JP2014229563A - Method for manufacturing power storage device - Google Patents

Method for manufacturing power storage device Download PDF

Info

Publication number
JP2014229563A
JP2014229563A JP2013110190A JP2013110190A JP2014229563A JP 2014229563 A JP2014229563 A JP 2014229563A JP 2013110190 A JP2013110190 A JP 2013110190A JP 2013110190 A JP2013110190 A JP 2013110190A JP 2014229563 A JP2014229563 A JP 2014229563A
Authority
JP
Japan
Prior art keywords
negative electrode
storage device
power storage
potential
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013110190A
Other languages
Japanese (ja)
Other versions
JP6044453B2 (en
Inventor
俊雄 小田切
Toshio Odagiri
俊雄 小田切
泰有 秋山
Yasunari Akiyama
泰有 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013110190A priority Critical patent/JP6044453B2/en
Publication of JP2014229563A publication Critical patent/JP2014229563A/en
Application granted granted Critical
Publication of JP6044453B2 publication Critical patent/JP6044453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which allows a power storage device to be manufactured in a short length of time while preventing Li deposition and an undesired reaction on a negative electrode.SOLUTION: A method for manufacturing a power storage device having a positive electrode, a negative electrode including at least SiO(0<x<2), and an electrolyte containing an additive agent for forming a film on SiOat a decomposition potential of 1.7 V(vsLi/Li) or below comprises: a first charging step of charging the power storage device at a first temperature at least until the potential of the negative electrode reaches the decomposition potential; and a second charging step of charging the power storage device at a second temperature higher than the first temperature at least for a predetermined period of time after the potential of the negative electrode reaches the decomposition potential.

Description

本発明は、蓄電装置の製造方法に関する。   The present invention relates to a method for manufacturing a power storage device.

リチウムイオン二次電池は、軽量、高容量であるため、携帯用電子機器等の電源として広く応用されるとともに、近年ハイブリッド自動車、電気自動車等に搭載される電源としても有力な候補に挙げられている。   Lithium-ion secondary batteries are lightweight and have high capacity, so they are widely applied as power sources for portable electronic devices, etc., and have recently been listed as promising candidates for power sources mounted in hybrid vehicles and electric vehicles. Yes.

リチウムイオン二次電池の負極活物質としては、電池の高容量化の観点から、リチウムと合金化する材料が用いられる。そのような材料の中でも、特に、従来使用されてきた炭素材料よりも理論容量の大きいSiO(0<x<2)が期待されている(特許文献1〜3)。 As the negative electrode active material of the lithium ion secondary battery, a material that is alloyed with lithium is used from the viewpoint of increasing the capacity of the battery. Among such materials, in particular, SiO x (0 <x <2) having a larger theoretical capacity than that of conventionally used carbon materials is expected (Patent Documents 1 to 3).

特開2011−249046号公報JP 2011-249046 A 特開2011−065841号公報JP 2011-065841 A 特開2012−209195号公報JP 2012-209195 A

ところで、生産効率の観点から、電池作製に掛かる時間を短縮することが望まれている。しかしながら、上述のSiOは、高抵抗なSiOを成分として含むため、高レートで初充電を行った場合、電圧降下によって負極電位が0V以下となり、Liが析出する問題がある。この問題を回避するために初充電を高温で行った場合、電解液の抵抗が下がるため、高レートで充電してもLiが析出し難くなるが、負極上で溶媒の分解反応などの好ましくない反応がおこる。このような反応は、電池の膨れ又は電解液等の汚染を招くため、電池自体が劣化する。したがって、SiOを負極活物質として使用した電池では、低温において低レートで初充電を行わざるを得ないため、電池製造に時間を要するのが現状であった。 By the way, from the viewpoint of production efficiency, it is desired to shorten the time required for battery production. However, since the above-mentioned SiO x contains high-resistance SiO 2 as a component, there is a problem that when initial charging is performed at a high rate, the negative electrode potential becomes 0 V or less due to a voltage drop and Li is deposited. In order to avoid this problem, when the initial charge is performed at a high temperature, the resistance of the electrolytic solution is lowered, so that Li does not easily precipitate even when charged at a high rate, but it is not preferable such as a decomposition reaction of a solvent on the negative electrode. Reaction occurs. Such a reaction leads to swelling of the battery or contamination of the electrolyte, etc., so that the battery itself deteriorates. Therefore, in a battery using SiO x as a negative electrode active material, the initial charge must be performed at a low rate at a low temperature.

本発明は、上述の問題に鑑みて行われたものであり、Liの析出及び負極上での好ましくない反応を防止しながらも、短時間で蓄電装置を製造できる製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a manufacturing method capable of manufacturing a power storage device in a short time while preventing Li precipitation and an undesirable reaction on the negative electrode. And

本発明は、正極と、少なくともSiO(0<x<2)を含む負極と、1.7V(vsLi/Li)以下の分解電位でSiO上に膜を形成する添加剤を含有する電解液と、を具備する蓄電装置の製造方法である。この方法は、蓄電装置を、少なくとも負極の電位が分解電位に達するまで第一の温度で充電を行う第一充電工程と、蓄電装置を、負極の電位が分解電位に達した後の少なくとも所定期間において、第一の温度よりも高い第二の温度でさらなる充電を行う、第二充電工程と、を備える。 The present invention relates to an electrolysis comprising a positive electrode, a negative electrode containing at least SiO x (0 <x <2), and an additive that forms a film on SiO x at a decomposition potential of 1.7 V (vsLi / Li + ) or less. And a liquid storage device comprising the liquid. The method includes a first charging step of charging the power storage device at a first temperature at least until the potential of the negative electrode reaches the decomposition potential, and the power storage device for at least a predetermined period after the potential of the negative electrode reaches the decomposition potential. And a second charging step of performing further charging at a second temperature higher than the first temperature.

かかる製造方法によれば、まず、第一充電工程において、負極活物質上にSEI(solid electorode interface)と呼ばれる膜が形成される。第一充電工程では、蓄電装置が加熱されていないので、膜形成前における、負極活物質上での溶媒の分解反応等の好ましくない反応が抑制される。一方、第二充電工程においては、加熱することにより、電解液中のLiの移動抵抗やSiO内でのLiのインターカレーションなどの反応抵抗が低くなる。そのため、Liの析出を抑制しつつ高速に充電を行うことが可能となる。また、負極活物質の表面にSEIと呼ばれる膜が形成された後であれば、蓄電装置を加熱しても、溶媒の分解反応等の好ましくない反応も起こりにくく、高レートで充電することができるようになる。したがって、蓄電装置の製造に要する時間を短縮することができる。 According to such a manufacturing method, first, in the first charging step, a film called SEI (Solid Electrode Interface) is formed on the negative electrode active material. In the first charging step, since the power storage device is not heated, an undesirable reaction such as a decomposition reaction of a solvent on the negative electrode active material before film formation is suppressed. On the other hand, in the second charging step, by heating, reaction resistance such as Li movement resistance in the electrolytic solution and Li intercalation in SiO x is lowered. Therefore, it becomes possible to charge at high speed while suppressing the precipitation of Li. In addition, after a film called SEI is formed on the surface of the negative electrode active material, even when the power storage device is heated, undesirable reactions such as a decomposition reaction of the solvent hardly occur and the battery can be charged at a high rate. It becomes like this. Therefore, the time required for manufacturing the power storage device can be shortened.

上記製造方法において、第一の温度が15〜30℃であることが好ましい。これにより、第一充電工程における、負極上での好ましくない反応をより効果的に防止できる。   In the said manufacturing method, it is preferable that 1st temperature is 15-30 degreeC. Thereby, the undesirable reaction on the negative electrode in the first charging step can be more effectively prevented.

上記製造方法において、第二の温度が30〜60℃であることが好ましい。これにより、第二充電工程において、より高いレートで充電を行ってもLiが析出し難くなるので、初充電に要する時間をより短縮できる。   In the said manufacturing method, it is preferable that 2nd temperature is 30-60 degreeC. Thereby, even if it charges with a higher rate in a 2nd charge process, since it becomes difficult to precipitate Li, the time which initial charge requires can be shortened more.

上記添加剤がオキサラト錯体を含むと好ましい。オキサラト錯体は、負極上で反応する際に、オキサラト錯体同士が高分子化しながら反応を進めるため、より強固なSEI被膜が形成されやすい傾向にある。オキサラト錯体が、リチウムビスオキサラトボレート(LiBOB)を含むとより好ましい。   The additive preferably contains an oxalato complex. When the oxalato complex reacts on the negative electrode, the reaction proceeds while the oxalato complexes are polymerized, so that a stronger SEI film tends to be formed. More preferably, the oxalato complex contains lithium bisoxalatoborate (LiBOB).

上記製造方法は、蓄電装置が、リチウムイオン二次電池であると好ましい。   In the above manufacturing method, the power storage device is preferably a lithium ion secondary battery.

本発明によれば、Liの析出及び負極上での好ましくない反応を防止しながらも、短時間で蓄電装置を製造できる製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which can manufacture an electrical storage apparatus in a short time can be provided, preventing the precipitation of Li and the undesirable reaction on a negative electrode.

図1は、本発明の一実施形態に係るリチウムイオン二次電池の概略断面図である。FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るリチウムイオン二次電池の初充電における正極及び負極の電位プロファイルである。FIG. 2 is a potential profile of the positive electrode and the negative electrode in the initial charge of the lithium ion secondary battery according to the embodiment of the present invention.

以下、本発明に係る実施形態の一例を、図面を参照して説明する。   Hereinafter, an example of an embodiment according to the present invention will be described with reference to the drawings.

(蓄電装置)
以下、本実施形態に係る蓄電装置の一つであるリチウムイオン二次電池を例に取って説明する。図1は、本実施形態に係るリチウムイオン二次電池の概略断面図である。図1に示すように、リチウムイオン二次電池100は、正極10、セパレータ20、負極30、及び、ケース70、並びに、電解液を主として備える。
(Power storage device)
Hereinafter, a lithium ion secondary battery which is one of the power storage devices according to this embodiment will be described as an example. FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to this embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 mainly includes a positive electrode 10, a separator 20, a negative electrode 30, a case 70, and an electrolytic solution.

(正極)
正極10は、正極集電体12、及び、正極集電体12上に設けられた正極活物質層14を有する。なお、正極活物質層14は正極集電体12において活物質が塗工された領域を指す。正極活物質層14は、図1に示すように、正極集電体12の一方面のみにあっても良いし、正極集電体12の両面に設けられていても良い。
(Positive electrode)
The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 provided on the positive electrode current collector 12. The positive electrode active material layer 14 refers to a region where the active material is applied in the positive electrode current collector 12. As shown in FIG. 1, the positive electrode active material layer 14 may be provided only on one surface of the positive electrode current collector 12, or may be provided on both surfaces of the positive electrode current collector 12.

正極集電体12は導電材料からなる。正極集電体12の材料の例は、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料又は導電性樹脂である。特に、正極集電体12の材料として、アルミニウムが好適である。正極集電体12の厚みは特に限定されないが、例えば、箔状(15〜20μm)とすることができる。   The positive electrode current collector 12 is made of a conductive material. Examples of the material of the positive electrode current collector 12 are metal materials such as stainless steel, titanium, nickel, aluminum, and copper, or conductive resins. In particular, aluminum is suitable as a material for the positive electrode current collector 12. Although the thickness of the positive electrode current collector 12 is not particularly limited, for example, the positive electrode current collector 12 can have a foil shape (15 to 20 μm).

正極活物質層14は、正極活物質、及び、バインダーを含む。正極活物質の例は、酸化リチウム、Ni、Mn及びCoから成る群から選択される少なくとも1つの元素及びLiを含む複合酸化物である。上記複合酸化物の例は、リチウムコバルト複合酸化物LiCoO、リチウムニッケル複合酸化物LiNiO、リチウムマンガン複合酸化物LiMnO,LiMn、リチウムニッケルコバルト複合酸化物LiNiCo(a+b=1、0<a<1、0<b<1)、リチウムマンガンコバルト複合酸化物LiMnCo(a+b=1、0<a<1、0<b<1)、リチウムコバルトニッケルマンガン複合酸化物LiCoNiMn(p+q+r=1、0<p<1、0<q<1、0<r<1)である。 The positive electrode active material layer 14 includes a positive electrode active material and a binder. An example of the positive electrode active material is a composite oxide containing Li and at least one element selected from the group consisting of lithium oxide, Ni, Mn, and Co. Examples of the composite oxide include lithium cobalt composite oxide LiCoO 2 , lithium nickel composite oxide LiNiO 2 , lithium manganese composite oxide LiMnO 2 , LiMn 2 O 4 , lithium nickel cobalt composite oxide LiNi a Co b O 2 ( a + b = 1,0 <a < 1,0 <b <1), lithium-manganese-cobalt composite oxide LiMn a Co b O 2 (a + b = 1,0 <a <1,0 <b <1), lithium cobalt nickel manganese composite oxide LiCo p Ni q Mn r O 2 (p + q + r = 1,0 <p <1,0 <q <1,0 <r <1).

バインダーは、活物質を集電体に固定する。バインダーの例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂である。バインダーの量は、活物質100質量部に対して、1〜30質量部とすることができる。   The binder fixes the active material to the current collector. Examples of the binder are fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. The quantity of a binder can be 1-30 mass parts with respect to 100 mass parts of active materials.

正極活物質層14は、必用に応じて、さらに導電助剤を含むことができる。導電助剤の例は、カーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VaporGrown Carbon Fiber:VGCF)等の炭素系粒子である。これらは、単独で、又は2種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定されないが、例えば、100質量部の活物質に対して、1〜30質量部とすることができる。   The positive electrode active material layer 14 can further contain a conductive additive as necessary. Examples of the conductive aid are carbon-based particles such as carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VGCF). These can be added alone or in combination of two or more. Although it does not specifically limit about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts with respect to 100 mass parts active material.

正極集電体12はその端部に、正極活物質層14が形成されていないタブ部12tを有する。タブ部12tには、後述するリード16が電気的に接続される。   The positive electrode current collector 12 has a tab portion 12t at the end thereof where the positive electrode active material layer 14 is not formed. A lead 16 described later is electrically connected to the tab portion 12t.

(負極)
負極30は、負極集電体32、及び、負極集電体32上に設けられた負極活物質層34を備える。なお、負極活物質層34は負極集電体32において負極活物質が塗工された領域を指す。負極集電体32は導電材料からなる。負極集電体32の材料としては、上述の正極集電体12の材料として例示したものが挙げられ、特に銅が好ましい。負極集電体32は、正極集電体12と同様に箔状とすることができる。
(Negative electrode)
The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34 provided on the negative electrode current collector 32. The negative electrode active material layer 34 refers to a region of the negative electrode current collector 32 where the negative electrode active material is applied. The negative electrode current collector 32 is made of a conductive material. Examples of the material of the negative electrode current collector 32 include those exemplified as the material of the positive electrode current collector 12 described above, and copper is particularly preferable. The negative electrode current collector 32 can be formed in a foil shape like the positive electrode current collector 12.

負極活物質層34は、負極活物質、及び、バインダーを有する。負極活物質層34は、必用に応じて導電助剤を含んでも良い。バインダーや導電助剤の例及び配合量は、正極10で記載したのと同様とすることができる。   The negative electrode active material layer 34 has a negative electrode active material and a binder. The negative electrode active material layer 34 may contain a conductive additive as necessary. Examples and blending amounts of the binder and the conductive auxiliary agent can be the same as those described for the positive electrode 10.

本実施形態において、負極活物質はSiO(0<x<2)である。SiOは、各粒子内にSi相及びSiO相を有する。Si相は非常に微細であり、SiO相の中に分散している。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。
ここで、xが0.5未満であると、Si相の占める比率が高くなるため充放電時の体積変化が大きくなりすぎて、サイクル特性が向上しにくい傾向がある。またxが1.5を超えると、Si相の比率が低下してエネルギー密度が低下する場合がある。したがって、xは0.5〜1.5であることが好ましく、0.7〜1.2であることがより好ましい。
In the present embodiment, the negative electrode active material is SiO x (0 <x <2). SiO x has a Si phase and a SiO 2 phase in each particle. The Si phase is very fine and is dispersed in the SiO 2 phase. Further, the SiO 2 phase covering the Si phase has a function of suppressing decomposition of the electrolytic solution.
Here, when x is less than 0.5, the proportion of the Si phase increases, so that the volume change during charge / discharge becomes too large, and the cycle characteristics tend to be difficult to improve. Moreover, when x exceeds 1.5, the ratio of Si phase may fall and energy density may fall. Therefore, x is preferably 0.5 to 1.5, and more preferably 0.7 to 1.2.

このようなSiOは、二酸化珪素(SiO)と単体珪素(Si)とを原料として得られる非晶質の珪素酸化物であるSiOを、熱処理等により不均化することにより得られる。不均化反応は、SiOがSi相とSiO相とに分解する反応である。一般に、酸素を断った状態であれば800℃以上で、ほぼすべてのSiOが不均化して二相に分離すると言われている。具体的には、非結晶性のSiO粉に対して、真空中または不活性ガス中などの不活性雰囲気中で800〜1200℃で1〜5時間の熱処理をすることで、非結晶性のSiO相および結晶性のSi相の二相を含むSiOが得られる。 Such SiO x can be obtained by disproportionating SiO, which is an amorphous silicon oxide obtained using silicon dioxide (SiO 2 ) and simple silicon (Si) as raw materials, by heat treatment or the like. The disproportionation reaction is a reaction in which SiO is decomposed into a Si phase and a SiO 2 phase. In general, when oxygen is turned off, it is said that almost all SiO is disproportionated and separated into two phases at 800 ° C. or higher. Specifically, non-crystalline SiO powder is subjected to heat treatment at 800 to 1200 ° C. for 1 to 5 hours in an inert atmosphere such as in a vacuum or in an inert gas. SiO x containing two phases, a two- phase and a crystalline Si phase, is obtained.

この珪素酸化物粉の粒径D50は、4μm以上であることが好ましい。粒径D50とは、メジアン径であり、レーザー回析法による体積基準の粒度分布に基づいて得ることができる。珪素酸化物粉の粒径D50は、20μm以下であることが好ましく、15μm以下であることが好ましい。   The particle size D50 of the silicon oxide powder is preferably 4 μm or more. The particle diameter D50 is a median diameter, and can be obtained based on a volume-based particle size distribution by a laser diffraction method. The particle size D50 of the silicon oxide powder is preferably 20 μm or less, and preferably 15 μm or less.

負極集電体32はその端部に、負極活物質層34が形成されていないタブ部32tを有する。タブ部32tには、後述するリード36が電気的に接続される。負極は、SiO以外の負極活物質を含むことも可能である。 The negative electrode current collector 32 has a tab portion 32t at the end thereof where the negative electrode active material layer 34 is not formed. A lead 36 described later is electrically connected to the tab portion 32t. The negative electrode can also contain a negative electrode active material other than SiO x .

(セパレータ)
セパレータ20は、正極10と負極30とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ20は、例えばポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、又はセラミックス製の多孔質膜が使用できる。正極10の正極活物質層14と、負極30の負極活物質層34とがセパレータ20の各面に接触している。
(Separator)
The separator 20 separates the positive electrode 10 and the negative electrode 30 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes. As the separator 20, for example, a porous film made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used. The positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 34 of the negative electrode 30 are in contact with each surface of the separator 20.

(電解液)
電解液は、電解質と、この電解質を溶解する溶媒とを含む。電解質は、正極活物質層14、セパレータ20、及び、負極活物質層34内に含浸されている。
(Electrolyte)
The electrolytic solution includes an electrolyte and a solvent that dissolves the electrolyte. The electrolyte is impregnated in the positive electrode active material layer 14, the separator 20, and the negative electrode active material layer 34.

電解質の例は、LiBF、LiPF、LiClO、LiAsF、LiCFSO、LiN(CFSO等のリチウム塩である。これらのリチウム塩は、単独で、又は2種以上を組み合わせて使用してもよい。 Examples of the electrolyte are lithium salts such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . These lithium salts may be used alone or in combination of two or more.

溶媒の例は、環状エステル類、鎖状エステル類、エーテル類である。これらの溶媒を2種以上混合することもできる。環状エステル類の例は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンである。鎖状エステル類の例は、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルである。エーテル類の例は、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンである。   Examples of the solvent are cyclic esters, chain esters, and ethers. Two or more of these solvents can be mixed. Examples of cyclic esters are ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, gamma valerolactone. Examples of chain esters are dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane.

電解液における電解質の濃度は、例えば、0.5〜1.7mol/Lとすることができる。電解液は、ゲル化剤を含んでいても良い。   The density | concentration of the electrolyte in electrolyte solution can be 0.5-1.7 mol / L, for example. The electrolytic solution may contain a gelling agent.

本実施形態の電解液は、さらに1.7V以下の分解電位VrでSiO等の負極活物質上にSEIと呼ばれる膜を形成する添加剤を有する。なお、本明細書における電極電位は、正極、負極ともにLi/Liに対する電位とする。 The electrolytic solution of this embodiment further has an additive that forms a film called SEI on a negative electrode active material such as SiO x at a decomposition potential Vr of 1.7 V or less. Note that the electrode potential in this specification is the potential with respect to Li / Li + for both the positive electrode and the negative electrode.

このような添加剤としては、オキサラト錯体が好ましい。オキサラト錯体は、負極活物質の表面で、添加剤のオキサラト部分が、他の添加材のオキサラト部分と重合反応を行うことにより負極活物質上に強固な膜を形成しやすい。オキサラト錯体としては、中心元素がホウ素又はリンである錯体が特に好ましい。また、中心元素がリンである場合、錯体がハロゲンを含むとさらに好ましい。このようなオキサラト錯体としては、下記化学式(1)で表されるリチウムビスオキサラトボレート(LiBOB:Vr=1.8V)、及び、下記一般式(2)で表されるリチウムオキサラトフォスフェート類が挙げられる。これらの添加剤は単独で、又は、2種以上を組み合わせて使用してもよい。   As such an additive, an oxalato complex is preferable. The oxalato complex easily forms a strong film on the negative electrode active material by the polymerization reaction of the oxalato part of the additive with the oxalate part of the other additive on the surface of the negative electrode active material. As the oxalato complex, a complex whose central element is boron or phosphorus is particularly preferable. Further, when the central element is phosphorus, it is more preferable that the complex contains halogen. Examples of such oxalato complexes include lithium bisoxalatoborate (LiBOB: Vr = 1.8 V) represented by the following chemical formula (1) and lithium oxalatophosphates represented by the following general formula (2). Is mentioned. These additives may be used alone or in combination of two or more.

Figure 2014229563
Figure 2014229563

また、上記添加剤として、カーボネート基とエステル結合する有機基が二重結合を有する化合物も使用することができる。このような化合物としては、ビニレンカーボネート(Vr=1.35V)及びビニレンカーボネート誘導体が挙げられる。   Moreover, the compound which the organic group which carries out an ester bond with a carbonate group has a double bond as said additive can also be used. Examples of such compounds include vinylene carbonate (Vr = 1.35V) and vinylene carbonate derivatives.

電解液における上記添加剤の濃度は、例えば、0.01〜0.2mol/Lとすることができる。   The concentration of the additive in the electrolytic solution can be, for example, 0.01 to 0.2 mol / L.

(ケース)
ケース70は、正極10、セパレータ20、負極30、及び、電解液を収容する。ケースの材料や形態は特に限定されず、樹脂、金属など公知の種々の物を使用できる。
(Case)
The case 70 accommodates the positive electrode 10, the separator 20, the negative electrode 30, and the electrolytic solution. The material and form of the case are not particularly limited, and various known materials such as resins and metals can be used.

正極集電体12のタブ部12t、及び、負極集電体32のタブ部32tには、それぞれ、リード16、36が接続されている。リード16、36の一端は、ケース70の外に出ている。   Leads 16 and 36 are connected to the tab portion 12t of the positive electrode current collector 12 and the tab portion 32t of the negative electrode current collector 32, respectively. One ends of the leads 16 and 36 are out of the case 70.

(蓄電装置の製造方法)
次に、本実施形態に係る蓄電装置の製造方法について、必要に応じて図面を参照しながら説明する。
(Method for manufacturing power storage device)
Next, a method for manufacturing the power storage device according to this embodiment will be described with reference to the drawings as necessary.

上述の正極10、セパレータ20、負極30、及び、ケース70、並びに、電解液を主に備えるリチウムイオン二次電池100を用意する。次いで、このリチウムイオン二次電池100に初充電を行う。   The above-described positive electrode 10, separator 20, negative electrode 30, case 70, and lithium ion secondary battery 100 mainly including an electrolytic solution are prepared. Next, the lithium ion secondary battery 100 is initially charged.

図2は、本発明の一実施形態に係るリチウムイオン二次電池の、初充電における正極及び負極の電位プロファイルの一例である。図2において、曲線41は正極の電位を表し、曲線42は負極の電位を表す。本実施形態の製造方法においては、まず、第一充電工程Tにおいて、少なくとも負極の電位が添加剤の分解電位Vrに達するまで、第一の温度でリチウムイオン二次電池100の充電を行う。ここで、第一の温度は、第一充電工程Tにおける電池の温度であり、15〜30℃であると好ましい。第一充電工程Tは、例えば、0.02C〜0.5Cの充電レートで行うことができる。 FIG. 2 is an example of potential profiles of the positive electrode and the negative electrode in the initial charge of the lithium ion secondary battery according to the embodiment of the present invention. In FIG. 2, a curve 41 represents the positive electrode potential, and a curve 42 represents the negative electrode potential. In the production method of this embodiment, first, in the first charging step T 1, until the potential of at least the negative electrode reaches the decomposition potential Vr of the additive, to charge the lithium ion secondary cell 100 at a first temperature. Here, the first temperature is the temperature of the battery in the first charging step T 1, preferably a 15 to 30 ° C.. First charging step T 1, for example, it can be performed at a charge rate of 0.02C~0.5C.

充電が進むにつれ、負極の電位が下がり、負極の電位が、電解液に含まれる添加剤の分解反応が起きる電位Vrに達する。上述のように、本実施形態において、Vrは1.7V以下である。負極の電位が、添加剤の分解電位Vrに達すると、SiO等の負極活物質上にSEIと呼ばれる膜が形成される。 As charging progresses, the potential of the negative electrode decreases, and the potential of the negative electrode reaches a potential Vr at which the decomposition reaction of the additive contained in the electrolytic solution occurs. As described above, in this embodiment, Vr is 1.7V or less. When the potential of the negative electrode reaches the decomposition potential Vr of the additive, a film called SEI is formed on the negative electrode active material such as SiO x .

負極の電位が、添加剤の分解電位Vrに達した後、所定のタイミングで、リチウムイオン二次電池100の加熱を開始して、第二充電工程Tに移行する。ここでは、第一の温度よりも電池の温度が高い第二の温度で、添加剤の分解電位Vrに達した後の少なくとも所定期間、さらなる充電を行う。リチウムイオン二次電池100の加熱方法としては、特に限定されないが、例えば、ヒーター又は恒温槽などを用いて加熱する方法が利用できる。ここで、第二の温度は30〜60℃であると好ましい。 Potential of the negative electrode after reaching the decomposition potential Vr of the additive, at a predetermined timing, to start the heating of the lithium ion secondary battery 100, the process proceeds to the second charging step T 2. Here, the battery is further charged for at least a predetermined period after reaching the decomposition potential Vr of the additive at the second temperature, which is higher than the first temperature. A method for heating the lithium ion secondary battery 100 is not particularly limited, and for example, a method of heating using a heater or a thermostatic bath can be used. Here, the second temperature is preferably 30 to 60 ° C.

第二充電工程Tでは、すでに負極活物質上にSEIと呼ばれる膜が形成されているため、負極活物質上での溶媒の分解反応などの好ましくない反応が起きにくく、高レートで充電を行うことができる。充電レートとしては、例えば、0.1C〜1.0Cである。このように高レートで充電を行うことができるため、初充電に要する時間を短縮できる。正極負極間電圧が所定の電圧、例えば、4.2Vに達した後は、定電流充電から定電圧充電に変更することができる。 In the second charging step T 2, since it is formed films already called SEI on the anode active material, hardly occur undesirable reactions such as decomposition reaction of the solvent on the anode active material, charging at a high rate be able to. The charge rate is, for example, 0.1C to 1.0C. Since charging can be performed at a high rate in this way, the time required for initial charging can be shortened. After the voltage between the positive and negative electrodes reaches a predetermined voltage, for example, 4.2 V, the constant current charging can be changed to the constant voltage charging.

第一充電工程Tから第二充電工程Tに遷移する、すなわち、加熱を開始するタイミングとしては、負極電位がVrに達した後、すなわち、負極電位がVr未満であればいつでもよいが、負極電位がVr−1.0V以上の時に加熱を開始することが好ましい。上記タイミングで充電を開始すると、加熱を開始する前に負極の電位が下がりすぎることを防ぐことができるとともに、高レートでの充電を早めに開始することができるために好ましい。 Transitioning from the first charging step T 1 to the second charging step T 2, i.e., the timing of starting the heating, after the negative electrode potential has reached the Vr, ie, it may be anytime less than the negative electrode potential Vr, It is preferable to start heating when the negative electrode potential is Vr-1.0 V or more. It is preferable to start charging at the above timing because it is possible to prevent the potential of the negative electrode from being lowered too much before starting heating and to start charging at a high rate early.

なお、本実施形態に係るリチウムイオン二次電池100は、上記実施形態に限られず様々な変形態様が可能である。例えば、正極、負極、及び、セパレータを複数有し、正極及び負極が交互に配置され、かつ、各正極及び負極の間にセパレータが配置されるように積層されているものでもよい。また、正極及び負極が、これらの間にセパレータが介在するように巻回されているものでも良い。   In addition, the lithium ion secondary battery 100 according to the present embodiment is not limited to the above embodiment, and various modifications are possible. For example, a plurality of positive electrodes, negative electrodes, and separators may be provided, the positive electrodes and the negative electrodes may be alternately disposed, and the separators may be disposed between the positive electrodes and the negative electrodes. Further, the positive electrode and the negative electrode may be wound so that a separator is interposed between them.

また、本実施形態に係るリチウムイオン二次電池100における負極30は、負極活物質に含まれるSiOの不可逆容量が初充電前に予め低減されたものであってもよい。SiOの不可逆容量を低減する方法としては、粉末又は箔状の金属LiとSiOとを乾式又は湿式で接触させ、金属LiとSiOとのインターカレーション反応を行うことにより、SiOにLiをプレドープする方法等が挙げられる。また、インターカレーション反応の際に、反応を均一に進めるために高温でエージングを行ってもよい。 Moreover, the negative electrode 30 in the lithium ion secondary battery 100 according to the present embodiment may be one in which the irreversible capacity of SiO x contained in the negative electrode active material is reduced in advance before the initial charge. As a method of reducing the irreversible capacity of SiO x , powder or foil-like metal Li and SiO x are contacted in a dry or wet manner, and an intercalation reaction between the metal Li and SiO x is performed on SiO x . Examples include a method of pre-doping Li. Further, in the intercalation reaction, aging may be performed at a high temperature in order to proceed the reaction uniformly.

さらに、上記実施形態ではリチウムイオン二次電池を例示したが、例えば、リチウムイオンキャパシタ等の蓄電装置にも適用可能である。   Furthermore, although the lithium ion secondary battery was illustrated in the said embodiment, it is applicable also to electrical storage apparatuses, such as a lithium ion capacitor, for example.

10…正極、30…負極、12、32…集電体、12t、32t…タブ部、14…正極活物質層、34…負極活物質層、20…セパレータ、16、36…リード、70…ケース、100…リチウムイオン二次電池、41…正極電位、42…負極電位。
DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 30 ... Negative electrode, 12, 32 ... Current collector, 12t, 32t ... Tab part, 14 ... Positive electrode active material layer, 34 ... Negative electrode active material layer, 20 ... Separator, 16, 36 ... Lead, 70 ... Case , 100: lithium ion secondary battery, 41: positive electrode potential, 42: negative electrode potential.

Claims (6)

正極と、
少なくともSiO(0<x<2)を含む負極と、
1.7V(vsLi/Li)以下の分解電位でSiO上に膜を形成する添加剤を含有する電解液と、
を具備する蓄電装置の製造方法であって、
前記蓄電装置を、少なくとも前記負極の電位が前記分解電位に達するまで第一の温度で充電を行う第一充電工程と、
前記蓄電装置を、前記負極の電位が前記分解電位に達した後の少なくとも所定期間において、前記第一の温度よりも高い第二の温度でさらなる充電を行う、第二充電工程と、
を備える、製造方法。
A positive electrode;
A negative electrode containing at least SiO x (0 <x <2);
An electrolyte containing an additive that forms a film on SiO x at a decomposition potential of 1.7 V (vsLi / Li + ) or less;
A method of manufacturing a power storage device comprising:
A first charging step of charging the power storage device at a first temperature until at least the potential of the negative electrode reaches the decomposition potential;
A second charging step of further charging the power storage device at a second temperature higher than the first temperature in at least a predetermined period after the potential of the negative electrode reaches the decomposition potential;
A manufacturing method comprising:
前記第一の温度が15〜30℃である、請求項1に記載の蓄電装置の製造方法。   The manufacturing method of the electrical storage apparatus of Claim 1 whose said 1st temperature is 15-30 degreeC. 前記第二の温度が30〜60℃である、請求項1又は2に記載の蓄電装置の製造方法。   The manufacturing method of the electrical storage apparatus of Claim 1 or 2 whose said 2nd temperature is 30-60 degreeC. 前記添加剤がオキサラト錯体を含む、請求項1〜3のいずれか1項に記載の蓄電装置の製造方法。   The manufacturing method of the electrical storage apparatus of any one of Claims 1-3 in which the said additive contains an oxalato complex. 前記オキサラト錯体が、リチウムビスオキサラトボレート(LiBOB)を含む、請求項4に記載の蓄電装置の製造方法。   The method for manufacturing a power storage device according to claim 4, wherein the oxalato complex includes lithium bisoxalatoborate (LiBOB). 前記蓄電装置が、リチウムイオン二次電池である、請求項1〜5のいずれか1項に記載の蓄電装置の製造方法。   The method for manufacturing a power storage device according to claim 1, wherein the power storage device is a lithium ion secondary battery.
JP2013110190A 2013-05-24 2013-05-24 Method for manufacturing power storage device Expired - Fee Related JP6044453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110190A JP6044453B2 (en) 2013-05-24 2013-05-24 Method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110190A JP6044453B2 (en) 2013-05-24 2013-05-24 Method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2014229563A true JP2014229563A (en) 2014-12-08
JP6044453B2 JP6044453B2 (en) 2016-12-14

Family

ID=52129227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110190A Expired - Fee Related JP6044453B2 (en) 2013-05-24 2013-05-24 Method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP6044453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058326A (en) * 2016-08-09 2016-10-26 天津力神电池股份有限公司 Lithium ion battery formation method for optimizing performances of SEI membrane
JP2018063877A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2019526886A (en) * 2017-02-22 2019-09-19 トヨタ モーター ヨーロッパ High temperature aging process of lithium ion battery

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289733A (en) * 1997-02-14 1998-10-27 Fuji Film Selltec Kk Nonaqueous secondary battery and manufacture therefor
JPH11111267A (en) * 1997-10-01 1999-04-23 Toyota Motor Corp Manufacture of lithium ton secondary battery
JPH11288712A (en) * 1998-03-31 1999-10-19 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JP2002203609A (en) * 2000-12-28 2002-07-19 Toshiba Corp Charging method for nonaqueous electrolyte secondary battery
JP2004095463A (en) * 2002-09-03 2004-03-25 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
JP2010212253A (en) * 2010-05-17 2010-09-24 Sony Corp Charging method of nonaqueous electrolyte secondary battery
WO2011016113A1 (en) * 2009-08-04 2011-02-10 トヨタ自動車株式会社 Lithium ion nonaqueous electrolyte secondary battery
JP2011108550A (en) * 2009-11-19 2011-06-02 Nissan Motor Co Ltd Charging method and charging device for nonaqueous electrolyte secondary battery
JP2012033346A (en) * 2010-07-29 2012-02-16 Nec Energy Devices Ltd Aprotic electrolyte secondary battery
JP2012212629A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Manufacturing method of lithium ion power storage device
JP2013110017A (en) * 2011-11-22 2013-06-06 Nissan Motor Co Ltd Method for manufacturing nonaqueous electrolytic solution secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289733A (en) * 1997-02-14 1998-10-27 Fuji Film Selltec Kk Nonaqueous secondary battery and manufacture therefor
JPH11111267A (en) * 1997-10-01 1999-04-23 Toyota Motor Corp Manufacture of lithium ton secondary battery
JPH11288712A (en) * 1998-03-31 1999-10-19 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JP2002203609A (en) * 2000-12-28 2002-07-19 Toshiba Corp Charging method for nonaqueous electrolyte secondary battery
JP2004095463A (en) * 2002-09-03 2004-03-25 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
WO2011016113A1 (en) * 2009-08-04 2011-02-10 トヨタ自動車株式会社 Lithium ion nonaqueous electrolyte secondary battery
JP2011108550A (en) * 2009-11-19 2011-06-02 Nissan Motor Co Ltd Charging method and charging device for nonaqueous electrolyte secondary battery
JP2010212253A (en) * 2010-05-17 2010-09-24 Sony Corp Charging method of nonaqueous electrolyte secondary battery
JP2012033346A (en) * 2010-07-29 2012-02-16 Nec Energy Devices Ltd Aprotic electrolyte secondary battery
JP2012212629A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Manufacturing method of lithium ion power storage device
JP2013110017A (en) * 2011-11-22 2013-06-06 Nissan Motor Co Ltd Method for manufacturing nonaqueous electrolytic solution secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058326A (en) * 2016-08-09 2016-10-26 天津力神电池股份有限公司 Lithium ion battery formation method for optimizing performances of SEI membrane
JP2018063877A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2019526886A (en) * 2017-02-22 2019-09-19 トヨタ モーター ヨーロッパ High temperature aging process of lithium ion battery

Also Published As

Publication number Publication date
JP6044453B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6115569B2 (en) Non-aqueous electrolyte and power storage device using the same
JP7116314B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP5429631B2 (en) Non-aqueous electrolyte battery
TWI605633B (en) Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
JP4423277B2 (en) Lithium secondary battery
CN108808098B (en) Method for manufacturing lithium ion secondary battery
JP6380377B2 (en) Lithium ion secondary battery
JP5472554B1 (en) Non-aqueous electrolyte secondary battery
JP6933216B2 (en) Non-aqueous electrolyte and lithium ion secondary battery
KR101683211B1 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2019111983A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JPWO2014133163A1 (en) Non-aqueous electrolyte secondary battery
JP5403711B2 (en) Method for producing lithium ion secondary battery
KR20120104930A (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
JP6755182B2 (en) Lithium ion secondary battery
JPWO2014027572A1 (en) Lithium secondary battery and manufacturing method thereof
CN109565080B (en) Additive for electrolyte of lithium battery, electrolyte of lithium battery including the same, and lithium battery using the same
JP5445683B2 (en) Negative electrode material, lithium secondary battery, and method of manufacturing negative electrode material
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP6341195B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6044453B2 (en) Method for manufacturing power storage device
JP7276957B2 (en) lithium ion secondary battery
JPWO2016098428A1 (en) Lithium ion secondary battery
WO2019111958A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JP2019061874A (en) Method of manufacturing power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R151 Written notification of patent or utility model registration

Ref document number: 6044453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees