒を圧縮して吐出する圧縮機と、前記圧縮機から吐出される冷媒に含まれる冷凍機油を分離する油分離器と、
前記油分離器から流出される冷媒を凝縮する凝縮器と、冷媒と冷凍機油とを分離するアキュムレータとを備え、前記油分離器で分離された冷凍機油を前記圧縮機に返油するための返油管を前記圧縮機の吸入配管に接続し、前記室内機は、前記凝縮器から流出される冷媒を減圧する減圧手段と、前記減圧手段で減圧された冷媒を蒸発させる蒸発器とを備えた冷凍装置において、前記室外機を複数備え、前記蒸発器から流出される冷媒を前記各室外機に分配するための複数の分配器と、前記各圧縮機の油量を検知する油量検知手段と、前記各室外機への返液量を調節する返液量調節手段と、除霜運転終了後における前記圧縮機の起動より前記蒸発器ファンの起動を遅延させるファン遅延制御中で前記蒸発器ファンが起動するまでの間に、前記油量検知手段が検知した前記各圧縮機内の油量に基づいて前記返液量調節手段が各室外機への返液量を調節するよう制御する制御装置とを備えて構成されている。
The refrigerating apparatus of the present invention includes an outdoor unit and an indoor unit, and the outdoor unit compresses and discharges a refrigerant, and oil separation that separates refrigerating machine oil contained in the refrigerant discharged from the compressor. And
A condenser for condensing the refrigerant flowing out from the oil separator; and an accumulator for separating the refrigerant and the refrigerating machine oil, and returning the refrigerating machine oil separated by the oil separator to the compressor. An oil pipe is connected to the suction pipe of the compressor, and the indoor unit includes a decompression unit that decompresses the refrigerant flowing out from the condenser, and an evaporator that evaporates the refrigerant decompressed by the decompression unit. The apparatus comprises a plurality of the outdoor units, a plurality of distributors for distributing the refrigerant flowing out of the evaporator to the outdoor units, and an oil amount detection means for detecting the oil amount of the compressors, The liquid return amount adjusting means for adjusting the liquid return amount to each outdoor unit, and the evaporator fan in the fan delay control for delaying the start of the evaporator fan from the start of the compressor after the completion of the defrosting operation. Before starting up, the amount of oil Knowledge means is constituted by a said Kaeeki amount adjusting means based on the amount of oil each compressor having detected control device for controlling so as to adjust the Kaeeki amount to the outdoor units.

本発明の冷凍装置においては、制御手段が除霜運転終了後における圧縮機の起動より蒸発器ファンの起動を遅延させるファン遅延制御中で蒸発器ファンが起動するまでの間に、各圧縮機の油量を検知する油量検知手段が検知した各圧縮機内の油量に基づいて各室外機への返液量を調節する返液量調節手段が各室外機への返液量を調節するよう制御し、多くの油量を保有する室外機に返液量を増加させ、所定量以下の油量の室外機への返液量を減少させることにより、ファン遅延制御時間中に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持することができ、圧縮機故障を回避し、冷凍機運転の信頼性を向上させることができるという効果がある。   In the refrigeration apparatus according to the present invention, the control means waits for the start of the evaporator fan during the fan delay control in which the start of the evaporator fan is delayed from the start of the compressor after the completion of the defrosting operation. The return amount adjustment means for adjusting the return amount to each outdoor unit based on the amount of oil in each compressor detected by the oil amount detection means for detecting the oil amount so as to adjust the return amount to each outdoor unit. All outdoor units are controlled during the fan delay control time by controlling and increasing the amount of liquid returned to the outdoor unit that has a large amount of oil and decreasing the amount of liquid returned to the outdoor unit that is less than the specified amount of oil. Thus, it is possible to maintain an appropriate oil concentration required for operating the compressor, to avoid a compressor failure, and to improve the reliability of the refrigerator operation.

本発明の実施の形態1の冷凍装置の冷媒回路図。The refrigerant circuit figure of the freezing apparatus of Embodiment 1 of this invention. 同冷凍装置のアキュムレータの内部を示す構成図。The block diagram which shows the inside of the accumulator of the freezing apparatus. 同冷凍装置の分配器の構成を示す斜視図。The perspective view which shows the structure of the divider | distributor of the freezing apparatus. 同冷凍装置の分配器の流出口におけるガスと液の分布を示す説明図。Explanatory drawing which shows distribution of the gas and liquid in the outflow port of the divider | distributor of the freezing apparatus. 同冷凍装置の分配器の傾斜角度と液分配比の関係を示すグラフ。The graph which shows the relationship between the inclination-angle of the divider | distributor of the freezing apparatus, and a liquid distribution ratio. 同冷凍装置の液戻り運転における動作を示すフローチャート。The flowchart which shows the operation | movement in the liquid return operation | movement of the freezing apparatus. 本発明の実施の形態2の冷凍装置の冷媒回路図。The refrigerant circuit figure of the freezing apparatus of Embodiment 2 of this invention. 同冷凍装置の液戻り運転における動作を示すフローチャート。The flowchart which shows the operation | movement in the liquid return operation | movement of the freezing apparatus. 本発明の実施の形態3の冷凍装置の冷媒回路図。The refrigerant circuit figure of the freezing apparatus of Embodiment 3 of this invention.

実施の形態1.
図1は実施の形態1に係る冷凍装置の冷媒回路、図2は同冷凍装置のアキュムレータの内部を示す構成図、図3は同冷凍装置の分配器の構成を示す斜視図である。
図において、本発明の実施の形態1の冷凍装置1は2つの室外機2a、2bを有している。
2つの室外機2a、2bは、圧縮機3a、3bと、圧縮機3a、3bのそれぞれの吐出部に配管接続された複数の油分離器4a、4bと、凝縮器5a、5bとを有している。2つの室外機2a、2bの凝縮器5a、5bには膨張弁6、蒸発器7、分配器8a、8b及び2つの室外機2a、2bのアキュムレータ9a、9bが順次接続されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit of a refrigeration apparatus according to Embodiment 1, FIG. 2 is a configuration diagram showing the inside of an accumulator of the refrigeration apparatus, and FIG. 3 is a perspective view showing a configuration of a distributor of the refrigeration apparatus.
In the figure, the refrigeration apparatus 1 according to Embodiment 1 of the present invention has two outdoor units 2a and 2b.
The two outdoor units 2a and 2b have compressors 3a and 3b, a plurality of oil separators 4a and 4b connected to the discharge portions of the compressors 3a and 3b, and condensers 5a and 5b. ing. The condensers 5a and 5b of the two outdoor units 2a and 2b are sequentially connected to the expansion valve 6, the evaporator 7, the distributors 8a and 8b, and the accumulators 9a and 9b of the two outdoor units 2a and 2b.

これらが順次配管で接続されて冷凍サイクルを形成し、冷媒およびそれに含まれる冷凍機油が循環する。
また、アキュムレータ9a、9bと圧縮機3a、3bとの間には吸入配管10a、10bが設けられている。これら吸入配管10a、10bに、油分離器4a、4bから分離された冷凍機油をそれぞれ圧縮機3a、3bに返油するための返油管11a、11bが接続されている。
18は制御装置で、冷凍装置1の電源のオン、オフに基づいて冷凍サイクルを駆動させると共に、後述する温度センサの検出信号に基づいて流量調整弁の開閉制御やファン遅延制御等の制御を行う。
These are sequentially connected by piping to form a refrigeration cycle, and refrigerant and refrigeration oil contained therein circulate.
Further, suction pipes 10a and 10b are provided between the accumulators 9a and 9b and the compressors 3a and 3b. These suction pipes 10a and 10b are connected to return oil pipes 11a and 11b for returning the refrigerating machine oil separated from the oil separators 4a and 4b to the compressors 3a and 3b, respectively.
Reference numeral 18 denotes a control device that drives the refrigeration cycle based on whether the power supply of the refrigeration apparatus 1 is turned on or off, and performs control such as opening / closing control of a flow rate adjusting valve and fan delay control based on a detection signal of a temperature sensor described later. .

次に、実施の形態1における冷凍装置1での冷媒の流れについて説明する。
2つの室外機2a、2bの圧縮機3a、3bからそれぞれ吐出された高温高圧のガス冷媒は油分離器4a、4bを経て、凝縮器5a、5bで凝縮液化された後、膨張弁6で減圧されて二相冷媒となり、蒸発器7で蒸発ガス化された後、分配器8a、8bにより各室外機2a、2bに分配され、アキュムレータ9a、9bを経て圧縮機3a、3bに吸入されて循環する冷凍サイクルを形成し、冷媒が循環する。
Next, the flow of the refrigerant in the refrigeration apparatus 1 in the first embodiment will be described.
The high-temperature and high-pressure gas refrigerant discharged from the compressors 3a and 3b of the two outdoor units 2a and 2b is condensed and liquefied by the condensers 5a and 5b through the oil separators 4a and 4b, and then decompressed by the expansion valve 6. After being converted into a two-phase refrigerant and vaporized by the evaporator 7, it is distributed to the outdoor units 2a and 2b by the distributors 8a and 8b, and sucked into the compressors 3a and 3b through the accumulators 9a and 9b for circulation. A refrigeration cycle is formed, and the refrigerant circulates.

次に、本実施の形態1における冷凍装置1での冷凍機油の流れについて説明する。
油分離器4a、4bの油分離効率は90%程度である。即ち、圧縮機3a、3bからガス冷媒とともに吐出される冷凍機油のうち90%程度は油分離器4a、4bで分離される。分離された冷凍機油は返油管11a、11bから吸入配管10a、10bを介して圧縮機3a、3bに返油される。
Next, the flow of the refrigeration oil in the refrigeration apparatus 1 in the first embodiment will be described.
The oil separation efficiency of the oil separators 4a and 4b is about 90%. That is, about 90% of the refrigerating machine oil discharged together with the gas refrigerant from the compressors 3a and 3b is separated by the oil separators 4a and 4b. The separated refrigerating machine oil is returned to the compressors 3a and 3b from the oil return pipes 11a and 11b through the suction pipes 10a and 10b.

油分離器4a、4bで返油されなかった油は凝縮器5a、5b、膨張弁6、蒸発器7を介して、分配器8a、8bにより各室外機2a、2bに分配され、アキュムレータ9a、9bに流入する。
アキュムレータ9a、9bでは、冷凍機油とガス冷媒は分離され、分離された油はアキュムレータ9a、9b底部に滞留する。
図2に示すように、アキュムレータ9a、9b内のある高さに油戻し穴11が設置されており、アキュムレータ9a、9bに滞留する冷凍機油は、油面高さが油戻し穴位置に達すると、吸入配管10a、10bに流入し、圧縮機3a、3bに返油される。
The oil not returned by the oil separators 4a and 4b is distributed to the outdoor units 2a and 2b by the distributors 8a and 8b via the condensers 5a and 5b, the expansion valve 6 and the evaporator 7, and the accumulator 9a, Flows into 9b.
In the accumulators 9a and 9b, the refrigerating machine oil and the gas refrigerant are separated, and the separated oil stays at the bottom of the accumulators 9a and 9b.
As shown in FIG. 2, the oil return hole 11 is installed at a certain height in the accumulators 9a and 9b, and the refrigerating machine oil staying in the accumulators 9a and 9b has an oil surface height that reaches the oil return hole position. Then, it flows into the suction pipes 10a and 10b and is returned to the compressors 3a and 3b.

次に本実施の形態1における冷凍装置1での油分離器4a、4bの油分離効率が与える影響について説明する。
油分離器4a、4bで分離されなかった油は、冷媒回路内を周遊して室外機2a、2bに再び流入するが、冷媒回路内を周遊するのに時間がかかるため、油分離器4a、4bで分離されない油量が多いと室外機2a、2b内の油量が減少することになる。
ゆえに、油分離器4a、4bの油分離効率が高いほど室外機2a、2b内の油量が増加する。また、油分離器4a、4bの油分離効率にばらつきが生じると、室外機2a、2bから流出する油量がばらつくことになる。
それ故、油分離器4a、4bの油分離効率のばらつきが小さいほど室外機2a、2b内の油量が均等となるが、油分離効率のばらつきは不確定であり、室外機2a、2b内の油量の偏りは各々の冷凍装置で異なる。
Next, the influence given by the oil separation efficiency of the oil separators 4a and 4b in the refrigeration apparatus 1 according to the first embodiment will be described.
The oil that has not been separated by the oil separators 4a and 4b travels around in the refrigerant circuit and flows into the outdoor units 2a and 2b again. However, since it takes time to travel around the refrigerant circuit, the oil separator 4a, If the amount of oil that is not separated by 4b is large, the amount of oil in the outdoor units 2a and 2b decreases.
Therefore, the amount of oil in the outdoor units 2a and 2b increases as the oil separation efficiency of the oil separators 4a and 4b increases. Further, when the oil separation efficiency of the oil separators 4a and 4b varies, the amount of oil flowing out from the outdoor units 2a and 2b varies.
Therefore, the smaller the variation in the oil separation efficiency of the oil separators 4a and 4b, the more equal the amount of oil in the outdoor units 2a and 2b. However, the variation in the oil separation efficiency is indeterminate and the inside of the outdoor units 2a and 2b. The amount of oil is different in each refrigeration system.

次に、本実施の形態1における冷凍装置1での初期封入油量が与える影響について説明する。
初期封入油量を増加させれば、冷媒回路内の油量が増加するため、液冷媒が室外機2a、2b内に流入する液戻り運転時の油濃度を向上できる。
しかし、初期封入油量を増加させ、圧縮機3a、3b内の油量が増加すると、油圧縮により圧縮機3a、3bへの入力が増加し、冷凍装置の運転効率低下を引き起こす。
Next, the influence given by the initial amount of oil charged in the refrigeration apparatus 1 according to Embodiment 1 will be described.
If the initial amount of enclosed oil is increased, the amount of oil in the refrigerant circuit increases, so that the oil concentration during the liquid return operation in which the liquid refrigerant flows into the outdoor units 2a and 2b can be improved.
However, when the initial amount of the enclosed oil is increased and the amount of oil in the compressors 3a and 3b is increased, the input to the compressors 3a and 3b is increased due to the oil compression, and the operation efficiency of the refrigeration apparatus is reduced.

次に、本実施の形態1における冷凍装置1での圧縮機3a、3b内の油量が与える影響について説明する。
吸入配管10a、10bから圧縮機3a、3b内へ流入する冷凍機油とガス冷媒は分離され、分離された油は圧縮機3a、3bの底部に滞留し、ガス冷媒は圧縮室へ流入して圧縮される。圧縮機3a、3bの底部に滞留した油は、圧縮機運転に必要な潤滑油として用いられる。
しかし、圧縮機3a、3bの底部に滞留した油量が、ある所定油量以上となった場合、ガス冷媒とともに圧縮される油量が急増する。このとき、油圧縮により圧縮機3a、3bへの入力が増加し、入力が増加するにつれて圧縮機3a、3bを駆動するモータの発熱量が増加し、圧縮機3a、3b内に滞留する油温もまた昇温する。
即ち、圧縮機3a、3bの表面温度もまた昇温する。このとき、圧縮機3a、3bの入力、又は、油が滞留する底部の表面温度により、圧縮機3a、3b内の油量が検知可能である。
所定油量以下の場合、油量が変化しても入力、又は表面温度は変化しないが、油枯渇したときは表面温度が低下し、圧縮機故障を引き起こす。所定油量以下かつ油枯渇しない程度の油量、例えば1L以上であれば適正油量である。
Next, the influence of the amount of oil in the compressors 3a and 3b in the refrigeration apparatus 1 according to Embodiment 1 will be described.
The refrigerating machine oil and the gas refrigerant flowing into the compressors 3a and 3b from the suction pipes 10a and 10b are separated, the separated oil stays at the bottom of the compressors 3a and 3b, and the gas refrigerant flows into the compression chamber and is compressed. Is done. The oil staying at the bottom of the compressors 3a and 3b is used as lubricating oil necessary for compressor operation.
However, when the amount of oil staying at the bottoms of the compressors 3a and 3b exceeds a predetermined amount, the amount of oil that is compressed together with the gas refrigerant increases rapidly. At this time, the input to the compressors 3a and 3b increases due to oil compression, and as the input increases, the amount of heat generated by the motor that drives the compressors 3a and 3b increases, and the oil temperature staying in the compressors 3a and 3b. Also rises in temperature.
That is, the surface temperature of the compressors 3a and 3b is also raised. At this time, the amount of oil in the compressors 3a and 3b can be detected by the inputs of the compressors 3a and 3b or the surface temperature of the bottom where the oil stays.
When the amount of oil is less than a predetermined amount, the input or surface temperature does not change even if the amount of oil changes, but when the oil is depleted, the surface temperature decreases, causing a compressor failure. If the amount of oil is less than a predetermined amount of oil and does not run out, for example, 1 L or more, it is an appropriate amount of oil.

次に、本実施の形態1における冷凍装置1での液戻り運転における圧縮機内の油濃度を適正に維持する動作について図6のフローチャートに基づいて説明する。
液戻り運転は、主に除霜運転復帰時の蒸発器ファン(図示省略)の起動を遅らせるファン遅延制御時に生じる。冷凍装置1の運転中は蒸発器7に霜が付着し、蒸発器ファンの風量が低下するため、室内の冷却を阻害される。
そのため、所定時間間隔でヒータ加熱により霜を融解させる除霜運転を導入する。除霜運転中は、圧縮機3a、3bと蒸発器ファンは停止させる。
Next, the operation | movement which maintains the oil density | concentration in the compressor appropriately in the liquid return operation | movement in the refrigerating apparatus 1 in this Embodiment 1 is demonstrated based on the flowchart of FIG.
The liquid return operation mainly occurs at the time of fan delay control for delaying the start-up of the evaporator fan (not shown) when returning from the defrosting operation. During operation of the refrigeration apparatus 1, frost adheres to the evaporator 7, and the air volume of the evaporator fan decreases.
Therefore, a defrosting operation is introduced in which frost is melted by heating the heater at predetermined time intervals. During the defrosting operation, the compressors 3a and 3b and the evaporator fan are stopped.

除霜運転が終了し、通常運転に復帰直後は蒸発器が暖かいため、蒸発器ファンを起動させると室内に温風を吹出してしまう。これを回避するため、除霜運転の終了後にまず圧縮機3a、3bを起動させる(ステップS1)。
その圧縮機3a、3bの起動より蒸発器ファンの起動タイミングを遅延させるファン遅延制御を導入しており、通常運転に復帰直後から例えば、5分から10分の所定時間経過後に、蒸発器ファンの駆動を開始させる。
このファン遅延制御時には蒸発器7で冷媒が完全に蒸発しないので、室外機2a、2bへ液冷媒の返液量が偏って流入するという液戻り運転を生じさせる(ステップS2)。
ファン遅延制御は、所定時間内に温風吹出しを防止できるほどに蒸発器7を冷却する必要があるため、蒸発器7へ流入する必要最低限の冷媒流量を維持する。
このファン遅延制御時以外での液戻り運転は、膨張弁6の不良により弁が閉じない場合などが想定される。
Since the evaporator is warm immediately after the defrosting operation is completed and the normal operation is restored, warm air is blown into the room when the evaporator fan is activated. In order to avoid this, the compressors 3a and 3b are first started after the defrosting operation is finished (step S1).
Fan delay control is introduced to delay the start-up timing of the evaporator fan from the start-up of the compressors 3a, 3b, and the evaporator fan is driven after a predetermined time, for example, 5 minutes to 10 minutes immediately after returning to normal operation. To start.
At the time of this fan delay control, since the refrigerant is not completely evaporated by the evaporator 7, a liquid return operation in which the liquid refrigerant returns in an uneven manner flows into the outdoor units 2a and 2b (step S2).
In the fan delay control, it is necessary to cool the evaporator 7 to such an extent that the hot air can be prevented from being blown out within a predetermined time. Therefore, the minimum necessary refrigerant flow rate flowing into the evaporator 7 is maintained.
The liquid return operation other than at the time of the fan delay control may be a case where the valve does not close due to a failure of the expansion valve 6.

液戻り運転時はアキュムレータ9a、9bに多量の液冷媒が流入し、油濃度が急激に低下する。アキュムレータ9a、9b内の液量がオーバーフローしたら圧縮機3a、3bに流入するため、圧縮機3a、3b内の油濃度もまた低下する(ステップS3)。
特に、各室外機2a、2b内の油量が偏り、例えば少ない油量の室外機2aに返液した場合、または各室外機2a、2b間で液戻り量が偏り、例えば多量の液戻りとなる室外機2aが存在する場合は、液戻り運転開始直後に圧縮機3a内の油濃度は、一時的に圧縮機3b内の油濃度より大きく下回る。
このとき、特に圧縮機3aを運転する上で必要とされる適正な油濃度を維持できず、圧縮機故障の原因となる。
During the liquid return operation, a large amount of liquid refrigerant flows into the accumulators 9a and 9b, and the oil concentration rapidly decreases. When the amount of liquid in the accumulators 9a and 9b overflows, it flows into the compressors 3a and 3b, so that the oil concentration in the compressors 3a and 3b also decreases (step S3).
In particular, when the amount of oil in each outdoor unit 2a, 2b is uneven, for example, when returning to the outdoor unit 2a with a small amount of oil, or when the liquid return amount is uneven between each outdoor unit 2a, 2b, When the outdoor unit 2a is present, the oil concentration in the compressor 3a is temporarily lower than the oil concentration in the compressor 3b immediately after the liquid return operation is started.
At this time, the proper oil concentration particularly required for operating the compressor 3a cannot be maintained, causing a compressor failure.

このような室外機2a、2bへの返液量の偏りは、主に分配器8a、8bの傾斜に依る。図4に冷凍装置の分配器の流出口におけるガスと液の分布を示し、図5のグラフは冷凍装置の分配器の傾斜角度と液分配比の関係を示している。
流入口が一つで流出口が二つのY字型分配器8a、8bにおいて、傾斜がある場合、図4に示すように、下側の流出口は密度の大きい液冷媒が占め、上側の流出口は密度の小さいガス冷媒が占める。
均等に分配するならば分配器8a、8bを水平に設置すべきだが、分配器8a、8bの設置角度にばらつきが生じ、左右どちらかに傾斜することが想定される。しかし、どちらに傾斜するかは不確定であり、返液量の偏りは各々の冷凍装置で異なる。
Such a deviation in the amount of liquid returned to the outdoor units 2a and 2b mainly depends on the inclination of the distributors 8a and 8b. FIG. 4 shows the distribution of gas and liquid at the outlet of the distributor of the refrigeration apparatus, and the graph of FIG. 5 shows the relationship between the inclination angle of the distributor of the refrigeration apparatus and the liquid distribution ratio.
In the Y-shaped distributors 8a and 8b having one inflow port and two outflow ports, when there is an inclination, as shown in FIG. The outlet is occupied by a low density gas refrigerant.
The distributors 8a and 8b should be installed horizontally if they are evenly distributed, but it is assumed that the installation angles of the distributors 8a and 8b vary and tilt to the left or right. However, it is uncertain to which direction it is inclined, and the unevenness of the returned liquid amount is different in each refrigeration apparatus.

液戻り運転時は圧縮機3a、3bの吐出部においても冷媒が二相状態になる。このとき、油分離器4a、4bに流入する冷媒も二相状態となるが、冷媒が二相状態の場合、一般的に油分離効率が大きく低下する。油分離効率が低下したら圧縮機3a、3bへの返油量が低下し、油濃度低下がさらに促進される。   During the liquid return operation, the refrigerant is also in a two-phase state at the discharge portions of the compressors 3a and 3b. At this time, the refrigerant flowing into the oil separators 4a and 4b is also in a two-phase state. However, when the refrigerant is in a two-phase state, the oil separation efficiency is generally greatly reduced. If the oil separation efficiency is reduced, the amount of oil returned to the compressors 3a and 3b is reduced, and the oil concentration is further reduced.

本実施の形態1の冷凍装置1は、各圧縮機3a、3b内の油量を検知する油量検知手段、具体的には圧縮機3a、3bの底部表面の温度を測定する温度センサ12a、12b、又は圧縮機3a、3bの電源の電流計(図示省略)或いは電力計(図示省略)を備えている。
前述したように、圧縮機3a、3bへの油量が所定量以上となれば、圧縮機3a、3bの電源の電力、又は電流が増加し、それに伴って駆動するモータの発熱量が増加し、圧縮機3a、3b内に滞留する油温もまた昇温する。
即ち、圧縮機3a、3bの表面温度もまた昇温する。ゆえに、圧縮機3a、3bの電源の電力、又は電流、もしくは圧縮機3a、3bの底部表面温度を測定すれば、その電力値、又は電流値、または底部表面温度から圧縮機3a、3b内の油量が所定量以上であることを検知することができ(ステップS4)、さらにそのときの油量を検知することができる。
The refrigerating apparatus 1 according to the first embodiment includes an oil amount detection unit that detects the amount of oil in each of the compressors 3a and 3b, specifically, a temperature sensor 12a that measures the temperature of the bottom surface of the compressors 3a and 3b, 12b, or an ammeter (not shown) or a wattmeter (not shown) as a power source for the compressors 3a and 3b.
As described above, when the amount of oil to the compressors 3a and 3b is equal to or greater than a predetermined amount, the power or current of the power source of the compressors 3a and 3b increases, and accordingly, the heat generation amount of the driving motor increases. The oil temperature staying in the compressors 3a and 3b is also raised.
That is, the surface temperature of the compressors 3a and 3b is also raised. Therefore, if the power or current of the power source of the compressors 3a and 3b or the bottom surface temperature of the compressors 3a and 3b is measured, the power in the compressors 3a and 3b can be determined from the power value, current value, or bottom surface temperature. It can be detected that the amount of oil is greater than or equal to a predetermined amount (step S4), and the amount of oil at that time can be detected.

圧縮機3a又は3b内の油量が所定量以上であることを検知した場合は、返液量調節手段により、その室外機へ返液量を集中させる。
なお、所定量以上の多くの油量を保有している室外機は、除霜運転開始前に油量検知手段である温度センサ12a、12bによって予め検知しておく。
When it is detected that the amount of oil in the compressor 3a or 3b is equal to or greater than a predetermined amount, the return amount is concentrated on the outdoor unit by the return amount adjusting means.
Note that an outdoor unit having a large amount of oil equal to or greater than a predetermined amount is detected in advance by the temperature sensors 12a and 12b, which are oil amount detection means, before the start of the defrosting operation.

ここで、返液量調節手段の具体例としては、分配器8a、8bと室外機2a、2bとの間に設置された流量を制御できる流量調節弁15a、15bである。例えば、室外機2aの流入口に設けられた流量調節弁15aの開度を室外機2bの流入口に設けられた流量調節弁15bの開度より大きくすれば、その弁開度比率分だけ室外機2aに返液量が集中する。
ただし、ファン遅延制御は、所定時間内に温風吹出しを防止できるほどに蒸発器7を冷却する必要があるため、蒸発器7へ流入する必要最低限の冷媒流量は維持するように弁開度比率を設定する。
なお、返液量調節手段の別の具体例としては、圧縮機運転容量を制御すること、即ち、圧縮機3aを圧縮機3bより大きい容量で運転すれば、その容量比率分だけ圧縮機3aに返液量が集中するというものである。
Here, as a specific example of the liquid return amount adjusting means, there are flow rate adjusting valves 15a and 15b which can control the flow rate installed between the distributors 8a and 8b and the outdoor units 2a and 2b. For example, if the opening degree of the flow rate adjusting valve 15a provided at the inlet of the outdoor unit 2a is made larger than the opening degree of the flow rate adjusting valve 15b provided at the inlet of the outdoor unit 2b, the valve opening ratio is increased outdoor. The liquid return amount concentrates on the machine 2a.
However, since the fan delay control needs to cool the evaporator 7 so as to prevent the hot air blowout within a predetermined time, the valve opening degree is maintained so as to maintain the minimum necessary refrigerant flow rate flowing into the evaporator 7. Set the ratio.
As another specific example of the liquid return amount adjusting means, if the compressor operating capacity is controlled, that is, if the compressor 3a is operated at a capacity larger than the compressor 3b, the compressor 3a is supplied by the capacity ratio. The amount of returned liquid is concentrated.

このようにして、多くの油量を保有する室外機2a又は2bに液を集中、即ち返液量を増大させ(ステップS5)、他方の所定量以下の油量の室外機への返液量を減少させることにより(ステップS6)、ファン遅延制御時間中に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持することができ(ステップS7)、圧縮機故障を回避し信頼性の高い冷凍装置を得ることができる。
上記のようにファン遅延制御を開始し、圧縮機3a、3bの起動から例えば、5分から10分の所定時間の間に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持する制御を行い、所定時間経過後に(ステップS8)、蒸発器ファンの駆動を開始させ(ステップS9)、通常運転に戻る。
In this way, the liquid is concentrated on the outdoor unit 2a or 2b that holds a large amount of oil, that is, the amount of liquid returned is increased (step S5), and the amount of liquid returned to the outdoor unit having an oil amount equal to or less than the other predetermined amount. (Step S6), it is possible to maintain an appropriate oil concentration required for operating the compressors in all the outdoor units during the fan delay control time (step S7). Thus, a highly reliable refrigeration apparatus can be obtained.
Appropriate oil required for operating the compressors in all the outdoor units within a predetermined period of time, for example, 5 minutes to 10 minutes after starting the fan delay control as described above and starting the compressors 3a and 3b Control for maintaining the concentration is performed, and after a predetermined time has elapsed (step S8), driving of the evaporator fan is started (step S9), and the normal operation is resumed.

実施の形態2.
図7は本発明の実施の形態2の冷凍装置の冷媒回路図である。
本実施の形態2は、実施の形態1の冷凍装置1における各圧縮機3a、3bの油量検知手段である温度センサ12a、12bの代わりに、各圧縮機3a、3bへの吸入配管10a、10b上の各返油管11a、11bの接続部上流側に温度センサ(第1の温度センサ)13a、13bと、下流側に温度センサ(第2の温度センサ)14a、14bを設置した構成とするものである。
本実施の形態2において、実施の形態1と同様の構成は同一符号を付して重複した構成の説明を省略する。
Embodiment 2. FIG.
FIG. 7 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 2 of the present invention.
In the second embodiment, instead of the temperature sensors 12a and 12b which are oil amount detection means of the compressors 3a and 3b in the refrigeration apparatus 1 of the first embodiment, the suction pipes 10a to the compressors 3a and 3b, A temperature sensor (first temperature sensor) 13a, 13b is installed on the upstream side of the connecting portion of each oil return pipe 11a, 11b on 10b, and a temperature sensor (second temperature sensor) 14a, 14b is installed on the downstream side. Is.
In the second embodiment, the same configurations as those of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configurations is omitted.

本実施の形態2における冷凍装置1での具体的なファン遅延制御は、実施の形態1と同様に、除霜運転終了後に、圧縮機3a、3bの起動より蒸発器ファンの起動タイミングを遅延させる。このとき、液戻り運転となり、各室外機2a、2bへ多量の液冷媒が返液するが、分配器8a、8bの設置角度に傾きが生じたら、返液量が多い室外機と少ない室外機が現れる。例えば、分配器8aに傾きが生じ、室外機2aに返液が集中した場合、いち早くアキュムレータ9aがオーバーフローし、吸入配管10aに液が流出する。   The specific fan delay control in the refrigeration apparatus 1 according to the second embodiment delays the start timing of the evaporator fan from the start of the compressors 3a and 3b after the defrosting operation, as in the first embodiment. . At this time, the liquid return operation is performed, and a large amount of liquid refrigerant is returned to the outdoor units 2a and 2b. Appears. For example, when the distributor 8a is inclined and the returned liquid concentrates on the outdoor unit 2a, the accumulator 9a quickly overflows and the liquid flows out to the suction pipe 10a.

このままの状態で、運転し続ければ圧縮機3a内の油濃度が薄まり、圧縮機3aの運転に必要な規定油濃度を維持できない。
そこで、アキュムレータ9aがオーバーフローしたことを検知するために、吸入配管10a、上の返油管11aの接続部上流側に温度センサ13aと、下流側に温度センサ14aを設置している。
If the operation is continued in this state, the oil concentration in the compressor 3a becomes thin, and the specified oil concentration necessary for the operation of the compressor 3a cannot be maintained.
Therefore, in order to detect that the accumulator 9a has overflowed, a temperature sensor 13a and a temperature sensor 14a are provided on the upstream side of the connecting portion of the suction pipe 10a and the upper oil return pipe 11a.

アキュムレータ9aがオーバーフローしていないときは吸入配管10aにガス冷媒が流通している。吸入配管10aには油分離器4aで分離された油が返油管11aを流通して流入する。油分離器4aで分離される油が少量の場合は、返油管11aをガス冷媒が流通する場合もある。
圧縮機3aの吐出部から油分離器4aを介して流入する油、またはガス冷媒は高温であり、吸入配管10aに流入したら、吸入配管10aのガス冷媒温度を昇温させる。
ガス冷媒は密度が小さいために温度変化が大きく、アキュムレータ9aがオーバーフローせず吸入配管10aにガス冷媒が流通している場合は常に温度センサ13aと温度センサ14aの測定する温度に顕著な差が生じる。
When the accumulator 9a has not overflowed, the gas refrigerant is flowing through the suction pipe 10a. The oil separated by the oil separator 4a flows into the suction pipe 10a through the oil return pipe 11a. When the amount of oil separated by the oil separator 4a is small, a gas refrigerant may flow through the oil return pipe 11a.
The oil or gas refrigerant flowing in from the discharge part of the compressor 3a through the oil separator 4a is hot, and when it flows into the suction pipe 10a, the temperature of the gas refrigerant in the suction pipe 10a is raised.
Since the gas refrigerant has a small density, the temperature change is large, and when the accumulator 9a does not overflow and the gas refrigerant is circulating in the suction pipe 10a, there is always a significant difference between the temperatures measured by the temperature sensor 13a and the temperature sensor 14a. .

しかし、アキュムレータ9aがオーバーフローすると、吸入配管10aに液冷媒が流通する。液冷媒は密度が大きいため油が流入しても温度変化が小さく、温度センサ13aと温度センサ14aの測定する温度に差が現れない。
このように、温度センサ13aと温度センサ14aの測定する温度差の有無によってアキュムレータ9aのオーバーフローを検知することができる。
However, when the accumulator 9a overflows, the liquid refrigerant flows through the suction pipe 10a. Since the liquid refrigerant has a high density, the temperature change is small even when oil flows in, and there is no difference between the temperatures measured by the temperature sensor 13a and the temperature sensor 14a.
Thus, the overflow of the accumulator 9a can be detected by the presence or absence of the temperature difference measured by the temperature sensor 13a and the temperature sensor 14a.

次に、本実施の形態2における冷凍装置1での液戻り運転における圧縮機内の油濃度を適正に維持する動作について図8のフローチャートに基づいて説明する。
液戻り運転における圧縮機内の油濃度を適正に維持する動作について、本実施の形態2におけるステップS11〜S13までは、前記実施の形態1の除霜運転終了後に圧縮機を起動するステップS1〜アキュムレータ9a、9bに流入した液冷媒が圧縮機3a、3bに流入し、油濃度が変動するステップS3までと同様であるので、ステップS11〜S13までの説明は省略する。
ステップS13で、アキュムレータ9a、9bに流入した液冷媒が圧縮機3a、3bに流入し、油濃度が変動する。
そして、温度センサ13aと温度センサ14aの測定する温度差が無くなり、アキュムレータ9aのオーバーフローを検知した場合(ステップS14)、返液量調節手段によって室外機2aへの返液量を減少させる(ステップS15)。
その返液量調節手段の具体例としては、実施の形態1と同様に、分配器8a、8bと室外機2a、2bとの間に設置された流量を制御できる流量調節弁15a、15bである。
Next, the operation | movement which maintains the oil density | concentration in a compressor appropriately in the liquid return operation | movement in the refrigerating apparatus 1 in this Embodiment 2 is demonstrated based on the flowchart of FIG.
About the operation | movement which maintains the oil density | concentration in the compressor in a liquid return operation appropriately, from step S11 in this Embodiment 2 to S13, the step S1-accumulator which starts a compressor after completion | finish of the defrost operation of the said Embodiment 1 Since the liquid refrigerant that has flowed into 9a and 9b flows into the compressors 3a and 3b and is similar to step S3 in which the oil concentration varies, description of steps S11 to S13 is omitted.
In step S13, the liquid refrigerant that has flowed into the accumulators 9a and 9b flows into the compressors 3a and 3b, and the oil concentration varies.
When the temperature difference measured by the temperature sensor 13a and the temperature sensor 14a disappears and an overflow of the accumulator 9a is detected (step S14), the liquid return amount to the outdoor unit 2a is decreased by the liquid return amount adjusting means (step S15). ).
Specific examples of the liquid return amount adjusting means are flow rate adjusting valves 15a and 15b that can control the flow rate installed between the distributors 8a and 8b and the outdoor units 2a and 2b, as in the first embodiment. .

室外機2aの流入口に設けられた流量調節弁15aの開度を室外機2bの流入口に設けられた流量調節弁15bの開度より小さくすれば、その弁開度比率分だけ室外機2aの返液量を減少できる。
ただし、ファン遅延制御は、所定時間内に温風吹出しを防止できるほどに蒸発器7を冷却する必要があるため、蒸発器7へ流入する必要最低限の冷媒流量は維持するように弁開度比率を設定する。
なお、返液量調節手段の別の具体例としては、圧縮機運転容量を制御すること、即ち、圧縮機3aを圧縮機3bより小さい容量で運転すれば、その容量比率分だけ圧縮機3aの返液量を減少できる。
If the opening degree of the flow rate adjusting valve 15a provided at the inlet of the outdoor unit 2a is made smaller than the opening degree of the flow rate adjusting valve 15b provided at the inlet of the outdoor unit 2b, the outdoor unit 2a is increased by the valve opening ratio. The amount of returned liquid can be reduced.
However, since the fan delay control needs to cool the evaporator 7 so as to prevent the hot air blowout within a predetermined time, the valve opening degree is maintained so as to maintain the minimum necessary refrigerant flow rate flowing into the evaporator 7. Set the ratio.
As another specific example of the liquid return amount adjusting means, if the compressor operating capacity is controlled, that is, if the compressor 3a is operated with a capacity smaller than the compressor 3b, the capacity ratio of the compressor 3a is increased. The amount of returned liquid can be reduced.

このようにして、アキュムレータ9a又は9bがオーバーフローした室外機2a又は2bへの返液量を減少させることができ(ステップS15)、他方のオーバーフローしていない室外機への返液量を増加させることにより(ステップS16)、ファン遅延制御時間中に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持することができ(ステップS17)、圧縮機故障を回避し信頼性の高い冷凍装置を得ることができる。
上記のようにファン遅延制御を開始し、圧縮機3a、3bの起動から例えば、5分から10分の所定時間の間に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持する制御を行い、所定時間経過後に(ステップS18)、蒸発器ファンの駆動を開始させ(ステップS19)、通常運転に戻る。
In this way, the amount of liquid returned to the outdoor unit 2a or 2b where the accumulator 9a or 9b has overflowed can be reduced (step S15), and the amount of liquid returned to the other non-overflowing outdoor unit can be increased. (Step S16), it is possible to maintain an appropriate oil concentration required for operating the compressors in all outdoor units during the fan delay control time (Step S17), and to avoid the compressor failure and to be reliable. A highly refrigerating apparatus can be obtained.
Appropriate oil required for operating the compressors in all the outdoor units within a predetermined period of time, for example, 5 minutes to 10 minutes after starting the fan delay control as described above and starting the compressors 3a and 3b Control for maintaining the concentration is performed, and after a predetermined time has elapsed (step S18), the evaporator fan is started to be driven (step S19), and the normal operation is resumed.

実施の形態3.
図9は本発明の実施の形態3の冷凍装置の冷媒回路図である。
実施の形態3は、実施の形態2の冷凍装置1における温度センサ(第1の温度センサ)13a、13bと、下流側に温度センサ(第2の温度センサ)14a、14bの代わりに、各アキュムレータ9a、9b間で油を流通させる開閉弁17a、17bを有する油流通管16a、16bを設置し、開閉弁17a、17bを開放して油流通管16a、16bを連通させると同時に圧縮機3a、3bを異なる容量で運転する油調節制御を行うようにしたものである。
本実施の形態3において、実施の形態1と同様の構成は同一符号を付して重複した構成の説明を省略する。
Embodiment 3 FIG.
FIG. 9 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 3 of the present invention.
In the third embodiment, each accumulator is replaced with the temperature sensors (first temperature sensors) 13a and 13b and the temperature sensors (second temperature sensors) 14a and 14b on the downstream side in the refrigeration apparatus 1 according to the second embodiment. The oil flow pipes 16a and 16b having the open / close valves 17a and 17b for circulating oil between the oil flow pipes 9a and 9b are installed, and the open / close valves 17a and 17b are opened to allow the oil flow pipes 16a and 16b to communicate with the compressor 3a, The oil adjustment control for operating 3b with different capacities is performed.
In the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description of the overlapping components is omitted.

本実施の形態3に係る冷凍装置1の油調節制御について説明する。
各油分離器4a、4bの油分離効率にばらつきが生じると、各アキュムレータ9a、9b内の油量に偏りが生じる。ばらつきが大きいと、油枯渇するアキュムレータも現れるため、油量の偏りを是正する必要がある。
そのため、各アキュムレータ9a、9b間で油を流通させる油流通管16a、16bを設置し、多くの油量を保有しているアキュムレータから少ない油量のアキュムレータへ油を移動させる。油流通管16a、16bで油を移動させるにはアキュムレータ間に圧力差を生じさせる必要がある。
The oil adjustment control of the refrigeration apparatus 1 according to the third embodiment will be described.
When the oil separation efficiency of each oil separator 4a, 4b varies, the amount of oil in each accumulator 9a, 9b is biased. If the variation is large, accumulators that run out of oil also appear, so it is necessary to correct the uneven oil quantity.
Therefore, oil circulation pipes 16a and 16b for circulating oil between the accumulators 9a and 9b are installed, and the oil is moved from the accumulator having a large amount of oil to the accumulator having a small amount of oil. In order to move the oil through the oil circulation pipes 16a and 16b, it is necessary to generate a pressure difference between the accumulators.

本実施の形態3の冷凍装置1の油調節制御では、開閉弁17a、17bを開放して油流通管16a、16bを連通させると同時に圧縮機3a、3bを異なる容量で運転し、各室外機2a、2bに流入する冷媒流量の差異で生じる圧力損失差でアキュムレータ間に圧力差を生じさせる。
圧縮機を大容量で運転した場合、圧力損失が大きくなりアキュムレータ内が低圧力となり、圧縮機を小容量で運転した場合、圧力損失が小さくなりアキュムレータ内が高圧力となり、油は小容量運転の室外機から大容量運転の室外機へと移動する。
これにより、油流通管16a、16b内を油が移動する。各アキュムレータ内の油面高さの差異による油ヘッド差は、冷媒流量の差異で生じる圧力損失差に比べ非常に小さいため、油移動には影響しない。
In the oil adjustment control of the refrigerating apparatus 1 according to the third embodiment, the on-off valves 17a and 17b are opened to connect the oil circulation pipes 16a and 16b, and at the same time, the compressors 3a and 3b are operated with different capacities. A pressure difference is generated between the accumulators due to a pressure loss difference caused by a difference in the flow rate of the refrigerant flowing into 2a and 2b.
When the compressor is operated at a large capacity, the pressure loss increases and the pressure inside the accumulator is low.When the compressor is operated at a small capacity, the pressure loss decreases and the pressure inside the accumulator becomes high. Move from outdoor unit to large capacity outdoor unit.
Thereby, oil moves in the oil circulation pipes 16a and 16b. The oil head difference due to the difference in oil level in each accumulator is very small compared to the pressure loss difference caused by the difference in refrigerant flow rate, and therefore does not affect the oil movement.

各油分離器4a、4bの油分離効率のばらつきは不確定のため、各アキュムレータ9a、9b内の油量の偏りもまた不確定である。
そのため、少ない油量のアキュムレータから油流出を防ぐため、例えば、油流通管16a、16bの端部を、アキュムレータ9a、9bの2Lとなる高さに設置して、アキュムレータ内の油量が2L以下で小容量運転をした場合に油流出を防ぐ。
このような油調節制御は、所定時間間隔で行い、大容量運転の室外機と小容量運転の室外機を交互に入れ替え、多くの油量を保有するアキュムレータから少ない油量のアキュムレータへ油を移動させ、アキュムレータ内の油枯渇を防止する。
Since the variation in the oil separation efficiency of each oil separator 4a, 4b is uncertain, the deviation of the oil amount in each accumulator 9a, 9b is also uncertain.
Therefore, in order to prevent oil outflow from a small amount of accumulator, for example, the end portions of the oil circulation pipes 16a and 16b are installed at a height of 2L of the accumulators 9a and 9b, and the amount of oil in the accumulator is 2L or less. Prevents oil spills when operating at low capacity.
Such oil adjustment control is performed at predetermined time intervals, and the outdoor unit for large capacity operation and the outdoor unit for small capacity operation are alternately switched, and the oil is transferred from the accumulator with a large amount of oil to the accumulator with a small amount of oil. To prevent oil depletion in the accumulator.

次に、本実施の形態3における冷凍装置1での具体的なファン遅延制御について説明する。
ファン遅延制御は、前述したように除霜運転終了後に、圧縮機3a、3bの起動より蒸発器ファンの起動タイミングを遅延させる。このとき、液戻り運転となるために、返液量調節手段により、少ない油量の室外機への返液量を減少させる。
油調節制御を実施し、終了時に小容量で運転した室外機は油を流出させているため、最も少ない油量の室外機となる。よって、少ない油量の室外機は、ファン遅延制御を開始する直前の油調節制御終了時に小容量で運転した室外機として検知する。なお、小容量で運転した室外機かどうかは、油調節制御において制御装置18が自身で制御を行っているため、それを知ることができる。
Next, specific fan delay control in the refrigeration apparatus 1 according to Embodiment 3 will be described.
As described above, the fan delay control delays the startup timing of the evaporator fan from the startup of the compressors 3a and 3b after the defrosting operation is completed. At this time, since the liquid return operation is performed, the liquid return amount to the outdoor unit with a small oil amount is reduced by the liquid return amount adjusting means.
The outdoor unit that has been subjected to the oil adjustment control and has been operated with a small capacity at the end of the operation causes the oil to flow out. Therefore, the outdoor unit with a small amount of oil is detected as an outdoor unit operated with a small capacity at the end of the oil adjustment control immediately before the start of the fan delay control. Whether the outdoor unit is operated with a small capacity can be known because the control device 18 performs control by itself in the oil adjustment control.

返液量調節手段の別の具体例としては、分配器8a、8bと室外機2a、2bとの間に設置された流量を制御できる流量調節弁15a、15bである。
例えば、小容量で運転した室外機は油を流出させているため、最も少ない油量の室外機であり、それが室外機2aの場合、室外機2aの流入口に設けられている流量調節弁15aの開度を室外機2bの流入口に設けられている流量調節弁15bの開度より小さくすれば、その弁開度比率分だけ室外機2aの返液量を減少させる。
ただし、ファン遅延制御は、所定時間内に温風吹出しを防止できるほどに蒸発器7を冷却する必要があるため、蒸発器7へ流入する必要最低限の冷媒流量は維持するように弁開度比率を設定する。
なお、返液量調節手段の別の具体例としては、圧縮機運転容量を制御すること、即ち、圧縮機3aを圧縮機3bより小さい容量で運転すれば、その容量比率分だけ圧縮機3aの返液量を減少させることができる。
As another specific example of the liquid return amount adjusting means, there are flow rate adjusting valves 15a and 15b which can control the flow rate installed between the distributors 8a and 8b and the outdoor units 2a and 2b.
For example, an outdoor unit operated with a small capacity is an outdoor unit having the smallest amount of oil because oil is allowed to flow out. When the outdoor unit is the outdoor unit 2a, a flow control valve provided at the inlet of the outdoor unit 2a If the opening degree of 15a is made smaller than the opening degree of the flow control valve 15b provided at the inlet of the outdoor unit 2b, the liquid return amount of the outdoor unit 2a is decreased by the valve opening ratio.
However, since the fan delay control needs to cool the evaporator 7 so as to prevent the hot air blowout within a predetermined time, the valve opening degree is maintained so as to maintain the minimum necessary refrigerant flow rate flowing into the evaporator 7. Set the ratio.
As another specific example of the liquid return amount adjusting means, if the compressor operating capacity is controlled, that is, if the compressor 3a is operated with a capacity smaller than the compressor 3b, the capacity ratio of the compressor 3a is increased. The amount of returned liquid can be reduced.

このようなファン遅延制御により、少ない油量の室外機への返液量を減少させることができ、他方の多油量、または適正油量の室外機への返液量を増加させることができ、ファン遅延制御時間中に全ての室外機で圧縮機を運転する上で必要とされる適正な油濃度を維持することができ、圧縮機故障を回避し信頼性の高い冷凍装置を得ることができる。   By such fan delay control, the amount of liquid returned to the outdoor unit with a small amount of oil can be reduced, and the amount of liquid returned to the outdoor unit with the other multiple oil amount or proper oil amount can be increased. It is possible to maintain an appropriate oil concentration required for operating the compressors in all outdoor units during the fan delay control time, and to obtain a highly reliable refrigeration apparatus by avoiding compressor failure. it can.

上記の実施の形態1から実施の形態3のいずれの運転動作も、冷媒と冷凍機油が相溶である組み合わせであれば同様となる。
従って、冷媒として、HFC系冷媒、或いはこれらの混合冷媒やHC系冷媒及びこれらの混合冷媒、或いはCO2、水などの自然冷媒を用い、油としてこれらに相溶である油、例えばHFC系冷媒の場合エステル油、HC系冷媒の場合は鉱油、CO2の場合はPAG油などを用いた場合においても同様の運転動作となる。
Any of the operation operations of the first to third embodiments is the same as long as the refrigerant and the refrigerating machine oil are compatible.
Therefore, HFC refrigerants, or mixed refrigerants or HC refrigerants thereof, and mixed refrigerants thereof, or natural refrigerants such as CO2 and water are used as refrigerants, and oils compatible with them as oil, such as HFC refrigerants, for example, In the case of ester oil, mineral oil in the case of HC refrigerant, and PAG oil in the case of CO2, the same operation is performed.

1 冷凍装置、2a、2b 室外機、3a、3b 圧縮機、4a、4b 油分離器、5a、5b 凝縮器、6 膨張弁、7 蒸発器、8a、8b 分配器、9a、9b アキュムレータ、10a、10b 吸入配管、11a、11b 返油管、11 油戻し穴、12a、12b 温度センサ、13a、13b 第1の温度センサ、14a、14b 第2の温度センサ、15a、15b 流量調節弁、16a、16b 油流通管、17a、17b 開閉弁、18 制御装置。   DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus, 2a, 2b Outdoor unit, 3a, 3b Compressor, 4a, 4b Oil separator, 5a, 5b Condenser, 6 Expansion valve, 7 Evaporator, 8a, 8b Distributor, 9a, 9b Accumulator, 10a, 10b Suction pipe, 11a, 11b Oil return pipe, 11 Oil return hole, 12a, 12b Temperature sensor, 13a, 13b First temperature sensor, 14a, 14b Second temperature sensor, 15a, 15b Flow rate adjusting valve, 16a, 16b Oil Distribution pipe, 17a, 17b On-off valve, 18 Control device.

Claims (6)

室外機と室内機とを備え、
前記室外機は、
冷媒を圧縮して吐出する圧縮機と、
前記圧縮機から吐出される冷媒に含まれる冷凍機油を分離する油分離器と、
前記油分離器から流出される冷媒を凝縮する凝縮器と、
冷媒と冷凍機油とを分離するアキュムレータとを備え、
前記油分離器で分離された冷凍機油を前記圧縮機に返油するための返油管を前記圧縮機の吸入配管に接続し、
前記室内機は、
前記凝縮器から流出される冷媒を減圧する減圧手段と、
前記減圧手段で減圧された冷媒を蒸発させる蒸発器とを備えた冷凍装置において、
前記室外機を複数備え、
前記蒸発器から流出される冷媒を前記各室外機に分配するための複数の分配器と、
前記各圧縮機の油量を検知する油量検知手段と、
前記各室外機への返液量を調節する返液量調節手段と、
除霜運転終了後における前記圧縮機の起動より前記蒸発器ファンの起動を遅延させるファン遅延制御中で前記蒸発器ファンが起動するまでの間に、前記油量検知手段が検知した前記各圧縮機内の油量に基づいて前記返液量調節手段が各室外機への返液量を調節するよう制御する制御装置と、
を備えたことを特徴とする冷凍装置。
An outdoor unit and an indoor unit,
The outdoor unit is
A compressor that compresses and discharges the refrigerant;
An oil separator for separating refrigerating machine oil contained in the refrigerant discharged from the compressor;
A condenser for condensing refrigerant flowing out of the oil separator;
An accumulator for separating the refrigerant and the refrigerating machine oil,
Connecting a return oil pipe for returning the refrigerating machine oil separated by the oil separator to the compressor, to a suction pipe of the compressor;
The indoor unit is
Decompression means for decompressing the refrigerant flowing out of the condenser;
In a refrigeration apparatus comprising an evaporator for evaporating the refrigerant decompressed by the decompression means,
A plurality of outdoor units,
A plurality of distributors for distributing the refrigerant flowing out of the evaporator to the outdoor units;
An oil amount detecting means for detecting the oil amount of each compressor;
A return amount adjusting means for adjusting the return amount to each outdoor unit;
Each of the compressors detected by the oil amount detection means during the fan delay control in which the start of the evaporator fan is delayed from the start of the compressor after the defrosting operation is started until the evaporator fan is started. A control device for controlling the return amount adjusting means to adjust the return amount to each outdoor unit based on the amount of oil;
A refrigeration apparatus comprising:
前記油量検知手段は、前記圧縮機の表面温度を検知する温度センサ又は前記圧縮機の投入電流或いは投入電力を検知する電流計或いは電力計であることを特徴とする請求項1記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the oil amount detection means is a temperature sensor that detects a surface temperature of the compressor, or an ammeter or wattmeter that detects input current or input power of the compressor. . 室外機と室内機とを備え、
前記室外機は、
冷媒を圧縮して吐出する圧縮機と、
前記圧縮機から吐出される冷媒に含まれる冷凍機油を分離する油分離器と、
前記油分離器から流出される冷媒を凝縮する凝縮器と、
冷媒と冷凍機油とを分離するアキュムレータとを備え、
前記油分離器で分離された冷凍機油を前記圧縮機に返油するための返油管を前記圧縮機と前記アキュムレータとの間の吸入配管に接続し、
前記室内機は、
前記凝縮器から流出される冷媒を減圧する減圧手段と、
前記減圧手段で減圧された冷媒を蒸発させる蒸発器とを備えた冷凍装置において、
前記室外機を複数備え、
前記蒸発器から流出される冷媒を前記室外機に分配するための複数の分配器と、
前記各吸入配管と前記各返油管との合流部より上流側の前記吸入配管に設けられた第1の温度センサと、
前記各吸入配管と前記各返油管との合流部より下流側の前記吸入配管に設けられた第2の温度センサと、
各室外機への返液量を調節する返液量調節手段と、
除霜運転終了後における前記圧縮機の起動より前記蒸発器ファンの起動を遅延させるファン遅延制御中で前記蒸発器ファンが起動するまでの間に、前記第1の温度センサと前記第2の温度センサで測定された温度の差に応じて前記返液量調節手段が各室外機への返液量を調節するよう制御する制御装置と、
を備えたことを特徴とする冷凍装置。
An outdoor unit and an indoor unit,
The outdoor unit is
A compressor that compresses and discharges the refrigerant;
An oil separator for separating refrigerating machine oil contained in the refrigerant discharged from the compressor;
A condenser for condensing refrigerant flowing out of the oil separator;
An accumulator for separating the refrigerant and the refrigerating machine oil,
A return pipe for returning the refrigeration oil separated by the oil separator to the compressor is connected to a suction pipe between the compressor and the accumulator;
The indoor unit is
Decompression means for decompressing the refrigerant flowing out of the condenser;
In a refrigeration apparatus comprising an evaporator for evaporating the refrigerant decompressed by the decompression means,
A plurality of outdoor units,
A plurality of distributors for distributing the refrigerant flowing out of the evaporator to the outdoor unit;
A first temperature sensor provided in the suction pipe on the upstream side of the junction between the suction pipes and the oil return pipes;
A second temperature sensor provided in the suction pipe on the downstream side of the junction between the suction pipes and the oil return pipes;
A return amount adjusting means for adjusting the return amount to each outdoor unit;
The first temperature sensor and the second temperature between the start of the compressor after the defrosting operation and the start of the evaporator fan during the fan delay control for delaying the start of the evaporator fan. A control device for controlling the liquid return amount adjusting means to adjust the liquid return amount to each outdoor unit according to the difference in temperature measured by the sensor;
A refrigeration apparatus comprising:
室外機と室内機とを備え、
前記室外機は、
冷媒を圧縮して吐出する圧縮機と、
前記圧縮機から吐出される冷媒に含まれる冷凍機油を分離する油分離器と、
前記油分離器から流出される冷媒を凝縮する凝縮器と、
冷媒と冷凍機油とを分離するアキュムレータとを備え、
前記油分離器で分離された冷凍機油を前記圧縮機に返油するための返油管を前記圧縮機の吸入配管に接続し、
前記室内機は、
前記凝縮器から流出される冷媒を減圧する減圧手段と、
前記減圧手段で減圧された冷媒を蒸発させる蒸発器とを備えた冷凍装置において、
前記室外機を複数備え、
前記蒸発器から流出される冷媒を前記各室外機に分配するための複数の分配器と、
前記各アキュムレータ間で油を流通させ、開閉弁を有する油流通管と、
各室外機への返液量を調節する返液量調節手段と、
前記開放弁を開放して前記油流通管を連通させると同時に前記各圧縮機を異なる運転容量で運転する油量調節制御を行い、
さらに除霜運転終了後における前記圧縮機の起動より前記蒸発器ファンの起動を遅延させるファン遅延制御中で前記蒸発器ファンが起動するまでの間に、前記各圧縮機を異なる運転容量に応じて前記返液量調節手段が各室外機への返液量を調節するよう制御する制御装置と、
を備えたことを特徴とする冷凍装置。
An outdoor unit and an indoor unit,
The outdoor unit is
A compressor that compresses and discharges the refrigerant;
An oil separator for separating refrigerating machine oil contained in the refrigerant discharged from the compressor;
A condenser for condensing refrigerant flowing out of the oil separator;
An accumulator for separating the refrigerant and the refrigerating machine oil,
Connecting a return oil pipe for returning the refrigerating machine oil separated by the oil separator to the compressor, to a suction pipe of the compressor;
The indoor unit is
Decompression means for decompressing the refrigerant flowing out of the condenser;
In a refrigeration apparatus comprising an evaporator for evaporating the refrigerant decompressed by the decompression means,
A plurality of outdoor units,
A plurality of distributors for distributing the refrigerant flowing out of the evaporator to the outdoor units;
An oil circulation pipe having an on-off valve for circulating oil between the accumulators;
A return amount adjusting means for adjusting the return amount to each outdoor unit;
Opening the release valve and communicating the oil circulation pipe at the same time performing oil amount adjustment control to operate each compressor with a different operating capacity,
Furthermore, each of the compressors is operated according to different operating capacities until the evaporator fan is started during the fan delay control that delays the start of the evaporator fan from the start of the compressor after the defrosting operation is finished. A control device for controlling the liquid return amount adjusting means to adjust the liquid return amount to each outdoor unit;
A refrigeration apparatus comprising:
前記返液量調節手段は、前記制御装置により制御される前記各分配器と前記アキュムレータとの間に設けられた流量調節弁であることを特徴とする請求項1〜4のいずれかに記載の冷凍装置。   The said liquid return amount adjustment means is a flow control valve provided between each said distributor and the said accumulator controlled by the said control apparatus, The Claim 1 characterized by the above-mentioned. Refrigeration equipment. 前記返液量調節手段は、前記制御装置による前記圧縮機の運転容量の制御であることを特徴とする請求項1〜4のいずれかに記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 4, wherein the liquid return amount adjustment means is a control of an operating capacity of the compressor by the control device.
JP2009102635A 2009-04-21 2009-04-21 Refrigeration equipment Active JP4920717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102635A JP4920717B2 (en) 2009-04-21 2009-04-21 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102635A JP4920717B2 (en) 2009-04-21 2009-04-21 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010255859A true JP2010255859A (en) 2010-11-11
JP4920717B2 JP4920717B2 (en) 2012-04-18

Family

ID=43316985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102635A Active JP4920717B2 (en) 2009-04-21 2009-04-21 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4920717B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099047A1 (en) * 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
CN108826727A (en) * 2018-04-16 2018-11-16 中国科学院理化技术研究所 Mixed working medium refrigerating system capable of adjusting working medium components
CN109945330A (en) * 2019-03-22 2019-06-28 珠海格力电器股份有限公司 Refrigerating system capable of continuously heating and defrosting control method
CN113503653A (en) * 2021-08-04 2021-10-15 珠海格力电器股份有限公司 Multi-compressor refrigeration system and air conditioner
CN114484728A (en) * 2022-01-25 2022-05-13 宁波奥克斯电气股份有限公司 Control method and device for air conditioner liquid return protection and air conditioner
US11480369B2 (en) 2017-09-29 2022-10-25 Shanghai Highly Electrical Appliances Co., Ltd. Fresh-air air conditioning system and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373874A (en) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> Plug for testing elastic unit
JPH0735425A (en) * 1993-07-19 1995-02-07 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH07139856A (en) * 1993-11-17 1995-06-02 Matsushita Refrig Co Ltd Refrigerator
JP2001201192A (en) * 2000-01-21 2001-07-27 Toshiba Kyaria Kk Multi-split type air conditioner
JP2002340425A (en) * 2001-05-21 2002-11-27 Mitsubishi Heavy Ind Ltd Freezing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373874A (en) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> Plug for testing elastic unit
JPH0735425A (en) * 1993-07-19 1995-02-07 Mitsubishi Heavy Ind Ltd Refrigerating device
JPH07139856A (en) * 1993-11-17 1995-06-02 Matsushita Refrig Co Ltd Refrigerator
JP2001201192A (en) * 2000-01-21 2001-07-27 Toshiba Kyaria Kk Multi-split type air conditioner
JP2002340425A (en) * 2001-05-21 2002-11-27 Mitsubishi Heavy Ind Ltd Freezing apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488396B2 (en) 2011-12-27 2016-11-08 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104011483A (en) * 2011-12-27 2014-08-27 三菱电机株式会社 Air Conditioner
WO2013099047A1 (en) * 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner
JPWO2013099047A1 (en) * 2011-12-27 2015-04-30 三菱電機株式会社 Air conditioner
CN104011483B (en) * 2011-12-27 2016-05-11 三菱电机株式会社 Conditioner
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system
JP2014202399A (en) * 2013-04-03 2014-10-27 三菱電機株式会社 Refrigerator
US11480369B2 (en) 2017-09-29 2022-10-25 Shanghai Highly Electrical Appliances Co., Ltd. Fresh-air air conditioning system and control method
CN108826727A (en) * 2018-04-16 2018-11-16 中国科学院理化技术研究所 Mixed working medium refrigerating system capable of adjusting working medium components
CN109945330A (en) * 2019-03-22 2019-06-28 珠海格力电器股份有限公司 Refrigerating system capable of continuously heating and defrosting control method
WO2020192202A1 (en) * 2019-03-22 2020-10-01 珠海格力电器股份有限公司 Refrigeration system and defrosting control method
CN113503653A (en) * 2021-08-04 2021-10-15 珠海格力电器股份有限公司 Multi-compressor refrigeration system and air conditioner
CN114484728A (en) * 2022-01-25 2022-05-13 宁波奥克斯电气股份有限公司 Control method and device for air conditioner liquid return protection and air conditioner
CN114484728B (en) * 2022-01-25 2023-09-08 宁波奥克斯电气股份有限公司 Control method and device for liquid return protection of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP4920717B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4920717B2 (en) Refrigeration equipment
JP5855129B2 (en) Outdoor unit and air conditioner
EP3062045B1 (en) Air conditioner
EP3059521B1 (en) Air conditioning device
KR100885583B1 (en) Refrigerator
US20130000339A1 (en) Air-conditioning apparatus
JP5434460B2 (en) Heat pump equipment
US9857103B2 (en) Refrigerator having a condensation loop between a receiver and an evaporator
CN108369046B (en) Refrigeration cycle device
JP4363997B2 (en) Refrigeration equipment
US20170089614A1 (en) Refrigeration device
JP2008076017A (en) Refrigerating device
JP6707195B2 (en) Refrigeration cycle equipment
JP2009139041A (en) Air conditioner
JP2012145251A (en) Heat pump device
JP4082435B2 (en) Refrigeration equipment
JP2005214444A (en) Refrigerator
US20190301778A1 (en) Refrigeration cycle apparatus
JP5975742B2 (en) Refrigeration equipment
JP4274250B2 (en) Refrigeration equipment
JP2004003717A (en) Air conditioner
JP2017116136A (en) Air conditioner
JP6157182B2 (en) Refrigeration equipment
JP2018173195A (en) Refrigerator
JP2008032391A (en) Refrigerating unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250