JPH11111267A - Manufacture of lithium ton secondary battery - Google Patents

Manufacture of lithium ton secondary battery

Info

Publication number
JPH11111267A
JPH11111267A JP9268405A JP26840597A JPH11111267A JP H11111267 A JPH11111267 A JP H11111267A JP 9268405 A JP9268405 A JP 9268405A JP 26840597 A JP26840597 A JP 26840597A JP H11111267 A JPH11111267 A JP H11111267A
Authority
JP
Japan
Prior art keywords
irreversible capacity
charge
negative electrode
charging
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9268405A
Other languages
Japanese (ja)
Other versions
JP3899614B2 (en
Inventor
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26840597A priority Critical patent/JP3899614B2/en
Publication of JPH11111267A publication Critical patent/JPH11111267A/en
Application granted granted Critical
Publication of JP3899614B2 publication Critical patent/JP3899614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a stable SET on a negative electrode surface, reduce irreversible capacity, and improve a cycle characteristic by performing first time charge at least under one condition among charge in a cooling atmosphere and low electric current charge, and forming an SEI coating film having specific capacitance on the negative electrode surface. SOLUTION: When a charging time temperature is lowered from the relationship between the charging time temperature and irreversible capacity, the irreversible capacity can be reduced. Therefore, it is effective to perform first time charge in a cooling atmosphere, that is, at a low temperature not more than 20 deg.C or perform charge by a low electric current not more than 1 C. The irreversible capacity sharply reduces when capacitance by an SET is not more than 0.4 mF/cm<2> from the relationship between the capacitance of the SET and the irreversible capacity. Then, an SEI coating film having capacitance not more than 0.4 mF/cm<2> is formed on a nagative electrode surface, a quantity of the SET formed on the negative electrode surface reduces, and the irreversible capacity is reduced, and since the generating SET is stable, a cycle characteristic can also be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン2
次電池の製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an improvement in a method for manufacturing a secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン2次電池の負極表面に
は、通常SEI(Solid Electrolyte
Interface)が形成されている。このSEI
は、主として第1回目の充電時に負極表面に形成され
る。このSEIは、Li2OやLi2CO3、LiF等の
リチウム化合物であるため、ここに消費されたリチウム
イオンは充電容量には寄与できず、初回充電時の不可逆
容量すなわち充電容量と放電容量との差が増大すること
になる。この不可逆容量はSEIの形成量が多いほど大
きくなる。このため、負極表面に形成されるSEIの量
はなるべく少なくするのが望ましい。
2. Description of the Related Art SEI (Solid Electrolyte) is usually provided on the surface of a negative electrode of a lithium ion secondary battery.
(Interface) is formed. This SEI
Is mainly formed on the surface of the negative electrode during the first charging. Since this SEI is a lithium compound such as Li 2 O, Li 2 CO 3 , and LiF, the lithium ions consumed here cannot contribute to the charge capacity, and the irreversible capacity at the time of the first charge, ie, the charge capacity and the discharge capacity. Will increase. This irreversible capacity increases as the amount of SEI formed increases. Therefore, it is desirable to minimize the amount of SEI formed on the negative electrode surface.

【0003】図5には、20℃において充放電電流(1
/3)Cの定電流で充放電を繰り返したときの充放電回
数と不可逆容量との関係が示される。図5に示されるよ
うに、不可逆容量は1回目の充放電時が最も高くなって
いる。これは上述したように、1回目の充電時に負極表
面に形成されるSEIの量が最も多いからである。
FIG. 5 shows a charge / discharge current (1
/ 3) The relationship between the number of times of charging and discharging and the irreversible capacity when charging and discharging are repeated at a constant current of C is shown. As shown in FIG. 5, the irreversible capacity is highest during the first charge / discharge. This is because, as described above, the amount of SEI formed on the negative electrode surface during the first charging is the largest.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のリチウ
ムイオン2次電池の製造方法においては、第1回目の充
電を、室温(20〜25℃)で行っている。また、初回
の充電時間を短縮するために、充電電流も(1/3)C
〜1C程度で行われることが多い。ここで1Cは1時間
率すなわち1時間で満充電とできる電流値を表し、(1
/3)Cは1/3時間率すなわち1/3時間で満充電で
きる電流値を表している。このように、初回充電を常温
でしかも1C以上の高い電流値で行った場合、負極表面
に形成されるSEIの量が増えると共に、形成されるS
EIがポーラスなものとなる。このため、2回目以降の
充電時にもSEIが形成され、2回目以降の不可逆容量
が増えるという問題があった。また、SEIの膜厚が厚
くなり、負極の電気抵抗が増大するという問題もあっ
た。さらに、常温でしかも高い電流値で充電した場合に
負極表面に形成されるSEIでは、2次電池の放電中に
そのSEI中のリチウムも放電し、SEIが分解されて
安定なSEIを得ることができない。このため、充電の
度にSEIが負極表面に形成され、サイクル特性が低下
するという問題もあった。
However, in the conventional method for manufacturing a lithium ion secondary battery, the first charging is performed at room temperature (20 to 25 ° C.). Also, in order to shorten the initial charging time, the charging current is also (1/3) C
It is often performed at about 1C. Here, 1C represents a current value that can be fully charged in one hour, that is, one hour, and (1
/ 3) C represents a current value that can be fully charged at a 1/3 hour rate, that is, 1/3 hour. As described above, when the initial charge is performed at normal temperature and at a high current value of 1 C or more, the amount of SEI formed on the negative electrode surface increases and the S
The EI becomes porous. For this reason, there is a problem that SEI is also formed at the time of the second and subsequent charging, and the irreversible capacity at the second and subsequent charging increases. In addition, there is also a problem that the thickness of the SEI is increased and the electric resistance of the negative electrode is increased. Further, in the case of SEI formed on the negative electrode surface when charged at normal temperature and at a high current value, lithium in the SEI is also discharged during discharging of the secondary battery, and SEI is decomposed to obtain stable SEI. Can not. For this reason, there is also a problem that SEI is formed on the surface of the negative electrode every time the battery is charged, and the cycle characteristics deteriorate.

【0005】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、負極表面に安定なSEIを形
成でき、不可逆容量を低減でき、サイクル特性の向上が
図れる、リチウムイオン2次電池の製造方法を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object the purpose of forming a stable SEI on the surface of a negative electrode, reducing the irreversible capacity, and improving the cycle characteristics. An object of the present invention is to provide a method for manufacturing a battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、初回充電を、冷却雰囲気での充電及び1
C以下の低電流充電のうちの少なくとも一方の条件で行
い、負極表面に静電容量0.4mF/cm2以下のSE
I被膜を形成することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides an initial charging method comprising: charging in a cooling atmosphere;
C is performed under at least one of low-current charging conditions of not more than C, and an SE having an electrostatic capacity of 0.4 mF / cm 2 or less is formed on the negative electrode surface.
It is characterized by forming an I film.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)を、説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below.

【0008】本発明者らは、初回充電時に負極表面に形
成されるSEIの量を減らすと共に、この時に生じるS
EIを安定なものとし、2サイクル目以降に負極表面に
形成されるSEIを減らすために検討を進めた。その結
果、初回充電を、冷却された雰囲気すなわち低温で実施
したり、あるいは1C以下の低電流で充電することが有
効であることを見いだした。
The present inventors have reduced the amount of SEI formed on the surface of the negative electrode during the first charge,
Investigations were made to make the EI stable and to reduce the SEI formed on the negative electrode surface after the second cycle. As a result, it has been found that it is effective to perform the initial charging in a cooled atmosphere, that is, at a low temperature, or to charge the battery at a low current of 1 C or less.

【0009】上記検討に使用したリチウムイオン2次電
池は以下のものである。天然黒鉛:PVDF=9:1の
混合物と、溶媒としてNMPを用い、これらによりペー
ストを作成した後このペーストを銅箔上に塗布乾燥し、
8mg/cm2の負極電極を得た。この負極電極を、セ
パレータを介して対極であるリチウム箔と組み合わせた
後、1mol/l−LiBF4を含むPC:EC:DE
C=2:3:5の電解液に浸し、負極の充放電特性を調
べた。
The lithium ion secondary batteries used in the above study are as follows. A mixture of natural graphite: PVDF = 9: 1 and NMP as a solvent was used to prepare a paste, and then the paste was applied to a copper foil and dried.
A negative electrode of 8 mg / cm 2 was obtained. After combining this negative electrode with a lithium foil as a counter electrode via a separator, PC: EC: DE containing 1 mol / l-LiBF 4
It was immersed in an electrolytic solution of C = 2: 3: 5, and the charge / discharge characteristics of the negative electrode were examined.

【0010】図1には、充電時の温度と不可逆容量との
関係が示される。図1においては、充放電電流を(1/
3)Cの一定電流とし、各温度毎に2サイクル充放電を
行った後、更に20℃として3サイクル充放電させたと
きの不可逆容量の合計が縦軸に示されている。図1よ
り、充電時の温度を低下させると、不可逆容量が低減で
きることがわかる。
FIG. 1 shows the relationship between the temperature during charging and the irreversible capacity. In FIG. 1, the charge / discharge current is (1 /
3) The total irreversible capacity when charging / discharging at a constant current of C, performing 2 cycles of charging and discharging at each temperature, and further charging and discharging at 20 ° C. for 3 cycles is shown on the vertical axis. FIG. 1 shows that the irreversible capacity can be reduced by lowering the temperature during charging.

【0011】図2には、充電電流の大きさと不可逆容量
との関係が示される。図2においては、充電時の温度を
20℃とし、始め2サイクルの充電電流を変化させ、そ
の後3サイクルを(1/3)Cの一定電流で充放電させ
たときの不可逆容量の合計が縦軸に示されている。図2
からわかるように、始め2サイクルの充電電流の値が低
い方が不可逆容量が低減していることがわかる。図2の
結果より、初回の充電電流としては、1C以下の低電流
で充電するのが望ましいことがわかる。
FIG. 2 shows the relationship between the magnitude of the charging current and the irreversible capacity. In FIG. 2, the total irreversible capacity when the charging temperature is 20 ° C., the charging current in the first two cycles is changed, and then the charging and discharging in the three cycles with a constant current of (1 /) C is vertical. Shown on the axis. FIG.
As can be seen from the graph, the lower the value of the charging current in the first two cycles, the lower the irreversible capacity. From the results shown in FIG. 2, it can be seen that it is desirable to charge with a low current of 1 C or less as the initial charging current.

【0012】次に、初回充電時の温度条件を更に詳細に
検討した。図3には、初回充電の温度条件と負極に形成
されたSEIの静電容量との関係が示される。負極表面
に形成されるSEIが多いほどその静電容量も上昇する
ものと考えられる。この静電容量は、インピーダンス測
定を行い、コール−コールプロット法により求めた。
Next, the temperature conditions at the time of the first charge were examined in further detail. FIG. 3 shows the relationship between the temperature condition of the first charge and the capacitance of the SEI formed on the negative electrode. It is considered that the more SEI formed on the surface of the negative electrode, the higher the capacitance thereof. The capacitance was measured by impedance measurement and determined by the Cole-Cole plot method.

【0013】また、図4には、上述したSEIの静電容
量と不可逆容量との関係が示される。図4からわかるよ
うに、SEIによる静電容量が0.4mF/cm2以下
の場合に不可逆容量が大きく低下することがわかる。こ
の0.4mF/cm2の静電容量は、初回充電時の温度
を20℃とした場合に生じるSEIの静電容量であるこ
とが図3からわかる。以上より、初回充電は、20℃以
下の冷却雰囲気で行うのが望ましい。
FIG. 4 shows the relationship between the above-mentioned SEI capacitance and irreversible capacitance. As can be seen from FIG. 4, the irreversible capacitance is significantly reduced when the capacitance based on SEI is 0.4 mF / cm 2 or less. FIG. 3 shows that this 0.4 mF / cm 2 capacitance is the SEI capacitance generated when the temperature at the time of the first charge is set to 20 ° C. As described above, it is desirable that the initial charging be performed in a cooling atmosphere of 20 ° C. or less.

【0014】初回充電を低温で行う場合の効果を確認す
るために、−20℃の温度で充電電流を(1/3)Cと
し、放電電流も(1/3)Cとして2サイクル充放電を
行った。この後更に20℃で(1/3)Cの充放電を3
サイクル行った場合の不可逆容量は42mAh/gとな
り、不可逆容量の低下が確認された。また、負極表面に
形成されるSEIの安定性を調べるために、初期充電を
20℃、(1/3)Cの充電電流で行ったリチウムイオ
ン2次電池と、−20℃、(1/3)Cの充電電流で2
サイクル充放電を行った後20℃の温度において(1/
3)Cの充放電電流で3サイクル充放電を行わせた本発
明の製造方法に係るリチウムイオン2次電池とを使用
し、これら2種類のリチウムイオン2次電池を5日間放
電状態で放置した。この後、再度20℃で(1/3)C
の充放電を行い、3サイクル合計の不可逆容量を測定し
た。この結果上記20℃の温度で(1/3)Cの充電電
流で初回充電を行った従来例では、不可逆容量が16m
Ah/gであったのに対し、本発明に係る製造方法によ
って製造したものについては8mAh/gとなった。こ
のように、本発明に係る製造方法により製造したリチウ
ムイオン2次電池の方が不可逆容量が低下するのは、安
定したSEIが生成しているためと考えられ、サイクル
特性の向上が図れることがわかった。
In order to confirm the effect of performing the initial charging at a low temperature, the charging current is set to (1/3) C and the discharging current is set to (1/3) C at a temperature of -20.degree. went. Thereafter, charge and discharge of (1/3) C at 20 ° C. is further performed for 3 times.
The irreversible capacity after the cycle was performed was 42 mAh / g, and a decrease in the irreversible capacity was confirmed. In addition, in order to investigate the stability of SEI formed on the negative electrode surface, a lithium ion secondary battery in which initial charging was performed at 20 ° C. and a charging current of (1 /) C was used. ) 2 with charging current of C
After performing cycle charge and discharge, at a temperature of 20 ° C., (1/1 /
3) Using a lithium ion secondary battery according to the manufacturing method of the present invention in which charge / discharge was performed for 3 cycles with a charge / discharge current of C, these two types of lithium ion secondary batteries were left in a discharged state for 5 days. . Then, again at 20 ° C. (1/3) C
, And the irreversible capacity for a total of three cycles was measured. As a result, in the conventional example in which the first charging was performed at the above-mentioned temperature of 20 ° C. and the charging current of (1 /) C, the irreversible capacity was 16 m.
Ah / g was 8 mAh / g for the one manufactured by the manufacturing method according to the present invention. As described above, the reason that the irreversible capacity of the lithium ion secondary battery manufactured by the manufacturing method according to the present invention is lower than that of the lithium ion secondary battery is considered to be due to the generation of stable SEI, and the cycle characteristics can be improved. all right.

【0015】以上の通り、リチウムイオン2次電池を製
造する際には、20℃以下の冷却雰囲気、あるいは1C
以下の低電流で初回の充電を行うことが負極表面に形成
されるSEIの量の低減と生じるSEIの安定化に有効
であることを見いだせた。
As described above, when manufacturing a lithium ion secondary battery, a cooling atmosphere of 20 ° C. or less
It has been found that performing the initial charging at the following low current is effective for reducing the amount of SEI formed on the negative electrode surface and stabilizing the generated SEI.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
負極表面に形成されるSEIの量が低減し、不可逆容量
を減少させることができるとともに、生じるSEIが安
定しているため、サイクル特性の向上も図ることができ
る。
As described above, according to the present invention,
The amount of SEI formed on the negative electrode surface is reduced, the irreversible capacity can be reduced, and the generated SEI is stable, so that the cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 初回充電時の温度と不可逆容量との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a temperature at the time of first charging and an irreversible capacity.

【図2】 初回充電時の充電電流と不可逆容量との関係
を示す図である。
FIG. 2 is a diagram showing a relationship between charging current and irreversible capacity at the time of initial charging.

【図3】 初回充電時の温度と、その際に発生するSE
Iの静電容量との関係を示す図である。
Fig. 3 Temperature at first charging and SE generated at that time
FIG. 3 is a diagram illustrating a relationship between I and capacitance.

【図4】 SEIの静電容量と不可逆容量との関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the capacitance of SEI and the irreversible capacitance.

【図5】 リチウムイオン2次電池における充放電回数
と不可逆容量との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the number of times of charge and discharge and the irreversible capacity in a lithium ion secondary battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 初回充電を、冷却雰囲気での充電及び1
C以下の低電流充電のうちの少なくとも一方の条件で行
い、負極表面に静電容量0.4mF/cm2以下のSE
I被膜を形成することを特徴とするリチウムイオン2次
電池の製造方法。
1. An initial charge is performed by charging in a cooling atmosphere and
C is performed under at least one of low-current charging conditions of not more than C, and an SE having an electrostatic capacity of 0.4 mF / cm 2 or less is formed on the negative electrode surface.
A method for producing a lithium ion secondary battery, comprising forming an I film.
JP26840597A 1997-10-01 1997-10-01 Method for manufacturing lithium ion secondary battery Expired - Fee Related JP3899614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26840597A JP3899614B2 (en) 1997-10-01 1997-10-01 Method for manufacturing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26840597A JP3899614B2 (en) 1997-10-01 1997-10-01 Method for manufacturing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH11111267A true JPH11111267A (en) 1999-04-23
JP3899614B2 JP3899614B2 (en) 2007-03-28

Family

ID=17458028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26840597A Expired - Fee Related JP3899614B2 (en) 1997-10-01 1997-10-01 Method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3899614B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997962A2 (en) * 1998-10-28 2000-05-03 Space Systems / Loral, Inc. A lithium-ion battery charge control method
WO2001006578A2 (en) * 1999-07-16 2001-01-25 Quallion, Llc Lithium thin film lamination technology on electrode to increase battery capacity
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
EP1120851A3 (en) * 2000-01-27 2003-07-09 New Billion Investments Limited A rechargeable solid state chromium-fluorine-lithium electric battery
US6761744B1 (en) 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
JP2010212253A (en) * 2010-05-17 2010-09-24 Sony Corp Charging method of nonaqueous electrolyte secondary battery
US8445137B1 (en) 2002-11-27 2013-05-21 Quallion Llc Primary battery having sloped voltage decay
CN103715451A (en) * 2012-10-09 2014-04-09 丰田自动车株式会社 Nonaqueous electrolytic solution secondary battery and method of manufacturing the battery
JP2014229563A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Method for manufacturing power storage device
JP2017004776A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
WO2017002615A1 (en) * 2015-07-01 2017-01-05 Necエナジーデバイス株式会社 Method for manufacturing lithium-ion secondary battery and method for evaluating lithium-ion secondary battery
CN107492682A (en) * 2016-06-13 2017-12-19 深圳市雄韬电源科技股份有限公司 Lead-acid accumulator is without recirculated cooling water internal formation process
JP2019083154A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery, lithium ion secondary battery, and capacity recovering agent for lithium ion secondary battery
JP2019096553A (en) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 Method of manufacturing non-aqueous electrolyte secondary battery
JP2020155234A (en) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 Coating formation method
JP2021511625A (en) * 2018-01-12 2021-05-06 イオントラ リミテッド ライアビリティ カンパニー Equipment, systems and methods for dendrite and unevenness control in electrochemical structures
US11735736B2 (en) 2014-01-23 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, and electronic device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997962A2 (en) * 1998-10-28 2000-05-03 Space Systems / Loral, Inc. A lithium-ion battery charge control method
EP0997962A3 (en) * 1998-10-28 2002-04-10 Space Systems / Loral, Inc. A lithium-ion battery charge control method
US6761744B1 (en) 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
WO2001006578A2 (en) * 1999-07-16 2001-01-25 Quallion, Llc Lithium thin film lamination technology on electrode to increase battery capacity
WO2001006578A3 (en) * 1999-07-16 2001-10-11 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
EP1120851A3 (en) * 2000-01-27 2003-07-09 New Billion Investments Limited A rechargeable solid state chromium-fluorine-lithium electric battery
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP4608735B2 (en) * 2000-05-16 2011-01-12 ソニー株式会社 Non-aqueous electrolyte secondary battery charging method
US8445137B1 (en) 2002-11-27 2013-05-21 Quallion Llc Primary battery having sloped voltage decay
JP2010212253A (en) * 2010-05-17 2010-09-24 Sony Corp Charging method of nonaqueous electrolyte secondary battery
CN103715451A (en) * 2012-10-09 2014-04-09 丰田自动车株式会社 Nonaqueous electrolytic solution secondary battery and method of manufacturing the battery
JP2014229563A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Method for manufacturing power storage device
US11735736B2 (en) 2014-01-23 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, and electronic device
JP2017004776A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
US9960459B2 (en) 2015-06-11 2018-05-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
CN107851850A (en) * 2015-07-01 2018-03-27 Nec能源元器件株式会社 The method for manufacturing the method for lithium rechargeable battery and assessing lithium rechargeable battery
US11355783B2 (en) 2015-07-01 2022-06-07 Envision Aesc Japan Ltd. Method of manufacturing a lithium-ion secondary battery
WO2017002615A1 (en) * 2015-07-01 2017-01-05 Necエナジーデバイス株式会社 Method for manufacturing lithium-ion secondary battery and method for evaluating lithium-ion secondary battery
US11870038B2 (en) 2015-07-01 2024-01-09 Aesc Japan Ltd. Method of manufacturing a lithium-ion secondary battery
CN107492682A (en) * 2016-06-13 2017-12-19 深圳市雄韬电源科技股份有限公司 Lead-acid accumulator is without recirculated cooling water internal formation process
CN107492682B (en) * 2016-06-13 2019-12-17 深圳市雄韬电源科技股份有限公司 Internal formation process of lead-acid storage battery without circulating cooling water
JP2019083154A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery, lithium ion secondary battery, and capacity recovering agent for lithium ion secondary battery
US11961964B2 (en) 2017-10-31 2024-04-16 Toyota Jidosha Kabushiki Kaisha Method of producing lithium-ion secondary battery, lithium-ion secondary battery, and method of using zwitterionic compound
JP2019096553A (en) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 Method of manufacturing non-aqueous electrolyte secondary battery
JP2021511625A (en) * 2018-01-12 2021-05-06 イオントラ リミテッド ライアビリティ カンパニー Equipment, systems and methods for dendrite and unevenness control in electrochemical structures
JP2020155234A (en) * 2019-03-18 2020-09-24 トヨタ自動車株式会社 Coating formation method

Also Published As

Publication number Publication date
JP3899614B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3899614B2 (en) Method for manufacturing lithium ion secondary battery
US11824172B2 (en) Method and system for producing nonaqueous electrolyte secondary battery
KR101951637B1 (en) Negative electrode for secondary battery, method thereof and lithium secondary batteries fabricated by using the same
JP2003217575A (en) Lithium ion secondary battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
KR20110001934A (en) Non-balanced lithium-ion microbattery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR100359605B1 (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
JP7079687B2 (en) Active material layer, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
US6740453B2 (en) Electrochemical cell with carbonaceous material and molybdenum carbide as anode
EP3916854B1 (en) Electrode plate and battery
CN108987803B (en) Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof
KR100571457B1 (en) Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same
TW202119689A (en) Non-aqueous electrolyte solution and lithium metal secondary battery and lithium ion secondary battery including the same
JP2000067865A (en) Negative electrode for lithium ion secondary battery
KR100398468B1 (en) Sulfur positive electrode for lithium battery and it&#39;s fabrication method
JP2002100409A (en) Nonaqueous secondary battery
US20230299344A1 (en) Lithium metal secondary battery and gel electrolyte
TWI847940B (en) Aluminum battery
JP7022665B2 (en) Negative electrode active material layer, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101924072B1 (en) Electrolyte for lithium ion capacitor and lithium ion capacitor including the same
EP4170771A1 (en) Lithium ion battery and electrolyte for use therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees