JP3263343B2 - Multi air conditioner - Google Patents

Multi air conditioner

Info

Publication number
JP3263343B2
JP3263343B2 JP22787097A JP22787097A JP3263343B2 JP 3263343 B2 JP3263343 B2 JP 3263343B2 JP 22787097 A JP22787097 A JP 22787097A JP 22787097 A JP22787097 A JP 22787097A JP 3263343 B2 JP3263343 B2 JP 3263343B2
Authority
JP
Japan
Prior art keywords
outdoor unit
air conditioner
bypass circuit
refrigerant
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22787097A
Other languages
Japanese (ja)
Other versions
JPH1163711A (en
Inventor
史武 畝崎
嘉裕 隅田
圭介 外囿
嘉夫 上野
智彦 河西
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22787097A priority Critical patent/JP3263343B2/en
Publication of JPH1163711A publication Critical patent/JPH1163711A/en
Application granted granted Critical
Publication of JP3263343B2 publication Critical patent/JP3263343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数の室外機と複数
の室内機とにより構成されるマルチ空気調和装置に係
り、特に暖房小容量運転の立ち上がり速度の改善に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-air conditioner comprising a plurality of outdoor units and a plurality of indoor units, and more particularly to an improvement in a startup speed of a small heating capacity operation.

【0002】[0002]

【従来の技術】従来、空気調和装置の大容量化に応じる
ため、複数の室外機と複数の室内機とにより構成される
マルチ空気調和装置が開発されている。この種のマルチ
空気調和装置では各室外機と各室内機とを接続するガス
配管及び液配管は、配管工事の簡略化により一本の共通
配管に集約されている。
2. Description of the Related Art Conventionally, a multi-air conditioner including a plurality of outdoor units and a plurality of indoor units has been developed in order to cope with an increase in capacity of an air conditioner. In this type of multi-air conditioner, gas pipes and liquid pipes connecting each outdoor unit and each indoor unit are integrated into one common pipe due to simplification of piping work.

【0003】図11は、例えば特開平4−93561号
公報に示されたこの種の従来のマルチ空気調和装置装置
の冷凍サイクル構成図である。図に示すように、室外機
1a,1bは、それぞれ圧縮機2a,2b、四方弁3
a,3b、室外熱交換器4a,4bにより構成されてい
る。さらに、室外機1bは、圧縮機2bの吐出側に逆止
弁14、室外熱交換器4bと液配管の接続点11との間
に設けられた電磁弁15を有する。
FIG. 11 is a configuration diagram of a refrigeration cycle of a conventional multi-air conditioner of this type disclosed in, for example, Japanese Patent Application Laid-Open No. 4-93561. As shown in the figure, the outdoor units 1a and 1b are respectively provided with compressors 2a and 2b and a four-way valve 3 respectively.
a, 3b and the outdoor heat exchangers 4a, 4b. Further, the outdoor unit 1b has a check valve 14 on the discharge side of the compressor 2b, and a solenoid valve 15 provided between the outdoor heat exchanger 4b and the connection point 11 of the liquid pipe.

【0004】6は室外機1a,1bと室内機7を接続す
る共通のガス配管、12は室外機1a,1bから出るガ
ス配管と共通のガス配管6との接続点、8は室内機7の
熱交換器、9は膨張弁、10は室外機1a,1bと室内
機7を接続する共通の液配管、11は室外機1a,1b
から出る液配管と共通の液配管10との接続点である。
Reference numeral 6 denotes a common gas pipe connecting the outdoor units 1a and 1b and the indoor unit 7, 12 denotes a connection point between the gas pipes exiting the outdoor units 1a and 1b and the common gas pipe 6, and 8 denotes a connection point of the indoor unit 7. A heat exchanger, 9 is an expansion valve, 10 is a common liquid pipe connecting the outdoor units 1a, 1b and the indoor unit 7, and 11 is an outdoor unit 1a, 1b.
It is a connection point between the liquid pipe coming out of the apparatus and the common liquid pipe 10.

【0005】上述のような冷凍サイクルでで暖房運転を
行った場合の動作を説明する。圧縮機2a,2bから吐
出された高温高圧のガス冷媒は、室外機1a,1bから
ガス配管6を通り、室内機7の熱交換器8に供給され
る。室内機7の熱交換器8で、室内側に熱を与えなが
ら、凝縮、液化され、熱交換器8を出た後、室内機7内
の膨張弁9で低圧の二相冷媒に減圧される。低圧の二相
冷媒は液配管10を通り室外機1a,1bの熱交換器4
a,4bで蒸発、ガス化され、アキュムレータ5a,5
bを通り圧縮機2a,2bに吸入される。
[0005] The operation when the heating operation is performed in the refrigeration cycle as described above will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressors 2a and 2b is supplied from the outdoor units 1a and 1b to the heat exchanger 8 of the indoor unit 7 through the gas pipe 6. The heat is condensed and liquefied in the heat exchanger 8 of the indoor unit 7 while applying heat to the indoor side, and after leaving the heat exchanger 8, the pressure is reduced to a low-pressure two-phase refrigerant by the expansion valve 9 in the indoor unit 7. . The low-pressure two-phase refrigerant passes through the liquid pipe 10 and the heat exchanger 4 of the outdoor units 1a and 1b.
a and 4b evaporate and gasify, accumulators 5a and 5b
b and is sucked into the compressors 2a and 2b.

【0006】[0006]

【発明が解決しようとする課題】従来の空気調和装置
は、以上のように構成されているので、暖房運転を起動
した場合、外気によって冷却されているガス配管6によ
って、圧縮機2a,2bから吐出された高温高圧のガス
冷媒は冷却される。外気温度が低く、また運転容量が少
ない場合では、ガス配管6の温度低下やガス配管6を通
過する冷媒流量の少量化に伴い、より冷却されやすくな
る。
Since the conventional air conditioner is configured as described above, when the heating operation is started, the gas pipe 6 cooled by the outside air causes the compressor 2a, 2b to start. The discharged high-temperature and high-pressure gas refrigerant is cooled. When the outside air temperature is low and the operating capacity is small, cooling becomes easier as the temperature of the gas pipe 6 decreases and the flow rate of the refrigerant passing through the gas pipe 6 decreases.

【0007】特にマルチ空気調和装置の大容量化に伴い
配管を1本に集約した場合、接続される配管での圧力損
失による性能低下を防止するため配管径の大口径化がな
されている。従って小容量運転では冷媒流速の低下、ま
た大容量化に伴う接続室内機の台数増加により配管長の
長尺化がなされているため冷却部分の増加が生じ、ガス
配管6での冷却がさらに起こりやすくなる。冷却の度合
いが大きくなると供給されたガス冷媒がガス配管6内で
液化され、ガス配管6内に液冷媒が溜まり込み、寝込む
状態となる。このような状態ではガス配管6から下流の
室内熱交換器8、液配管10、室外熱交換器4a,4b
には冷媒が流れなくなる。
In particular, when the pipes are integrated into one pipe with the increase in the capacity of the multi-air conditioner, the diameter of the pipes is increased in order to prevent a decrease in performance due to a pressure loss in the connected pipes. Therefore, in the small-capacity operation, the cooling portion is increased due to the decrease in the flow rate of the refrigerant and the increase in the number of connected indoor units due to the increase in the capacity, so that the length of the pipe is increased. It will be easier. When the degree of cooling increases, the supplied gas refrigerant is liquefied in the gas pipe 6, and the liquid refrigerant accumulates in the gas pipe 6 and becomes laid down. In such a state, the indoor heat exchanger 8, the liquid pipe 10, the outdoor heat exchangers 4a, 4b
No more refrigerant flows.

【0008】そのため、低圧側では圧縮機2a,2bに
冷媒が吸入されるが、圧縮機2a,2bから吐出された
冷媒が戻ってこなくなるため、圧力が低下する。低圧が
低下すると圧縮機2a,2bの流量が減少するので、暖
房運転が立ち上がるのに時間がかかるという問題が発生
する。特に小容量運転では立ち上がり時間がかかるとい
う問題が顕著になる。
For this reason, the refrigerant is sucked into the compressors 2a and 2b on the low pressure side, but the refrigerant discharged from the compressors 2a and 2b does not return, so that the pressure drops. When the low pressure decreases, the flow rate of the compressors 2a and 2b decreases, so that it takes time to start the heating operation. In particular, in the case of small-capacity operation, the problem that a rise time is required becomes prominent.

【0009】この発明は、以上のような問題点を解決す
るためになされたもので、複数の室外機と複数の室内機
とにより構成されるマルチ空気調和装置の暖房運転の立
ち上がり時間、特に暖房小容量運転時の立ち上がり時間
を短縮することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has a heating time, particularly a heating time, of a multi-air conditioner comprising a plurality of outdoor units and a plurality of indoor units. The purpose is to reduce the start-up time during small capacity operation.

【0010】[0010]

【課題を解決するための手段】この発明に係るマルチ空
気調和装置は、圧縮機、室外熱交換器、アキュムレータ
を有する複数の室外機と、室内熱交換器、減圧装置を有
する複数の室内機と、室外機と室内機とを接続する共通
のガス配管と、室外機と室内機とを接続する共通の液配
管と、暖房運転時に室内機の運転容量が小さい場合、運
転を停止しガス配管と液配管との連通が遮断される室外
機に設けられ、該室外機のアキュムレータ内の液冷媒を
運転中の他の室外機の室外熱交換器に供給するバイパス
回路とを備えたものである。
A multi-air conditioner according to the present invention comprises a plurality of outdoor units having a compressor, an outdoor heat exchanger and an accumulator, and a plurality of indoor units having an indoor heat exchanger and a decompression device. If the operating capacity of the indoor unit is small during the heating operation, the operation is stopped and the common gas piping connecting the outdoor unit and the indoor unit, the common liquid piping connecting the outdoor unit and the indoor unit, and the gas piping A bypass circuit is provided in the outdoor unit whose communication with the liquid pipe is interrupted, and supplies a liquid refrigerant in an accumulator of the outdoor unit to an outdoor heat exchanger of another operating outdoor unit.

【0011】また、バイパス回路を、運転を停止してい
る室外機のアキュムレータと運転中の他の室外機の液配
管との間に設けたものである。
Further, the bypass circuit is provided between the accumulator of the outdoor unit whose operation is stopped and the liquid pipe of another outdoor unit which is operating.

【0012】また、バイパス回路を、運転を停止してい
る室外機のアキュムレータと共通の液配管に連通する該
室外機の液配管との間に設けたものである。
Further, the bypass circuit is provided between the accumulator of the outdoor unit whose operation is stopped and the liquid piping of the outdoor unit communicating with the common liquid piping.

【0013】また、運転を停止している室外機の共通の
ガス配管に連通する高圧側から該室外機のアキュムレー
タへ高圧ガスを流す他のバイパス回路を備えたものであ
る。
[0013] Further, there is provided another bypass circuit for flowing high-pressure gas from the high-pressure side communicating with a common gas pipe of the outdoor unit whose operation is stopped to the accumulator of the outdoor unit.

【0014】また、バイパス回路の一端を運転停止中の
室外機のアキュムレータの底部に接続したものである。
Further, one end of the bypass circuit is connected to the bottom of the accumulator of the outdoor unit whose operation is stopped.

【0015】また、バイパス回路の一端を運転停止中の
室外機のアキュムレータの頂部もしくは側面部から差し
込み、アキュムレータの底部に達する構成としたもので
ある。
Further, one end of the bypass circuit is inserted from the top or the side of the accumulator of the outdoor unit whose operation is stopped, and reaches the bottom of the accumulator.

【0016】また、バイパス回路に設けられ、該バイパ
ス回路の冷媒の流量を調節する流量調節弁と、この流量
調節弁を制御する制御装置とを備えたものである。
[0016] The present invention further includes a flow control valve provided in the bypass circuit for controlling the flow rate of the refrigerant in the bypass circuit, and a control device for controlling the flow control valve.

【0017】また、制御装置は、暖房運転の起動と同時
に流量調節弁を開くように制御するものである。
Further, the control device controls to open the flow control valve simultaneously with the start of the heating operation.

【0018】また、制御装置は、暖房運転の起動後、一
定時間経過後に流量調節弁を開くように制御するもので
ある。
Further, the control device controls the flow control valve to be opened after a lapse of a predetermined time after the heating operation is started.

【0019】また、制御装置は、暖房運転の起動後、空
気調和装置の冷凍サイクルの低圧が一定値以下になった
場合に流量調節弁を開くように制御するものである。
Further, the control device controls the flow control valve to be opened when the low pressure of the refrigeration cycle of the air conditioner becomes lower than a certain value after the heating operation is started.

【0020】また、制御装置は、流量調節弁の開度を、
運転中の他の室外機の室外熱交換器で液冷媒が蒸発しき
り、かつ該室外熱交換器で蒸発する液冷媒が少なくなら
ない適切な一定値に制御するものである。
Further, the control device controls the opening degree of the flow control valve,
The liquid refrigerant is controlled to an appropriate constant value so that the liquid refrigerant evaporates completely in the outdoor heat exchanger of another outdoor unit during operation, and the liquid refrigerant evaporating in the outdoor heat exchanger does not decrease.

【0021】また、制御装置は、流量調節弁の開度を、
運転中の他の室外機の室外熱交換器出口の冷媒の過熱度
が一定値になるよう制御するものである。
Further, the control device sets the opening of the flow control valve to
The superheat degree of the refrigerant at the outlet of the outdoor heat exchanger of another outdoor unit during operation is controlled to be a constant value.

【0022】また、制御装置は、流量調節弁を開いた
後、暖房運転立ち上げに必要な一定時間後に該流量調節
弁を閉じるように制御するものである。
The control device controls the flow control valve so that the flow control valve is closed after a predetermined time required for starting the heating operation after the flow control valve is opened.

【0023】また、バイパス回路を、冷房運転時に冷凍
サイクルの高圧が過渡的に上昇した場合に、高圧液を低
圧側に戻して高圧の上昇を抑制する液バイパス回路とし
て用いるものである。
Further, the bypass circuit is used as a liquid bypass circuit for returning the high-pressure liquid to the low-pressure side and suppressing the high-pressure rise when the high pressure of the refrigeration cycle rises transiently during the cooling operation.

【0024】また、液バイパス回路として用いるバイパ
ス回路に、流量調節弁によりバイパスした液冷媒を絞っ
た後の二相冷媒を高圧液と熱交換させる熱交換器を設け
たものである。
Further, the bypass circuit used as the liquid bypass circuit is provided with a heat exchanger for exchanging heat between the two-phase refrigerant after the liquid refrigerant bypassed by the flow control valve and the high-pressure liquid.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態の一例を図
面を参照して説明する。なお、ここでは室外機は2台接
続されているものとして説明する。また室外機、室内機
を接続するガス配管、液配管は1本の共通のガス配管、
液配管にまとめられているとする。
Embodiment 1 FIG. Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. Here, description will be made assuming that two outdoor units are connected. The gas pipe and the liquid pipe connecting the outdoor unit and the indoor unit are one common gas pipe,
It is assumed that they are collected in a liquid pipe.

【0026】図1はこの発明の実施の形態の一例を示す
図で、マルチ空気調和装置の冷凍サイクル構成図であ
る。図において、1a,1bは室外機、2a,2bは各
室外機の圧縮機、3a,3bは各室外機の四方弁、6は
室外機1a,1bと室内機7を接続する共通のガス配
管、12は室外機1a,1bから出るガス配管と共通の
ガス配管6との接続点、8は室内機7の室内熱交換器、
9は室内機7の膨張弁、10は室外機1a,1bと室内
機7を接続する共通の液配管、11は室外機1a,1b
から出る液配管と共通の液配管10との接続点、4a,
4bは室外機1a,1bの室外熱交換器、5a,5bは
室外機1a,1bのアキュムレータである。
FIG. 1 is a view showing an example of an embodiment of the present invention, and is a configuration diagram of a refrigeration cycle of a multi-air conditioner. In the figure, 1a and 1b are outdoor units, 2a and 2b are compressors of each outdoor unit, 3a and 3b are four-way valves of each outdoor unit, and 6 is a common gas pipe connecting the outdoor units 1a and 1b and the indoor unit 7. , 12 is a connection point between a gas pipe exiting from the outdoor units 1a and 1b and a common gas pipe 6, 8 is an indoor heat exchanger of the indoor unit 7,
9 is an expansion valve of the indoor unit 7, 10 is a common liquid pipe connecting the outdoor units 1a and 1b and the indoor unit 7, and 11 is an outdoor unit 1a and 1b.
Connection point between the liquid pipe coming out of the pipe and the common liquid pipe 10, 4a,
4b is an outdoor heat exchanger of the outdoor units 1a and 1b, and 5a and 5b are accumulators of the outdoor units 1a and 1b.

【0027】14は圧縮機1bの吐出側に設けられた逆
止弁、15は室外熱交換器4bと液配管の接続点11と
の間に設けられた電磁弁、16はアキュムレータ5bの
液冷媒を室外熱交換器4aに供給するためのバイパス回
路、17はバイパス回路16での流量を調節する流量調
節弁、18は流量調節弁17の開度を制御する制御装置
である。
14 is a check valve provided on the discharge side of the compressor 1b, 15 is a solenoid valve provided between the outdoor heat exchanger 4b and the connection point 11 of the liquid pipe, and 16 is a liquid refrigerant of the accumulator 5b. Is a bypass circuit for supplying to the outdoor heat exchanger 4a, 17 is a flow control valve for controlling the flow rate in the bypass circuit 16, and 18 is a control device for controlling the opening of the flow control valve 17.

【0028】また、図2はこの発明の実施の形態の一例
を示す図で、バイパス回路16とアキュムレータ5bと
の接続を示した図である。図に示すように、バイパス回
路16の一端がアキュムレータ5bの下部から差し込ま
れている。
FIG. 2 is a diagram showing an example of the embodiment of the present invention, and is a diagram showing a connection between the bypass circuit 16 and the accumulator 5b. As shown in the drawing, one end of the bypass circuit 16 is inserted from below the accumulator 5b.

【0029】次に本実施の形態での安定運転時の暖房運
転の動作について説明する。まず、室内機7の運転容量
が大きく、室外機1a、室外機1bがともに運転する場
合について説明する。暖房運転を行う場合、四方弁3
a,3bは、図1の実線方向に接続される。また、電磁
弁15は開とし、流量調節弁17はバイパス回路16に
冷媒が流れないように全閉に制御される。
Next, the operation of the heating operation during the stable operation in this embodiment will be described. First, the case where the operation capacity of the indoor unit 7 is large and both the outdoor unit 1a and the outdoor unit 1b operate will be described. When performing the heating operation, the four-way valve 3
a and 3b are connected in the solid line direction in FIG. The solenoid valve 15 is opened, and the flow control valve 17 is controlled to be fully closed so that the refrigerant does not flow into the bypass circuit 16.

【0030】この場合の冷媒の流れは次のようになる。
圧縮機2a,2bから吐出された高圧、高温の冷媒ガス
は四方弁3a,3bを通り、ガス配管の接続口12で室
外機1a,1bから出た冷媒が合流する。共通のガス配
管6を通り室内機7に供給されたガス冷媒は室内機7の
室内熱交換器8で凝縮、液化された後、室内機7の膨張
弁9で減圧され、低圧の二相冷媒となる。低圧の二相冷
媒は共通の液配管10を通った後、液配管の接続点11
で室外機1a,1bに分配される。室外機1a,1bに
分配された二相冷媒は室外熱交換器4a,4bで蒸発ガ
ス化された後、アキュムレータ5a,5bを通り圧縮機
2a,2bに吸入される。
The flow of the refrigerant in this case is as follows.
The high-pressure, high-temperature refrigerant gas discharged from the compressors 2a, 2b passes through the four-way valves 3a, 3b, and the refrigerant discharged from the outdoor units 1a, 1b merges at the connection port 12 of the gas pipe. The gas refrigerant supplied to the indoor unit 7 through the common gas pipe 6 is condensed and liquefied in the indoor heat exchanger 8 of the indoor unit 7, and then decompressed by the expansion valve 9 of the indoor unit 7, and is a low-pressure two-phase refrigerant. Becomes After the low-pressure two-phase refrigerant passes through the common liquid pipe 10, the connection point 11 of the liquid pipe
Is distributed to the outdoor units 1a and 1b. The two-phase refrigerant distributed to the outdoor units 1a and 1b is vaporized and gasified by the outdoor heat exchangers 4a and 4b, and then is drawn into the compressors 2a and 2b through the accumulators 5a and 5b.

【0031】一方、室内機7の運転容量が小さい場合の
暖房運転の動作について説明する。小容量運転であるの
で、室外機1aは運転、室外機1bは停止という状態に
なる。暖房運転を行う場合、四方弁3a,3bは図1の
実線方向に接続される。また電磁弁15は閉とし、流量
調節弁17はバイパス回路16を冷媒が流れないように
全閉に制御される。
On the other hand, the operation of the heating operation when the operation capacity of the indoor unit 7 is small will be described. Since the operation is the small capacity operation, the outdoor unit 1a operates and the outdoor unit 1b stops. When performing the heating operation, the four-way valves 3a and 3b are connected in the solid line direction in FIG. The solenoid valve 15 is closed, and the flow control valve 17 is controlled to be fully closed so that the refrigerant does not flow through the bypass circuit 16.

【0032】この場合の冷媒の流れは次のようになる。
圧縮機2aから吐出された高圧、高温の冷媒ガスは四方
弁3aを通りガス配管6に流入する。ここで、室外機1
bでは高圧が四方弁3bまでかかるが、逆止弁14によ
って閉止され、高圧はその他の部分にはかからないよう
になる。
The flow of the refrigerant in this case is as follows.
The high-pressure, high-temperature refrigerant gas discharged from the compressor 2a flows into the gas pipe 6 through the four-way valve 3a. Here, the outdoor unit 1
In b, high pressure is applied to the four-way valve 3b, but is closed by the check valve 14, so that high pressure is not applied to other parts.

【0033】ガス配管6を通り室内機7に供給されたガ
ス冷媒は室内機7の室内熱交換器8で凝縮、液化された
後、膨張弁9で減圧され、低圧の二相冷媒となる。低圧
の二相冷媒は液配管10を通った後、室外機1a,1b
に分配されることになるが、電磁弁15が閉じているの
で、室外機1bへは冷媒が流れず、室外機1aのみ冷媒
が流れる。室外機1aに流入した二相冷媒は室外熱交換
器4aで蒸発ガス化された後、アキュムレータ5aを通
り圧縮機2aに吸入される。
The gas refrigerant supplied to the indoor unit 7 through the gas pipe 6 is condensed and liquefied by the indoor heat exchanger 8 of the indoor unit 7, and then decompressed by the expansion valve 9 to become a low-pressure two-phase refrigerant. After the low-pressure two-phase refrigerant passes through the liquid pipe 10, the outdoor units 1a and 1b
However, since the solenoid valve 15 is closed, the refrigerant does not flow to the outdoor unit 1b, and the refrigerant flows only to the outdoor unit 1a. The two-phase refrigerant that has flowed into the outdoor unit 1a is vaporized and gasified by the outdoor heat exchanger 4a, and then is drawn into the compressor 2a through the accumulator 5a.

【0034】次に本実施の形態の冷房運転での動作につ
いて説明する。室内機7の運転容量が大きく、室外機1
a、室外機1bがともに運転する場合について説明す
る。冷房運転を行う場合、四方弁3a,3bは図1の点
線方向に接続される。また電磁弁15は開とし、流量調
節弁17はバイパス回路16を冷媒が流れないように、
全閉に制御される。
Next, the operation in the cooling operation of this embodiment will be described. The operating capacity of the indoor unit 7 is large, and the outdoor unit 1
a, the case where the outdoor unit 1b operates together will be described. When performing the cooling operation, the four-way valves 3a and 3b are connected in a direction indicated by a dotted line in FIG. In addition, the solenoid valve 15 is opened, and the flow rate control valve 17 prevents the refrigerant from flowing through the bypass circuit 16.
Controlled to fully closed.

【0035】この場合の冷媒の流れは次のようになる。
圧縮機2a,2bから吐出された高圧、高温の冷媒ガス
は四方弁3a,3bを通り、室外熱交換器4a,4bで
凝縮、液化され、高圧の液冷媒が液配管10に供給され
る。その後、室内機7の膨張弁9で減圧し、二相冷媒と
なった後、室内機7の室内熱交換器8で蒸発、ガス化
し、ガス配管6、四方弁3a,3b、アキュムレータ5
a,5bを通り圧縮機2a,2bに吸入される。
The flow of the refrigerant in this case is as follows.
The high-pressure, high-temperature refrigerant gas discharged from the compressors 2a, 2b passes through the four-way valves 3a, 3b, is condensed and liquefied in the outdoor heat exchangers 4a, 4b, and the high-pressure liquid refrigerant is supplied to the liquid pipe 10. Thereafter, the pressure is reduced by the expansion valve 9 of the indoor unit 7 to become a two-phase refrigerant, and then evaporated and gasified by the indoor heat exchanger 8 of the indoor unit 7, and the gas pipe 6, the four-way valves 3a and 3b, the accumulator 5
a and 5b are drawn into the compressors 2a and 2b.

【0036】ここで、暖房運転と冷房運転の違いをみる
と、暖房運転では液配管10に二相冷媒が存在する一
方、冷房運転では液配管10に液冷媒が存在する。従っ
て、暖房運転では冷房運転に比べて余剰の冷媒が発生
し、この冷媒はアキュムレータ5a,5bに液冷媒の形
で存在する。本発明ではこの余剰の液冷媒を活用して暖
房運転の立ち上がり速度を改善するものである。
Here, looking at the difference between the heating operation and the cooling operation, the two-phase refrigerant exists in the liquid pipe 10 in the heating operation, while the liquid refrigerant exists in the liquid pipe 10 in the cooling operation. Therefore, surplus refrigerant is generated in the heating operation as compared with the cooling operation, and this refrigerant exists in the accumulators 5a and 5b in the form of a liquid refrigerant. In the present invention, the rising speed of the heating operation is improved by utilizing the excess liquid refrigerant.

【0037】次に、室内機の運転容量が小さい場合の暖
房運転の起動時の動作について説明する。小容量運転で
あるので、室外機1aは運転、室外機1bは停止という
状態になる。暖房運転を行う場合、四方弁3a,3bは
図1の実線方向に接続される。また電磁弁15は閉と
し、流量調節弁17はバイパス回路16を冷媒が適当量
流れる開度に制御装置18によって制御される。また起
動前には室外機1a,1b内に冷媒が寝込むので、室外
熱交換器4a,4b、及びアキュムレータ5a,5bに
液冷媒が存在する。
Next, the operation at the time of starting the heating operation when the operating capacity of the indoor unit is small will be described. Since the operation is the small capacity operation, the outdoor unit 1a operates and the outdoor unit 1b stops. When performing the heating operation, the four-way valves 3a and 3b are connected in the solid line direction in FIG. The solenoid valve 15 is closed, and the flow control valve 17 is controlled by the control device 18 to an opening degree at which a suitable amount of refrigerant flows through the bypass circuit 16. In addition, since the refrigerant lays down in the outdoor units 1a and 1b before the start, the liquid refrigerant exists in the outdoor heat exchangers 4a and 4b and the accumulators 5a and 5b.

【0038】この場合の冷媒の流れは次のようになる。
圧縮機2aから吐出された高圧、高温の冷媒ガスは四方
弁3aを通りガス配管6に流入する。ガス配管6に流れ
込んだ冷媒ガスはガス配管6の途中で冷却、液化されガ
ス配管6内に冷媒が寝込む。そこで室内機7の室内熱交
換器8より下流は冷媒が流れないようになる。圧縮機2
aではガス冷媒を吸い込むだけで、圧縮機2aから吐出
したガス冷媒が冷凍サイクルを一周して圧縮機2aに戻
らなくなるため、圧縮機2aの吸入圧力すなわち、冷凍
サイクルの低圧が低下する。
The flow of the refrigerant in this case is as follows.
The high-pressure, high-temperature refrigerant gas discharged from the compressor 2a flows into the gas pipe 6 through the four-way valve 3a. The refrigerant gas flowing into the gas pipe 6 is cooled and liquefied in the middle of the gas pipe 6, and the refrigerant stagnates in the gas pipe 6. Therefore, the refrigerant does not flow downstream of the indoor heat exchanger 8 of the indoor unit 7. Compressor 2
In the case of a, the gas refrigerant discharged from the compressor 2a merely goes around the refrigeration cycle and does not return to the compressor 2a just by sucking the gas refrigerant, so that the suction pressure of the compressor 2a, that is, the low pressure of the refrigeration cycle decreases.

【0039】一方アキュムレータ5b内は気液平衡の状
態にあるので、圧力は室外機1b周囲の温度の飽和圧力
となる。一方運転している室外機1aでは室外熱交換器
4aで冷媒を蒸発させようとするので、冷凍サイクルの
低圧は室外機1a周囲の温度の飽和圧力よりも低い圧力
となる。
On the other hand, since the inside of the accumulator 5b is in a state of gas-liquid equilibrium, the pressure becomes the saturation pressure of the temperature around the outdoor unit 1b. On the other hand, the operating outdoor unit 1a attempts to evaporate the refrigerant in the outdoor heat exchanger 4a, so that the low pressure of the refrigeration cycle is lower than the saturation pressure of the temperature around the outdoor unit 1a.

【0040】従って、アキュムレータ5bの圧力は冷凍
サイクルの低圧よりも高くなるので、アキュムレータ5
b内の液冷媒がバイパス回路16により室外機1aの室
外熱交換器4aに供給される。室外熱交換器4aに供給
された液冷媒は蒸発、ガス化するので、冷凍サイクルの
低圧の低下を防止する働きをする。そのため低圧の低下
が防止でき、圧縮機2aから吐出するガス冷媒流量の低
下が改善されるので、冷凍サイクルの高圧の上昇が早く
なる。高圧の上昇が早くなると、室内熱交換器7での冷
媒温度が早く上昇するため、暖房運転が早く立ち上がる
ようになる。
Therefore, the pressure of the accumulator 5b becomes higher than the low pressure of the refrigeration cycle,
The liquid refrigerant in b is supplied to the outdoor heat exchanger 4a of the outdoor unit 1a by the bypass circuit 16. Since the liquid refrigerant supplied to the outdoor heat exchanger 4a evaporates and gasifies, it functions to prevent a decrease in the low pressure of the refrigeration cycle. Therefore, a decrease in the low pressure can be prevented, and a decrease in the flow rate of the gas refrigerant discharged from the compressor 2a is improved, so that the increase in the high pressure of the refrigeration cycle is accelerated. When the high pressure rises quickly, the refrigerant temperature in the indoor heat exchanger 7 rises quickly, so that the heating operation starts up quickly.

【0041】図3は本実施の形態での暖房運転起動後の
冷凍サイクルの高圧の変化を示した図である。従来の空
気調和装置に比べて、冷凍サイクルの高圧の立ち上がり
が早く、暖房運転の立ち上がりが早くなっていることが
解る。
FIG. 3 is a diagram showing a change in the high pressure of the refrigeration cycle after starting the heating operation in the present embodiment. It can be understood that the rise of the high pressure of the refrigeration cycle and the rise of the heating operation are earlier than in the conventional air conditioner.

【0042】なお、本実施の形態の冷凍サイクルに、図
4に示すように室外機1bの高圧側と低圧側をつなぐバ
イパス回路19と、このバイパス回路19の開閉を行う
電磁弁20を設けてもよい。暖房運転の起動時、流量調
節弁17が開になったときに、バイパス回路19を冷媒
が流れるよう電磁弁20を開にすることで、アキュムレ
ータ5b内に冷凍サイクルの高圧がかかるようにでき
る。アキュムレータ5b内に冷凍サイクルの高圧がかか
ると、アキュムレータ5bの圧力と冷凍サイクルの低圧
との差圧が高圧をかけない場合に比べて広がるので、ア
キュムレータ5bの液冷媒が室外機1aの室外熱交換器
4aに供給されやすくなる。従って、より冷凍サイクル
の低圧の低下を防止しやすくなり、暖房運転の立ち上が
りが早くなる。
As shown in FIG. 4, the refrigeration cycle of this embodiment is provided with a bypass circuit 19 connecting the high pressure side and the low pressure side of the outdoor unit 1b, and a solenoid valve 20 for opening and closing the bypass circuit 19. Is also good. When the heating operation is started, when the flow rate control valve 17 is opened, the solenoid valve 20 is opened so that the refrigerant flows through the bypass circuit 19, so that the high pressure of the refrigeration cycle can be applied to the accumulator 5b. When the high pressure of the refrigeration cycle is applied to the inside of the accumulator 5b, the differential pressure between the pressure of the accumulator 5b and the low pressure of the refrigeration cycle increases as compared with the case where no high pressure is applied. It becomes easy to be supplied to the container 4a. Therefore, it becomes easier to prevent a decrease in the low pressure of the refrigeration cycle, and the heating operation starts up earlier.

【0043】また、流量調節弁17を開くタイミングで
あるが、暖房運転起動と同時でなく、暖房運転起動後一
定時間経過後でもよい。暖房運転起動直後は低圧が余り
引き込まず、外気温度と室外機1aの室外熱交換器4a
内の冷媒の温度との温度差が小さいので、バイパス16
から室外機1aの室外熱交換器4aに液冷媒を供給して
も、液冷媒の蒸発量が少なく、冷凍サイクルの低圧の低
下の防止効果が小さい。
The timing of opening the flow control valve 17 may be not at the same time as the start of the heating operation but after a certain time has elapsed after the start of the heating operation. Immediately after the heating operation is started, the low pressure is not drawn so much, and the outside air temperature and the outdoor heat exchanger 4a of the outdoor unit 1a
Since the temperature difference from the temperature of the refrigerant in the
Even when the liquid refrigerant is supplied to the outdoor heat exchanger 4a of the outdoor unit 1a from the above, the amount of evaporation of the liquid refrigerant is small, and the effect of preventing the lowering of the low pressure of the refrigeration cycle is small.

【0044】暖房運転起動後一定時間経過後、流量調節
弁17を開くと、低圧がある程度引き込んでおり外気温
度と室外機1aの室外熱交換器4a内の冷媒の温度との
温度差が広がっているので、バイパス16から室外機1
aの室外熱交換器4aに供給された液冷媒が全て蒸発
し、冷凍サイクルの低圧の低下の防止効果を十分に果た
すことができる。
After a certain period of time has elapsed since the start of the heating operation, when the flow control valve 17 was opened, a low pressure was drawn to some extent, and the temperature difference between the outside air temperature and the refrigerant temperature in the outdoor heat exchanger 4a of the outdoor unit 1a increased. The outdoor unit 1 from the bypass 16
All the liquid refrigerant supplied to the outdoor heat exchanger 4a evaporates, and a sufficient effect of preventing a decrease in the low pressure of the refrigeration cycle can be achieved.

【0045】次に流量調節弁17の開度であるが、流量
調節弁17の開度が適切な値よりも開き過ぎであるとバ
イパス16を通じて室外機1aの室外熱交換器4aに多
量の液冷媒が供給されるので、室外熱交換器4aで液冷
媒を蒸発しきれず、アキュムレータ5aに液冷媒が貯ま
るようになる。このような状況を放置していると、アキ
ュムレータ5aがオーバーフローし、圧縮機2aに液冷
媒が吸い込まれ液圧縮により圧縮機2aが破損する恐れ
がある。
Next, regarding the opening of the flow control valve 17, if the opening of the flow control valve 17 is too large than an appropriate value, a large amount of liquid is supplied to the outdoor heat exchanger 4 a of the outdoor unit 1 a through the bypass 16. Since the refrigerant is supplied, the liquid refrigerant cannot be completely evaporated in the outdoor heat exchanger 4a, and the liquid refrigerant is stored in the accumulator 5a. If such a situation is left, the accumulator 5a overflows, and the liquid refrigerant is sucked into the compressor 2a, and the compressor 2a may be damaged by liquid compression.

【0046】また流量調節弁17の開度が適切な値より
少ない場合、室外熱交換器4aで蒸発する液冷媒量が少
なく、低圧の低下の抑止効果が小さくなる。そこで流量
調節弁17の開度は適切な開度になるよう予め定めた一
定値に設定し、バイパス16からの液冷媒量が多すぎて
アキュムレータ5aに液が戻らず、かつ室外熱交換器4
aで蒸発する液冷媒量が多く、低圧の低下の抑止効果が
十分得られる状態に制御する。
When the opening of the flow control valve 17 is smaller than an appropriate value, the amount of the liquid refrigerant evaporated in the outdoor heat exchanger 4a is small, and the effect of suppressing the lowering of the low pressure is reduced. Therefore, the opening of the flow control valve 17 is set to a predetermined constant value so as to be an appropriate opening, the amount of the liquid refrigerant from the bypass 16 is too large, the liquid does not return to the accumulator 5a, and the outdoor heat exchanger 4
The control is performed so that the amount of the liquid refrigerant evaporating at a is large and the effect of suppressing the lowering of the low pressure is sufficiently obtained.

【0047】なお、この流量調節弁17の開度は室外熱
交換器4aの出口での冷媒の過熱度が一定値になるよう
に制御してもよい。この場合の冷媒の過熱度は例えば5
℃に設定する。過熱度が5℃ついていると、アキュムレ
ータ5aに液が戻ることはないので、アキュムレータ5
aで液冷媒がオーバーフローするという状態は避けられ
る。また過熱度が5℃である場合には室外熱交換器4a
である程度の蒸発、すなわち液冷媒のガス化が行われて
いるということを示しているので、蒸発する液冷媒量も
多く、低圧の低下の抑止効果も十分得ることができる。
The degree of opening of the flow control valve 17 may be controlled so that the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger 4a is constant. In this case, the degree of superheat of the refrigerant is, for example, 5
Set to ° C. If the degree of superheat is 5 ° C., the liquid does not return to the accumulator 5a.
The state in which the liquid refrigerant overflows at a is avoided. If the degree of superheat is 5 ° C., the outdoor heat exchanger 4a
This indicates that a certain degree of evaporation, that is, gasification of the liquid refrigerant, is being performed, so that the amount of the liquid refrigerant that evaporates is large, and a sufficient effect of suppressing a decrease in low pressure can be obtained.

【0048】次に流量調節弁17は開いた後、そのまま
の状態でいると、もともと室外機1bのアキュムレータ
5bに存在する余剰の冷媒が全て室外機1aの方に移動
してくるので、室外機1aに存在する余剰冷媒量が増加
し、アキュムレータ5aがオーバーフローし、圧縮機2
aに液冷媒が吸い込まれ液圧縮により圧縮機2aが破損
する恐れがある。そこで暖房運転起動後、暖房運転が立
ち上がるのに必要な一定時間を定め、その時間の間流量
調節弁17を開いた後、流量調節弁17は閉じるように
制御する。なお、本実施の形態では、室外機と室内機と
を接続するガス配管、液配管は一本の共通のガス配管、
液配管にまとめられているとして説明したが、図5に示
すように、室外機と室内機とを接続するガス配管、液配
管が複数の共通配管にまとめられていても同様の効果を
得ることができる。
Next, if the flow control valve 17 is opened and remains as it is, any excess refrigerant originally existing in the accumulator 5b of the outdoor unit 1b moves toward the outdoor unit 1a. 1a increases, the accumulator 5a overflows, and the compressor 2
There is a possibility that the liquid refrigerant is sucked into a and the compressor 2a is damaged by liquid compression. Therefore, after the heating operation is started, a certain time required for the heating operation to start is determined, and during that time, the flow control valve 17 is opened and then the flow control valve 17 is controlled to close. In the present embodiment, a gas pipe and a liquid pipe that connect the outdoor unit and the indoor unit are one common gas pipe,
Although the description has been made assuming that the gas pipes and the liquid pipes connecting the outdoor unit and the indoor unit are combined into a plurality of common pipes as shown in FIG. Can be.

【0049】実施の形態2.次に、この発明の実施の形
態の他の例を、図面を参照して説明する。本実施の形態
では、冷媒回路は実施の形態1と同様図1のように配置
し、バイパス回路16とアキュムレータ5bの接続を図
6のようにアキュムレータ5b上部から差し込まれたバ
イパス回路16の一端がアキュムレータ5b底の液冷媒
を流せる構成とする。
Embodiment 2 Next, another example of the embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the refrigerant circuit is arranged as shown in FIG. 1 similarly to the first embodiment, and the connection between the bypass circuit 16 and the accumulator 5b is connected to one end of the bypass circuit 16 inserted from above the accumulator 5b as shown in FIG. The liquid refrigerant at the bottom of the accumulator 5b can be made to flow.

【0050】本実施の形態の動作は実施の形態1と同様
であるが、図6のようにアキュムレータ5bの上部から
バイパス回路16の一端の配管を差し込めるようにする
ことで、アキュムレータ5b設置の自由度が上昇し、室
外機1bの底部にアキュムレータ5bを配置することも
可能となる。
The operation of the present embodiment is the same as that of the first embodiment, except that the pipe at one end of the bypass circuit 16 can be inserted from above the accumulator 5b as shown in FIG. The degree of freedom is increased, and the accumulator 5b can be disposed at the bottom of the outdoor unit 1b.

【0051】また、図7のようにアキュムレータ5bの
側面から差し込まれたバイパス回路16の一端がアキュ
ムレータ5b底部の液冷媒を流せる構造としてもよい。
この場合もアキュムレータ5b設置の自由度を向上させ
ることができる。
Further, as shown in FIG. 7, one end of the bypass circuit 16 inserted from the side of the accumulator 5b may be configured to allow the liquid refrigerant at the bottom of the accumulator 5b to flow.
Also in this case, the degree of freedom in installing the accumulator 5b can be improved.

【0052】実施の形態3.次に、この発明の実施の形
態の他の例を、図面を参照して説明する。図8はこの発
明の実施の形態の他の例を示す図で、空気調和装置の冷
凍サイクル構成図である。実施の形態3は、実施の形態
1、2とバイパス回路16の配置が異なり、バイパス回
路16の一端が、室外機1bの液配管接続点11と電磁
弁15の間に配置される。この場合、実施の形態1と同
様、暖房小容量運転時にバイパス回路16をアキュムレ
ータ5bの液冷媒が流れるようにした場合、アキュムレ
ータ5bの液冷媒は図8の矢印で示すようにバイパス回
路16、液配管の接続点11を経て、室外機1aの室外
熱交換器4aに供給されるので、動作としては実施の形
態1と同じように、暖房運転の立ち上がりを早くするこ
とができる。このようにバイパス回路16を配置する
と、バイパス回路16を室外機1b内で閉じた回路とす
ることができ、室外機間を接続する配管が減少するの
で、室外機設置の際の工事が簡略化される。
Embodiment 3 FIG. Next, another example of the embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a diagram showing another example of the embodiment of the present invention, and is a configuration diagram of a refrigeration cycle of an air conditioner. The third embodiment differs from the first and second embodiments in the arrangement of the bypass circuit 16. One end of the bypass circuit 16 is arranged between the liquid pipe connection point 11 of the outdoor unit 1b and the solenoid valve 15. In this case, as in the first embodiment, when the liquid refrigerant of the accumulator 5b is caused to flow through the bypass circuit 16 during the heating small capacity operation, the liquid refrigerant of the accumulator 5b flows through the bypass circuit 16 as indicated by the arrow in FIG. Since the air is supplied to the outdoor heat exchanger 4a of the outdoor unit 1a via the connection point 11 of the pipe, the heating operation can be started earlier as in the first embodiment. By arranging the bypass circuit 16 in this way, the bypass circuit 16 can be formed as a closed circuit in the outdoor unit 1b, and the number of pipes connecting the outdoor units is reduced, so that the work for installing the outdoor unit is simplified. Is done.

【0053】またバイパス回路16とアキュムレータ5
bの接続方法は実施の形態1,2と同様、図2、図6、
図7の何れにしても同じ効果を得ることができる。
The bypass circuit 16 and the accumulator 5
The connection method of b is the same as in the first and second embodiments.
The same effect can be obtained in any case of FIG.

【0054】またバイパス回路16を、室外機1bが冷
房運転を行っているときに凝縮器として用いられる室外
熱交換器4b出口の高圧液を、低圧側に戻す液バイパス
回路として用いることもできる。
The bypass circuit 16 can be used as a liquid bypass circuit for returning the high-pressure liquid at the outlet of the outdoor heat exchanger 4b used as a condenser when the outdoor unit 1b is performing the cooling operation to the low-pressure side.

【0055】液バイパス回路として用いる場合には、図
9のように冷房時にバイパスした液を一度流量制御弁1
7で絞った後、高圧の液冷媒と熱交換器21で熱交換さ
せて、バイパスした液冷媒の潜熱を回収する回路を組む
こともできる。
When used as a liquid bypass circuit, as shown in FIG.
After squeezing at 7, the heat exchanger 21 can exchange heat with the high-pressure liquid refrigerant to form a circuit for recovering the latent heat of the bypassed liquid refrigerant.

【0056】液バイパス回路を設けると、冷房運転時に
室外機周囲温度が高く、冷凍サイクルの高圧が過渡的に
上昇したときに、液バイパスにより高圧の上昇を抑制で
き圧縮機の保護を行うことが可能となる。
When the liquid bypass circuit is provided, when the ambient temperature of the outdoor unit is high during the cooling operation and the high pressure of the refrigeration cycle rises transiently, the rise of the high pressure can be suppressed by the liquid bypass, and the compressor can be protected. It becomes possible.

【0057】また高圧の液冷媒と熱交換器21で熱交換
させて、バイパスした液冷媒の潜熱を回収する回路を組
んだ場合には、冷房能力を損なうことなく、ガス配管6
を流れる冷媒流量を減少できるので、ガス配管6での圧
力損失を減少でき圧力損失による性能低下を抑制すると
いうことが可能となる。
When a circuit for recovering the latent heat of the bypassed liquid refrigerant by exchanging heat with the high-pressure liquid refrigerant in the heat exchanger 21 is provided, the gas pipe 6 can be cooled without impairing the cooling capacity.
The flow rate of the refrigerant flowing through the gas pipe 6 can be reduced, so that the pressure loss in the gas pipe 6 can be reduced and the performance degradation due to the pressure loss can be suppressed.

【0058】また、バイパス回路16を冷房運転時の液
バイパス回路としても用いる場合には、バイパス回路1
6とアキュムレータ5bの接続方法を図2のようにする
よりは、図10のように用いる方が望ましい。図2のよ
うな接続方法で液バイパスを用いると、液バイパスから
戻ってきた冷媒がアキュムレータ5b内の液を吹き上げ
て圧縮機2b吸入に吸い込まれ、圧縮機2bで液圧縮を
生じ、圧縮機2bの破損を生じる恐れがある。図10の
ように、バイパス回路16のアキュムレータ5b側の接
続口を横にすることで、液バイパスとして用いたときの
アキュムレータ5b内の液の吹き上げを防止することが
できる。
When the bypass circuit 16 is also used as a liquid bypass circuit during the cooling operation, the bypass circuit 1
It is more preferable to use the connection between the accumulator 5 and the accumulator 5b as shown in FIG. 10 than the connection as shown in FIG. When the liquid bypass is used in the connection method as shown in FIG. 2, the refrigerant returned from the liquid bypass blows up the liquid in the accumulator 5b and is sucked into the suction of the compressor 2b. There is a risk of causing breakage. As shown in FIG. 10, by laying the connection port of the bypass circuit 16 on the accumulator 5b side, it is possible to prevent the liquid in the accumulator 5b from being blown up when used as a liquid bypass.

【0059】[0059]

【発明の効果】この発明に係るマルチ空気調和装置は、
暖房運転時に室内機の運転容量が小さい場合、運転を停
止している室外機のアキュムレータ内の液冷媒を運転中
の他の室外機の室外熱交換器に供給するバイパス回路を
設けることにより、暖房運転の立ち上がり速度を早くす
ることができる。
According to the multi-air conditioner of the present invention,
When the operation capacity of the indoor unit is small during the heating operation, the heating unit is provided with a bypass circuit that supplies the liquid refrigerant in the accumulator of the outdoor unit that is stopped to the outdoor heat exchanger of the other outdoor unit that is operating. The start-up speed of operation can be increased.

【0060】また、バイパス回路を、運転を停止してい
る室外機のアキュムレータと共通の液配管に連通する該
室外機の液配管との間に設けることにより、バイパス回
路を運転を停止している室外機内で閉じた回路とするこ
とができ、室外機間を接続する配管が減少するので、室
外機設置の際の工事が簡略化される。
Also, the operation of the bypass circuit is stopped by providing a bypass circuit between the accumulator of the outdoor unit whose operation is stopped and the liquid pipe of the outdoor unit communicating with the common liquid pipe. Since a closed circuit can be formed in the outdoor unit, and the number of pipes connecting the outdoor units is reduced, the work for installing the outdoor unit is simplified.

【0061】また、運転を停止している室外機の共通の
ガス配管に連通する高圧側から該室外機のアキュムレー
タへ高圧ガスを流す他のバイパス回路を備えることによ
り、アキュムレータの液冷媒が運転中の室外機の室外熱
交換器に供給されやすくなり、より冷凍サイクルの低圧
の低下を抑制し、暖房運転の立ち上がりが早くなる。
Further, by providing another bypass circuit for flowing the high-pressure gas from the high-pressure side communicating with the common gas pipe of the outdoor unit whose operation is stopped to the accumulator of the outdoor unit, the liquid refrigerant of the accumulator is operated during the operation. The outdoor unit can be easily supplied to the outdoor heat exchanger, the lowering of the low pressure of the refrigeration cycle is suppressed, and the rise of the heating operation is accelerated.

【0062】また、バイパス回路の一端を運転停止中の
室外機のアキュムレータの頂部もしくは側面部から差し
込み、アキュムレータの底部に達する構成とすることに
より、運転停止中の室外機のアキュムレータ設置の自由
度を向上させることができる。
Further, by inserting one end of the bypass circuit from the top or the side of the accumulator of the outdoor unit during operation stop to reach the bottom of the accumulator, the degree of freedom of installation of the accumulator of the outdoor unit during operation stop is improved. Can be improved.

【0063】また、制御装置が暖房運転の起動後一定時
間経過後に流量調節弁を開くように制御することによ
り、バイパス回路から運転中の室外機の室外熱交換器に
供給された液冷媒が全て蒸発し、冷凍サイクルの低圧の
低下の防止効果を十分に果たすことができる。
Further, the control device controls the flow control valve to be opened after a lapse of a predetermined time after the start of the heating operation, so that all of the liquid refrigerant supplied from the bypass circuit to the outdoor heat exchanger of the outdoor unit in operation is operated. It is possible to sufficiently evaporate and sufficiently prevent the lowering of the low pressure of the refrigeration cycle.

【0064】また、制御装置が暖房運転の起動後、冷凍
サイクルの低圧が一定値以下になった場合に流量調節弁
を開くように制御することにより、冷凍サイクルの低圧
の低下の防止効果を十分に果たすことができる。
In addition, the control device controls the flow control valve to be opened when the low pressure of the refrigeration cycle falls below a certain value after the heating operation is started, so that the effect of preventing the reduction of the low pressure of the refrigeration cycle can be sufficiently achieved. Can be fulfilled.

【0065】また、制御装置が流量調節弁の開度を、運
転中の他の室外機の室外熱交換器で液冷媒が蒸発しき
り、かつ該室外熱交換器で蒸発する液冷媒が少なくなら
ない適切な一定値に制御することにより、バイパス回路
からの液冷媒量が多すぎて運転中の他の室外機のアキュ
ムレータにて液冷媒がオーバーフローすることがなく、
かつ運転中の他の室外機の室外熱交換器で蒸発する液冷
媒量が多く、低圧の低下の抑止効果が十分得られる。
Further, the controller sets the opening of the flow control valve to an appropriate value so that the liquid refrigerant does not completely evaporate in the outdoor heat exchanger of the other outdoor unit during operation and the amount of the liquid refrigerant evaporated in the outdoor heat exchanger does not decrease. By controlling to a constant value, the amount of liquid refrigerant from the bypass circuit is too large and the liquid refrigerant does not overflow in the accumulator of another outdoor unit during operation,
In addition, the amount of the liquid refrigerant evaporated in the outdoor heat exchanger of the other outdoor unit during operation is large, and a sufficient effect of suppressing a decrease in low pressure can be obtained.

【0066】また、制御装置が流量調節弁の開度を、運
転中の他の室外機の室外熱交換器出口の冷媒の過熱度が
一定値になるよう制御することにより、運転中の他の室
外機のアキュムレータに液が戻ることがない。
Further, the controller controls the opening degree of the flow control valve so that the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger of the other outdoor unit being operated becomes a constant value. Liquid does not return to the accumulator of the outdoor unit.

【0067】また、制御装置が流量調節弁を開いた後、
暖房運転立ち上げに必要な一定時間後に流量調節弁を閉
じるように制御することにより、運転中の室外機に存在
する余剰冷媒量が増加し、アキュムレータがオーバーフ
ローし、圧縮機に液冷媒が吸い込まれ液圧縮により圧縮
機が破損する恐れがない。
After the control device opens the flow control valve,
By controlling the flow control valve to close after a certain period of time necessary to start the heating operation, the amount of surplus refrigerant present in the outdoor unit during operation increases, the accumulator overflows, and the liquid refrigerant is sucked into the compressor. There is no danger of compressor damage due to liquid compression.

【0068】また、バイパス回路を、冷房運転時に冷凍
サイクルの高圧が過渡的に上昇した場合に、高圧液を低
圧側に戻して高圧の上昇を抑制する液バイパス回路とし
て用いることにより、冷房運転時に室外機周囲温度が高
く、冷凍サイクルの高圧が過渡的に上昇したときに、液
バイパスにより高圧の上昇を抑制でき圧縮機の保護を行
うことが可能となる。
Further, when the high pressure of the refrigeration cycle rises transiently during the cooling operation, the bypass circuit is used as a liquid bypass circuit that returns the high pressure liquid to the low pressure side and suppresses the rise of the high pressure. When the outdoor unit ambient temperature is high and the high pressure of the refrigeration cycle rises transiently, the rise of the high pressure can be suppressed by the liquid bypass, and the compressor can be protected.

【0069】また、バイパス回路に、流量調節弁により
バイパスした液冷媒を絞った後の二相冷媒を高圧液と熱
交換させる熱交換器を設けることにより、ガス配管での
圧力損失を減少でき圧力損失による性能低下を抑制する
ことができる。
Further, by providing the bypass circuit with a heat exchanger for exchanging the two-phase refrigerant with the high-pressure liquid after squeezing the liquid refrigerant bypassed by the flow control valve, pressure loss in the gas pipe can be reduced. Performance degradation due to loss can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態の一例を示す図で、マ
ルチ空気調和装置の冷凍サイクル構成図である。
FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a configuration diagram of a refrigeration cycle of a multi-air conditioner.

【図2】 この発明の実施の形態の一例を示す図で、バ
イパス回路とアキュムレータとの接続方法を示す図であ
る。
FIG. 2 is a diagram illustrating an example of an embodiment of the present invention, and is a diagram illustrating a method of connecting a bypass circuit and an accumulator.

【図3】 この発明の実施の形態の一例を示す図で、空
気調和装置の暖房起動運転での高圧の立ち上がりを示す
図である。
FIG. 3 is a diagram illustrating an example of the embodiment of the present invention, and is a diagram illustrating a rise in high pressure in a heating start operation of the air-conditioning apparatus.

【図4】 この発明の実施の形態の一例を示す図で、マ
ルチ空気調和装置の冷凍サイクル構成図である。
FIG. 4 is a diagram illustrating an example of an embodiment of the present invention, and is a configuration diagram of a refrigeration cycle of a multi-air conditioner.

【図5】 この発明の実施の形態の一例を示す図で、マ
ルチ空気調和装置の冷凍サイクル構成図である。
FIG. 5 is a diagram illustrating an example of an embodiment of the present invention, and is a configuration diagram of a refrigeration cycle of a multi-air conditioner.

【図6】 この発明の実施の形態の他の例を示す図で、
バイパス回路とアキュムレータとの接続方法を示す図で
ある。
FIG. 6 is a diagram showing another example of the embodiment of the present invention;
FIG. 3 is a diagram illustrating a connection method between a bypass circuit and an accumulator.

【図7】 この発明の実施の形態の他の例を示す図で、
バイパス回路とアキュムレータとの接続方法を示す図で
ある。
FIG. 7 is a diagram showing another example of the embodiment of the present invention;
FIG. 3 is a diagram illustrating a connection method between a bypass circuit and an accumulator.

【図8】 この発明の実施の形態の他の例を示す図で、
マルチ空気調和装置の冷凍サイクル構成図である。
FIG. 8 is a diagram showing another example of the embodiment of the present invention;
It is a refrigeration cycle block diagram of a multi air conditioner.

【図9】 この発明の実施の形態の他の例を示す図で、
マルチ空気調和装置の冷凍サイクル構成図である。
FIG. 9 is a diagram showing another example of the embodiment of the present invention;
It is a refrigeration cycle block diagram of a multi air conditioner.

【図10】 この発明の実施の形態の他の例を示す図
で、バイパス回路とアキュムレータとの接続方法を示す
図である。
FIG. 10 is a diagram illustrating another example of the embodiment of the present invention, and is a diagram illustrating a method of connecting a bypass circuit and an accumulator.

【図11】 従来のマルチ空気調和装置の冷凍サイクル
構成図である。
FIG. 11 is a configuration diagram of a refrigeration cycle of a conventional multi-air conditioner.

【符号の説明】[Explanation of symbols]

1a,1b 室外機、2a,2b 圧縮機、3a,3b
四方弁、4a,4b室外熱交換器、5a,5b アキ
ュムレータ、6 共通のガス配管、7 室内機、8 室
内熱交換器、9 膨張弁、10 共通の液配管、11
室外機から出る液配管と共通の液配管との接続点、12
室外機から出るガス配管と共通のガス配管との接続
点、14 逆止弁、15 電磁弁、16 バイパス回
路、17流量調節弁、18 制御装置、19 バイパス
回路、20 電磁弁、21 熱交換器。
1a, 1b Outdoor unit, 2a, 2b Compressor, 3a, 3b
Four-way valve, 4a, 4b outdoor heat exchanger, 5a, 5b accumulator, 6 common gas pipe, 7 indoor unit, 8 indoor heat exchanger, 9 expansion valve, 10 common liquid pipe, 11
Connection point between the liquid pipe coming out of the outdoor unit and the common liquid pipe, 12
Connection point between the gas pipe exiting from the outdoor unit and the common gas pipe, 14 check valve, 15 solenoid valve, 16 bypass circuit, 17 flow control valve, 18 control device, 19 bypass circuit, 20 solenoid valve, 21 heat exchanger .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 嘉夫 東京都千代田区大手町二丁目6番2号 三菱電機エンジニアリング株式会社内 (72)発明者 河西 智彦 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 松岡 文雄 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平7−269974(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshio Ueno 2-6-2 Otemachi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Engineering Co., Ltd. (72) Tomohiko Kawanishi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Fumio Matsuoka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) References JP-A-7-269974 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 13/00

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、室外熱交換器、アキュムレータ
を有する複数の室外機と、 室内熱交換器、減圧装置を有する複数の室内機と、 前記室外機と前記室内機とを接続する共通のガス配管
と、 前記室外機と前記室内機とを接続する共通の液配管と、 暖房運転時に前記室内機の運転容量が小さい場合、運転
を停止し前記ガス配管と前記液配管との連通が遮断され
る前記室外機に設けられ、該室外機の前記アキュムレー
タ内の液冷媒を運転中の他の前記室外機の前記室外熱交
換器に供給するバイパス回路と、を備えたことを特徴と
するマルチ空気調和装置。
1. A plurality of outdoor units having a compressor, an outdoor heat exchanger, and an accumulator; a plurality of indoor units having an indoor heat exchanger and a decompression device; and a common connecting the outdoor unit and the indoor unit. A gas pipe, a common liquid pipe connecting the outdoor unit and the indoor unit, and, when the operation capacity of the indoor unit is small during a heating operation, the operation is stopped and the communication between the gas pipe and the liquid pipe is cut off. And a bypass circuit for supplying the liquid refrigerant in the accumulator of the outdoor unit to the outdoor heat exchanger of the other outdoor unit during operation. Air conditioner.
【請求項2】 前記バイパス回路を、運転を停止してい
る前記室外機の前記アキュムレータと運転中の他の前記
室外機の液配管との間に設けたことを特徴とする請求項
1記載のマルチ空気調和装置。
2. The outdoor unit according to claim 1, wherein the bypass circuit is provided between the accumulator of the outdoor unit whose operation is stopped and a liquid pipe of another outdoor unit which is operating. Multi air conditioner.
【請求項3】 前記バイパス回路を、運転を停止してい
る前記室外機の前記アキュムレータと前記共通の液配管
に連通する該室外機の液配管との間に設けたことを特徴
とする請求項1記載のマルチ空気調和装置。
3. The outdoor unit according to claim 1, wherein the bypass circuit is provided between the accumulator of the outdoor unit whose operation is stopped and a liquid pipe of the outdoor unit communicating with the common liquid pipe. 2. The multi-air conditioner according to 1.
【請求項4】 運転を停止している前記室外機の前記共
通のガス配管に連通する高圧側から該室外機の前記アキ
ュムレータへ高圧ガスを流す他のバイパス回路を備えた
ことを特徴とする請求項1記載のマルチ空気調和装置。
4. A bypass circuit for flowing high-pressure gas from a high-pressure side communicating with the common gas pipe of the outdoor unit whose operation is stopped to the accumulator of the outdoor unit. Item 8. The multi-air conditioner according to Item 1.
【請求項5】 前記バイパス回路の一端を運転停止中の
前記室外機の前記アキュムレータの底部に接続したこと
を特徴とする請求項1記載のマルチ空気調和装置。
5. The multi-air conditioner according to claim 1, wherein one end of the bypass circuit is connected to a bottom of the accumulator of the outdoor unit that is not operating.
【請求項6】 前記バイパス回路の一端を運転停止中の
前記室外機の前記アキュムレータの頂部もしくは側面部
から差し込み、前記アキュムレータの底部に達する構成
としたことを特徴とする請求項1記載のマルチ空気調和
装置。
6. The multi-air system according to claim 1, wherein one end of said bypass circuit is inserted from a top or a side of said accumulator of said outdoor unit during operation stop to reach a bottom of said accumulator. Harmony equipment.
【請求項7】 前記バイパス回路に設けられ、該バイパ
ス回路の冷媒の流量を調節する流量調節弁と、 この流量調節弁を制御する制御装置と、を備えたことを
特徴とする請求項1記載のマルチ空気調和装置。
7. The apparatus according to claim 1, further comprising: a flow control valve provided in the bypass circuit for controlling a flow rate of the refrigerant in the bypass circuit; and a control device for controlling the flow control valve. Multi air conditioner.
【請求項8】 前記制御装置は、暖房運転の起動と同時
に前記流量調節弁を開くように制御することを特徴とす
る請求項7記載のマルチ空気調和装置。
8. The multi-air conditioner according to claim 7, wherein the control device controls the flow control valve to be opened at the same time when the heating operation is started.
【請求項9】 前記制御装置は、暖房運転の起動後、一
定時間経過後に前記流量調節弁を開くように制御するこ
とを特徴とする請求項7記載のマルチ空気調和装置。
9. The multi-air conditioner according to claim 7, wherein the control device controls to open the flow control valve after a lapse of a predetermined time after the start of the heating operation.
【請求項10】 前記制御装置は、暖房運転の起動後、
当該空気調和装置の冷凍サイクルの低圧が一定値以下に
なった場合に前記流量調節弁を開くように制御すること
を特徴とする請求項7記載のマルチ空気調和装置。
10. The control device according to claim 1, wherein after the heating operation is started,
The multi-air conditioner according to claim 7, wherein the flow control valve is controlled to be opened when the low pressure of the refrigeration cycle of the air conditioner becomes equal to or lower than a predetermined value.
【請求項11】 前記制御装置は、前記流量調節弁の開
度を、運転中の他の前記室外機の前記室外熱交換器で液
冷媒が蒸発しきり、かつ該室外熱交換器で蒸発する液冷
媒が少なくならない適切な一定値に制御することを特徴
とする請求項8又は請求項9又は請求項10記載のマル
チ空気調和装置。
11. The controller according to claim 1, wherein the controller controls the opening degree of the flow control valve so that the liquid refrigerant completely evaporates in the outdoor heat exchanger of the other outdoor unit in operation and the liquid evaporates in the outdoor heat exchanger. 11. The multi-air conditioner according to claim 8, wherein the refrigerant is controlled to an appropriate constant value that does not decrease.
【請求項12】 前記制御装置は、前記流量調節弁の開
度を、運転中の他の前記室外機の前記室外熱交換器出口
の冷媒の過熱度が一定値になるよう制御することを特徴
とする請求項8又は請求項9又は請求項10記載のマル
チ空気調和装置。
12. The control device controls the opening degree of the flow control valve so that the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger of the other outdoor unit during operation becomes a constant value. The multi-air conditioner according to claim 8 or claim 9 or claim 10.
【請求項13】 前記制御装置は、前記流量調節弁を開
いた後、暖房運転立ち上げに必要な一定時間後に該流量
調節弁を閉じるように制御することを特徴とする請求項
8又は請求項9又は請求項10記載のマルチ空気調和装
置。
13. The control device according to claim 8, wherein, after opening the flow control valve, the control device controls the flow control valve to close after a certain period of time necessary for starting the heating operation. The multi-air conditioner according to claim 9 or 10.
【請求項14】 前記バイパス回路を、冷房運転時に冷
凍サイクルの高圧が過渡的に上昇した場合に、高圧液を
低圧側に戻して高圧の上昇を抑制する液バイパス回路と
して用いることを特徴とする請求項3記載のマルチ空気
調和装置。
14. The bypass circuit is used as a liquid bypass circuit that suppresses a rise in high pressure by returning high pressure fluid to a low pressure side when a high pressure in the refrigeration cycle rises transiently during cooling operation. The multi air conditioner according to claim 3.
【請求項15】 前記バイパス回路に、前記流量調節弁
により前記バイパスした液冷媒を絞った後の二相冷媒を
前記高圧液と熱交換させる熱交換器を設けたことを特徴
とする請求項14記載のマルチ空気調和装置。
15. A heat exchanger for exchanging heat with the high-pressure liquid of the two-phase refrigerant after restricting the bypassed liquid refrigerant by the flow control valve in the bypass circuit. The multi-air conditioner as described.
JP22787097A 1997-08-25 1997-08-25 Multi air conditioner Expired - Lifetime JP3263343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22787097A JP3263343B2 (en) 1997-08-25 1997-08-25 Multi air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22787097A JP3263343B2 (en) 1997-08-25 1997-08-25 Multi air conditioner

Publications (2)

Publication Number Publication Date
JPH1163711A JPH1163711A (en) 1999-03-05
JP3263343B2 true JP3263343B2 (en) 2002-03-04

Family

ID=16867650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22787097A Expired - Lifetime JP3263343B2 (en) 1997-08-25 1997-08-25 Multi air conditioner

Country Status (1)

Country Link
JP (1) JP3263343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220342A (en) * 2005-02-09 2006-08-24 Samsung Electronics Co Ltd Air conditioner
CN107024027A (en) * 2017-03-29 2017-08-08 广东美的暖通设备有限公司 The control method of air-conditioning system and air-conditioning system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688171B1 (en) * 2004-12-29 2007-03-02 엘지전자 주식회사 Multiple air conditioner and refrigerant withdrawing method
JP4120682B2 (en) 2006-02-20 2008-07-16 ダイキン工業株式会社 Air conditioner and heat source unit
JP5601890B2 (en) * 2010-06-08 2014-10-08 三菱電機株式会社 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220342A (en) * 2005-02-09 2006-08-24 Samsung Electronics Co Ltd Air conditioner
JP4575184B2 (en) * 2005-02-09 2010-11-04 三星電子株式会社 Air conditioner
CN107024027A (en) * 2017-03-29 2017-08-08 广东美的暖通设备有限公司 The control method of air-conditioning system and air-conditioning system
CN107024027B (en) * 2017-03-29 2019-10-01 广东美的暖通设备有限公司 The control method of air-conditioning system and air-conditioning system

Also Published As

Publication number Publication date
JPH1163711A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP4734161B2 (en) Refrigeration cycle apparatus and air conditioner
US8312731B2 (en) Refrigeration apparatus and method for controlling the same
US7257964B2 (en) Air conditioner
JP2000346472A (en) Supercritical steam compression cycle
JP2010127531A (en) Refrigeration air conditioner
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
JP3125778B2 (en) Air conditioner
KR101186331B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
JP3263343B2 (en) Multi air conditioner
JP2007127353A (en) Air-conditioner
JP7378561B2 (en) Outdoor unit and refrigeration cycle equipment
JP4320844B2 (en) Refrigeration equipment
JP2017116136A (en) Air conditioner
KR100526204B1 (en) A refrigerator
JP2009293887A (en) Refrigerating device
JPH102626A (en) Air conditioning device
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH08166183A (en) Air-conditioning equipment
JP4090238B2 (en) Air conditioner and outdoor heat exchanger switching control method of air conditioner
JP2004012112A (en) Air conditioner and its control method
US20060123839A1 (en) Air conditioner and method for controlling the same
JP7474911B1 (en) Refrigeration Cycle Equipment
JPH02118365A (en) Air conditioner
JPS63251760A (en) Refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term