JP2007274032A - 光受信器 - Google Patents

光受信器 Download PDF

Info

Publication number
JP2007274032A
JP2007274032A JP2006093516A JP2006093516A JP2007274032A JP 2007274032 A JP2007274032 A JP 2007274032A JP 2006093516 A JP2006093516 A JP 2006093516A JP 2006093516 A JP2006093516 A JP 2006093516A JP 2007274032 A JP2007274032 A JP 2007274032A
Authority
JP
Japan
Prior art keywords
circuit
signal
optical receiver
photocurrent
averaging circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006093516A
Other languages
English (en)
Inventor
Katsumi Kamisaka
勝己 上坂
Mitsuaki Nishie
光昭 西江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006093516A priority Critical patent/JP2007274032A/ja
Publication of JP2007274032A publication Critical patent/JP2007274032A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

【課題】幅広い信号光強度に亘ってデータを正確に受信でき、且つ回路規模を小型化できる光受信器を提供する。
【解決手段】光受信器1は、TIA回路2、差動出力回路3、平均化回路4、及びフォトダイオード11を備える。TIA回路2は、フォトダイオード11からの光電流Iを、電圧信号である受信信号Sに変換する。平均化回路4は、受信信号Sの平均値を参照電圧Vrefとして差動出力回路3へ提供する。差動出力回路3は、TIA回路2からの受信信号S、及び平均化回路4からの参照電圧Vrefに基づいて差動信号Sin+,Sin−を生成する。TIA回路2は、TIA回路2の変換利得を光電流Iの大きさに応じて受動的に変化させる利得可変手段(FET23)を有する。平均化回路4の時定数は、電気的な制御信号Scに従って可変となっている。
【選択図】図2

Description

本発明は、光通信において信号光を受信する光受信器に関するものである。
近年、光ファイバによる家庭向けのデータ通信サービス(FTTH:Fiber To The Home)の分野において、GPON(Gigabit passive optical network)と呼ばれるシステムが注目されている。このGPONシステムにおいては、局側から敷設された1本の光ファイバをカプラにより複数の端末へ分岐する。このGPONシステムは、局と端末とを一対一で接続する場合と比較して、端末を容易に追加できる等の利点を有する。
このGPONシステムにおいては、各端末から局への信号は時分割多重(TDMA:Time Division Multiple Access)方式によって送られる。しかし、各端末と局との間の伝送距離は各端末毎に異なるため、局側の受信器において受信される信号光の強度は、各端末からのパケット毎に大きく異なる(バーストモード)。従って、局側の受信器には、幅広い信号光強度に亘ってデータを正確に受信できる性能が望まれる。
局側の受信器においてこのような性能を実現するため、例えば特許文献1に開示された光受信システム、または特許文献2に開示された光受信装置では、電流電圧変換時の利得をパケット毎に能動的に切り替えている。また、特許文献3に開示された回路は、電流電圧変換のための前置増幅回路の後段に直流変動除去回路を備える。そして、直流変動除去回路においては、受信信号のピーク値及びボトム値の中間値を差動増幅時の参照レベルとすることにより、受信信号に含まれる直流レベル変動分を除去しようとしている。
特許第3456574号公報 特開2004−260396号公報 特許第3674753号公報
しかしながら、電流電圧変換時の利得をパケット毎に能動的に切り替える方式(特許文献1,2)では、変換後の受信信号の大きさに応じて複数の帰還抵抗の中から最適なものを選択するための選択回路(複数の比較器及び複数の閾値など)が必要となり、回路規模が大型化してしまう。また、ピーク値及びボトム値の中間値を差動増幅時の参照レベルとする方式(特許文献3)では、ピーク検出回路及びボトム検出回路といった2つの回路が必要であり、且つ、これらの回路同士の時定数や温度特性などのバランスも考慮する必要がある。従って、この方式でも回路規模が大型化してしまう。
本発明は、上記課題を鑑みてなされたものであり、幅広い信号光強度に亘ってデータを正確に受信でき、且つ回路規模を小型化できる光受信器を提供することを目的とする。
上記課題を解決するため、本発明の光受信器は、受信した信号光に対応する光電流を生成する受光素子と、光電流を、電圧信号である受信信号に変換する電流電圧変換回路と、受信信号を平均化して参照電圧を生成する平均化回路と、電流電圧変換回路からの受信信号、及び平均化回路からの参照電圧に基づいて差動信号を生成する差動出力回路とを備え、電流電圧変換回路が、光電流を受信信号に変換する際の変換利得を光電流の大きさに応じて受動的に変化させる利得可変手段を有し、平均化回路の時定数を、電気的な制御信号により変更できることを特徴とする。
上記した光受信器においては、電流電圧変換回路が利得可変手段を有する。利得可変手段は、電流電圧変換回路の変換利得を光電流の大きさに応じて受動的に変化させる。これにより、信号光強度に応じて変換利得を素早く変化させ得るとともに、変換後の受信信号の大きさに応じて変換利得を能動的に切り換える方式(例えば特許文献1,2)と比較して、複数の比較器といった利得選択のための回路が不要となり、回路規模を小型化できる。
また、電流電圧変換回路において受動的に変換利得を変化させると、光電流が大きいほど(すなわち、信号光強度が大きいほど)変換後の受信信号の波形が歪み、受信信号のパルス幅が実際よりも短くなる傾向がある。この問題に対処するため、上記した光受信器においては、平均化回路からの参照電圧(すなわち受信信号の平均レベル)に基づいて、差動出力回路が差動信号を生成している。受信信号のパルス幅が短くなると、受信信号の平均レベルも下がる。また、受信信号に含まれるパルス波形は一般的に台形状となっており、差動出力回路に入力される参照電圧値が下がるほど、差動信号のパルス幅が長くなる。このように、上記した光受信器によれば、受信信号の歪みを補償するように差動出力回路の参照電圧が変化するので、各パケット毎に信号光強度が大きく異なる場合においてもデータを正確に受信できる。
また、受信信号を平均化して差動出力回路の参照電圧とする場合、平均化に係る時定数が問題となる。すなわち、各パケットの開始後においては、当該パケット内の連続ビット信号(同値のビットが連続するような信号)によって参照電圧が容易に変動しないように、平均化回路の時定数は大きいことが好ましい。逆に、各パケットの終了後においては、信号光強度が異なる後続のパケットの参照電圧への影響を抑えるために、平均化回路の時定数は小さいことが好ましい。上記した光受信器においては、平均化回路の時定数を、電気的な制御信号により変更できる構成を採用している。これにより、各パケットの開始や終了などに応じて平均化回路の時定数を可変にできるので、各パケット毎に信号光強度が異なる場合でも、データを正確に受信できる。
また、光受信器は、電流電圧変換回路が、変換利得に寄与する帰還抵抗を有し、利得可変手段が、所定電位にバイアスされたゲートを有する電界効果トランジスタを含むことを特徴としてもよい。信号光強度が大きくなると、帰還抵抗を流れる光電流が増大し、帰還抵抗における電圧降下量が大きくなる。このとき、電界効果トランジスタにおけるゲート−ソース間の電位差が大きくなるので、ソース−ドレイン間の等価抵抗値が低下する。その結果、電流電圧変換回路のトランスインピーダンスが低下し、変換利得が低下することとなる。このように、電流電圧変換回路の変換利得を光電流の大きさに応じて受動的に変化させる構成(利得可変手段)を実現できる。
また、光受信器は、電流電圧変換回路が、変換利得に寄与する帰還抵抗を有し、利得可変手段が、帰還抵抗と並列に接続されたダイオードを含むことを特徴としてもよい。上述したように、信号光強度が大きくなると、帰還抵抗における電圧降下量が大きくなる。帰還抵抗における電圧降下量が或る値を超えると、ダイオードが導通してトランスインピーダンスが低下し、変換利得が低下する。従って、電流電圧変換回路の変換利得を光電流の大きさに応じて受動的に変化させる構成(利得可変手段)を実現できる。
また、光受信器は、平均化回路が、抵抗素子及び容量素子を有し、抵抗素子の抵抗値を制御信号に従って変更できることを特徴としてもよい。
また、光受信器は、信号光がパケット信号であり、制御信号が、各パケットに同期して平均化回路の時定数を変化させることを特徴としてもよい。この場合、制御信号が、各パケットの開始時に平均化回路の時定数を大きくし、各パケットの終了時に平均化回路の時定数を小さくすることが好ましい。各パケットの開始後においては、当該パケット内の連続ビット信号によって参照電圧が容易に変動しないように、平均化回路の時定数は大きいことが好ましい。逆に、各パケットの終了後においては、信号光強度が異なる後続のパケットの参照電圧への影響を抑えるために、平均化回路の時定数は小さいことが好ましい。この光受信器によれば、このような時定数の制御を好適に行うことができる。
本発明によれば、幅広い信号光強度に亘ってデータを正確に受信でき、且つ回路規模を小型化できる光受信器を提供できる。
以下、図面を参照しつつ本発明に係る光受信器の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本発明の好適な一実施形態である光受信器を備える光モジュールの構成を示す図である。同図に示す光モジュール10は、入力された信号光Pinに対応する電気的な受信信号DATA+,DATA−を外部に提供するための光通信装置である。光モジュール10は、光受信器1及び信号処理部16を備える。光受信器1は、信号光Pinに基づいて差動信号Sin+,Sin−を生成する。光受信器1は、差動信号Sin+及びSin−を信号処理部16へ提供するためのリード端子13及び14を備える。信号処理部16は、光受信器1からの差動信号Sin+,Sin−を増幅・成形して受信信号DATA+,DATA−を生成する。本実施形態の信号処理部16は、更に、差動信号Sin+,Sin−に基づいて制御信号Sc(後述)を生成する制御回路としての機能を有する。光受信器1は、信号処理部16から制御信号Scを受けるためのリード端子15を備える。
図2は、光受信器1の内部構成例を示す回路図である。光受信器1は、例えばROSA(Receiver Optical Sub Assembly)といった小型のパッケージ構成を有する。光受信器1は、フォトダイオード11、トランスインピーダンスアンプ(以下TIAという)回路2、差動出力回路3、及び平均化回路4を備える。フォトダイオード11は、信号光Pinに対応した光電流Iを生成する受光素子であり、PINフォトダイオードやアバランシェフォトダイオード等が好適に用いられる。なお、フォトダイオード11のカソードは電源電位線12に接続されており、フォトダイオード11には逆バイアス電圧が印加されている。
TIA回路2は、フォトダイオード11のアノードから光電流Iを受け、この光電流Iを電圧信号である受信信号Sに変換するための電流電圧変換回路である。TIA回路2は、反転増幅器21と、帰還抵抗である抵抗素子22と、電界効果トランジスタ(以下、FETという)23と、定電圧源24とを有する。増幅器21は、TIA回路2の入力端2aに電気的に接続された入力端21aと、TIA回路2の出力端2bに電気的に接続された出力端21bとを有する。なお、TIA回路2の入力端2aはフォトダイオード11のアノードと電気的に接続され、TIA回路2の出力端2bは差動出力回路3及び平均化回路4と電気的に接続される。また、抵抗素子22は、その一端及び他端のそれぞれが増幅器21の入力端21a及び出力端21bそれぞれと電気的に接続されており、光電流Iを受信信号Sに変換する際の変換利得に寄与する。
FET23は、NチャネルのFET(例えば、MOSFET)である。FET23のゲート端子は、定電圧源24と電気的に接続されており、所定電位のバイアス電圧Vgを受ける。FET23のソース端子は、抵抗素子22の一端と電気的に接続(すなわち、増幅器21の入力端21aと電気的に接続)されている。FET23のドレイン端子は、抵抗素子22の他端と電気的に接続(すなわち、増幅器21の出力端21bと電気的に接続)されている。
抵抗素子22及びFET23は、増幅器21の入力端21aと出力端21bとの間に接続された抵抗成分を構成しており、TIA回路2におけるトランスインピーダンスを規定している。また、FET23は、本実施形態において利得可変手段を構成している。すなわち、FET23は、光電流Iを受信信号Sに変換する際の変換利得を、フォトダイオード11からの光電流Iの大きさに応じて受動的に変化させる。FET23の具体的な作用は次のとおりである。信号光Pinの強度が大きくなると、フォトダイオード11からの光電流Iが大きくなり、この光電流Iが流れる抵抗素子22の電圧降下量も増大する。このとき、FET23におけるゲート−ソース間の電位差が大きくなるので、ソース−ドレイン間の抵抗値(等価抵抗値)が低下する。その結果、増幅器21の入力端21aと出力端21bとの間のトランスインピーダンスが低下することとなり、TIA回路2における変換利得が低下する。これによって、信号光Pinの強度が大きい場合のTIA回路2の飽和を避けることができる。
ここで、図3は、TIA回路2における変換利得と光電流Iの大きさとの相関を概念的に示すグラフである。図3に示すように、光電流Iの大きさが或る値Iを超えると、FET23におけるソース−ドレイン間の抵抗値が低下し、変換利得が低下する。この低下幅は、光電流が大きいほど顕著となる。他方、光電流の大きさが或る値Iを超えなければ、変換利得は殆ど変化しない。この要因は、主に、(1)FET23のソース−ドレイン間の抵抗値がゲート−ソース間の電位差に対して非線形に変化すること(本実施形態ではソース−ドレイン間の電位差も光電流Iの大きさに応じて変動する)、及び(2)FET23のソース及びドレインは抵抗素子22と並列に接続されているため、光電流Iが小さい場合にはFET23のソース−ドレイン間の抵抗値が相対的にほぼ無限大とみなせること、の2点である。従って、光電流Iが小さい場合には、TIA回路2のトランスインピーダンスは抵抗素子22の抵抗値によってほぼ決定される。
再び図2を参照する。差動出力回路3は、TIA2からの受信信号Sを差動信号Sin+(正相),Sin−(逆相)に変換するための回路である。差動出力回路3は、差動入力端子3a及び3bと、差動出力端子3c及び3dとを有する。差動入力端子3aは、TIA回路2の出力端2bを介して増幅器21の出力端21bと電気的に接続されている。差動入力端子3bは、平均化回路4と電気的に接続されている。差動出力端子3c及び3dは、それぞれ光受信器1のリード端子13及び14と電気的に接続されている。差動出力回路3は、平均化回路4から出力された参照電圧Vrefと、TIA回路2からの受信信号Sとに基づいて、差動信号Sin+,Sin−を生成する。
平均化回路4は、TIA回路2から出力された受信信号Sを平均化して参照電圧Vrefを生成し、この参照電圧Vrefを差動出力回路3へ提供するための回路である。平均化回路4は、TIA回路2の出力端2bに電気的に接続された入力端4aと、差動出力回路3の差動入力端子3bに電気的に接続された出力端4bとを有する。また、本実施形態の平均化回路4は、その平均化に係る時定数が、電気的な制御信号Scに応じて可変となっている。平均化回路4は、リード端子15と電気的に接続された入力端4cを更に有しており、光受信器1の外部(信号処理部16:図1参照)からリード端子15を介して制御信号Scを受ける。平均化回路4は、例えば抵抗素子及び容量素子により構成されたローパスフィルタ(積分器)によって構成されることができる。そして、その抵抗成分の大きさを制御信号Scに従って可変とする等により、時定数を好適に変更できる。
続いて、光受信器1の動作について説明するとともに、光受信器1が有する効果について述べる。光受信器1に信号光Pinが入力されると、信号光Pinに応じた大きさの光電流Iがフォトダイオード11によって生成される。この光電流Iは、TIA回路2へ提供され、TIA回路2において電圧信号である受信信号Sに変換される。
ここで、図4(a)は、信号光Pinに含まれるバースト信号の一例を示す図である。なお、光受信器1に入力される信号光Pinは、バースト信号に限られるものではない。バースト信号には、時分割された複数のパケットPaが断続的に含まれている。複数のパケットPaは、それぞれ異なる端末(加入者)から送信された信号列であり、各パケットPaの信号光強度は端末からの伝送距離によって大きく異なっている。なお、例えばITU−T/G.984規格により光モジュール10に要求されるパケットPaの信号光強度の許容幅(入力ダイナミックレンジ)Raは、21デシベル以上である。各パケット信号Paには、パケットが開始したことを光モジュール10に知らせるプリアンブル信号(例えば1010・・・)Spと、データ開始位置を知らせるデリミタ信号(例えばB5983h)Sdと、受信対象となるデータであるペイロードDとが含まれている。
本実施形態の光受信器1は、このように大きく変動する信号光強度に対応してTIA回路2の変換利得を受動的に変化させるために、FET23といった利得可変手段を備えている。すなわち、入力したパケットPaの信号光強度が大きく、光電流Iの大きさが図3に示す値Iよりも大きい場合には、その大きさに応じてTIA回路2の変換利得が低下する。逆に、入力したパケットPaの信号光強度が小さく、光電流Iの大きさが図3に示す値Iよりも小さい場合には、TIA回路2の変換利得は低下しない。これによって、光電流Iは飽和することなく受信信号Sに変換される。
TIA回路2から出力された受信信号Sは、差動出力回路3の差動入力端3aへ提供されるとともに、平均化回路4へ提供される。このうち、平均化回路4へ提供された受信信号Sは、平均化され、参照電圧Vrefとして差動出力回路3の差動入力端3bへ提供される。そして、差動出力回路3において、受信信号Sと参照電圧Vrefとの差に基づいて差動信号Sin+及びSin−が生成される。差動信号Sin+及びSin−は、それぞれリード端子13及び14を介して光受信器1の外部(図1に示す信号処理部16等)へ提供される。
ここで、図5(a)及び(b)は、信号光Pinの強度が小さい(すなわち光電流Iが小さい)場合(図5(a))、及び信号光Pinの強度が大きい(すなわち光電流Iが大きい)場合(図5(b))のそれぞれにおける、受信信号Sの波形及び受信信号Sの平均レベル(参照電圧Vref)を示す図である。受信信号Sに含まれるパルス波形は、一般的に、同図に示されるような台形状となる。また、差動出力回路3においては、受信信号Sに含まれるパルス波形のうち参照電圧Vrefを超える部分の幅に基づいて、差動信号Sin+及びSin−のパルス幅tpが定まる。
信号光Pinの強度が小さい場合と比較して、信号光Pinの強度が大きい場合には、TIA回路2における変換利得が光電流Iの大きさに応じて低下する。従って、信号光Pinの強度が大きい場合、図5(b)に示すように、受信信号Sのパルス波形が歪んでしまい、パルス幅が狭くなる。しかしながら、本実施形態の差動出力回路3においては、受信信号Sの平均値を参照電圧Vrefとしているので、受信信号Sのパルス幅が狭くなると同時に参照電圧Vrefの値も低下する。これにより、信号光Pinの強度変化による差動信号Sin+及びSin−のパルス幅tpの変動(すなわちデューティ比の変動)を緩和できる。なお、信号光Pinの強度が小さい場合(図5(a))には、受信信号Sのパルス波形の歪みが殆どないので、受信信号Sの平均値(参照電圧Vref)はパルス波形の中間値となり、差動信号Sin+及びSin−のデューティ比はほぼ50%となる。
また、平均化回路4において受信信号Sを平均化する際には、時系列に並んだパルス波形を平均化するため、必ず遅れが生じる。平均化回路4が例えばローパスフィルタによって実現される場合、平均化の遅れは、ローパスフィルタの時定数として表される。そして、図4(a)に示したような断続的なパケットを受信する場合、各パケットPa(特に、信号光強度が小さなパケットPa)の先頭(プリアンブル信号Sp)を光モジュール10において認識するためには、参照電圧Vrefが、その直前のパケットPaの信号光強度の影響を受けていないことが好ましい。すなわち、各パケットPa間のガード時間(無信号状態の時間)tgにおいては、平均化回路4の時定数は小さいことが好ましい。なお、例えばITU−T/G.984規格により光モジュール10に要求されるガード時間tgは、25.6ナノ秒以上である。
これに対し、各パケットPaを受信している間は、パケットPaに含まれる連続ビット信号によって参照電圧Vrefが容易に変動しないように、平均化回路4の時定数は大きいことが好ましい。このように、差動出力回路3への参照電圧Vrefとして受信信号Sの平均値を用いる場合には、平均化回路4の時定数に対し相反する要求がある。なお、この相反する要求の為、従来の光受信器では、差動出力回路への参照電圧として受信信号の平均値ではなくピーク値やボトム値が用いられていた。
このような平均化回路4の時定数に関するトレードオフに鑑み、本実施形態の平均化回路4の時定数は、電気的な制御信号Scに従って変更できるようになっている。ここで、図4(b)は、平均化回路4へ入力される制御信号Scの波形の一例を示す図である。また、図4(c)は、平均化回路4において生成される参照電圧Vrefの波形の一例である。
図4(b)に示すように、制御信号Scは、各パケットPaに同期してON/OFFを繰り返すことにより、平均化回路4の時定数を各パケットPaに同期して変化させる。なお、平均化回路4においては、制御信号ScがONのときに時定数が小さくなり、制御信号ScがOFFのときに時定数が大きくなる。より具体的には、制御信号Scは、各パケットPaの開始に伴って平均化回路4の時定数を大きくするとともに、各パケットPaの終了に伴って平均化回路4の時定数を小さくする。これにより、各パケットPa内(区間A)においては平均化回路4の時定数が大きくなり、参照電圧Vrefの値が安定するので、パケットPa内の連続ビット信号による参照電圧Vrefの変動を抑止できる。また、各パケットPa間(区間B)においては平均化回路4の時定数が小さくなり、パケットPaが終了した後の参照電圧Vrefの値は素早くゼロに収束するので、信号光強度が異なる後続のパケットPaによる参照電圧Vrefへの影響を抑えることができる。
例えば、区間Aにおける平均化回路4の時定数を760ナノ秒とし、区間Bにおける平均化回路4の時定数を3.2ナノ秒とした場合、先に受信したパケットPaの信号光強度が316倍(=25デシベル)大きな場合であっても、ガード時間tgの間にその影響が10%以下に抑えられる。また、パケットPa内に100ビットの連続同値信号が存在した場合であっても、参照電圧Vrefのレベル変動を10%以下(データ伝送速度が1.25ギガビット/秒の場合)に抑えることができる。
以上説明したように、本実施形態の光受信器1によれば、TIA回路2の変換利得が光電流Iの大きさに応じて受動的に変化することにより、信号光強度に応じてTIA回路2の変換利得を好適に可変にできる。更に、変換後の受信信号の大きさに応じて変換利得を能動的に切り換える方式と比較して、複数の比較器といった利得選択のための回路が不要となり、回路規模を小型化できる。
また、本実施形態の光受信器1によれば、参照電圧Vrefとして受信信号Sの平均値を用いることにより、受信信号Sのパルス波形の歪みを補償するように参照電圧Vrefが変化するので、各パケットPa毎に信号光強度が大きく異なる場合においてもデータを正確に受信できる。更に、各パケットPaの開始や終了などに応じて平均化回路4の時定数を変更できるので、各パケットPa毎に信号光強度が異なる場合に、データをより正確に受信できる。
(第1の変形例)
図6は、上記実施形態の第1変形例に係る光受信器1aの構成を示す回路図である。本変形例の光受信器1aと上記実施形態の光受信器1との相違点は、平均化回路の構成である。本変形例の光受信器1aは、上記実施形態の平均化回路4に代えて、平均化回路5を備えている。
平均化回路5は、受信信号Sを平均化して参照電圧Vrefを生成するための回路である。本変形例の平均化回路5は、抵抗素子及び容量素子により構成されたローパスフィルタであり、抵抗成分の抵抗値を制御信号Scに従って変更できる構成を有する。具体的には、平均化回路5は、第1の抵抗素子51、容量素子52、第2の抵抗素子53、及びNチャネルのFET54を有する。抵抗素子51の一端は、平均化回路5の入力端5aを介してTIA回路2の出力端2bと電気的に接続されている。また、抵抗素子51の他端は、平均化回路5の出力端5bを介して差動出力回路3の差動入力端3bと電気的に接続されている。
容量素子52は、抵抗素子51の他端とGNDライン等の基準電位線との間に電気的に接続されている。また、抵抗素子53及びFET54は抵抗素子51と並列に接続されており、互いに直列に接続されている。すなわち、FET54のソース端子は、平均化回路5の入力端5aを介してTIA回路2の出力端2bと電気的に接続されている。FET54のドレイン端子は抵抗素子53の一端と電気的に接続されており、抵抗素子53の他端は平均化回路5の出力端5bを介して差動出力回路3の差動入力端3bと電気的に接続されている。FET54のゲート端子は、光受信器1のリード端子15と電気的に接続されている。
この平均化回路5では、制御信号ScがON(Hレベル)のときにFET54のソース−ドレイン間が導通する。従って、ローパスフィルタを構成する抵抗成分は抵抗素子51及び53による並列抵抗値となるので、平均化回路5の時定数は、容量素子52の容量値と、抵抗素子51及び53による並列抵抗値との積によって定まる。また、制御信号ScがOFF(Lレベル)のときにはFET54のソース−ドレイン間は導通しないので、ローパスフィルタを構成する抵抗成分は抵抗素子51の抵抗値のみとなり、平均化回路5の時定数は、容量素子52の容量値と抵抗素子51の抵抗値との積によって定まる。従って、制御信号ScがOFF(Lレベル)のときの時定数は、制御信号ScがON(Hレベル)のときの時定数よりも大きくなる。
なお、先の説明において、平均化回路5の時定数を760ナノ秒及び3.2ナノ秒に設定する場合を例示したが、これらの時定数を実現するためには、例えば、容量素子52の容量値を20pFとし、抵抗素子51の抵抗値を38kΩとし、抵抗素子53の抵抗値を160Ωとするとよい。
本変形例によれば、抵抗素子及び容量素子により構成されたローパスフィルタを有し、抵抗成分の大きさを制御信号Scに従って変更できる平均化回路5を好適に実現できる。なお、本変形例では抵抗素子53をFET54と直列に設けているが、FET54のソース−ドレイン間に寄生的に存在する等価抵抗値で十分な場合などに、抵抗素子53を省略することもできる。
(第2の変形例)
図7は、上記実施形態の第2変形例に係る光受信器1bの構成を示す回路図である。本変形例の光受信器1bと上記実施形態の光受信器1との相違点は、TIA回路の構成である。本変形例の光受信器1bは、上記実施形態のTIA回路2に代えて、TIA回路20aを備えている。
TIA回路20aは、フォトダイオード11のアノードから光電流Iを受け、この光電流Iを受信信号Sに変換するための回路である。TIA回路20aは、増幅器21、抵抗素子22、及びダイオード25を有する。このうち、増幅器21及び抵抗素子22の構成については、上記第1実施形態と同様なので詳細な説明を省略する。
ダイオード25は、抵抗素子22と並列に接続されている。すなわち、ダイオード25のアノードは、TIA回路20aの入力端2aを介してフォトダイオード11のアノードと電気的に接続されている。また、ダイオード25のカソードは、TIA回路20aの出力端2bを介して差動出力回路3の差動入力端3a及び平均化回路4の入力端4aと電気的に接続されている。従って、抵抗素子22及びダイオード25は、増幅器21の入力端21aと出力端21bとの間に接続された抵抗成分を構成しており、TIA回路20aにおけるトランスインピーダンスを規定している。
また、ダイオード25は、本変形例において利得可変手段を構成している。すなわち、ダイオード25は、フォトダイオード11からの光電流Iの大きさに応じてTIA回路20aの変換利得を受動的に変化させる。ダイオード25の具体的な作用は次のとおりである。信号光Pinの強度が大きくなると、フォトダイオード11からの光電流Iが大きくなり、この光電流Iが流れる抵抗素子22の電圧降下量も増大する。このとき、ダイオード25におけるアノード−カソード間の電位差が或る値(0.6V程度)を超えると、ダイオード25が導通し、ダイオード25のアノード−カソード間の抵抗値(微分等価抵抗値)が低下する。その結果、増幅器21の入力端21aと出力端21bとの間のトランスインピーダンス値が低下することとなり、TIA回路20aにおける変換利得が低下する。
本変形例のように、TIA回路の利得可変手段はダイオードによって実現されてもよく、TIA回路20aの変換利得を光電流Iの大きさに応じて受動的に変化させる構成を好適に実現できる。
(第3の変形例)
図8は、上記実施形態の第3変形例に係る光受信器1cの構成を示す回路図である。本変形例の光受信器1cと上記実施形態の光受信器1との相違点は、TIA回路の構成である。本変形例の光受信器1cは、上記実施形態のTIA回路2に代えて、TIA回路20bを備えている。
TIA回路20bは、フォトダイオード11のアノードから光電流Iを受け、この光電流Iを受信信号Sに変換するための回路である。TIA回路20bは、増幅器21、抵抗素子22、及びFET26を有する。このうち、増幅器21及び抵抗素子22の構成については、上記第1実施形態と同様である。
FET26は、PチャネルのFETである。FET26のソース端子は、抵抗素子22の一端と電気的に接続(すなわち、増幅器21の入力端21aと電気的に接続)されている。FET26のゲート端子は、抵抗素子22の他端と電気的に接続(すなわち、増幅器21の出力端21bと電気的に接続)されている。FET26のドレイン端子は、GNDライン等の基準電位線と電気的に接続されている。
抵抗素子22及びFET26は、増幅器21の入力端21aと出力端21bとの間に接続された抵抗成分を構成しており、TIA回路20bにおけるトランスインピーダンスを規定している。また、FET26は、本変形例において利得可変手段を構成している。すなわち、FET26は、フォトダイオード11からの光電流Iの大きさに応じてTIA回路20bの変換利得を受動的に変化させる。信号光Pinの強度が大きくなると、光電流Iが流れる抵抗素子22の電圧降下量が増大し、FET26におけるソース−ゲート間の電位差が大きくなるので、ソース−ドレイン間の抵抗値が低下する。その結果、光電流Iの一部がFET26のドレインから基準電位線へ流出するので、増幅器21の入力端21aと出力端21bとの間のトランスインピーダンスが低下することとなり、TIA回路20bにおける変換利得が低下する。これによって、信号光Pinの強度が大きい場合のTIA回路20bの飽和を避けることができる。
本発明による光受信器は、上記した実施形態に限られるものではなく、様々な変形が可能である。例えば、上記実施形態及び各変形例において、電流電圧変換回路の利得可変手段としてFETやダイオードを用いる構成を説明したが、本発明の利得可変手段はこれらに限らず、電流電圧変換回路の変換利得を光電流の大きさに応じて受動的に変化させ得る様々な構成を適用できる。また、上記実施形態においては、平均化回路の時定数を変化させるための電気的な制御信号を光受信器の外部(信号処理部)から提供しているが、本発明における制御信号は、光受信器の内部において生成されてもよい。
図1は、本発明の好適な一実施形態である光受信器を備える光モジュールの構成を示す図である。 図2は、光受信器の回路図である。 図3は、TIA回路における変換利得と光電流の大きさとの相関を概念的に示すグラフである。 図4(a)は、信号光に含まれるバースト信号の一例を示す図である。図4(b)は、平均化回路へ入力される制御信号の波形の一例を示す図である。図4(c)は、平均化回路において生成される参照電圧の波形の一例を示す図である。 図5(a)は、信号光の強度が小さい(すなわち光電流が小さい)場合における、受信信号の波形及び受信信号の平均値(参照電圧)の大きさを示す図である。図5(b)は、信号光の強度が大きい(すなわち光電流が大きい)場合における、受信信号の波形及び受信信号の平均値(参照電圧)の大きさを示す図である。 図6は、第1変形例に係る光受信器の構成を示す回路図である。 図7は、第2変形例に係る光受信器の構成を示す回路図である。 図8は、第3変形例に係る光受信器の構成を示す回路図である。
符号の説明
1,1a〜1c…光受信器、2,20a,20b…トランスインピーダンスアンプ(TIA)回路、3…差動出力回路、3a,3b…差動入力端、4,5…平均化回路、10…光モジュール、11…フォトダイオード、13〜15…リード端子、16…信号処理部、21…増幅器、22,51,53…抵抗素子、24…定電圧源、25…ダイオード、52…容量素子、I…光電流、Pin…信号光、S…受信信号、Sc…制御信号、Sin+,Sin−…差動信号、Vref…参照電圧。

Claims (6)

  1. 受信した信号光に対応する光電流を生成する受光素子と、
    前記光電流を、電圧信号である受信信号に変換する電流電圧変換回路と、
    前記受信信号を平均化して参照電圧を生成する平均化回路と、
    前記電流電圧変換回路からの前記受信信号、及び前記平均化回路からの前記参照電圧に基づいて差動信号を生成する差動出力回路と
    を備え、
    前記電流電圧変換回路が、前記光電流を前記受信信号に変換する際の変換利得を前記光電流の大きさに応じて受動的に変化させる利得可変手段を有し、
    前記平均化回路の時定数を、電気的な制御信号により変更できることを特徴とする、光受信器。
  2. 前記電流電圧変換回路が、前記変換利得に寄与する帰還抵抗を有し、
    前記利得可変手段が、所定電位にバイアスされたゲートを有する電界効果トランジスタを含むことを特徴とする、請求項1に記載の光受信器。
  3. 前記電流電圧変換回路が、前記変換利得に寄与する帰還抵抗を有し、
    前記利得可変手段が、前記帰還抵抗と並列に接続されたダイオードを含むことを特徴とする、請求項1に記載の光受信器。
  4. 前記平均化回路が、抵抗素子及び容量素子を有し、
    前記抵抗素子の抵抗値を前記制御信号に従って変更できることを特徴とする、請求項1〜3のいずれか一項に記載の光受信器。
  5. 前記信号光がパケット信号であり、
    前記制御信号が、各パケットに同期して前記平均化回路の時定数を変化させることを特徴とする、請求項1〜4のいずれか一項に記載の光受信器。
  6. 前記制御信号が、各パケットの開始時に前記平均化回路の時定数を大きくするとともに、各パケットの終了時に前記平均化回路の時定数を小さくすることを特徴とする、請求項5に記載の光受信器。
JP2006093516A 2006-03-30 2006-03-30 光受信器 Pending JP2007274032A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093516A JP2007274032A (ja) 2006-03-30 2006-03-30 光受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093516A JP2007274032A (ja) 2006-03-30 2006-03-30 光受信器

Publications (1)

Publication Number Publication Date
JP2007274032A true JP2007274032A (ja) 2007-10-18

Family

ID=38676429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093516A Pending JP2007274032A (ja) 2006-03-30 2006-03-30 光受信器

Country Status (1)

Country Link
JP (1) JP2007274032A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312216A (ja) * 2007-06-18 2008-12-25 Micrel Inc しきい値設定が高速決定されるponバーストモード受信機
JP2010157911A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 光受信器
JP2010226627A (ja) * 2009-03-25 2010-10-07 Nec Corp バースト信号識別器、バースト光受信器、バースト信号識別方法およびバースト光受信方法
CN102437874A (zh) * 2010-09-22 2012-05-02 住友电气工业株式会社 光接收器的前端模块
CN102761362A (zh) * 2011-04-26 2012-10-31 住友电气工业株式会社 光接收器装置
JP5725168B2 (ja) * 2011-04-20 2015-05-27 富士通オプティカルコンポーネンツ株式会社 検出装置、光受信装置、検出方法および光受信方法
US9163982B2 (en) 2010-03-04 2015-10-20 Sumitomo Electric Industries, Ltd. Optical receiver device
WO2016035374A1 (ja) * 2014-09-03 2016-03-10 三菱電機株式会社 光受信器、光終端装置および光通信システム
US9450542B2 (en) 2013-01-16 2016-09-20 Mitsubishi Electric Corporation Preamplifier, optical receiver, optical termination device, and optical communication system
JP2019186813A (ja) * 2018-04-13 2019-10-24 住友電気工業株式会社 受光装置
JP2021061456A (ja) * 2019-10-02 2021-04-15 パイオニア株式会社 光受信回路
US12104950B2 (en) 2021-01-26 2024-10-01 Sumitomo Electric Industries, Ltd. Optical receiver

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312216A (ja) * 2007-06-18 2008-12-25 Micrel Inc しきい値設定が高速決定されるponバーストモード受信機
JP2010157911A (ja) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp 光受信器
JP2010226627A (ja) * 2009-03-25 2010-10-07 Nec Corp バースト信号識別器、バースト光受信器、バースト信号識別方法およびバースト光受信方法
US9163982B2 (en) 2010-03-04 2015-10-20 Sumitomo Electric Industries, Ltd. Optical receiver device
CN102437874A (zh) * 2010-09-22 2012-05-02 住友电气工业株式会社 光接收器的前端模块
US8987650B2 (en) 2010-09-22 2015-03-24 Sumitomo Electric Industries, Ltd. Front end module for optical receiver
US9203520B2 (en) 2011-04-20 2015-12-01 Fujitsu Optical Components Limited Detecting apparatus, optical receiving apparatus, detecting method, and optical receiving method
JP5725168B2 (ja) * 2011-04-20 2015-05-27 富士通オプティカルコンポーネンツ株式会社 検出装置、光受信装置、検出方法および光受信方法
CN102761362A (zh) * 2011-04-26 2012-10-31 住友电气工业株式会社 光接收器装置
US9450542B2 (en) 2013-01-16 2016-09-20 Mitsubishi Electric Corporation Preamplifier, optical receiver, optical termination device, and optical communication system
WO2016035374A1 (ja) * 2014-09-03 2016-03-10 三菱電機株式会社 光受信器、光終端装置および光通信システム
WO2016035176A1 (ja) * 2014-09-03 2016-03-10 三菱電機株式会社 光受信器、光終端装置および光通信システム
JPWO2016035374A1 (ja) * 2014-09-03 2017-04-27 三菱電機株式会社 光受信器、光終端装置および光通信システム
US10003410B2 (en) 2014-09-03 2018-06-19 Mitsubishi Electric Corporation Optical receiver, optical termination device, and optical communication system
JP2019186813A (ja) * 2018-04-13 2019-10-24 住友電気工業株式会社 受光装置
US11012042B2 (en) 2018-04-13 2021-05-18 Sumitomo Electric Industries, Ltd. Receiver module
JP7263697B2 (ja) 2018-04-13 2023-04-25 住友電気工業株式会社 受光装置
JP2021061456A (ja) * 2019-10-02 2021-04-15 パイオニア株式会社 光受信回路
US12104950B2 (en) 2021-01-26 2024-10-01 Sumitomo Electric Industries, Ltd. Optical receiver

Similar Documents

Publication Publication Date Title
JP2007274032A (ja) 光受信器
US9525480B2 (en) Optical communication module, optical network unit, and method of controlling light-emitting element
JP5305932B2 (ja) 前置増幅器
JP2011091688A (ja) トランスインピーダンスアンプ
EP1355464A2 (en) DC removal in an optical receiver
JP6058140B2 (ja) 電流電圧変換回路、光受信器及び光終端装置
US9450542B2 (en) Preamplifier, optical receiver, optical termination device, and optical communication system
US9638725B2 (en) Optical receiver and light reception current monitoring method
CN114389550A (zh) 用于接收突发光信号的跨阻抗放大电路
JP2007508754A (ja) 光学的受信パルス列を電気的出力パルス列に変換する方法および装置
KR100841605B1 (ko) 신호증폭회로 및 광수신기
JPWO2019163135A1 (ja) 信号検出回路、光受信器、親局装置および信号検出方法
US10511294B2 (en) Cross-point offset adjustment circuit
JP2008148321A (ja) オンチップ・リセット信号を生成するバーストモード受信機及びバーストモード受信方法
US8301038B2 (en) Electronic circuit and communication system
CN108370274B (zh) 被配置成接收具有前导和数据净荷的光信号的突发模式接收器
US9948400B2 (en) Drive circuit and optical network unit
JP5368370B2 (ja) 光受信器
JP2006050146A (ja) 受信方法および受信回路
CN1871754B (zh) 激光驱动器电路
US7142574B2 (en) Laser driver circuit and system
JP5780282B2 (ja) リミッタアンプ回路及びドライバ回路
JP4659398B2 (ja) 光受信器
JP2010041158A (ja) 光受信器
JP7520345B2 (ja) 送受信装置、端末装置および送受信システム