JP2007273367A - Lead-acid storage battery - Google Patents

Lead-acid storage battery Download PDF

Info

Publication number
JP2007273367A
JP2007273367A JP2006099460A JP2006099460A JP2007273367A JP 2007273367 A JP2007273367 A JP 2007273367A JP 2006099460 A JP2006099460 A JP 2006099460A JP 2006099460 A JP2006099460 A JP 2006099460A JP 2007273367 A JP2007273367 A JP 2007273367A
Authority
JP
Japan
Prior art keywords
lead
lignin
negative electrode
amount
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099460A
Other languages
Japanese (ja)
Other versions
JP5066825B2 (en
Inventor
Koji Kogure
耕二 木暮
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006099460A priority Critical patent/JP5066825B2/en
Publication of JP2007273367A publication Critical patent/JP2007273367A/en
Application granted granted Critical
Publication of JP5066825B2 publication Critical patent/JP5066825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid storage battery for an automobile degraded little in charge receiving performance even in a degraded state. <P>SOLUTION: Sodium ligninsulfonate with a molecular weight of 55,000-65,000 and with the content of organic sulfur of ≥5.5 wt.%, and carbon black made from heavy oil as raw material with a specific surface area of 1,200-1,300 m<SP>2</SP>/g and DBP oil absorption of 450-550 ml/g, are added together as an additive in a negative electrode active substance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は鉛蓄電池の充電受入れ性能の維持性向上に関するものである。   The present invention relates to improvement in maintainability of charge acceptance performance of a lead storage battery.

今日、鉛蓄電池は自動車用や産業用に安価で信頼性の高い電池として広範囲に用いられている。自動車用としては、近年普及してきたエンジン始動と停止が繰り返し行なわれるような、いわゆるアイドリングストップ車(以下ISS車と略す)のような使用形態が新たに出現している。ISS車では、頻繁なエンジン始動と短い充電が何度もくり返し行われるため、常に充電不足状態に陥ってしまう。そのため、負極の極板上に通常の充電では還元し難い粗大な硫酸鉛が生成、蓄積してくる。そのため電池性能の早期低下を招く事態になってしまう。このような問題を解決するため文献1に示されるような充電受け入れ性能を向上させる添加剤が考えられてきた。   Today, lead-acid batteries are widely used as inexpensive and reliable batteries for automobiles and industries. For automobiles, a usage form such as a so-called idling stop vehicle (hereinafter abbreviated as an ISS vehicle), in which engine start and stop, which have been widespread in recent years, is repeated. In an ISS vehicle, frequent engine start-up and short charging are repeated many times, so that the vehicle is always in a state of insufficient charging. For this reason, coarse lead sulfate that is difficult to reduce by normal charging is generated and accumulated on the negative electrode plate. For this reason, the battery performance is deteriorated at an early stage. In order to solve such a problem, an additive for improving charge acceptance performance as shown in Document 1 has been considered.

鉛蓄電池の負極活物質に添加するリグニンやカーボンといった添加剤は主に充放電反応の際に極板活物質の収縮防止、導電性向上といった役割を果たしていると考えられているが、その正確なメカニズム反応については未だ解明されていない。おそらくリグニンは充電時に放電生成物である硫酸鉛が還元されて金属鉛として析出する際に、金属鉛を覆って結晶成長を抑制して充放電に有効な反応面積を有する微細な結晶を生成させていると考えられる。この活物質微細化効果によって充放電の際の反応面積を増加し、充電受入れ性能の向上に効果があるが考えられている。そのため、リグニンとカーボンはその組み合わせ次第では相乗効果を引き出せる可能性がある。   Additives such as lignin and carbon added to the negative electrode active material of lead-acid batteries are thought to play a role in preventing contraction of the electrode plate active material and improving conductivity mainly during the charge / discharge reaction. The mechanism reaction has not been elucidated yet. Probably, when lead sulfate, which is a discharge product, is reduced and deposited as metallic lead during charging, lignin covers the metallic lead and suppresses crystal growth to produce fine crystals with a reaction area effective for charging and discharging. It is thought that. It is considered that this active material refinement effect increases the reaction area during charging and discharging, and is effective in improving charge acceptance performance. Therefore, lignin and carbon may bring out a synergistic effect depending on the combination.

特開平11−250913号公報JP-A-11-250913

ISS車のような頻繁なエンジン始動と短い充電が何度もくり返し行われる使用形態であると、鉛蓄電池は反応活性の状態であるため、通常の使用形態の時よりも高温状態になりやすい。このような高温状態で充放電を繰り返し行なっていくと負極板活物質に添加されているリグニンのような活物質は反応が活性なカルボキシル基などが酸化されて二酸化炭素と水に分解してしまい易くなり、リグニンの活物質微細化効果は早期に低下してしまうため、充電受入性能も早期に低下してしまうという問題点があった。   In a usage pattern in which frequent engine start-up and short charging are repeated many times, such as in an ISS car, the lead storage battery is in a reactive state, and thus is likely to be hotter than in a normal usage pattern. When charging and discharging are repeated at such a high temperature state, the active material such as lignin added to the negative electrode plate active material is decomposed into carbon dioxide and water due to oxidation of the active carboxyl group and the like. As a result, the effect of refining the active material of lignin is reduced at an early stage, so that the charge acceptance performance is also lowered at an early stage.

本発明は上記事案を鑑み、高温条件下で充放電サイクルを繰り返しても充電受入れ性能の低下がほとんどないリグニンとカーボンの最適な組み合わせを提案するものである。また、リグニンとカーボンの組み合わせで、それぞれの最適添加量について提案する。   In view of the above-mentioned case, the present invention proposes an optimal combination of lignin and carbon that hardly deteriorates the charge acceptance performance even when the charge / discharge cycle is repeated under high temperature conditions. In addition, we propose the optimum amount of each lignin and carbon combination.

上記に示すような課題を解決するため、本発明では鉛蓄電池の負極活物質のリグニンとして分子量が50000〜65000であり、有機性の硫黄の含有量が5.5重量%以上のリグニンスルホン酸ナトリウム塩を添加した。このリグニンは従来のリグニンと比較して酸に対して安定して存在し、充放電を繰り返し行なってもリグニン自体の分解は比較的小さい。そしてこのリグニンを最も効果的に働かせることができるカーボンとして比表面積(BET法による)が1200〜1300 m/g、DBP吸油量が450〜550ml/gである重油を原料としたカーボンブラックを併せて添加した。鉛蓄電池の負極活物質にこれらの添加剤を併せて添加することで、従来の鉛蓄電池に比べて劣化状態でも充電受入れ性能の低下の小さい優れた鉛蓄電池を提供することができる。 In order to solve the problems as described above, in the present invention, sodium lignin sulfonate having a molecular weight of 50,000 to 65,000 and an organic sulfur content of 5.5% by weight or more as the lignin of the negative electrode active material of the lead-acid battery Salt was added. This lignin exists more stably with respect to acids than conventional lignins, and the degradation of lignin itself is relatively small even when charging and discharging are repeated. Carbon that can make this lignin work most effectively is carbon black made from heavy oil with a specific surface area (by the BET method) of 1200 to 1300 m 2 / g and a DBP oil absorption of 450 to 550 ml / g. Added. By adding these additives together to the negative electrode active material of the lead storage battery, it is possible to provide an excellent lead storage battery with a small decrease in charge acceptance performance even in a deteriorated state as compared with conventional lead storage batteries.

本発明により鉛蓄電池の劣化時における充電受入れ性の早期低下を防ぎ、その結果、ISS車のような使用形態でも電池の寿命を伸ばすことができる。   According to the present invention, it is possible to prevent an early decrease in charge acceptability when the lead storage battery is deteriorated, and as a result, it is possible to extend the life of the battery even in a usage form such as an ISS car.

以下、本発明の具体例について説明する。なお、本実施形態は一態様であり、その要旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, specific examples of the present invention will be described. In addition, this embodiment is one aspect | mode, In the range which does not change the summary, it can change suitably and can implement.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

負極板は、鉛粉1kgと鉛粉に対して13%重量%の希硫酸(比重1.26/20℃換算)と鉛粉に対して12%重量%の水を加えながら、表1に示すリグニンとカーボンを添加した。このときの添加量はリグニンとカーボンは全て各0.2重量%である。なお、表1でDPB吸油量550ml/gより大きいカーボンは製造上困難であり、コスト高になるため試験対象としなかった。上記以外の添加剤として、カットファイバ0.06重量%および硫酸バリウム1.0重量%を添加し、これらを混練して負極ペーストを作製した。この負極ペースト45gを厚さ0.6mmのエキスパンド集電体(Ca:0.05%、Sn:0.5%、残部:Pb)に充填して通常の方法に従い、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度25℃、湿度40%の雰囲気下で乾燥して未化成負極板を得た。   The negative electrode plate is shown in Table 1 while adding 1% of lead powder and 13% by weight of diluted sulfuric acid (specific gravity 1.26 / 20 ° C conversion) to lead powder and 12% by weight of water to lead powder. Lignin and carbon were added. The amount added at this time is 0.2% by weight for lignin and carbon. Carbons having a DPB oil absorption of 550 ml / g in Table 1 are difficult to manufacture and costly, so they were not included in the test. As additives other than the above, 0.06% by weight of cut fiber and 1.0% by weight of barium sulfate were added and kneaded to prepare a negative electrode paste. 45 g of this negative electrode paste was filled into an expanded current collector (Ca: 0.05%, Sn: 0.5%, balance: Pb) having a thickness of 0.6 mm, and the temperature was 50 ° C. and the humidity was 95% according to the usual method. After being left to mature for 18 hours in this atmosphere, it was dried in an atmosphere at a temperature of 25 ° C. and a humidity of 40% to obtain an unformed negative electrode plate.

正極板は鉛粉1kgと鉛粉に対して0.01重量%のカットファィバーと、鉛粉に対して13%重量%の希硫酸(比重1.26/20℃換算)と鉛粉に対して12%重量%の水にと混練して正極ペーストを作製した。この正極ペーストを鋳造格子体からなる正極集電体(Ca:0.05%、Sn:0.5%、残部:Pb)に充填して通常の方法に従い、温度50℃、湿度95%の雰囲気下に18時間放置して熟成した後、温度25℃、湿度40%の雰囲気下で乾燥して未化成正極板を得た。   The positive electrode plate is based on 1 kg of lead powder and a cut fiber of 0.01% by weight with respect to the lead powder, and 13% by weight of dilute sulfuric acid (specific gravity 1.26 / 20 ° C conversion) and the lead powder. A positive electrode paste was prepared by kneading with 12% by weight of water. This positive electrode paste was filled into a positive electrode current collector (Ca: 0.05%, Sn: 0.5%, balance: Pb) made of a cast grid, and an atmosphere having a temperature of 50 ° C. and a humidity of 95% was prepared according to a normal method. The plate was left to mature for 18 hours, and then dried in an atmosphere at a temperature of 25 ° C. and a humidity of 40% to obtain an unformed positive electrode plate.

Figure 2007273367
Figure 2007273367

上記未化成極板を、正極2枚/負極1枚構成で組み立て、電槽に挿入して希硫酸を注液して電槽化成し、JIS‐D5301規定の55B24サイズ相当の2V単板電池を作製した。   The above-mentioned non-formed electrode plate is assembled in a structure of two positive electrodes / one negative electrode, inserted into a battery case, poured into dilute sulfuric acid, and formed into a battery case. Produced.

なお、リグニンの平均分子量はクロマトグラフィーによって測定した。また、分子量が65000以上のリグニンは添加剤として負極に使用すると、初期の入力性能が極端に低下してしまうため、ここでの検討からは除いた。   The average molecular weight of lignin was measured by chromatography. In addition, when lignin having a molecular weight of 65000 or more is used as an additive in the negative electrode, the initial input performance is extremely deteriorated, so it was excluded from the examination here.

充電受入れ性能は以下のように評価した。   The charge acceptance performance was evaluated as follows.

上記方法により作製した2V単板電池を満充電状態(6.0Ah)にした後、25℃の空気中に6時間放置し、0.2Cの電流値で定電流放電し、充電状態90%になるように放電した。その後、電源装置を用いて2.33V(12V電池における14.0Vに相当、制限電流30A)で定電圧充電し5秒目の電流値を測定した。この電流値が高いほど充電電流が入りやすく、充電受入れ性が良いと言える。   The 2V single plate battery produced by the above method was fully charged (6.0 Ah), then left in air at 25 ° C. for 6 hours, discharged at a constant current of 0.2 C, and charged to 90%. It was discharged to become. After that, using a power supply device, constant voltage charging was performed at 2.33 V (corresponding to 14.0 V in a 12 V battery, limited current 30 A), and a current value at 5 seconds was measured. It can be said that the higher the current value, the easier the charging current can be and the better the charge acceptance.

次に図1に示すようなJIS軽負荷試験に準拠した単版用の充放電サイクルを2週間(960サイクル)繰り返し、極板を劣化させた。このときの極板劣化の程度は先行実験の結果から実車に搭載して使用した場合の3万km走行程度の劣化と推定されている。そして、初期の充電受入れ性能と劣化時の充電受入れ性能が求まった時点で充電受入れ性能の残存率を計算した。残存率とは以下の式で表される。
残存率(%)=(劣化時の充電受入性/初期の充電受入性)×100
Next, the charging / discharging cycle for the single plate based on the JIS light load test as shown in FIG. 1 was repeated for 2 weeks (960 cycles) to deteriorate the electrode plate. The degree of electrode plate deterioration at this time is estimated to be about 30,000 km travel when mounted on an actual vehicle and used from the results of previous experiments. Then, when the initial charge acceptance performance and the charge acceptance performance at the time of deterioration were obtained, the remaining rate of the charge acceptance performance was calculated. The residual rate is expressed by the following formula.
Residual rate (%) = (Charge acceptability at deterioration / initial charge acceptability) × 100

図2に各仕様における充電受入れ性能の残存率を示す。残存率の最も高い組み合わせは分子量が50000〜65000であり、硫黄含有量が5.5重量%以上のリグニンスルホン酸ナトリウムと比表面積が1200〜1300 m/g、DBP吸油量が450〜550ml/gである重油を原料としたカーボンブラックとを組み合わせであった。他の組み合わせでは従来品と同程度であった。この結果を得て、さらにこのリグニンとカーボンの組み合わせでリグニンとカーボンの添加量について詳細検討した。 FIG. 2 shows the remaining rate of charge acceptance performance in each specification. The combination with the highest residual rate has a molecular weight of 50000-65000, a sodium lignin sulfonate having a sulfur content of 5.5% by weight or more, a specific surface area of 1200-1300 m 2 / g, and a DBP oil absorption of 450-550 ml / It was a combination with carbon black made from heavy oil as a raw material. In other combinations, it was similar to the conventional product. This result was obtained, and the amount of lignin and carbon added was examined in detail using this lignin and carbon combination.

図3に分子量が50000〜65000であり、硫黄含有量が5.5重量%のリグニンと、比表面積が1200〜1300m/g、DBP吸油量が450〜550ml/gである重油を原料としたカーボンブラックとを組み合わせ、それぞれリグニンとカーボンブラック添加量を変化させた場合の充電受入れ性能の残存率を示す。リグニン添加量が0.1〜0.6wt%、カーボン量が0.2〜1.2wt%での充電受入れ性能が最も高く、充電受入れ性向上に効果がある添加量であることがわかる。リグニンはこれ以上添加すると入力性能が低下する。またカーボンもこれ以上添加するとペーストの充填に支障をきたし、化成後に活物質が脆弱になり脱落しやすくなる。 In FIG. 3, lignin having a molecular weight of 50000-65000, a sulfur content of 5.5% by weight, a heavy oil having a specific surface area of 1200-1300 m 2 / g and a DBP oil absorption of 450-550 ml / g are used as raw materials. The remaining rate of charge acceptance performance is shown when carbon black is combined and the amount of lignin and carbon black added is changed. It can be seen that when the amount of lignin added is 0.1 to 0.6 wt% and the amount of carbon is 0.2 to 1.2 wt%, the charge acceptance performance is the highest, and the additive amount is effective in improving charge acceptability. If lignin is added more than this, the input performance will deteriorate. Further, when carbon is added more than this, the filling of the paste is hindered, and the active material becomes brittle after chemical conversion and easily falls off.

次にリグニンを増やしたことによる放電性能への影響を調べるため、図4にリグニン量を変化させた際のJIS低温高率放電試験に準拠した(−15℃、30A放電)試験結果を示す。この図からリグニンの添加量は0.1重量%未満では低温での高率放電性能がJIS規格を下回るため、添加量は0.1重量%以上必要なことがわかる。   Next, in order to investigate the influence on the discharge performance by increasing the lignin, FIG. 4 shows the test results based on the JIS low temperature high rate discharge test (−15 ° C., 30 A discharge) when changing the amount of lignin. From this figure, it can be seen that if the amount of lignin added is less than 0.1% by weight, the high rate discharge performance at a low temperature is below the JIS standard, so that the amount added must be 0.1% by weight or more.

以上の結果よりリグニン量0.1〜0.6重量%、カーボンブラック量0.2〜1.2重量%を最適添加量とした。   From the above results, the lignin amount was 0.1 to 0.6% by weight and the carbon black amount was 0.2 to 1.2% by weight as the optimum addition amount.

今回提案したリグニンとカーボンの組み合わせは電池劣化時における充電受入れ性の維持性能に優れており、ISS車用電池としても適している。   The proposed combination of lignin and carbon is superior in maintaining battery chargeability when the battery deteriorates, and is also suitable as a battery for ISS cars.

JIS軽負荷試験に準拠した充放電サイクル図である。It is a charging / discharging cycle diagram based on a JIS light load test. 分子量、有機硫黄含有量が異なるリグニンと比表面積、DBP吸油量が異なるカーボンを併せて添加したときの充電受入れ性の維持性を示した図である。It is the figure which showed the maintainability of charge acceptance property when adding together the lignin from which molecular weight and organic sulfur content differ, and the carbon from which specific surface area and DBP oil absorption differ. 本発明によるリグニン添加量と、カーボン添加量を変化させた時の充電受入れ性能の残存率を示した図である。It is the figure which showed the residual rate of the charge acceptance performance when changing the lignin addition amount by this invention, and the carbon addition amount. 本発明によるJIS低温高率放電試験に準拠したリグニン添加量と継続時間の関係を示した図である。It is the figure which showed the relationship between the amount of lignin addition based on the JIS low temperature high rate discharge test by this invention, and duration.

Claims (3)

鉛蓄電池の負極活物質への添加剤において、分子量が50000〜65000であり、有機性の硫黄の含有量が5.5重量%以上のリグニンスルホン酸ナトリウム塩と比表面積が1200〜1300m2/g、DBP吸油量が450〜550ml/gである重油を原料としたカーボンブラックとを組み合わせことを特徴とする鉛蓄電池。 In the additive for the negative electrode active material of the lead-acid battery, the molecular weight is 50,000 to 65,000, the organic sulfur content is 5.5% by weight or more, and the specific surface area is 1200 to 1300 m 2 / g. A lead storage battery comprising a combination of carbon black made from heavy oil having a DBP oil absorption of 450 to 550 ml / g. 前記負極活物質中のカーボン添加量は、負極活物質量に対して0.2〜1.2重量%であることを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the amount of carbon added in the negative electrode active material is 0.2 to 1.2 wt% with respect to the amount of the negative electrode active material. 前記負極活物質中のリグニン添加量は負極活物質量に対して0.1〜0.6重量%であることを特徴とする請求項1記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the amount of lignin added in the negative electrode active material is 0.1 to 0.6% by weight based on the amount of the negative electrode active material.
JP2006099460A 2006-03-31 2006-03-31 Lead acid battery Expired - Fee Related JP5066825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099460A JP5066825B2 (en) 2006-03-31 2006-03-31 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099460A JP5066825B2 (en) 2006-03-31 2006-03-31 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2007273367A true JP2007273367A (en) 2007-10-18
JP5066825B2 JP5066825B2 (en) 2012-11-07

Family

ID=38675942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099460A Expired - Fee Related JP5066825B2 (en) 2006-03-31 2006-03-31 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5066825B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
WO2013073091A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Lead storage cell
CN103456930A (en) * 2013-09-26 2013-12-18 湖北骆驼蓄电池研究院有限公司 Negative electrode diachylon used for high-performance AGM battery and preparing method thereof
WO2014070693A1 (en) 2012-10-31 2014-05-08 Exide Technologies A composition that enhances deep cycle performance of valve- regulated lead-acid batteries filled with gel electrolyte
JP2015088379A (en) * 2013-10-31 2015-05-07 株式会社Gsユアサ Lead storage battery
US9142619B2 (en) 2010-12-08 2015-09-22 El-Seed Corporation Group III nitride semiconductor device and method for manufacturing the same
WO2016157884A1 (en) * 2015-03-30 2016-10-06 株式会社Gsユアサ Lead acid storage battery
JP2017016971A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
US10224550B2 (en) 2011-01-04 2019-03-05 Exide Technologies Advanced graphite additive for enhanced cycle-life of lead-acid batteries
US10790501B2 (en) 2014-05-26 2020-09-29 Gs Yuasa International Ltd. Lead-acid battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery
JP7415072B1 (en) 2023-07-03 2024-01-16 日本製紙株式会社 Negative electrode composition, negative electrode, and secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (en) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd Lead battery
JPH10144305A (en) * 1996-11-14 1998-05-29 Shin Kobe Electric Mach Co Ltd Negative pole plate of lead acid battery
JP2002063905A (en) * 2000-08-22 2002-02-28 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2004220792A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004327108A (en) * 2003-04-22 2004-11-18 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174825A (en) * 1991-12-25 1993-07-13 Shin Kobe Electric Mach Co Ltd Lead battery
JPH10144305A (en) * 1996-11-14 1998-05-29 Shin Kobe Electric Mach Co Ltd Negative pole plate of lead acid battery
JP2002063905A (en) * 2000-08-22 2002-02-28 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2004220792A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004327108A (en) * 2003-04-22 2004-11-18 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
US9142619B2 (en) 2010-12-08 2015-09-22 El-Seed Corporation Group III nitride semiconductor device and method for manufacturing the same
US10340523B2 (en) 2011-01-04 2019-07-02 Exide Technologies Advanced graphite additive for enhanced cycle-life of deep discharge lead-acid batteries
US10224550B2 (en) 2011-01-04 2019-03-05 Exide Technologies Advanced graphite additive for enhanced cycle-life of lead-acid batteries
US9118080B2 (en) 2011-11-17 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
WO2013073091A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Lead storage cell
JP5223039B1 (en) * 2011-11-17 2013-06-26 パナソニック株式会社 Lead acid battery
WO2014070693A1 (en) 2012-10-31 2014-05-08 Exide Technologies A composition that enhances deep cycle performance of valve- regulated lead-acid batteries filled with gel electrolyte
EP2915206A4 (en) * 2012-10-31 2016-06-22 Exide Technologies Gmbh A composition that enhances deep cycle performance of valve- regulated lead-acid batteries filled with gel electrolyte
US10014520B2 (en) 2012-10-31 2018-07-03 Exide Technologies Gmbh Composition that enhances deep cycle performance of valve-regulated lead-acid batteries filled with gel electrolyte
CN103456930B (en) * 2013-09-26 2015-01-14 湖北骆驼蓄电池研究院有限公司 Negative electrode diachylon used for high-performance AGM battery and preparing method thereof
CN103456930A (en) * 2013-09-26 2013-12-18 湖北骆驼蓄电池研究院有限公司 Negative electrode diachylon used for high-performance AGM battery and preparing method thereof
JP2015088379A (en) * 2013-10-31 2015-05-07 株式会社Gsユアサ Lead storage battery
US10790501B2 (en) 2014-05-26 2020-09-29 Gs Yuasa International Ltd. Lead-acid battery
WO2016157884A1 (en) * 2015-03-30 2016-10-06 株式会社Gsユアサ Lead acid storage battery
US10608242B2 (en) 2015-03-30 2020-03-31 Gs Yuasa International Ltd. Lead-acid battery
JP2017016971A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery
JP7415072B1 (en) 2023-07-03 2024-01-16 日本製紙株式会社 Negative electrode composition, negative electrode, and secondary battery

Also Published As

Publication number Publication date
JP5066825B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5066825B2 (en) Lead acid battery
JP4396527B2 (en) Lead acid battery
JP4134722B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND Pb
JP5598532B2 (en) Lead acid battery
JP5884528B2 (en) Liquid lead-acid battery
JP2008243487A (en) Lead acid battery
JP2011528844A (en) Improved negative plate for lead acid battery
JP2008047452A (en) Paste type electrode plate and its manufacturing method
JPH11250913A (en) Lead-acid battery
JP5194729B2 (en) Lead acid battery
JP6045329B2 (en) Lead acid battery
JP2011181436A (en) Lead acid battery
JP2008243493A (en) Lead acid storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008243489A (en) Lead acid storage battery
JP5531746B2 (en) Lead acid battery
JP2006185678A (en) Lead-acid storage battery
JP5228601B2 (en) Lead acid battery
JP5088656B2 (en) Negative electrode for lead-acid battery and lead-acid battery using the same
RU2342744C1 (en) Lead battery and method for its manufacturing
JP4509660B2 (en) Lead acid battery
JP2017155111A (en) Phenolic resin, electrode, lead-acid battery, methods for producing them, and resin composition
JP2006210059A (en) Lead acid storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2006210058A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5066825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees