JP2019061874A - Method of manufacturing power storage element - Google Patents

Method of manufacturing power storage element Download PDF

Info

Publication number
JP2019061874A
JP2019061874A JP2017186397A JP2017186397A JP2019061874A JP 2019061874 A JP2019061874 A JP 2019061874A JP 2017186397 A JP2017186397 A JP 2017186397A JP 2017186397 A JP2017186397 A JP 2017186397A JP 2019061874 A JP2019061874 A JP 2019061874A
Authority
JP
Japan
Prior art keywords
charging
positive electrode
battery
storage element
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017186397A
Other languages
Japanese (ja)
Inventor
祐一 池田
Yuichi Ikeda
祐一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2017186397A priority Critical patent/JP2019061874A/en
Publication of JP2019061874A publication Critical patent/JP2019061874A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method of manufacturing a power storage element in which swelling of the power storage element containing a lithium excess type positive electrode active material is suppressed, a good discharge capacity is obtained, and an initial charge time is shortened.SOLUTION: A CPU of a control unit of a power storage element manufacturing apparatus performs constant current charging on a power storage element including a lithium excess type positive electrode active material until potential of a positive electrode becomes predetermined potential (S1). Then, the CPU performs constant voltage charging, and when it is determined that a current value is less than a predetermined value B (CmA) (S3: YES), ends the constant voltage charging.SELECTED DRAWING: Figure 5

Description

本発明は、リチウム過剰型の正極活物質を含む蓄電素子の製造方法に関する。   The present invention relates to a method of manufacturing a storage element including a lithium excess type positive electrode active material.

リチウムイオン二次電池等の蓄電素子は、ノートパソコン及び携帯電話機等のモバイル機器の電源として用いられてきた。近年、EV(電気自動車)、HEV(ハイブリッド電気自動車)、PHEV(プラグインハイブリッド電気自動車)の電源等、幅広い分野で使用されており、リチウムイオン二次電池は更なる高容量化が求められている。これまで様々な検討と改良が行われており、電極構造等の改良のみで更なる高容量化を実現することは困難である。その為、現行の材料より高容量である正極材料の開発が進められている。   Storage devices such as lithium ion secondary batteries have been used as power supplies for mobile devices such as notebook computers and mobile phones. In recent years, it has been used in a wide range of fields such as power supplies for EV (electric vehicles), HEVs (hybrid electric vehicles), PHEVs (plug-in hybrid electric vehicles), and lithium ion secondary batteries are required to have higher capacity. There is. Until now, various studies and improvements have been made, and it is difficult to realize a further increase in capacity only by improving the electrode structure and the like. Therefore, development of a positive electrode material having a higher capacity than current materials is in progress.

従来、リチウムイオン二次電池等の非水電解質二次電池用の正極活物質として、α−NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoO2を用いた非水電解質二次電池が広く実用化されていた。LiCoO2の放電容量は120〜130mAh/g程度であった。
リチウム遷移金属複合酸化物をLiMeO2(Meは遷移金属)で表したとき、MeとしてMnを用いることが望まれてきた。MeとしてMnを含有させた場合、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できない為、充放電サイクル性能が著しく劣る。
Me中のMnのモル比Mn/Meが0.5以下であり、Meに対するLiのモル比Li/Meが略1であるLiMeO2型活物質が種々提案され、実用化されている。リチウム遷移金属複合酸化物であるLiNi1/2Mn1/22及びLiNi1/3Co1/3Mn1/32等を含有する正極活物質は150〜180mAh/gの放電容量を有する。
Conventionally, a lithium transition metal complex oxide having an α-NaFeO 2 type crystal structure has been studied as a positive electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a non-aqueous electrolyte 2 using LiCoO 2 The secondary battery has been widely put to practical use. The discharge capacity of LiCoO 2 was about 120 to 130 mAh / g.
When the lithium transition metal complex oxide is represented by LiMeO 2 (Me is a transition metal), it has been desired to use Mn as Me. When Mn is contained as Me, when the molar ratio of Mn in Me exceeds 0.5, structural change occurs to the spinel type upon charging, and the crystal structure can not be maintained, so charge and discharge The cycle performance is extremely poor.
Various LiMeO 2 -type active materials have been proposed and put to practical use, in which the molar ratio Mn / Me of Mn in Me is 0.5 or less and the molar ratio Li / Me relative to Me is approximately 1. The positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Have.

LiMeO2型活物質に対し、Me中のMnのモル比Mn/Meが0.5を超え、遷移金属(Me)の比率に対するLiの組成比率Li/Meが1より大きいリチウム遷移金属複合酸化物を含む、いわゆるリチウム過剰型活物質も知られている。
上述の高容量の正極材料として、リチウム過剰型であるLi2 MnO3 系の活物質が検討されている。
A lithium transition metal complex oxide in which the molar ratio Mn / Me of Mn in Me to LiMeO 2 type active material exceeds 0.5, and the composition ratio Li / Me of Li to the ratio of transition metal (Me) is more than 1 So-called excessive lithium type active materials are also known.
As the above-mentioned high-capacity positive electrode material, an Li 2 MnO 3 -based active material which is a lithium excess type is being studied.

リチウム過剰型の正極活物質を有する電池では、正極の高容量を発現するために、正極の上限充電電位を対Li基準で一定値以上となるように、初期充電を行う必要がある。   In a battery having a lithium excess type positive electrode active material, in order to develop a high capacity of the positive electrode, it is necessary to perform initial charging so that the upper limit charging potential of the positive electrode is equal to or higher than a predetermined value on the basis of Li.

特許文献1には、初回の充電で、正極の充電電位を対Li基準で4.55V以上にすることで、放電電圧の低下の抑制を図っている。初期充電を高電圧で行うことにより、正極活物質中のLiをより大きく取り出すことができ、次回からの充放電に利用できるLiを増大できると考えられる。しかし、高電圧で初期充電を行った場合、Liイオンの放出に伴って正極活物質の結晶構造が崩れ、結晶内から酸素が遊離することがある。この酸素が負極に到達した場合、負極表面にLi2O等が析出し、負極反応を阻害するという問題がある。 In Patent Document 1, reduction of the discharge voltage is intended to be suppressed by setting the charge potential of the positive electrode to 4.55 V or more with respect to the pair Li at the first charge. By performing the initial charge at a high voltage, it is considered that Li in the positive electrode active material can be taken out more largely, and Li usable for charge and discharge from the next time can be increased. However, when the initial charge is performed at a high voltage, the crystal structure of the positive electrode active material may collapse with release of Li ions, and oxygen may be released from the inside of the crystal. When this oxygen reaches the negative electrode, Li 2 O or the like precipitates on the negative electrode surface, which causes a problem of inhibiting the negative electrode reaction.

特許文献2には、上記問題を解決するために、初期充電を、40℃〜70℃の温度下において、かつ、正極の電位が4.5V以上になるまで行うことが開示されている。高温で充電することにより、電解液に対する酸素の溶解度が減じ、酸素の負極側への移動が抑制される。   Patent Document 2 discloses that initial charging is performed at a temperature of 40 ° C. to 70 ° C. and the potential of the positive electrode becomes 4.5 V or more in order to solve the above-mentioned problems. By charging at high temperature, the solubility of oxygen in the electrolytic solution is reduced, and the movement of oxygen to the negative electrode side is suppressed.

特許文献3では、所定の組成式で表され、表面に金属化合物が被着された正極活物質を含むリチウムイオン二次電池に、上限電位をリチウム対極に換算して4.4V以上5.0V未満、下限電位をリチウム対極に換算して2.0V以上3.6V未満とする充放電前処理を施す。これにより、高温でのサイクル特性が向上する。   In Patent Document 3, in a lithium ion secondary battery including a positive electrode active material represented by a predetermined composition formula and having a metal compound deposited on the surface, the upper limit potential is converted to a lithium counter electrode to be 4.4 V or more and 5.0 V A charge and discharge pretreatment is performed to set the lower limit potential to a lithium counter electrode of 2.0 V or more and less than 3.6 V. This improves the cycle characteristics at high temperatures.

特許文献4においては、所定の組成式で表される正極活物質を含み、充電時の上限電圧をLi参照電極に対して4.0V以上4.9V未満、放電時の下限電圧を2.0V以上3.5V未満の電圧範囲に定電位制御して初期充電時を行う。初期充電の処理時間が短縮化される。   Patent Document 4 includes a positive electrode active material represented by a predetermined composition formula, and the upper limit voltage during charging is 4.0 V or more and less than 4.9 V with respect to the Li reference electrode, and the lower limit voltage during discharge is 2.0 V The constant potential control is performed to the voltage range of 3.5 V or more and the initial charging time is performed. Processing time of initial charge is shortened.

特開2015−084303号公報Unexamined-Japanese-Patent No. 2015-084303 特開2010−282874号公報Unexamined-Japanese-Patent No. 2010-282874 特開2013−206688号公報JP, 2013-206688, A 特開2012−186035号公報JP, 2012-186035, A

リチウム過剰型の正極活物質を有する電池において、定電流(CC)充電を行った後、定電圧(CV)充電を行った場合、放電容量が増加するが、電池の厚みも増加することがある。電池が膨れた場合、抵抗が増大する等して、電池性能が低下する。上述の特許文献1〜4の初期充電方法では、電池の膨れを抑制することはできない。尚、CC充電のみでは、電極の塗布重量ばらつき等の影響により、電極の厚さ方向に充電むらが生じて、充電状態にばらつきが生じる可能性がある。   When a battery with a lithium excess type positive electrode active material performs constant current (CC) charging followed by constant voltage (CV) charging, the discharge capacity may increase, but the thickness of the battery may also increase . When the battery swells, the battery performance decreases due to, for example, an increase in resistance. With the initial charge method of the above-mentioned patent documents 1-4, the swelling of a battery can not be suppressed. In addition, in the case of only CC charging, charging unevenness may occur in the thickness direction of the electrode due to the influence of coating weight variation of the electrode and the like, and the charging state may be uneven.

本発明は、リチウム過剰型の正極活物質を含む蓄電素子の膨れを抑制し、良好な放電容量が得られ、初期充電の時間が短縮化される蓄電素子の製造方法を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing a storage element capable of suppressing swelling of a storage element containing a lithium excess type positive electrode active material, obtaining a good discharge capacity, and shortening the time of initial charge. Do.

本発明に係る蓄電素子の製造方法は、リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、正極の電位が所定電位に到達するように定電流充電を行い、電流値が所定の電流値に低下するまで定電圧充電を行うことを特徴とする。   A method of manufacturing a storage element according to the present invention is a method of manufacturing a storage element including a lithium excess type positive electrode active material, wherein constant current charging is performed so that the potential of the positive electrode reaches a predetermined potential, and the current value is predetermined. The constant voltage charging is performed until the current value decreases.

本発明に係る蓄電素子の製造方法は、リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、正極の電位が所定電位に到達するように定電流充電を行い、時間に対する電流値の変化量の絶対値が所定値に低下するまで定電圧充電を行うことを特徴とする。   The method of manufacturing an electricity storage device according to the present invention is a method of manufacturing an electricity storage device including a lithium excess type positive electrode active material, wherein constant current charging is performed so that the potential of the positive electrode reaches a predetermined potential. The constant voltage charging is performed until the absolute value of the amount of change of V decreases to a predetermined value.

本発明においては、蓄電素子の膨れを抑制し、良好な放電容量が得られ、初期充電の時間が短縮化される。   In the present invention, the swelling of the storage element is suppressed, a good discharge capacity is obtained, and the time of initial charge is shortened.

実施の形態に係るリチウムイオン二次電池を示す断面図である。FIG. 1 is a cross-sectional view showing a lithium ion secondary battery according to an embodiment. 電池、電池の製造装置に備えられる制御部、及び電流センサを示すブロック図である。FIG. 2 is a block diagram showing a battery, a control unit provided in the battery manufacturing apparatus, and a current sensor. 充電時間と、電流値及び厚み増加量との関係を示すグラフである。It is a graph which shows the relationship between charge time, an electric current value, and a thickness increase amount. 充電時間と、電流値、及び、時間に対する電流値の変化量の絶対値(|ΔI/Δt|)との関係を示すグラフである。It is a graph which shows the relationship between charge time, an electric current value, and the absolute value (| (DELTA) I / (DELTA) t |) of the variation of the electric current value with respect to time. 実施の形態の電池の製造方法に係る初期充電処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the initial stage charge process which concerns on the manufacturing method of the battery of embodiment. 実施の形態の他の電池の製造方法に係る初期充電処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the initial stage charge process which concerns on the manufacturing method of the other battery of embodiment. カット電流値と、放電容量及び厚み増加量との関係を示すグラフである。It is a graph which shows the relationship between a cut current value, discharge capacity, and the amount of thickness increase. |ΔI/Δt|と、放電容量及び厚み増加量との関係を示すグラフである。It is a graph which shows the relation between | ΔI / Δt | and the discharge capacity and the increase in thickness.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。以下、蓄電素子がリチウムイオン二次電池である場合を説明するが、蓄電素子はリチウムイオン二次電池には限定されない。
図1は、実施の形態に係る蓄電素子としてのリチウムイオン二次電池を示す断面図である。図1において、1は角型のリチウムイオン二次電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7はケース蓋、8は安全弁、9は負極端子、10は負極リード、11は正極リード、12は絶縁部材である。電極群2は、負極3と正極4とをセパレータ5を介して扁平状に巻回して得られる。電極群2及び非水電解質は電池ケース6に収納される。電池ケース6の開口部は、安全弁8が設けられたケース蓋7をレーザー溶接することで密閉されている。負極端子9は頭部と側面視がL字状をなす脚部とを有し、脚部が絶縁部材12に覆われた状態で、ケース蓋7を貫通するように設けられている。負極端子9は負極リード10を介して負極3と接続され、正極4は正極リード11を介してケース蓋7の内面と接続されている。
なお、電池1は円柱型であってもよく、電極群2は、負極3と正極4とをセパレータ5を介して交互に積層したものであってもよい。
Hereinafter, the present invention will be specifically described based on the drawings showing the embodiments thereof. Hereinafter, although the case where the storage element is a lithium ion secondary battery will be described, the storage element is not limited to the lithium ion secondary battery.
FIG. 1 is a cross-sectional view showing a lithium ion secondary battery as a storage element according to the embodiment. In FIG. 1, 1 is a rectangular lithium ion secondary battery (hereinafter referred to as battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a case lid, 8 is a case lid A safety valve, 9 is a negative electrode terminal, 10 is a negative electrode lead, 11 is a positive electrode lead, and 12 is an insulating member. The electrode group 2 is obtained by winding the negative electrode 3 and the positive electrode 4 in a flat shape via the separator 5. The electrode group 2 and the non-aqueous electrolyte are housed in a battery case 6. The opening of the battery case 6 is sealed by laser welding a case lid 7 provided with a safety valve 8. The negative electrode terminal 9 has a head and a leg that is L-shaped in side view, and is provided so as to penetrate the case lid 7 in a state where the leg is covered by the insulating member 12. The negative electrode terminal 9 is connected to the negative electrode 3 through the negative electrode lead 10, and the positive electrode 4 is connected to the inner surface of the case lid 7 through the positive electrode lead 11.
The battery 1 may be cylindrical, and the electrode group 2 may be one in which the negative electrode 3 and the positive electrode 4 are alternately stacked via the separator 5.

正極4を作製する場合、まず、Li過剰型の正極活物質と、導電助剤と、結着剤とを所定の質量比率で混合して正極合材を得る。
正極活物質としては、上述のLiMeO2-Li2MnO3固溶体、Li2O−LiMeO2固溶体、Li3NbO4 −LiMeO2固溶体、Li4 WO5 −LiMeO2固溶体、Li4 TeO5 −LiMeO2固溶体、Li3SbO4 −LiFeO2固溶体、Li2RuO3 −LiMeO2固溶体、Li2RuO3 −Li2 MeO3固溶体等のLi過剰型活物質が挙げられる。
導電助剤としては、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料の1種又は2種以上が挙げられる。
結着剤としては、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンゴム(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマー等の1種又は2種以上が挙げられる。
In the case of producing the positive electrode 4, first, a positive electrode active material of a Li excess type, a conductive support agent, and a binder are mixed at a predetermined mass ratio to obtain a positive electrode mixture.
As the positive electrode active material, LiMeO 2 -Li 2 MnO 3 solid solution described above, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution.
As a conductive support agent, natural graphite (scaly graphite, flake graphite, earthy graphite etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver) , Gold, etc. 1) or 2 or more of conductive materials such as powder, metal fibers and conductive ceramic materials.
Binders include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene and polypropylene, ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), 1 type, or 2 or more types, such as polymers which have rubber elasticity, such as fluororubber, are mentioned.

正極合材をN−メチル−2−ピロリドン、トルエン等の有機溶媒に分散させることによりペーストを得る。このペーストを所定の厚みのアルミニウム製等の集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成型することにより正極4を得る。   A paste is obtained by dispersing the positive electrode mixture in an organic solvent such as N-methyl-2-pyrrolidone or toluene. The paste is uniformly applied to a current collector made of aluminum or the like having a predetermined thickness and dried, and then compression molding is performed by a roll press to obtain the positive electrode 4.

負極3を作製する場合、まず、負極活物質と、結着剤とを混合し、蒸留水を適宜加えて分散させ、スラリーを調製する。
負極活物質としては、グラファイト、ハードカーボン、Si、Sn、Cd、Zn、Al、Bi、Pb、Ge、Ag等の金属又は合金等が挙げられる。このスラリーを所定の厚みの銅製等の集電体に均一に塗布、乾燥させた後、ロールプレスで圧縮成形することにより負極3を得る。
When producing the negative electrode 3, first, a negative electrode active material and a binder are mixed, distilled water is appropriately added and dispersed, and a slurry is prepared.
Examples of the negative electrode active material include graphite, hard carbon, metals such as Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, Ag and the like, and alloys. The slurry is uniformly applied to a current collector made of copper or the like having a predetermined thickness, dried, and compression molded by a roll press to obtain the negative electrode 3.

セパレータ5としては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用するのが好ましい。セパレータ5の材料として、例えばポリエチレン,ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等が挙げられる。   As the separator 5, it is preferable to use, alone or in combination, a porous film, a non-woven fabric or the like exhibiting excellent high-rate discharge performance. Examples of the material of the separator 5 include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether Copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride -Ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluorope Pyrene copolymer, vinylidene fluoride - ethylene - tetrafluoroethylene copolymer, and the like.

非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、4−フルオロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等が挙げられるが、これらに限定されるものではない。   As a non-aqueous solvent used for the non-aqueous electrolyte, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, 4-fluoroethylene carbonate, vinylene carbonate and the like; cyclic resins such as γ-butyrolactone and γ-valerolactone Esters; Linear carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate; Linear esters such as methyl formate, methyl acetate, methyl butyrate; Tetrahydrofuran or derivatives thereof; 1,3-Dioxane, 1,4-dioxane Ethers such as 1,2-dimethoxyethane, 1,4-dibutoxyethane and methyl diglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide Examples thereof include, but are not limited to, sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof.

図2は、電池1、電池1の製造装置に備えられる制御部13、及び電流センサ19を示すブロック図である。   FIG. 2 is a block diagram showing the battery 1, the control unit 13 provided in the battery 1 manufacturing apparatus, and the current sensor 19.

制御部13は、各構成部の動作を制御するCPU(Central Processing Unit)15を備え、CPU15には、バスを介して、記憶部16、計時部17、及びI/F18が接続されている。
制御部13には、I/F18を介し、電池1及び電流センサ19が接続されている。
The control unit 13 includes a central processing unit (CPU) 15 that controls the operation of each component, and the CPU 15 is connected to the storage unit 16, the timer unit 17, and the I / F 18 via a bus.
The battery 1 and the current sensor 19 are connected to the control unit 13 via the I / F 18.

記憶部16は、本実施の形態に係る初期充電を行うための制御プログラムを記憶している。また、CPU15の演算処理によって生ずる各種データを一時記憶する。
計時部17は、初期充電の開始時に、計時を開始する。制御部13は、電流センサ19から電池1に流れる電流値を所定時間間隔で取得する。また、計時により、後述する|ΔI/Δt|が求められる。
The storage unit 16 stores a control program for performing initial charging according to the present embodiment. Further, various data generated by the arithmetic processing of the CPU 15 are temporarily stored.
The timer unit 17 starts clocking at the start of the initial charging. The control unit 13 obtains the current value flowing from the current sensor 19 to the battery 1 at predetermined time intervals. In addition, | ΔI / Δt |, which will be described later, is obtained by clocking.

本実施形態に係る電池1の製造方法においては、電池1の組み立て後に、初期充電を行う。正極4の電位が所定電位に到達するように定電流充電(CC充電)を行い、その後、定電圧充電(CV充電)を行う。前記所定電位は、プラトー電位より貴であるのが好ましい。プラトー電位とは、正極電位−充電電気量曲線において出現する、電位変化が比較的平坦な領域を意味する。   In the method of manufacturing the battery 1 according to the present embodiment, after the battery 1 is assembled, initial charging is performed. Constant current charging (CC charging) is performed so that the potential of the positive electrode 4 reaches a predetermined potential, and then constant voltage charging (CV charging) is performed. The predetermined potential is preferably nobler than the plateau potential. The plateau potential means a region where the potential change is relatively flat, which appears in the positive electrode potential-charge charge quantity curve.

定電圧充電を終了する電流値が0.04CmA以上である場合、放電容量が高く、電池厚み増加量は少なく、充電時間も短い。電流値の下限値は0.05CmAであるのが好ましい。電流値の上限値は0.08CmAであるのが好ましく、0.07CmAであるのがより好ましい。
定電圧充電を終了する電流値は、所望する放電容量、及び電池厚み増加量の許容量を考慮して設定する。
When the current value for terminating constant voltage charging is 0.04 CmA or more, the discharge capacity is high, the increase in battery thickness is small, and the charge time is also short. The lower limit value of the current value is preferably 0.05 CmA. The upper limit value of the current value is preferably 0.08 CmA, and more preferably 0.07 CmA.
The current value for terminating constant voltage charging is set in consideration of the desired discharge capacity and the allowable amount of increase in battery thickness.

定電圧充電は、時間に対する電流値の変化量の絶対値(|ΔI/Δt|)が所定値に到達するまで行ってもよい。その際、Δtは一定間隔であることが好ましい。|ΔI/Δt|の単位は特に限定されず、mA/min、A/min、mA/sec、CmA/min等の任意の単位を用いることができる。中でも、mA/minが適用しやすい。例えば、Δtの間隔が1minであり、|ΔI/Δt|の単位をmA/minとする場合は0.9mA/min以上であるのが好ましい。|ΔI/Δt|が0.9mA/min以上である場合、放電容量が高く、電池厚み増加量は少なく、充電時間も短い。|ΔI/Δt|の下限値は0.98mA/min、1mA/min、1.1mA/minの順に好ましい。|ΔI/Δt|の上限値は、3mA/min、2.9mA/min、2.5mA/minの順に好ましい。
前記所定値は、所望する放電容量、及び電池厚み増加量の許容量を考慮して設定する。
The constant voltage charging may be performed until the absolute value (| ΔI / Δt |) of the change amount of the current value with respect to time reaches a predetermined value. At that time, it is preferable that Δt be a constant interval. The unit of | ΔI / Δt | is not particularly limited, and any unit such as mA / min, A / min, mA / sec, CmA / min can be used. Above all, mA / min is easy to apply. For example, in the case where the interval of Δt is 1 min and the unit of | ΔI / Δt | is mA / min, it is preferable to be 0.9 mA / min or more. When | ΔI / Δt | is 0.9 mA / min or more, the discharge capacity is high, the increase in battery thickness is small, and the charge time is also short. The lower limit value of | ΔI / Δt | is preferably in the order of 0.98 mA / min, 1 mA / min and 1.1 mA / min. The upper limit of | ΔI / Δt | is preferably in the order of 3 mA / min, 2.9 mA / min, and 2.5 mA / min.
The predetermined value is set in consideration of a desired discharge capacity and an allowable amount of increase in battery thickness.

図3は、充電時間と、電流値及び電池厚み増加量との関係を示すグラフである。横軸は時間(h)、左側の縦軸は電流値I(mA)、右側の縦軸は電池1の厚み増加量(mm)である。
図3に示すように、初期充電において、まず、CC充電を行う。
CC充電が終了した時点の正極4の模式的断面図を図3に併せて示す。図3の合材の上方のセパレータ側からリチウムイオンが負極3(不図示)の炭素結晶層間に挿入される。模式的断面図に示すように、厚み方向に充電ムラが存在する。正極4の合材の塗布時の重量ばらつきにより、電池1間でも充電状態にばらつきが生じる。
FIG. 3 is a graph showing the relationship between the charging time and the current value and the amount of increase in battery thickness. The horizontal axis is time (h), the vertical axis on the left is current value I (mA), and the vertical axis on the right is thickness increase amount (mm) of the battery 1.
As shown in FIG. 3, in the initial charging, first, CC charging is performed.
A schematic cross-sectional view of the positive electrode 4 at the time of completion of the CC charging is also shown in FIG. Lithium ions are inserted between the carbon crystal layers of the negative electrode 3 (not shown) from the upper separator side of the mixture of FIG. 3. As shown in a schematic cross-sectional view, charging unevenness exists in the thickness direction. Due to the weight variation at the time of application of the mixture of the positive electrode 4, the charge state also varies among the batteries 1.

この為、引き続いて定電圧充電(CV充電)を行う。定電圧充電時に電流値は次第に減少する。
CV充電を継続することで、図3の中側の模式的断面図に示すようにムラが解消するように充電が進行する。
セパレータ側の充電も依然として進行するので、図3の下側の模式的断面図に示すように、定電圧充電時間の増加に従い、充電レベルが一定のレベルを超えることになる。この場合、炭酸等のガスの発生量が急激に増加し、電池1が膨れる。
For this reason, constant voltage charging (CV charging) is subsequently performed. The current value gradually decreases during constant voltage charging.
By continuing CV charge, charge advances so that nonuniformity may be eliminated, as shown in the typical sectional view by the side of the inside of FIG.
Since the charge on the separator side still proceeds, the charge level exceeds a certain level as the constant voltage charge time increases, as shown in the lower schematic cross-sectional view of FIG. In this case, the amount of generated gas such as carbon dioxide rapidly increases, and the battery 1 is expanded.

図4は、充電時間と、電流値、及び、時間に対する電流値の変化量の絶対値(|ΔI/Δt|)との関係を示すグラフである。横軸は時間(sec)、左側の縦軸は|ΔI/Δt|(mA/min)、右側の縦軸は電流値I(mA)である。
電解液を注液して電池1を組み立てた後、予備充電として0.1CmAでCC充電を3時間行い、48時間のエージングを行った。エージングにより、電池1内に溜まったガスが電解液に溶けて吸収される。その後、CC充電及びCV充電を行った。
図4に示すように、CC充電後、CV充電を行う場合、CV充電の時間が増加するのに従い、|ΔI/Δt|及び電流値ともに減少する。
なお、電池1を組み立てた後、予備充電及びエージングを行っているが、本実施形態に係る初期充電処理の前に必ずしも予備充電及びエージングを行う必要はない。
FIG. 4 is a graph showing the relationship between the charging time, the current value, and the absolute value (| ΔI / Δt |) of the amount of change in the current value with respect to time. The horizontal axis represents time (sec), the left vertical axis represents | ΔI / Δt | (mA / min), and the right vertical axis represents current value I (mA).
After the electrolyte was injected and the battery 1 was assembled, CC charging was performed at 0.1 CmA for 3 hours as preliminary charging, and aging was performed for 48 hours. By aging, the gas accumulated in the battery 1 is dissolved and absorbed in the electrolytic solution. After that, CC charge and CV charge were performed.
As shown in FIG. 4, when performing CV charging after CC charging, both the | ΔI / Δt | and the current value decrease as the time of CV charging increases.
Although precharging and aging are performed after the battery 1 is assembled, it is not necessary to perform precharging and aging before the initial charging process according to the present embodiment.

以上より、本実施の形態においては、CV充電を終了する指標を電流値又は|ΔI/Δt|にしている。   As described above, in the present embodiment, the indicator for terminating the CV charging is the current value or | ΔI / Δt |.

図5は、実施の形態の電池1の製造方法に係る初期充電処理の手順を示すフローチャートである。電池1の組み立て後、初期充電処理が行われる。
まず、CPU15によりCC充電を行う(S1)。電流値は0.05CmA以上3CmA以下であるのが好ましい。
CC充電は、正極の電位がプラトー電位より貴である所定電位になるまで行う。本実施の形態に係る正極活物質のプラトー電位は4.5V(vs.Li/Li+ )付近にある。従って、CC充電を正極の電位が4.6V程度になるまで行うのが好ましい。セル電圧に換算した場合、略4.5Vである。これにより、正極活物質中のLiを大きく取り出すことができる。電流値及び正極電位の上限値は、電池1の構成材料、要求される放電容量等に基づいて決定する。
FIG. 5 is a flowchart showing the procedure of the initial charging process according to the method of manufacturing the battery 1 of the embodiment. After the battery 1 is assembled, an initial charging process is performed.
First, CC charging is performed by the CPU 15 (S1). The current value is preferably 0.05 CmA or more and 3 CmA or less.
CC charging is performed until the potential of the positive electrode reaches a predetermined potential higher than the plateau potential. The plateau potential of the positive electrode active material according to the present embodiment is around 4.5 V (vs. Li / Li + ). Therefore, it is preferable to perform CC charging until the potential of the positive electrode becomes about 4.6V. When converted to cell voltage, it is approximately 4.5V. Thereby, Li in the positive electrode active material can be taken out largely. The upper limit value of the current value and the positive electrode potential is determined based on the constituent material of the battery 1, the required discharge capacity, and the like.

CPU15は、正極の電位が所定電位に到達した後、該所定電位を維持した状態でCV充電を行う(S2)。
CPU15は、電流値がB(CmA)未満であるか否かを判定する(S3)。Bは0.04CmAであるのが好ましい。
CPU15は、電流値がB(CmA)未満でないと判定した場合(S3:NO)、この判定処理を繰り返す。
CPU15は電流値がB(CmA)未満であると判定した場合(S3:YES)、初期充電処理を終了する。
なお、定電圧充電を終了する電流値の閾値は、上述の0.04CmAには限定されない。
以上のように初期充電処理を行った複数の電池1を、電気的に接続した状態でケースに収容することにより、蓄電装置が構成される。蓄電装置と、電池1の充放電を制御するBMW(Battery Management Unit)とを含むことにより、電池パックが構成される。
After the potential of the positive electrode reaches a predetermined potential, the CPU 15 performs CV charging in a state in which the predetermined potential is maintained (S2).
The CPU 15 determines whether the current value is less than B (C mA) (S3). B is preferably 0.04 CmA.
When the CPU 15 determines that the current value is not less than B (C mA) (S3: NO), the determination process is repeated.
When the CPU 15 determines that the current value is less than B (CmA) (S3: YES), the initial charging process is ended.
In addition, the threshold value of the electric current value which complete | finishes a constant voltage charge is not limited to above-mentioned 0.04 CmA.
A plurality of batteries 1 subjected to the initial charging process as described above are housed in the case in a state of being electrically connected, whereby a power storage device is configured. A battery pack is configured by including the power storage device and a BMW (Battery Management Unit) that controls charging and discharging of the battery 1.

図6は、実施の形態の他の電池1の製造方法に係る他の初期充電処理の手順を示すフローチャートである。電池の組み立て後、初期充電処理が行われる。
まず、CPU15により、上記と同様にしてCC充電を行う(S11)。
FIG. 6 is a flowchart showing the procedure of another initial charging process according to the method of manufacturing the other battery 1 of the embodiment. After battery assembly, an initial charging process is performed.
First, CC charging is performed by the CPU 15 in the same manner as described above (S11).

CPU15は、正極の電位が所定電位に到達した後、該所定電位を維持した状態でCV充電を行う(S12)。
CPU15は、|ΔI/Δt|(mA/min)が下限値A未満であるか否かを判定する(S13)。CPU15は、電流値が下限値A未満でないと判定した場合(S13:NO)、この判定処理を繰り返す。下限値Aは0.9(mA/min)であるのが好ましい。
CPU15は|ΔI/Δt|が下限値A未満であると判定した場合(S13:YES)、初期充電処理を終了する。
なお、下限値Aは、上述の0.9(mA/min)には限定されない。
After the potential of the positive electrode reaches a predetermined potential, the CPU 15 performs CV charging in a state in which the predetermined potential is maintained (S12).
The CPU 15 determines whether or not | ΔI / Δt | (mA / min) is less than the lower limit value A (S13). When the CPU 15 determines that the current value is not less than the lower limit value A (S13: NO), the determination process is repeated. The lower limit value A is preferably 0.9 (mA / min).
When it is determined that | ΔI / Δt | is less than the lower limit value A (S13: YES), the CPU 15 ends the initial charging process.
The lower limit value A is not limited to 0.9 (mA / min) described above.

CC充電を行った後、CV充電を行ったときの、|ΔI/Δt|及び電流値と、電池特性及び電池の膨れとのに関係を調べた。
まず、電池1を組み立てた。電池1の材料の構成は以下の通りである。正極4の正極合材は、Li過剰型の正極活物質94質量部と、アセチレンブラック4.5質量部と、ポリフッ化ビニリデン(PVDF)1.5質量部とを混合して得た。正極合材をN−メチル−2−ピロリドンに分散させてペーストを得た。このペーストをアルミニウム製の集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成型することにより正極4を得た。
負極3の合材はグラファイト96.7質量部と、CMC(カルボキシメチルセルロース)1.2質量部と、SBR2.1質量部とを混合して得た。このペーストを銅製の集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成型することにより負極3を得た。
セパレータ5は、微多孔性ポリエチレンフィルムを用いた。
電解液は、4−フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)との体積比5:95の混合溶媒に、LiPF6 を1.2mol/L溶解させ、1,3−プロペンスルトン(PRS)を非水電解質の総質量に対して2質量%添加したものを用いた。
After performing CC charging, the relationship between | ΔI / Δt | and current values, and battery characteristics and battery swelling when performing CV charging was examined.
First, the battery 1 was assembled. The composition of the material of the battery 1 is as follows. The positive electrode composite material of the positive electrode 4 was obtained by mixing 94 parts by mass of an Li-rich positive electrode active material, 4.5 parts by mass of acetylene black, and 1.5 parts by mass of polyvinylidene fluoride (PVDF). The positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to obtain a paste. The paste was uniformly applied to a current collector made of aluminum and dried, and then compression molding was performed by a roll press to obtain a positive electrode 4.
The mixture of the negative electrode 3 was obtained by mixing 96.7 parts by mass of graphite, 1.2 parts by mass of CMC (carboxymethylcellulose), and 2.1 parts by mass of SBR. The paste was uniformly applied to a copper current collector and dried, and then compression molding was performed by a roll press to obtain a negative electrode 3.
As the separator 5, a microporous polyethylene film was used.
The electrolyte solution was prepared by dissolving 1.2 mol / L of LiPF 6 in a mixed solvent of 4-fluoroethylene carbonate (FEC) and ethyl methyl carbonate (EMC) at a volume ratio of 5:95, and using 1,3-propene sultone (PRS) ) Was used with 2% by mass added to the total mass of the non-aqueous electrolyte.

電池の組み立て後に、以下の条件で実験例1〜5、並びに比較例1及び2の初期充電を行った。表1に条件を示す。   After the assembly of the battery, initial charging of Experimental Examples 1 to 5 and Comparative Examples 1 and 2 was performed under the following conditions. Table 1 shows the conditions.

表1中、「カット電流値」は、CV充電を終了したときの電流値である。   In Table 1, "cut current value" is a current value when CV charging is finished.

[実験例1]
0.1CmAで、電池電圧として4.5Vに到達するまでCC充電した後、4.5VでCV充電を行い、電流値が0.04CmAに到達した時点で、CV充電を終了した。その後、0.1CmAで2.0VまでCC放電を行った。|ΔI/Δt|の計算時のΔtの間隔を1minとする。CV充電の終了時の|ΔI/Δt|は、0.98mA/minである。
[実験例2]
電流値が0.05CmAに到達した時点で、CV充電を終了したこと以外は、実験例1と同様にして実験例2のCCCV充電を行った。CV充電の終了時の|ΔI/Δt|は、1.16mA/minである。
[実験例3]
電流値が0.06CmAに到達した時点で、CV充電を終了したこと以外は、実験例1と同様にして実験例3のCCCV充電を行った。CV充電の終了時の|ΔI/Δt|は、1.46mA/minである。
[実験例4]
電流値が0.07CmAに到達した時点で、CV充電を終了したこと以外は、実験例1と同様にして実験例4のCCCV充電を行った。CV充電の終了時の|ΔI/Δt|は、2.17mA/minである。
[Experimental Example 1]
After performing CC charging at 0.1 CmA until reaching 4.5 V as a battery voltage, CV charging was performed at 4.5 V, and CV charging was ended when the current value reached 0.04 CmA. After that, CC discharge was performed to 2.0 V at 0.1 C mA. The interval of Δt at the time of calculation of | ΔI / Δt | is 1 min. At the end of CV charging, | ΔI / Δt | is 0.98 mA / min.
[Experimental Example 2]
When the current value reached 0.05 CmA, CCCV charging of Experimental Example 2 was performed in the same manner as Experimental Example 1 except that CV charging was terminated. At the end of CV charging, | ΔI / Δt | is 1.16 mA / min.
[Experimental Example 3]
When the current value reached 0.06 CmA, CCCV charging of Experimental Example 3 was performed in the same manner as Experimental Example 1 except that CV charging was finished. At the end of CV charging, | ΔI / Δt | is 1.46 mA / min.
[Experimental Example 4]
When the current value reached 0.07 CmA, CCCV charging of Experimental Example 4 was performed in the same manner as Experimental Example 1 except that CV charging was finished. At the end of CV charging, | ΔI / Δt | is 2.17 mA / min.

[実験例5]
電流値が0.08CmAに到達した時点で、CV充電を終了したこと以外は、実験例1と同様にして実験例5のCCCV充電を行った。CV充電の終了時の|ΔI/Δt|は、2.99mA/minである。
[Experimental Example 5]
When the current value reached 0.08 CmA, CCCV charging of Experimental Example 5 was performed in the same manner as in Experimental Example 1 except that CV charging was finished. At the end of CV charging, | ΔI / Δt | is 2.99 mA / min.

[比較例1]
電流値が0.02CmAに到達した時点で、CV充電を終了したこと以外は、実験例1と同様にして比較例1のCCCV充電を行った。CV充電の終了時の|ΔI/Δt|は、0.14mA/minである。
[比較例2]
0.1CmAで4.5VまでCC充電を行った。
Comparative Example 1
When the current value reached 0.02 CmA, CCCV charging of Comparative Example 1 was performed in the same manner as in Experimental Example 1 except that CV charging was finished. At the end of CV charging, | ΔI / Δt | is 0.14 mA / min.
Comparative Example 2
CC charge was performed to 4.5 V at 0.1 C mA.

実験例1〜5の電池1、並びに比較例1及び2の電池について、下記のようにして充電電気量、放電容量、電池厚み増加量、充電時間、及びガス量を求めた。
(充電電気量)
初期充電における充電電気量を求めた。
(放電容量)
初期充電における放電容量を求めた。
(電池厚み増加量)
初期充電の前と、初期充電を行い、放電を行った後とについて夫々、電池1の長側面の中心部を、長側面に対して垂直方向からノギスで挟み込むようにして電池厚みを測定した。初期充電の前後における電池厚み増加量(mm)を算出した。
(充電時間)
計時部17により、充電時間を測定した。
(ガス量の測定)
電池をシリンジ付きの密閉容器に入れた状態で、電池ケースを開放し、放出されたガスの量をシリンジの目盛で確認した。
With respect to the batteries 1 of Experimental Examples 1 to 5 and the batteries of Comparative Examples 1 and 2, the charge amount, discharge capacity, battery thickness increase amount, charge time, and gas amount were determined as follows.
(Amount of charge)
The amount of charge in the initial charge was determined.
(Discharge capacity)
The discharge capacity at the initial charge was determined.
(Battery thickness increase)
Before and after the initial charge and after the initial charge, respectively, the thickness of the battery 1 was measured by sandwiching the central portion of the long side of the battery 1 with a vernier caliper from the vertical direction with respect to the long side. The amount of increase in battery thickness (mm) before and after the initial charge was calculated.
(charging time)
The charge time was measured by the timer unit 17.
(Measurement of gas amount)
With the battery placed in a closed container equipped with a syringe, the battery case was opened, and the amount of gas released was checked on the scale of the syringe.

図7は、カット電流値と、放電容量及び厚み増加量との関係を示すグラフである。横軸は電流値(CmA)、左側の縦軸は放電容量(mAh/g)、右側の縦軸は厚み増加量(mm)である。図7中、●はカット電流値と放電容量との関係を示すグラフ、■はカット電流値と厚み増加量との関係を示すグラフである。
図7及び表1より、CV充電時間が長くなり、カット電流値が小さくなるのに従い、放電容量が向上し、電池厚み増加量は増加することが分かる。
カット電流値が0.04CmA以上である実験例1〜5の電池1の場合、放電容量は255.5mAh/g以上であり、電池厚み増加量は0.30mm以下であり、充電時間は12時間以下である。
比較例1の電池の場合、電池厚み増加量が0.39mmである。比較例2の電池の場合、放電容量が254.1mAh/gである。比較例2の電池の場合、CV充電を行っていないので、充電が不十分であり、放電容量は小さい。
カット電流値の下限値は0.05CmAであるのが好ましい。カット電流値の上限値は0.08CmAであるのが好ましく、0.07CmAであるのがより好ましい。
FIG. 7 is a graph showing the relationship between the cut current value and the discharge capacity and the increase in thickness. The horizontal axis is a current value (CmA), the left vertical axis is a discharge capacity (mAh / g), and the right vertical axis is a thickness increase amount (mm). In FIG. 7, ● is a graph showing the relationship between the cut current value and the discharge capacity, and ▪ is a graph showing the relationship between the cut current value and the increase in thickness.
From FIG. 7 and Table 1, it is understood that as the CV charge time becomes longer and the cut current value becomes smaller, the discharge capacity is improved and the battery thickness increase amount is increased.
In the case of the battery 1 of Experimental Examples 1 to 5 having a cut current value of 0.04 CmA or more, the discharge capacity is 255.5 mAh / g or more, the increase in battery thickness is 0.30 mm or less, and the charge time is 12 hours It is below.
In the case of the battery of Comparative Example 1, the increase in battery thickness is 0.39 mm. In the case of the battery of Comparative Example 2, the discharge capacity is 254.1 mAh / g. In the case of the battery of Comparative Example 2, since CV charging is not performed, charging is insufficient and the discharge capacity is small.
The lower limit value of the cut current value is preferably 0.05 CmA. The upper limit of the cut current value is preferably 0.08 CmA, and more preferably 0.07 CmA.

図8は、|ΔI/Δt|と、放電容量及び厚み増加量との関係を示すグラフである。横軸は|ΔI/Δt|(mA/min)、左側の縦軸は放電容量(mAh/g)、右側の縦軸は厚み増加量(mm)である。図8中、●は|ΔI/Δt|と放電容量との関係を示すグラフ、■は|ΔI/Δt|と厚み増加量との関係を示すグラフである。
図9及び表1より、CV充電時間が長くなり、|ΔI/Δt|が小さくなるのに従い、放電容量が向上し、電池厚み増加量は増加することが分かる。
|ΔI/Δt|は、0.9mA/min以上であるのが好ましいことが分かる。|ΔI/Δt|が0.9mA/min以上である場合、放電容量は255.5mAh/g以上であり、電池厚み増加量は0.3mm以下であり、充電時間は12時間以下である。|ΔI/Δt|の下限値は0.98mA/min、1.0mA/min、1.1mA/minの順に好ましい。|ΔI/Δt|の上限値は3.0mA/min、2.9mA/min、2.5mA/minの順に好ましい。
FIG. 8 is a graph showing the relationship between | ΔI / Δt | and the discharge capacity and the increase in thickness. The horizontal axis is | ΔI / Δt | (mA / min), the vertical axis on the left is the discharge capacity (mAh / g), and the vertical axis on the right is the thickness increase (mm). In FIG. 8, ● is a graph showing the relationship between | ΔI / Δt | and the discharge capacity, and ▪ is a graph showing the relationship between | ΔI / Δt | and the amount of increase in thickness.
From FIG. 9 and Table 1, it is understood that as the CV charge time becomes longer and | ΔI / Δt | becomes smaller, the discharge capacity is improved and the battery thickness increase amount is increased.
It is understood that | ΔI / Δt | is preferably 0.9 mA / min or more. When | ΔI / Δt | is 0.9 mA / min or more, the discharge capacity is 255.5 mAh / g or more, the increase in battery thickness is 0.3 mm or less, and the charge time is 12 hours or less. The lower limit value of | ΔI / Δt | is preferably in the order of 0.98 mA / min, 1.0 mA / min and 1.1 mA / min. The upper limit value of | ΔI / Δt | is preferably in the order of 3.0 mA / min, 2.9 mA / min and 2.5 mA / min.

以上より、CV充電終了時の電流値が0.04CmA以上となるようにCV充電を行うことにより、電池1の膨れが良好に抑制され、電池1は良好な放電容量を有し、充電時間が短いことが確認された。
また、CV充電終了時の|ΔI/Δt|が所定値以上となるようにCV充電行うことにより、電池1の膨れが良好に抑制され、電池1は良好な放電容量を有し、充電時間が短いことが確認された。
From the above, by performing CV charge so that the current value at the end of CV charge is 0.04 CmA or more, the swelling of battery 1 is favorably suppressed, battery 1 has a good discharge capacity, and the charge time is It was confirmed to be short.
Further, by performing CV charging so that | ΔI / Δt | at the end of CV charging is equal to or more than a predetermined value, the swelling of battery 1 is favorably suppressed, battery 1 has a good discharge capacity, and the charging time is It was confirmed to be short.

以上の蓄電素子の製造方法は、リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、正極の電位が所定電位に到達するように定電流充電を行い、電流値が所定の電流値に低下するまで定電圧充電を行う。   The above manufacturing method of a storage element is a method of manufacturing a storage element including a lithium excess type positive electrode active material, wherein constant current charging is performed so that the potential of the positive electrode reaches a predetermined potential, and the current value is a predetermined current Perform constant voltage charging until it drops to the value.

上記構成によれば、蓄電素子の膨れを良好に抑制し、良好な放電容量が得られ、初期充電の時間が短縮化される。   According to the above configuration, the swelling of the storage element can be well suppressed, a good discharge capacity can be obtained, and the time of initial charge can be shortened.

上述の蓄電素子の製造方法において、前記所定の電流値は、0.04CmA以上であるのが好ましい。   In the method of manufacturing the storage element described above, the predetermined current value is preferably 0.04 CmA or more.

上記構成によれば、蓄電素子の膨れがより良好に抑制される。   According to the above configuration, the swelling of the storage element can be suppressed better.

蓄電素子の他の製造方法は、リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、正極の電位が所定電位に到達するように定電流充電を行い、時間に対する電流値の変化量の絶対値が所定値に低下するまで定電圧充電を行う。   Another method of manufacturing a storage element is a method of manufacturing a storage element including a lithium excess type positive electrode active material, wherein constant current charging is performed so that the potential of the positive electrode reaches a predetermined potential, and a change in current value with respect to time Constant voltage charging is performed until the absolute value of the amount decreases to a predetermined value.

上記構成によれば、蓄電素子の膨れを良好に抑制し、良好な放電容量が得られ、初期充電の時間が短縮化される。   According to the above configuration, the swelling of the storage element can be well suppressed, a good discharge capacity can be obtained, and the time of initial charge can be shortened.

上述の蓄電素子の製造方法において、前記所定値は、0.9mA/min以上であるのが好ましい。   In the manufacturing method of the above-mentioned electrical storage element, it is preferable that the predetermined value is 0.9 mA / min or more.

上記構成によれば、蓄電素子の膨れがより良好に抑制される。   According to the above configuration, the swelling of the storage element can be suppressed better.

本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。   The present invention is not limited to the contents of the embodiments described above, and various modifications can be made within the scope of the claims. That is, an embodiment obtained by combining technical means appropriately modified within the scope of the claims is also included in the technical scope of the present invention.

1 電池
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 ケース蓋
8 安全弁
9 負極端子
10 負極リード
11 正極リード
12 絶縁部材
13 制御部
15 CPU
19 電流センサ
REFERENCE SIGNS LIST 1 battery 2 electrode group 3 negative electrode 4 positive electrode 5 separator 6 battery case 7 case lid 8 safety valve 9 negative electrode terminal 10 negative electrode lead 11 positive electrode lead 12 insulating member 13 control unit 15 CPU
19 current sensor

Claims (4)

リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、
正極の電位が所定電位に到達するように定電流充電を行い、
電流値が所定の電流値に低下するまで定電圧充電を行う
ことを特徴とする蓄電素子の製造方法。
A method of manufacturing a storage element including a lithium excess type positive electrode active material,
Constant current charging so that the positive electrode potential reaches a predetermined potential,
A manufacturing method of a storage element characterized in that constant-voltage charging is performed until the current value decreases to a predetermined current value.
前記所定の電流値は、0.04CmA以上であることを特徴とする請求項1に記載の蓄電素子の製造方法。   The method according to claim 1, wherein the predetermined current value is 0.04 CmA or more. リチウム過剰型の正極活物質を含む蓄電素子の製造方法であって、
正極の電位が所定電位に到達するように定電流充電を行い、
時間に対する電流値の変化量の絶対値が所定値に低下するまで定電圧充電を行う
ことを特徴とする蓄電素子の製造方法。
A method of manufacturing a storage element including a lithium excess type positive electrode active material,
Constant current charging so that the positive electrode potential reaches a predetermined potential,
A manufacturing method of a storage element characterized in that constant voltage charging is performed until an absolute value of a change amount of a current value with respect to time decreases to a predetermined value.
前記所定値は、0.9mA/min以上であることを特徴とする請求項3に記載の蓄電素子の製造方法。   The method according to claim 3, wherein the predetermined value is 0.9 mA / min or more.
JP2017186397A 2017-09-27 2017-09-27 Method of manufacturing power storage element Pending JP2019061874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186397A JP2019061874A (en) 2017-09-27 2017-09-27 Method of manufacturing power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186397A JP2019061874A (en) 2017-09-27 2017-09-27 Method of manufacturing power storage element

Publications (1)

Publication Number Publication Date
JP2019061874A true JP2019061874A (en) 2019-04-18

Family

ID=66178521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186397A Pending JP2019061874A (en) 2017-09-27 2017-09-27 Method of manufacturing power storage element

Country Status (1)

Country Link
JP (1) JP2019061874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571490A (en) * 2019-10-15 2019-12-13 金妍 Formation method of lithium ion battery
WO2021172447A1 (en) 2020-02-27 2021-09-02 パナソニックIpマネジメント株式会社 Method for charging nonaqueous electrolyte secondary cell
WO2024136460A1 (en) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 Method for manufacturing lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214491A (en) * 2012-04-02 2013-10-17 Samsung Corning Precision Materials Co Ltd Lithium ion secondary battery and method for preparing the same
JP2014029829A (en) * 2012-07-04 2014-02-13 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2016129114A (en) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery electrode and method for manufacturing the same
JP2018198142A (en) * 2017-05-23 2018-12-13 日産自動車株式会社 Secondary battery and production method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214491A (en) * 2012-04-02 2013-10-17 Samsung Corning Precision Materials Co Ltd Lithium ion secondary battery and method for preparing the same
JP2014029829A (en) * 2012-07-04 2014-02-13 Gs Yuasa Corp Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2016129114A (en) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery electrode and method for manufacturing the same
JP2018198142A (en) * 2017-05-23 2018-12-13 日産自動車株式会社 Secondary battery and production method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571490A (en) * 2019-10-15 2019-12-13 金妍 Formation method of lithium ion battery
WO2021172447A1 (en) 2020-02-27 2021-09-02 パナソニックIpマネジメント株式会社 Method for charging nonaqueous electrolyte secondary cell
WO2024136460A1 (en) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 Method for manufacturing lithium secondary battery

Similar Documents

Publication Publication Date Title
KR101313437B1 (en) Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
JP6656717B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte containing the same, and lithium secondary battery including the same
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
JP6128225B2 (en) Secondary battery control device and control method
CN108808098B (en) Method for manufacturing lithium ion secondary battery
JP5896024B2 (en) Charge control method and charge control device for secondary battery
US11876191B2 (en) Method for activating secondary battery
KR20160125895A (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for making the same, and non-aqueous electrolyte secondary battery using the negative electrode active material and method for making negative electrode material for non-aqueous electrolyte secondary battery
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
JP7390786B2 (en) Lithium battery electrolyte additive, organic electrolyte containing the same, and lithium battery
JP2010198832A (en) Lithium ion secondary battery and its manufacturing method
KR20160074386A (en) Lithium ion secondary battery
JP2019061874A (en) Method of manufacturing power storage element
EP2768065A1 (en) Nonaqueous electrolyte secondary cell and method for producing nonaqueous electrolyte secondary cell
JP7113290B2 (en) SECONDARY BATTERY CONTROL METHOD AND BATTERY SYSTEM
JP6044453B2 (en) Method for manufacturing power storage device
JP2012252951A (en) Nonaqueous electrolyte secondary battery
KR101424865B1 (en) Method of manufacturing positive electrode active material and electrode, and electrode
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2000048862A (en) Charging method for nonaqueous secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
KR102351245B1 (en) Preparing method of the positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019