JP2007280974A - 気相成長装置 - Google Patents
気相成長装置 Download PDFInfo
- Publication number
- JP2007280974A JP2007280974A JP2004205449A JP2004205449A JP2007280974A JP 2007280974 A JP2007280974 A JP 2007280974A JP 2004205449 A JP2004205449 A JP 2004205449A JP 2004205449 A JP2004205449 A JP 2004205449A JP 2007280974 A JP2007280974 A JP 2007280974A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- vapor phase
- heating
- phase growth
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
【課題】 ウェハの面内全域において良好な均一性を有する薄膜を気相成長させることができる気相成長装置を提供する。
【解決手段】 密閉可能な反応炉(1)と、該反応炉内に設置され所定の位置にウェハ(W)を載置する1または2以上の収容部(円形のポケット孔3a)を有するウェハ収容体(ウェハホルダ3)と、ウェハに向けて原料ガスを供給するためのガス供給手段(ガス導入管7)と、前記ウェハを加熱するための加熱手段(加熱ヒータ5)とを少なくとも備え、前記反応炉内において前記加熱手段により前記ウェハ収容体を介してウェハを加熱しつつ、高温状態で原料ガスを供給することにより、前記ウェハ表面に成長膜を形成する気相成長装置において、前記ウェハ収容体は、前記ウェハを収容部に載置した際に、ウェハ表面(10)がウェハ収容体の上面(3b)よりも上方に位置し、且つ、前記ウェハの周縁部の面取り加工により側部に形成された頂点(11)が、ウェハ収容体の上面(3b)より下方に位置するように構成した。
【選択図】 図3
【解決手段】 密閉可能な反応炉(1)と、該反応炉内に設置され所定の位置にウェハ(W)を載置する1または2以上の収容部(円形のポケット孔3a)を有するウェハ収容体(ウェハホルダ3)と、ウェハに向けて原料ガスを供給するためのガス供給手段(ガス導入管7)と、前記ウェハを加熱するための加熱手段(加熱ヒータ5)とを少なくとも備え、前記反応炉内において前記加熱手段により前記ウェハ収容体を介してウェハを加熱しつつ、高温状態で原料ガスを供給することにより、前記ウェハ表面に成長膜を形成する気相成長装置において、前記ウェハ収容体は、前記ウェハを収容部に載置した際に、ウェハ表面(10)がウェハ収容体の上面(3b)よりも上方に位置し、且つ、前記ウェハの周縁部の面取り加工により側部に形成された頂点(11)が、ウェハ収容体の上面(3b)より下方に位置するように構成した。
【選択図】 図3
Description
本発明は、ウェハを加熱しながら高温状態で原料ガスを供給することによりウェハ表面に化合物半導体等の薄膜を気相成長させるための気相成長装置に関する。
現在、気相成長法は産業界の様々な分野で利用されている。気相成長においてウェハ上に成長した薄膜の膜厚、組成およびドーピング濃度の面内全域の高均一化はいうまでもなく必須項目である。そして、面内全域の均一化の実現手段として、ウェハ加熱の均熱化は最も重要な要素技術とされている。
図1は、一般的な気相成長装置の構成例を示す断面図である。図1に示すように、気相成長装置100は、反応炉1と、ウェハWを配置するウェハホルダ3と、ウェハホルダ3を載置するサセプタ4と、サセプタ4の下側に設けられた加熱ヒータ5と、ウェハホルダ3およびサセプタ4を回転自在に支持する回転機構6と、原料ガスやキャリアガスを供給するガス導入管7と、未反応ガスを排気するガス排気管8等で構成される。
図2はウェハホルダ3の詳細な構成を示す拡大図であり、(a)は上面図で、(b)はA−A線に沿った断面図である。ウェハホルダ3は、その片面にウェハWを配置するための収容部としての円形のポケット孔3aを同一円周上に複数個(図2では6個)形成され、反対面でサセプタ4と接触するように構成されている。
なお、サセプタ4は加熱ヒータ5からの熱を均一に伝達するために熱伝導率の高い材質(例えばモリブデン等)で構成される。また、ウェハホルダ3にも熱伝導率の高いグラファイトやモリブデン等が用いられるのが一般的である。
このような構成を有する気相成長装置としては、縦型の有機金属気相成長装置に係る下記の特許文献1等が存在する。
このような構成を有する気相成長装置としては、縦型の有機金属気相成長装置に係る下記の特許文献1等が存在する。
また、ウェハ表面とウェハホルダとの位置関係を記述した下記の特許文献2等が存在し、当該文献2においてはシリコンエピタキシャル成長においてウェハ表面をウェハホルダ上面より低い位置で調整することが述べられている。
国際公開番号 WO 92/05577号公報
特開2003−12397号公報
上述のような構成を有する気相成長装置においては、加熱ヒータ5でサセプタ4の下側から加熱することによりサセプタ4、ウェハホルダ3を介してウェハWに熱を伝え、ウェハWを所定の温度まで上昇させる。また、サセプタ4を回転機構6により所定の回転数で回転させることにより、ガス導入管7より導入した原料ガスやキャリアガスをウェハW表面に均等に供給しながら薄膜の気相成長を行う。
しかしながら、実際にエピタキシャルウェハを成長する場合、例えば、半導体レーザーの層構造を有するエピタキシャルウェハを成長する場合に、該ウェハWに対して原料ガスが流れて供給される上流側の部分の発光波長が短波長側にシフトし、その結果、ウェハW全体での発光波長の分布が広くなるという問題があった。
つまり、従来の気相成長装置100ではウェハWは、その表面と凡そ一致する深さあるいは基板より深いウェハホルダ3に収容されるが、化合物半導体の場合、数種類の原料ガスの流れる速度・方向・通過する温度場が必ずしも均等でないために、ウェハWの面内での反応が均一とならず、そのためウェハWの面内全域において組成や膜厚などの均一性に優れた薄膜を再現性よく気相成長させるのは困難であることが明かとなった。
本発明は、上記問題点を解決するためになされたもので、ウェハ表面をウェハホルダ上面よりも上方に位置させ、その段差を所定の範囲に制御することにより、ウェハの面内全域において良好な均一性を有する薄膜を気相成長させることができる気相成長装置を提供することを目的とする。
上記目的を達成するため本発明に係る気相成長装置は、密閉可能な反応炉(1)と、該反応炉内に設置され所定の位置にウェハ(W)を載置する1または2以上の収容部(円形のポケット孔3a)を有するウェハ収容体(ウェハホルダ3)と、ウェハに向けて原料ガスを供給するためのガス供給手段(ガス導入管7)と、前記ウェハを加熱するための加熱手段(加熱ヒータ5)とを少なくとも備え、前記反応炉内において前記加熱手段により前記ウェハ収容体を介してウェハを加熱しつつ、高温状態で原料ガスを供給することにより、前記ウェハ表面に成長膜を形成する気相成長装置において、前記ウェハ収容体は、前記ウェハを収容部に載置した際に、ウェハ表面(10)がウェハ収容体の上面(3b)よりも上方に位置し、且つ、前記ウェハの周縁部の面取り加工により側部に形成された頂点(11)が、ウェハ収容体の上面(3b)より下方に位置するように構成した。
なお、前記収容部の内周面と、前記ウェハの側部に形成された頂点との隙間(L2)は、0.05〜0.4mmに選定されることが望ましい。また、さらに望ましくは0.05〜0.2mmに選定される。
なお、前記収容部の内周面と、前記ウェハの側部に形成された頂点との隙間(L2)は、0.05〜0.4mmに選定されることが望ましい。また、さらに望ましくは0.05〜0.2mmに選定される。
請求項1に係る発明によれば、所定のデバイスのための層構造を有するエピタキシャルウェハを成長する場合に、該ウェハに対して原料ガスが供給される上流側と下流側とでエピタキシャル膜の組成がシフトし、例えば半導体レーザーの場合には発光波長が変化するなどの影響を少なくすることができ、膜組成のウェハ面内均一性を改善することができる。具体的には、例えばエピタキシャル層のフォトルミネッセンス(PL)発光波長の面内分布を測定した場合、ウェハ表面がウェハ収容体の上面以下の場合にPL発光波長の標準偏差2nm以上であったものが、本発明によれば標準偏差を2nm未満とすることができた。
請求項2または請求項3に係る発明によれば、同じくPL発光波長の標準偏差を1.40nm程度とより均一性を向上させることができた。
請求項2または請求項3に係る発明によれば、同じくPL発光波長の標準偏差を1.40nm程度とより均一性を向上させることができた。
以下、本発明にかかる気相成長装置(MOCVD装置)の実施形態について図面を参照しながら説明する。
図1は、本実施形態の気相成長装置の概略構成を示す断面図である。図2は、ウェハホルダの構成を示す拡大図であり、(a)は上面図、(b)はA−A線に沿った断面図、図3はウェハホルダの収容部にウェハを載置した状態を示す一部拡大断面図である。
本実施形態に係る気相成長装置の概略構成は背景技術で示した気相成長装置と略同じであるが、ウェハホルダ3の収容部の形態(寸法)が従来とは異なる(詳細については後述する)。
図1は、本実施形態の気相成長装置の概略構成を示す断面図である。図2は、ウェハホルダの構成を示す拡大図であり、(a)は上面図、(b)はA−A線に沿った断面図、図3はウェハホルダの収容部にウェハを載置した状態を示す一部拡大断面図である。
本実施形態に係る気相成長装置の概略構成は背景技術で示した気相成長装置と略同じであるが、ウェハホルダ3の収容部の形態(寸法)が従来とは異なる(詳細については後述する)。
図1に示すように、気相成長装置100は、反応炉1と、ウェハWを配置するウェハホルダ3と、ウェハホルダ3を載置するサセプタ4と、サセプタ4の下側に設けられた加熱ヒータ5と、ウェハホルダ3およびサセプタ4を回転自在に支持する回転機構6と、原料ガスやキャリアガスを供給するガス導入管7と、未反応ガスを排気するガス排気管8等で構成される。
この気相成長装置100の各壁体は例えばステンレスで構成される。また、ガス導入管7は上側壁体中央部に設置され、例えば、トリメチルインジウム(TMI)、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMG)等の第13(3B)族原料ガスと、アルシン(AsH3)、ホスフィン(PH3)等の第15(5B)族原料ガスと、キャリアガスとしての水素(H2)等の不活性ガスと、を反応炉内に導入する。
ウェハホルダ3は、円盤状に成型されたα−カーボン(アモルファスカーボン)等からなり、サセプタ4上に載置されている。また、ウェハホルダ3は、その片面にウェハWを配置するための収容部としての円形のポケット孔3aが同一円周上に複数個(図2では6個)形成されている。サセプタ4は、加熱ヒータ5からの熱を均等に伝達するために熱伝導率の高い材質(例えばモリブデン等)で構成され、回転機構6により回転可能に支持されている。また、サセプタ4の下側にはウェハWを加熱するための加熱ヒータ5が同心円状に配設されている。
ガス排気管8は、反応炉1の底面に設置される。ガス導入管7を介して導入口より反応炉1内に導入された原料ガスは、反応炉の上流側で分解され下流側に流れてウェハW上にAlGaAs,InGaAs,InGaAsP等の薄膜を形成し、未反応の原料ガスはキャリアガスと共に排気口を介してガス排気管8から外部へ排出される。
また、図には示さないが、例えば回転機構6の外周および反応炉の下側壁面外壁には水冷ジャケットが設けられ、これらの水冷ジャケットおよび加熱ヒータ5で反応炉1内の温度を制御するようになっている。
ここで、図3を参照して、ウェハホルダ3のポケット孔3aと、当該ポケット孔3aに収容されるウェハWとの関係について説明する。
ウェハWとしては、InP、Si、GaAs、GaN、サファイア、ガラス、セラミック等のウェハが用いられ、ウェハWの周縁部には面取り加工により断面形状が尖った頂点11を有するように形成されている。
そして、図3に示すように、ウェハホルダ3のポケット孔3aは、前記ウェハWを載置した際に、ウェハ表面10がウェハホルダ3の上面3bよりも上方に位置し、且つ、ウェハWの側部に形成された頂点11が、ウェハホルダ3の上面3bより下方に位置するように構成されている。
ウェハWとしては、InP、Si、GaAs、GaN、サファイア、ガラス、セラミック等のウェハが用いられ、ウェハWの周縁部には面取り加工により断面形状が尖った頂点11を有するように形成されている。
そして、図3に示すように、ウェハホルダ3のポケット孔3aは、前記ウェハWを載置した際に、ウェハ表面10がウェハホルダ3の上面3bよりも上方に位置し、且つ、ウェハWの側部に形成された頂点11が、ウェハホルダ3の上面3bより下方に位置するように構成されている。
上述した構成の気相成長装置100において、ウェハWの表面10に成長膜を形成する場合には、加熱ヒータ5によりサセプタ4の下側から加熱することによりサセプタ4、ウェハホルダ3を介してウェハWに熱を伝え、ウェハWを所定の温度まで上昇させる。また、サセプタ4を回転機構6により所定の回転数で回転させながらガス導入管7より導入した原料ガスやキャリアガスをウェハW表面に均等に供給して薄膜を気相成長させる。
このとき、ウェハW表面とウェハホルダ3表面の温度は略同じとなるので、ウェハWの面内温度分布は均一となり、均一性に優れた薄膜を気相成長させることができる。
このとき、ウェハW表面とウェハホルダ3表面の温度は略同じとなるので、ウェハWの面内温度分布は均一となり、均一性に優れた薄膜を気相成長させることができる。
以下に、表1を参照して、本発明者等が上記気相成長装置100によりウェハW表面に半導体薄膜を成長させる実験を行った実施例1〜4と、比較例A,Bを示す。
なお、ここで、ウェハ表面10とウェハホルダ3の上面3bとの段差をL1、
ウェハWの側部に形成された頂点11とポケット孔3aの内壁との隙間をL2とする。
なお、ここで、ウェハ表面10とウェハホルダ3の上面3bとの段差をL1、
ウェハWの側部に形成された頂点11とポケット孔3aの内壁との隙間をL2とする。
実施例1では、段差L1=100μm,隙間L2=0.4mmとし、PL発光波長の面内分布を測定したところ、PL発光波長の標準偏差は、1.27nmと最も良好であった。
実施例2では、段差L1=40μm,隙間L2=0.4mmとしたところ、同じく標準偏差は、1.43nmであった。
実施例3では、段差L1=0(即ち、ウェハWの表面と、ウェハホルダ3の上面3bとが同じ高さに位置する),隙間L2=0.4mmとしたところ、同じく標準偏差は、1.71nmであった。
実施例4では、段差L1=0,隙間L2=0.2mmとしたところ、同じく標準偏差は、1.40nmと良好の結果を得た。
但し、ウェハWをポケット孔3aから着脱させる際の作業性を考慮して、ウェハWの側部に形成された頂点11とポケット孔3aの内壁との隙間L2は、0.05mm以上を保持する必要があると考えられる。
実施例2では、段差L1=40μm,隙間L2=0.4mmとしたところ、同じく標準偏差は、1.43nmであった。
実施例3では、段差L1=0(即ち、ウェハWの表面と、ウェハホルダ3の上面3bとが同じ高さに位置する),隙間L2=0.4mmとしたところ、同じく標準偏差は、1.71nmであった。
実施例4では、段差L1=0,隙間L2=0.2mmとしたところ、同じく標準偏差は、1.40nmと良好の結果を得た。
但し、ウェハWをポケット孔3aから着脱させる際の作業性を考慮して、ウェハWの側部に形成された頂点11とポケット孔3aの内壁との隙間L2は、0.05mm以上を保持する必要があると考えられる。
一方、比較例Aでは、段差L1=−80μm(即ち、ウェハWの表面は、ウェハホルダ3の上面3bよりも80μm低い位置にある場合),隙間L2=0.4mmとしたところ、PL発光波長の標準偏差は、2.15nmであった。
また、比較例Bでは、段差L1=140μm(即ち、ウェハWの側部に形成された頂点11が、ウェハホルダ3の上面3bより上方に位置する場合),隙間L2=0.4mmとしたところ、実験途中でウェハは破損してしまった。
このように、ウェハWの側面の頂点11の位置がウェハホルダ3の上面より上方にある場合には、ウェハWの破損を生じることが判明した。
また、比較例Bでは、段差L1=140μm(即ち、ウェハWの側部に形成された頂点11が、ウェハホルダ3の上面3bより上方に位置する場合),隙間L2=0.4mmとしたところ、実験途中でウェハは破損してしまった。
このように、ウェハWの側面の頂点11の位置がウェハホルダ3の上面より上方にある場合には、ウェハWの破損を生じることが判明した。
以上の実験結果から分かるように、ウェハホルダ3のポケット孔3aについて、ウェハWを載置した際に、ウェハ表面10がウェハホルダ3の上面3bよりも上方に位置し、且つ、ウェハWの側部に形成された頂点11が、ウェハホルダ3の上面3bより下方に位置するという本発明の条件に従う場合には、PL発光波長の標準偏差を2nm未満とすることができ、ウェハ面内の均一性を向上させることができることが確認された。
これは、ウェハ周縁部の表面温度について、ウェハ収容体の表面温度から受ける影響を少なくすることができるためであると考えられる。
これは、ウェハ周縁部の表面温度について、ウェハ収容体の表面温度から受ける影響を少なくすることができるためであると考えられる。
また、ポケット孔3aの内周面と、ウェハWの側部に形成された頂点11との隙間L2については0.05mm未満ではウェハ及びウェハ収容体の寸法精度により着脱が困難となることがあり、また0.4mmを越える場合はウェハが原料ガス等の流れにより保持が困難となって実験途中で破損することがあり得る。従ってL2の範囲は0.05〜0.4mmであることが好ましく、その隙間L2をなるべく小さい0.05〜0.2mmに選定した場合に、均一性のさらなる向上が期待できる。
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって開示された技術に限定されるものではないと考えるべきである。
100 気相成長装置
1 反応炉
3 ウェハホルダ(ウェハ収容体)
3a 円形のポケット孔
4 サセプタ
5 加熱ヒータ
6 回転機構
7 ガス導入管
8 ガス排気管
W ウェハ
10 ウェハ表面
11 ウェハの側部に形成された頂点
L1 段差
L2 隙間
1 反応炉
3 ウェハホルダ(ウェハ収容体)
3a 円形のポケット孔
4 サセプタ
5 加熱ヒータ
6 回転機構
7 ガス導入管
8 ガス排気管
W ウェハ
10 ウェハ表面
11 ウェハの側部に形成された頂点
L1 段差
L2 隙間
Claims (3)
- 密閉可能な反応炉と、該反応炉内に設置され所定の位置にウェハを載置する1または2以上の収容部を有するウェハ収容体と、ウェハに向けて原料ガスを供給するためのガス供給手段と、前記ウェハを加熱するための加熱手段と、を少なくとも備え、
前記反応炉内において前記加熱手段により前記ウェハ収容体を介してウェハを加熱しつつ、高温状態で原料ガスを供給することにより、前記ウェハ表面に成長膜を形成する気相成長装置において、
前記ウェハ収容体は、
前記ウェハを収容部に載置した際に、ウェハ表面がウェハ収容体の上面よりも上方に位置し、且つ、
前記ウェハの周縁部の面取り加工により側部に形成された頂点が、ウェハ収容体の上面より下方に位置するように構成されていることを特徴とする気相成長装置。 - 前記収容部の内周面と、前記ウェハの側部に形成された頂点との隙間は、0.05〜0.4mmに選定されることを特徴とする請求項1に記載の気相成長装置。
- 前記収容部の内周面と、前記ウェハの側部に形成された頂点との隙間が、0.05〜0.2mmに選定されることを特徴とする請求項1に記載の気相成長装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004205449A JP2007280974A (ja) | 2004-07-13 | 2004-07-13 | 気相成長装置 |
PCT/JP2005/012813 WO2006006584A1 (ja) | 2004-07-13 | 2005-07-12 | 気相成長装置 |
TW094123570A TW200607882A (en) | 2004-07-13 | 2005-07-12 | Vapor phase growing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004205449A JP2007280974A (ja) | 2004-07-13 | 2004-07-13 | 気相成長装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007280974A true JP2007280974A (ja) | 2007-10-25 |
Family
ID=35783925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004205449A Pending JP2007280974A (ja) | 2004-07-13 | 2004-07-13 | 気相成長装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2007280974A (ja) |
TW (1) | TW200607882A (ja) |
WO (1) | WO2006006584A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9716010B2 (en) | 2013-11-12 | 2017-07-25 | Globalfoundries Inc. | Handle wafer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0529230A (ja) * | 1991-07-22 | 1993-02-05 | Toshiba Corp | 気相成長装置 |
JPH07266011A (ja) * | 1994-03-25 | 1995-10-17 | Nippon Steel Corp | 鋼の連続鋳造方法 |
JP3534866B2 (ja) * | 1995-01-06 | 2004-06-07 | 東芝機械株式会社 | 気相成長方法 |
-
2004
- 2004-07-13 JP JP2004205449A patent/JP2007280974A/ja active Pending
-
2005
- 2005-07-12 TW TW094123570A patent/TW200607882A/zh unknown
- 2005-07-12 WO PCT/JP2005/012813 patent/WO2006006584A1/ja active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9716010B2 (en) | 2013-11-12 | 2017-07-25 | Globalfoundries Inc. | Handle wafer |
Also Published As
Publication number | Publication date |
---|---|
TW200607882A (en) | 2006-03-01 |
WO2006006584A1 (ja) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4647595B2 (ja) | 気相成長装置 | |
US9038565B2 (en) | Abatement of reaction gases from gallium nitride deposition | |
JP5001516B2 (ja) | Mocvd反応炉用サセプタ | |
US8545628B2 (en) | Temperature-controlled purge gate valve for chemical vapor deposition chamber | |
US20040175939A1 (en) | Susceptor apparatus for inverted type MOCVD reactor | |
JP5042966B2 (ja) | トレイ、気相成長装置及び気相成長方法 | |
US20080276860A1 (en) | Cross flow apparatus and method for hydride vapor phase deposition | |
JP2005223243A (ja) | Iii族窒化物系半導体結晶の製造方法及びハイドライド気相成長装置 | |
JP3882141B2 (ja) | 気相成長装置および気相成長方法 | |
JP2007273660A (ja) | 気相成長装置 | |
JP3772621B2 (ja) | 気相成長方法および気相成長装置 | |
JP2007280974A (ja) | 気相成長装置 | |
JP2008294217A (ja) | 気相成長装置及び気相成長方法 | |
JP4216541B2 (ja) | 気相成長装置 | |
JP2004207545A (ja) | 半導体気相成長装置 | |
JP2013206978A (ja) | 気相成長装置および気相成長方法 | |
JP2012174731A (ja) | 気相成長方法、及び気相成長方法により形成された化合物半導体膜 | |
JP2005228757A (ja) | 気相成長装置及び気相成長方法 | |
JP2020001950A (ja) | 気相成長装置 | |
US20120085285A1 (en) | Semiconductor growth apparatus | |
JP2004253413A (ja) | 化合物半導体気相成長装置 | |
JP2004103713A (ja) | 半導体製造装置 | |
JP2017092311A (ja) | 結晶成長装置 | |
JP2014135342A (ja) | 有機金属気相成長装置及びエピタキシャルウェハの製造方法 | |
JP2005353864A (ja) | 化学気相成長装置 |