WO2001006578A2 - Lithium thin film lamination technology on electrode to increase battery capacity - Google Patents
Lithium thin film lamination technology on electrode to increase battery capacity Download PDFInfo
- Publication number
- WO2001006578A2 WO2001006578A2 PCT/US2000/019348 US0019348W WO0106578A2 WO 2001006578 A2 WO2001006578 A2 WO 2001006578A2 US 0019348 W US0019348 W US 0019348W WO 0106578 A2 WO0106578 A2 WO 0106578A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- electrode
- utilizing
- active material
- onto
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 51
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000003475 lamination Methods 0.000 title abstract description 5
- 238000005516 engineering process Methods 0.000 title abstract description 4
- 239000010409 thin film Substances 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000011149 active material Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- 239000007772 electrode material Substances 0.000 claims abstract description 6
- 239000011230 binding agent Substances 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- -1 polyethylene Terephthalate Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims 11
- 239000002985 plastic film Substances 0.000 claims 2
- 239000005026 oriented polypropylene Substances 0.000 claims 1
- 230000002427 irreversible effect Effects 0.000 abstract description 13
- 239000004033 plastic Substances 0.000 abstract description 7
- 229920003023 plastic Polymers 0.000 abstract description 7
- 238000000576 coating method Methods 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002114 nanocomposite Substances 0.000 abstract description 4
- 239000007784 solid electrolyte Substances 0.000 abstract description 2
- 229920002554 vinyl polymer Polymers 0.000 abstract description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0414—Methods of deposition of the material by screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to a method and apparatus for reducing
- irreversible capacity may be due to additional reasons, for example, cavities in the active material of the electrode structure may need to be initially filled
- lithium ions before lithium ion insertion can proceed.
- the present invention is directed to a method and apparatus for
- deposited lithium serves to form the initial SEI layer before cycling to thus
- a typical electrode structure is comprised of a conducting metal
- negative electrode consists of a copper substrate coated with a mixture of
- PVDF polyvinyl di-fluoride
- a lithium layer is deposited onto or into the
- lithium metal is first
- the carrier preferably comprises a long strip of plastic
- the substrate could be one of several materials such as
- ortho-polypropylene OPP
- PET Polyethylene Terephthalate
- Lithium metal can be deposited onto
- Lithium is transferred onto or into the electrode active material by
- rollers or plates are heated in vacuum to about 120°C, or within the range of 25°C to 350°C.
- a pressure of 50 kg/cm 2 to 600 kg/cm 2 is applied to the rollers.
- roller pair or the plate pair is in the range of 10 cm/min. to 5 m/min.
- the method could be used for either single-sided coating or double-sided coating.
- both sides of the metal In the double-sided coating method, both sides of the metal
- the coated metal substrate are coated with active material.
- the coated metal substrate is
- the electrode structure i.e., the coated metal substrate.
- the thickness of lithium transferred onto the electrode structure can be any thickness of lithium transferred onto the electrode structure.
- Figure 1 shows the electrode structure coated with active material
- Figure 2 shows the structure of the film of lithium metal deposited
- Figure 3A shows the roller pair system that will be used to transfer
- Figure 3B shows the plate pair system that will be used to transfer
- Figure 4 shows the first cycle of an example negative electrode, a
- SiO nano-composite electrode that has not been laminated with lithium.
- the objective of this invention is to significantly reduce the
- Lithium is transferred to the electrode by lamination of lithium metal onto or into an
- This electrode structure has a metal conducting layer coated with an active material.
- an active material for example, negative active
- the lamination of lithium metal onto or into the electrode structure will reduce the amount
- Figure 1 shows the structure of an electrode (100), having a lithium coating (101 ) in accordance with the present invention.
- substrate (103) for negative electrodes is usually copper foil but other
- types of material such as a copper-plated polymer may be used.
- the substrate should not react with lithium
- the metal of the electrode may be coated with, for example, a mixture of graphite and silicon oxide (102). A suitable mixture of about
- lithium metal ( Figure 2, 201 ) In order to laminate lithium metal ( Figure 2, 201 ) to the electrode (100), the lithium (201 ) is deposited onto a carrier (202), which is then
- the carrier preferably comprises a long strip of plastic substrate.
- FIG. 3A details the process in which lithium will be transferred
- rollers or plates In addition, pressure will be applied to the rollers
- the lithium metal (201 ) will be laminated onto or into the
- FIG. 4 is a graph of the first cycle of a SiO nano-composite cell that has not been initially laminated with lithium metal. If the discharge curve is transposed along an imaginary axis, it is clear that there is a large initial irreversible capacity that must be reduced in order to increase battery capacity. While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and various could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/031,022 US6761744B1 (en) | 1999-07-16 | 2000-07-14 | Lithium thin film lamination technology on electrode to increase battery capacity |
AU61027/00A AU6102700A (en) | 1999-07-16 | 2000-07-14 | Lithium thin film lamination technology on electrode to increase battery capacity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14414699P | 1999-07-16 | 1999-07-16 | |
US60/144,146 | 1999-07-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001006578A2 true WO2001006578A2 (en) | 2001-01-25 |
WO2001006578A3 WO2001006578A3 (en) | 2001-10-11 |
Family
ID=22507283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/019348 WO2001006578A2 (en) | 1999-07-16 | 2000-07-14 | Lithium thin film lamination technology on electrode to increase battery capacity |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU6102700A (en) |
WO (1) | WO2001006578A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761744B1 (en) | 1999-07-16 | 2004-07-13 | Quallion Llc | Lithium thin film lamination technology on electrode to increase battery capacity |
EP1675207A1 (en) * | 2004-12-23 | 2006-06-28 | Commissariat à l'Energie Atomique | Structured electrolyte for microbattery |
FR2880198A1 (en) * | 2004-12-23 | 2006-06-30 | Commissariat Energie Atomique | Device for the storage of energy using a nanostructured electrode, for the fabrication of micro- batteries with improved life and stability |
US8445137B1 (en) | 2002-11-27 | 2013-05-21 | Quallion Llc | Primary battery having sloped voltage decay |
WO2016207722A1 (en) | 2015-06-22 | 2016-12-29 | King Abdullah University Of Science And Technology | Lithium batteries, anodes, and methods of anode fabrication |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL112907A (en) * | 1995-03-07 | 2000-08-31 | Univ Ramot | Lithium batteries having an anode with solid electrolyte interface |
CA2203490A1 (en) * | 1997-04-23 | 1998-10-23 | Hydro-Quebec | Ultra-thin solid lithium batteries and manufacturing process |
JPH10302839A (en) * | 1997-04-25 | 1998-11-13 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery, its separator, and their manufacture |
DE19839244A1 (en) * | 1997-08-30 | 1999-03-18 | Samsung Display Devices Co Ltd | Electrolyte for lithium ion battery |
JP3899614B2 (en) * | 1997-10-01 | 2007-03-28 | トヨタ自動車株式会社 | Method for manufacturing lithium ion secondary battery |
-
2000
- 2000-07-14 AU AU61027/00A patent/AU6102700A/en not_active Abandoned
- 2000-07-14 WO PCT/US2000/019348 patent/WO2001006578A2/en active Application Filing
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761744B1 (en) | 1999-07-16 | 2004-07-13 | Quallion Llc | Lithium thin film lamination technology on electrode to increase battery capacity |
US8445137B1 (en) | 2002-11-27 | 2013-05-21 | Quallion Llc | Primary battery having sloped voltage decay |
EP1675207A1 (en) * | 2004-12-23 | 2006-06-28 | Commissariat à l'Energie Atomique | Structured electrolyte for microbattery |
FR2880198A1 (en) * | 2004-12-23 | 2006-06-30 | Commissariat Energie Atomique | Device for the storage of energy using a nanostructured electrode, for the fabrication of micro- batteries with improved life and stability |
FR2880197A1 (en) * | 2004-12-23 | 2006-06-30 | Commissariat Energie Atomique | ELECTROLYTE STRUCTURE FOR MICROBATTERY |
WO2006070158A1 (en) * | 2004-12-23 | 2006-07-06 | Commissariat A L'energie Atomique | Nanostructured electrode for a micro-battery |
CN100452503C (en) * | 2004-12-23 | 2009-01-14 | 法国原子能委员会 | Structured electrolyte for microbattery |
US7829225B2 (en) | 2004-12-23 | 2010-11-09 | Commissariat a l′Energie Atomique | Nanostructured electrode for a microbattery |
US7939195B2 (en) | 2004-12-23 | 2011-05-10 | Commissariat A L'energie Atomique | Structured electrolyte for micro-battery |
WO2016207722A1 (en) | 2015-06-22 | 2016-12-29 | King Abdullah University Of Science And Technology | Lithium batteries, anodes, and methods of anode fabrication |
US10840539B2 (en) | 2015-06-22 | 2020-11-17 | King Abdullah University Of Science And Technology | Lithium batteries, anodes, and methods of anode fabrication |
Also Published As
Publication number | Publication date |
---|---|
AU6102700A (en) | 2001-02-05 |
WO2001006578A3 (en) | 2001-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6761744B1 (en) | Lithium thin film lamination technology on electrode to increase battery capacity | |
US12315873B2 (en) | Solid-state battery separator including low melt temperature inorganic electrolyte and method of fabricating the same | |
US11367864B2 (en) | Intermittently coated dry electrode for energy storage device and method of manufacturing the same | |
CN202259533U (en) | Pole piece of lithium ion battery and lithium ion battery | |
JP2007273459A (en) | TRANSFER FILM, ELECTRODE ELECTRODE FOR ELECTROCHEMICAL ELEMENT AND LITHIUM SECONDARY BATTERY | |
CN102303007A (en) | Method for coating electrode plate for lithium ion battery, electrode plate for lithium ion battery, and lithium ion battery | |
US20230197925A1 (en) | System and methods for a prelithiated electrode for an electrochemical cell | |
JP2010034218A (en) | Coater, coating method using the same, and manufacturing method of electrical accumulation device | |
CN114335432B (en) | Metal lithium belt, negative plate and battery | |
WO2001006578A2 (en) | Lithium thin film lamination technology on electrode to increase battery capacity | |
CN118367205A (en) | Solid lithium ion battery and preparation method thereof | |
JP3774980B2 (en) | Method for producing electrode for non-aqueous electrolyte secondary battery | |
WO2018155175A1 (en) | Secondary battery production method | |
EP1779459B1 (en) | Process for laminating components of an electrochemical cell | |
CN113013475A (en) | Laminated cell production process, laminated cell production system and laminated cell | |
CN116487597A (en) | Equipment and method for preparing current collector component | |
CN113921883A (en) | Apparatus for manufacturing all-solid-state battery and method for manufacturing all-solid-state battery | |
CN115513602B (en) | Manufacturing process of power battery containing interface management layer structure electrode | |
CN222146273U (en) | Composite negative plate, battery monomer, battery and electricity utilization device | |
CN113497278B (en) | Composite production device of solid-state energy storage equipment | |
JP2000348774A (en) | Manufacturing method of secondary battery | |
US20250167280A1 (en) | Methods and systems for laminating layers of solid-state batteries continuously or semi-continuously | |
JPH056775A (en) | Manufacturing method of solid secondary battery | |
CN120165118A (en) | Secondary battery and electronic device | |
CN118786554A (en) | Electrode assembly and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LS LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LS LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10031022 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |