JPH10144305A - Negative pole plate of lead acid battery - Google Patents

Negative pole plate of lead acid battery

Info

Publication number
JPH10144305A
JPH10144305A JP8302799A JP30279996A JPH10144305A JP H10144305 A JPH10144305 A JP H10144305A JP 8302799 A JP8302799 A JP 8302799A JP 30279996 A JP30279996 A JP 30279996A JP H10144305 A JPH10144305 A JP H10144305A
Authority
JP
Japan
Prior art keywords
lignin sulfonate
active material
molecular weight
factor
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8302799A
Other languages
Japanese (ja)
Other versions
JP3385879B2 (en
Inventor
Yoshiharu Arai
義晴 荒井
Takeshi Hirakawa
武 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP30279996A priority Critical patent/JP3385879B2/en
Publication of JPH10144305A publication Critical patent/JPH10144305A/en
Application granted granted Critical
Publication of JP3385879B2 publication Critical patent/JP3385879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict dispersion of high efficiency discharge capacity at a low temperature by specifying the average molecular weight of lignin sulfonate and the factor of sulfonation. SOLUTION: The average molecular weight of lignin sulfonate used in the present negative pole plate is defined to be 4,000 to 10,000 and a sulfonation factor to be 90% or more, then dispersion of high efficiency discharge capacity at low temperatures can be restricted. This situation suggests some eccentric existence of sulfone group on the surface of the lignin sulfonate and phenomenon takes place as the result of improved surface activity and enhanced dispersion property into an active substance of sulfonate. Meantime, when the quantity of lignin sulfonate powder is included by 0.1 to 0.5wt.% in relation to lead powder which is the main material of the active substance, the active substance using factor is enhanced. If it is below the lower limit value, sufficient contraction proof effect of the active material can not be realized, but when it exceeds the upper limit value, sulfonate covers the active points of electrically conductive surface too much to disturb electric discharge, so that the active material using factor may be decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用負極板
に関するものである。
The present invention relates to a negative electrode plate for a lead-acid battery.

【0002】[0002]

【従来の技術】一般にリグニンスルホン酸塩が含有され
ている鉛蓄電池用負極板は次のようにして製造する。ま
ず、鉛酸化物を主体とする鉛粉と、硫酸バリウム,カー
ボン,リグニンスルホン酸塩等の添加物と、希硫酸と、
水とを混練して活物質ペーストを作る。次に活物質ペー
ストを集電体に充填した後に熟成、乾燥を施して未化成
極板を作る。そして、未化成極板を化成して完成する。
添加物のリグニンスルホン酸塩は活物質の防縮剤として
の役割を果たしている。鉛蓄電池用負極板の低温におけ
る高率放電容量は、主として活物質の比表面積に依存す
る。リグニンスルホン酸塩は、充電時のPb2+が還元さ
れて析出する際に電析面の活性点(充電初期にPbが析
出する部分)を覆って結晶成長を抑制して、活物質面に
充放電に有効な反応面積を作ると考えられている。しか
しながら、リグニンスルホン酸塩は、パルプを製造する
際にできる副産物であるため、パルプの原料となる木材
の種類やパルプの製造方法によりリグニンスルホン酸塩
の分子量分布が異なる。そのため、物理的性質及び化学
的性質が大幅に異なり、リグニンスルホン酸塩を活物質
中に添加しても、リグニンスルホン酸塩は活物質内に偏
在してしまい活物質内に分散させることが難しい。その
結果、低温での高率放電容量のバラツキが生じる。そこ
で、特開昭59−868号公報に示すように、リグニン
スルホン酸塩の平均分子量を規定して低温での高率放電
容量のバラツキを抑制することが検討された。特開昭5
9−868号公報では、平均分子量1000〜2000
の低分子量のリグニンスルホン酸塩と平均分子量100
00〜20000の高分子量のリグニンスルホン酸塩と
を混ぜたものを用いている。
2. Description of the Related Art In general, a negative electrode plate for a lead storage battery containing a lignin sulfonate is produced as follows. First, lead powder mainly composed of lead oxide, additives such as barium sulfate, carbon, lignin sulfonate, and dilute sulfuric acid,
Knead with water to make active material paste. Next, after the active material paste is filled in the current collector, aging and drying are performed to produce an unformed electrode plate. Then, the unformed electrode plate is formed and completed.
The additive lignin sulfonate serves as a shrink-preventing agent for the active material. The high-rate discharge capacity of the negative electrode plate for a lead storage battery at a low temperature mainly depends on the specific surface area of the active material. Lignin sulfonate suppresses crystal growth by covering active points (portion where Pb is deposited at the initial stage of charging) on the electrodeposited surface when Pb 2+ is reduced and deposited at the time of charging. It is thought to create a reaction area effective for charging and discharging. However, since lignin sulfonate is a by-product produced during pulp production, the molecular weight distribution of lignin sulfonate differs depending on the type of wood used as a pulp raw material and the pulp production method. Therefore, physical properties and chemical properties are significantly different, and even when lignin sulfonate is added to the active material, the lignin sulfonate is unevenly distributed in the active material and is difficult to disperse in the active material. . As a result, variations in high-rate discharge capacity at low temperatures occur. Therefore, as disclosed in JP-A-59-868, it has been studied to regulate the average molecular weight of the lignin sulfonate to suppress the variation in the high rate discharge capacity at low temperatures. JP 5
No. 9-868 discloses an average molecular weight of 1,000 to 2,000.
Low molecular weight ligninsulfonate with an average molecular weight of 100
A mixture of a lignin sulfonate having a molecular weight of 00 to 20000 is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、平均分
子量を規定しただけでは、リグニンスルホン酸塩の界面
活性作用は向上しないので、リグニンスルホン酸塩の活
物質中への分散を十分に高めるには限界があった。その
ため、低温での高率放電容量のバラツキを十分に抑制す
ることができなかった。
However, the surface activity of ligninsulfonate is not improved only by specifying the average molecular weight, so that there is a limit to sufficiently increase the dispersion of ligninsulfonate in the active material. was there. For this reason, the variation in the high-rate discharge capacity at a low temperature cannot be sufficiently suppressed.

【0004】本発明の目的は、低温での高率放電容量の
バラツキを十分に抑制できる鉛蓄電池用負極板を提供す
ることにある。
An object of the present invention is to provide a negative electrode plate for a lead-acid battery, which can sufficiently suppress the variation in the high-rate discharge capacity at a low temperature.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、活物質層中にリグニンスルホン酸塩が含
有されてなる鉛蓄電池用負極板を対象にして、リグニン
スルホン酸塩として、平均分子量が4000〜1000
0で、スルホン化率が90%以上のものを用いる。な
お、ここでいう平均分子量は重量平均分子量である。ま
た、ここでいうスルホン化率とは、リグニンスルホン酸
塩を構成するフェニルプロパン全体に対するスルホン基
を有するフェニルプロパンの割合である。また、リグニ
ンスルホン酸塩は、リグニンスルホン酸の水素原子がア
ルカリ金属またはアルカリ土類金属と置換された塩であ
る。従来では、スルホン化率50〜60%のリグニンス
ルホン酸塩を用いていたが、本発明では、平均分子量を
4000〜10000と小さくして、スルホン化率を9
0%以上に高めているので、スルホン基がリグニンスル
ホン酸塩の表面に偏って存在している。そのため、リグ
ニンスルホン酸塩の界面活性作用が向上して、リグニン
スルホン酸塩の活物質中への分散を十分に高めることが
できる。その結果、低温での高率放電容量のバラツキを
十分に抑制することができる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is directed to a negative electrode plate for a lead storage battery in which an active material layer contains a lignin sulfonate. Having an average molecular weight of 4000 to 1000
0 and a sulfonation rate of 90% or more is used. Here, the average molecular weight is a weight average molecular weight. Further, the sulfonation ratio referred to here is a ratio of phenylpropane having a sulfone group to the entire phenylpropane constituting the lignin sulfonate. Lignin sulfonic acid salt is a salt in which a hydrogen atom of lignin sulfonic acid is replaced with an alkali metal or an alkaline earth metal. Conventionally, a lignin sulfonate having a sulfonation ratio of 50 to 60% was used. However, in the present invention, the average molecular weight is reduced to 4000 to 10000, and the sulfonation ratio is 9%.
Since the value is increased to 0% or more, sulfone groups are present unevenly on the surface of the lignin sulfonate. Therefore, the surface activity of the lignin sulfonate is improved, and the dispersion of the lignin sulfonate in the active material can be sufficiently increased. As a result, it is possible to sufficiently suppress the variation in the high-rate discharge capacity at a low temperature.

【0006】リグニンスルホン酸塩は、活物質層の主原
料である鉛粉に対して0.1〜0.5重量%含有するの
が好ましい。0.1重量%を下回ると、十分に活物質の
防縮効果を得ることができず活物質利用率が低下する。
また、リグニンスルホン酸塩粉末の量が0.5重量%を
超えても、活物質利用率が低下する。これは、充電時の
Pb2+が還元されて析出する際にリグニンスルホン酸塩
が電析面の活性点を覆いすぎて、放電を阻害するためで
あると考えられる。
The lignin sulfonate is preferably contained in an amount of 0.1 to 0.5% by weight based on lead powder, which is a main raw material of the active material layer. If the amount is less than 0.1% by weight, the shrinkage-preventing effect of the active material cannot be sufficiently obtained, and the utilization rate of the active material decreases.
Also, when the amount of the lignin sulfonate powder exceeds 0.5% by weight, the utilization rate of the active material decreases. This is considered to be because the ligninsulfonate excessively covers the active sites on the electrodeposited surface when Pb 2+ is reduced and deposited during charging, thereby inhibiting discharge.

【0007】[0007]

【発明の実施の形態】試験に用いた鉛蓄電池用負極板を
次のようにして製造した。まず、平均分子量が500〜
20000のリグニンスルホン酸塩を用意した。これを
重量比70:30のNaOHとNa2 Sとを溶解する蒸
解液(温度160℃)に溶し、加圧、蒸煮するサルファ
イト蒸解を行った。そして、蒸解時間を4時間,5時
間,7時間,9時間,10時間と変化させてスルホン化
率が60%,70%,80%,90%,95%と異なる
リグニンスルホン酸塩を得た。このようにスルホン化率
は、サルファイト蒸解時間を長くするほど高くなる。次
に、各スルホン化率において平均分子量が500,40
00,5000,10000,20000とそれぞれ異
なる平均粒子径100μmの各種のリグニンスルホン酸
塩の粉末を抽出した。なお平均分子量は次のようにして
測定した。まず、分子ふるい式クロマトグラフィーを用
いて分子量別に分けた。次に分けた分子量別に沸点上昇
法を用いて分子量を求めた。ここで、沸点上昇法とは、
純粋な液体(純溶媒)に溶質を溶したときの溶液が純溶
媒の沸点より高くなることを利用して分子量を求める方
法であり、ΔTb=Kb・ω/M(ΔTb:沸点上昇温
度、Kb:純溶媒固有の定数、ω:溶質の重量、M:分
子量)の式により求めた。次に金属鉛を含む平均酸化率
85%の酸化鉛の粉末(以下、単に鉛粉という)と、該
鉛粉に対して0.3重量%の前述の各リグニンスルホン
酸塩粉末と、鉛粉に対して1.0重量%の硫酸バリウム
と、鉛粉に対して0.2重量%のカーボンと、鉛粉に対
して10重量%のイオン交換水と、鉛粉に対して10.
6重量%の比重1.260(20℃)の希硫酸とをそれ
ぞれ混練して複数の活物質ペーストを作った。次に各活
物質ペーストを格子体からなる集電体に充填してから、
熟成、乾燥を行って未化成負極板を得た。次に未化成負
極板1枚と公知のペースト式未化成正極板2枚とをセパ
レータを介して積層して極板群を作った。次に各極板群
を一定の加圧下で1セルの塩化ビニル製の電槽内に配置
した。次に電槽内に比重1.225(20℃)の希硫酸
からなる電解液を注液した。そして、40℃の水槽内で
0.3Cで18時間通電して電槽化成を行って、各鉛蓄
電池(1.5Ah,2V)内に配置された状態でそれぞ
れの負極板を完成した。
BEST MODE FOR CARRYING OUT THE INVENTION A negative electrode plate for a lead storage battery used in the test was manufactured as follows. First, the average molecular weight is 500-
20,000 lignin sulfonates were prepared. This was dissolved in a cooking liquor (temperature: 160 ° C.) for dissolving NaOH and Na 2 S in a weight ratio of 70:30, followed by pressurized and cooked by sulfite cooking. Then, the digestion time was changed to 4 hours, 5 hours, 7 hours, 9 hours, and 10 hours to obtain lignin sulfonates having sulfonation rates different from 60%, 70%, 80%, 90%, and 95%. . Thus, the sulfonation rate increases as the sulfite cooking time increases. Next, at each sulfonation rate, the average molecular weight was 500, 40.
Various lignin sulfonate powders having an average particle diameter of 100 μm different from 00, 5000, 10,000 and 20,000 were extracted. The average molecular weight was measured as follows. First, it was classified by molecular weight using molecular sieve chromatography. Next, the molecular weight was determined for each of the divided molecular weights using the boiling point increasing method. Here, the boiling point rise method is
This is a method for determining the molecular weight by utilizing the fact that a solution obtained by dissolving a solute in a pure liquid (pure solvent) becomes higher than the boiling point of the pure solvent. : Constant of a pure solvent, ω: weight of solute, M: molecular weight). Next, a powder of lead oxide containing metal lead and having an average oxidation rate of 85% (hereinafter, simply referred to as lead powder), 0.3% by weight of the above-mentioned lignin sulfonate powder with respect to the lead powder, and a lead powder 1.0% by weight of barium sulfate, 0.2% by weight of carbon with respect to lead powder, 10% by weight of ion-exchanged water with respect to lead powder, and 10.
A plurality of active material pastes were prepared by kneading each with 6% by weight of dilute sulfuric acid having a specific gravity of 1.260 (20 ° C.). Next, after filling each active material paste into a current collector made of a lattice,
After aging and drying, an unformed negative electrode plate was obtained. Next, one unformed negative electrode plate and two known paste-type unformed positive electrode plates were laminated via a separator to form an electrode plate group. Next, each electrode group was placed in a one-cell vinyl chloride container under a constant pressure. Next, an electrolytic solution composed of diluted sulfuric acid having a specific gravity of 1.225 (20 ° C.) was injected into the battery case. Then, electricity was supplied at 0.3 C for 18 hours in a water bath at 40 ° C. for 18 hours to form a battery case, and each negative electrode plate was completed in a state of being placed in each lead storage battery (1.5 Ah, 2 V).

【0008】次に負極板をそれぞれ内部に配置した各鉛
蓄電池を用いて試験を行った。まず、各鉛蓄電池をそれ
ぞれ5個づつ用意し、−15℃において5Cで低温高率
放電を行って、各電池の活物質利用率を測定し、その標
準偏差を調べた。なお活物質利用率(%)は、[放電電
気量(Ah)×3.865(g/Ah)]/活物質量
(g)×100の式で求めた。また標準偏差は、下記の
式で求めた。
Next, a test was performed using each lead storage battery in which the negative electrode plate was disposed. First, five lead-acid batteries were prepared, and a low-temperature, high-rate discharge was performed at -15 ° C. at 5 C. The active material utilization of each battery was measured, and its standard deviation was examined. The active material utilization rate (%) was determined by the formula of [electric discharge amount (Ah) × 3.865 (g / Ah)] / active material amount (g) × 100. The standard deviation was determined by the following equation.

【0009】[0009]

【数1】 図1はその測定結果を示している。本図より、リグニン
スルホン酸塩の平均分子量を4000〜10000と
し、スルホン化率90%以上にすると、低温での高率放
電容量のバラツキを抑制できるのが分かる。これは、平
均分子量を4000〜10000と小さくして、スルホ
ン化率を90%以上に高めると、スルホン基がリグニン
スルホン酸塩の表面に偏って存在することになり、これ
によりリグニンスルホン酸塩の界面活性作用が向上し
て、リグニンスルホン酸塩の活物質中への分散性が高く
なるためである。
(Equation 1) FIG. 1 shows the measurement results. From this figure, it can be seen that when the average molecular weight of the lignin sulfonate is 4000 to 10000 and the sulfonation ratio is 90% or more, the variation in the high-rate discharge capacity at low temperatures can be suppressed. This is because when the average molecular weight is reduced to 4000 to 10000 and the sulfonation ratio is increased to 90% or more, the sulfone groups are present unevenly on the surface of the lignin sulfonate. This is because the surface activity is improved and the dispersibility of the lignin sulfonate in the active material is increased.

【0010】次に鉛粉に対するリグニンスルホン酸塩粉
末の量を変え、その他はリグニンスルホン酸塩の平均分
子量を5000とし、スルホン化率90%として、上述
と同じ方法でリグニンスルホン酸塩粉末の量が異なる種
々の負極板を内部に配置した鉛蓄電池を作った。そし
て、各電池を日本蓄電池工業会規格SBA1003の効
率放電特性に準じる37.5A(−15℃)で低温高率
放電を行って、各電池の活物質利用率を測定して、リグ
ニンスルホン酸塩粉末の量と活物質利用率との関係を調
べた。図2はその測定結果を示している。本図より、鉛
粉に対するリグニンスルホン酸塩粉末の量を0.1〜
0.5重量%とすると、活物質利用率が高くなるのが分
る。リグニンスルホン酸塩粉末の量が0.1重量%を下
回ると、十分に活物質の防縮効果を得ることができず活
物質利用率が低下する。また、リグニンスルホン酸塩粉
末の量が0.5重量%を超えても、活物質利用率が低下
する。これは、充電時のPb2+が還元されて析出する際
にリグニンスルホン酸塩が電析面の活性点を覆いすぎ
て、放電を阻害するためであると考えられる。
Next, the amount of the ligninsulfonate powder was changed with respect to the lead powder, and the average molecular weight of the ligninsulfonate was set to 5,000 and the sulfonation ratio was set to 90% in the other cases. A lead-acid battery having various negative electrode plates arranged inside was made. Then, each battery was discharged at a low temperature and a high rate at 37.5 A (−15 ° C.) in accordance with the efficiency discharge characteristics of Japan Storage Battery Manufacturers Association Standard SBA1003, and the active material utilization rate of each battery was measured. The relationship between the amount of powder and the active material utilization was investigated. FIG. 2 shows the measurement results. From this figure, the amount of the lignin sulfonate powder with respect to the lead powder is 0.1 to
It can be seen that when the content is 0.5% by weight, the active material utilization rate increases. When the amount of the lignin sulfonate powder is less than 0.1% by weight, the shrinkage-preventing effect of the active material cannot be sufficiently obtained, and the utilization rate of the active material decreases. Also, when the amount of the lignin sulfonate powder exceeds 0.5% by weight, the utilization rate of the active material decreases. This is considered to be because the ligninsulfonate excessively covers the active sites on the electrodeposited surface when Pb 2+ is reduced and deposited during charging, thereby inhibiting discharge.

【0011】[0011]

【発明の効果】本発明では、平均分子量を4000〜1
0000と小さくして、スルホン化率を90%以上に高
めているので、スルホン基がリグニンスルホン酸塩の表
面に偏って存在している。そのため、リグニンスルホン
酸塩の界面活性作用が向上して、リグニンスルホン酸塩
の活物質中への分散を十分に高めることができる。その
結果、低温での高率放電容量のバラツキを十分に抑制す
ることができる。
According to the present invention, the average molecular weight is 4,000 to 1,
Since it is as small as 0000 and the sulfonation ratio is increased to 90% or more, the sulfone groups are present unevenly on the surface of the lignin sulfonate. Therefore, the surface activity of the lignin sulfonate is improved, and the dispersion of the lignin sulfonate in the active material can be sufficiently increased. As a result, it is possible to sufficiently suppress the variation in the high-rate discharge capacity at a low temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 リグニンスルホン酸塩の平均分子量及びスル
ホン化率と、低温高率放電容量との関係を示す図であ
る。
FIG. 1 is a graph showing the relationship between the average molecular weight and sulfonation ratio of lignin sulfonate and low-temperature high-rate discharge capacity.

【図2】 鉛粉に対するリグニンスルホン酸塩の量と活
物質利用率との関係を示す図である。
FIG. 2 is a graph showing the relationship between the amount of lignin sulfonate relative to lead powder and the utilization rate of active material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活物質層中にリグニンスルホン酸塩が分
散して含有されてなる鉛蓄電池用負極板において、 前記リグニンスルホン酸塩は、平均分子量が4000〜
10000であり、しかもスルホン化率が90%以上で
あることを特徴とする鉛蓄電池用負極板。
1. A negative electrode plate for a lead storage battery in which a ligninsulfonate is dispersed and contained in an active material layer, wherein the ligninsulfonate has an average molecular weight of 4,000 to 4,000.
A negative electrode plate for a lead storage battery, wherein the negative electrode plate is 10,000 and the sulfonation ratio is 90% or more.
【請求項2】 前記リグニンスルホン酸塩は、前記活物
質層の主原料である鉛粉に対して0.1〜0.5重量%
含有されていることを特徴とする請求項1に記載の鉛蓄
電池用負極板。
2. The lignin sulfonate is contained in an amount of 0.1 to 0.5% by weight based on lead powder as a main raw material of the active material layer.
The negative electrode plate for a lead storage battery according to claim 1, wherein the negative electrode plate is contained.
JP30279996A 1996-11-14 1996-11-14 Anode plate for lead-acid battery Expired - Fee Related JP3385879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30279996A JP3385879B2 (en) 1996-11-14 1996-11-14 Anode plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30279996A JP3385879B2 (en) 1996-11-14 1996-11-14 Anode plate for lead-acid battery

Publications (2)

Publication Number Publication Date
JPH10144305A true JPH10144305A (en) 1998-05-29
JP3385879B2 JP3385879B2 (en) 2003-03-10

Family

ID=17913260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30279996A Expired - Fee Related JP3385879B2 (en) 1996-11-14 1996-11-14 Anode plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JP3385879B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273367A (en) * 2006-03-31 2007-10-18 Shin Kobe Electric Mach Co Ltd Lead-acid storage battery
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2015088379A (en) * 2013-10-31 2015-05-07 株式会社Gsユアサ Lead storage battery
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
CN107615535A (en) * 2015-05-29 2018-01-19 株式会社杰士汤浅国际 The manufacture method of lead accumulator and lead accumulator
WO2018199124A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid storage battery
US10790501B2 (en) 2014-05-26 2020-09-29 Gs Yuasa International Ltd. Lead-acid battery
WO2021060324A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Negative electrode plate for lead storage battery and lead storage battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413703B2 (en) * 2014-11-28 2018-10-31 株式会社Gsユアサ Lead acid battery and negative electrode plate thereof
CN107408702B (en) 2015-03-30 2020-07-14 株式会社杰士汤浅国际 Lead-acid battery
JP6649690B2 (en) * 2015-03-30 2020-02-19 株式会社Gsユアサ Lead storage battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273367A (en) * 2006-03-31 2007-10-18 Shin Kobe Electric Mach Co Ltd Lead-acid storage battery
JP2008152955A (en) * 2006-12-14 2008-07-03 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2015088379A (en) * 2013-10-31 2015-05-07 株式会社Gsユアサ Lead storage battery
US10790501B2 (en) 2014-05-26 2020-09-29 Gs Yuasa International Ltd. Lead-acid battery
CN107615535A (en) * 2015-05-29 2018-01-19 株式会社杰士汤浅国际 The manufacture method of lead accumulator and lead accumulator
CN107615535B (en) * 2015-05-29 2021-01-12 株式会社杰士汤浅国际 Lead-acid battery and method for manufacturing lead-acid battery
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
WO2018199124A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid storage battery
JPWO2018199124A1 (en) * 2017-04-28 2020-03-12 株式会社Gsユアサ Lead storage battery
WO2021060324A1 (en) 2019-09-27 2021-04-01 株式会社Gsユアサ Negative electrode plate for lead storage battery and lead storage battery

Also Published As

Publication number Publication date
JP3385879B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
EP0607138B1 (en) High performance positive electrode for a lead-acid battery
EP0352115B1 (en) Lead-acid battery
JP3385879B2 (en) Anode plate for lead-acid battery
CN107681130A (en) A kind of preparation method of the lithium sulfur battery anode material of solid electrolyte
CN105845898A (en) Lead-carbon battery negative plate and preparation method therefor
JPH11111267A (en) Manufacture of lithium ton secondary battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2005025955A (en) Lead acid battery and its manufacturing method
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH0414758A (en) Lead-acid accumulator
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
KR100342198B1 (en) Method for producing the positive plate of a lead battery
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP3503143B2 (en) Anode plate for sealed lead-acid battery
JP3038995B2 (en) Lead storage battery
JP2000036305A (en) Plate for lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2007035496A (en) Chemical formation method of lead-acid storage battery container
CN111628173A (en) Method for improving charging efficiency of lead-acid storage battery
JP2009231014A (en) Manufacturing method of positive electrode active material paste for lead-acid storage battery, and positive electrode plate for lead-acid storage battery using the paste
JP2000182615A (en) Lead-acid battery
JPH10172543A (en) Sealed lead-acid battery
CN115188948A (en) High-cost-performance high-rate battery negative electrode active material and preparation method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees