JP2007250288A - Method for manufacturing non-aqueous electrolyte secondary battery - Google Patents

Method for manufacturing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007250288A
JP2007250288A JP2006070254A JP2006070254A JP2007250288A JP 2007250288 A JP2007250288 A JP 2007250288A JP 2006070254 A JP2006070254 A JP 2006070254A JP 2006070254 A JP2006070254 A JP 2006070254A JP 2007250288 A JP2007250288 A JP 2007250288A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
lithium
secondary battery
battery
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070254A
Other languages
Japanese (ja)
Other versions
JP5094027B2 (en
Inventor
Atsushi Yanai
敦志 柳井
Toyoki Fujiwara
豊樹 藤原
Naoya Nakanishi
直哉 中西
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006070254A priority Critical patent/JP5094027B2/en
Publication of JP2007250288A publication Critical patent/JP2007250288A/en
Application granted granted Critical
Publication of JP5094027B2 publication Critical patent/JP5094027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery with improved initial output property by applying a special aging process to the non-aqueous electrolyte secondary battery provided with non-aqueous electrolyte to which lithium salt with oxalato complex made to be an anion is added. <P>SOLUTION: The method for manufacturing the non-aqueous electrolyte secondary battery 10 forms the secondary battery by inserting a positive electrode 11 containing a lithium transition metal composite oxide carrying out occlusion and discharging of lithium as a positive electrode active substance and a negative electrode 12 containing carbon carrying out occlusion and discharging of lithium as a negative electrode active substance inside an exterior can 14 and then injecting the non-aqueous electrolyte with the lithium salt with the oxalato complex made as anion is added inside the exterior can 14. Next, after injecting the non-aqueous electrolyte to which the lithium salt with the oxalato complex made as anion is added, the aging process of leaving the secondary battery in a temperature environment of 35°C to 85°C with battery voltage at 1V or more before shipping for only less than 7 days is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムの吸蔵・放出が可能なリチウム遷移金属複合酸化物を正極活物質として含む正極と、リチウムの吸蔵・放出が可能な炭素を負極活物質として含む負極とを外装缶内に挿入した後、当該外装缶内にオキサラト錯体をアニオンとするリチウム塩が添加された非水電解液を注液して形成する非水電解質二次電池の製造方法に関する。   The present invention inserts a positive electrode containing a lithium transition metal composite oxide capable of occluding and releasing lithium as a positive electrode active material and a negative electrode containing carbon capable of occluding and releasing lithium as a negative electrode active material in an outer can. Then, the present invention relates to a method for producing a non-aqueous electrolyte secondary battery formed by pouring a non-aqueous electrolyte solution to which a lithium salt having an oxalato complex as an anion is added into the outer can.

近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンを吸蔵・放出できる炭素材料あるいは合金などを負極活物質とし、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)等のリチウム含有遷移金属酸化物を正極活物質とする非水電解質二次電池が、小型軽量で電圧が高く、しかも高容量で充放電可能な電池として実用化されるようになった。 In recent years, as a battery used in portable electronic / communication equipment such as a small video camera, a mobile phone, and a laptop computer, a carbon material or an alloy capable of inserting and extracting lithium ions is used as a negative electrode active material, and lithium cobalt oxide (LiCoO 2). ), Non-aqueous electrolyte secondary batteries using lithium-containing transition metal oxides such as lithium manganate (LiMn 2 O 4 ) and lithium nickelate (LiNiO 2 ) as a positive electrode active material are small, lightweight, high voltage, and high It has come into practical use as a battery that can be charged and discharged with a capacity.

上述した非水電解質二次電池の正極活物質に用いられるリチウム含有遷移金属酸化物のうち、ニッケル酸リチウム(LiNiO2)にあっては、高容量であるという特徴を有する反面、安全性に劣りかつ過電圧が大きいという欠点を有することからコバルト酸リチウムよりも劣っていた。また、マンガン酸リチウム(LiMn24)にあっては、資源が豊富で安価であるという特徴を有する反面、低エネルギー密度で高温でマンガン自体が溶解するという欠点を有することからコバルト酸リチウムよりも劣っていた。このため、リチウム含有遷移金属酸化物としてコバルト酸リチウム(LiCoO2)を用いることが主流となった。 Among the lithium-containing transition metal oxides used for the positive electrode active material of the non-aqueous electrolyte secondary battery described above, lithium nickelate (LiNiO 2 ) has a high capacity but is inferior in safety. Moreover, it was inferior to lithium cobaltate because it had the disadvantage of a large overvoltage. In addition, lithium manganate (LiMn 2 O 4 ) has the feature of being rich in resources and inexpensive, but has the disadvantage that manganese itself dissolves at high temperature at low energy density. Was also inferior. For this reason, it has become mainstream to use lithium cobaltate (LiCoO 2 ) as the lithium-containing transition metal oxide.

ところで、近年、非水電解質二次電池の正極活物質に、スピネル構造を有するリチウムマンガン複合酸化物と、層状構造を有するリチウムニッケル複合酸化物とを混合させて使用し、電池容量と電池電圧とのバランスを適切に設定できるようにすると共に、高温環境下における保存特性を向上させるようにした非水電解質二次電池が提案されるようになった。ところが、スピネル構造を有するリチウムマンガン複合酸化物と、層状構造を有するリチウムニッケル複合酸化物とを混合させた正極活物質を用いた非水電解質二次電池においても、高温環境下で保存した場合に充放電特性等の電池特性の低下を十分に抑制することは困難であった。   By the way, in recent years, a lithium-manganese composite oxide having a spinel structure and a lithium-nickel composite oxide having a layered structure are mixed and used for a positive electrode active material of a non-aqueous electrolyte secondary battery. A non-aqueous electrolyte secondary battery has been proposed which can appropriately set the balance of the battery and improve the storage characteristics in a high temperature environment. However, even in a nonaqueous electrolyte secondary battery using a positive electrode active material in which a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure are mixed, it is stored in a high temperature environment. It has been difficult to sufficiently suppress deterioration of battery characteristics such as charge / discharge characteristics.

一方、非水電解液の溶質として、リチウム―ビス(オキサラト)ボレートを使用し、非水電解質二次電池の高温環境下におけるサイクル特性を向上させることが提案されるようになった。ところが、リチウムービス(オキサラト)ボレートを用いた非水電解質二次電池においては、電池の内部抵抗が大きくなって、充放電特性等の電池特性が低下するという問題があった。   On the other hand, it has been proposed to use lithium-bis (oxalato) borate as the solute of the non-aqueous electrolyte to improve the cycle characteristics of the non-aqueous electrolyte secondary battery in a high temperature environment. However, the non-aqueous electrolyte secondary battery using lithium-bis (oxalato) borate has a problem that the internal resistance of the battery is increased and the battery characteristics such as charge / discharge characteristics are deteriorated.

そこで、スピネル構造を有するリチウムマンガン複合酸化物と、層状構造を有するリチウムニッケル複合酸化物とを混合した正極活物質を用いた非水電解質二次電池において、電池の内部抵抗が大きくなるということがなく、高温環境下で保存した場合に、充放電特性等の電池特性が低下するのを十分に抑制することが特許文献1で提案されるようになった。   Therefore, in a non-aqueous electrolyte secondary battery using a positive electrode active material in which a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure are mixed, the internal resistance of the battery is increased. However, Patent Document 1 has been proposed to sufficiently suppress deterioration of battery characteristics such as charge / discharge characteristics when stored in a high temperature environment.

この特許文献1にて提案された非水電解質二次電池においては、非水系溶媒に溶質を溶解させた非水電解液に、この溶質とは別に、オキサラト錯体をアニオンとするリチウム塩を添加させるようにしている。これにより、このオキサラト錯体をアニオンとするリチウム塩によって正極や負極の表面に、高温環境下においても安定な被膜が形成されるようになり、この被膜により高温環境下においても非水電解液が正極や負極と直接接触して副反応が生じるのが抑制され、高温保存特性が向上するというものである。
特開2005−243504号公報
In the non-aqueous electrolyte secondary battery proposed in Patent Document 1, a lithium salt having an oxalato complex as an anion is added to a non-aqueous electrolyte obtained by dissolving a solute in a non-aqueous solvent. I am doing so. As a result, a lithium-salt having the oxalato complex as an anion forms a stable film on the surface of the positive electrode and the negative electrode even in a high temperature environment. Further, side reactions are prevented from being caused by direct contact with the negative electrode, and high temperature storage characteristics are improved.
JP 2005-243504 A

しかしながら、上述した特許文献1で提案された非水電解質二次電池においては、初期の出力特性、即ち、初期のIV特性(IV抵抗:なお、IV抵抗とは電池を何点かの電流値にて、ある一定時間充電または放電したときの電圧を測定し、電流値に対する電圧の傾きを計算したものあり、電池に何Aの電流が流せるのかを知る指標となる。)が向上しないという問題を生じた。ここで、初期の出力特性が向上しないと、この種の非水電解質二次電池を電気自動車等の電源に用いた場合に、充分な出力・回生特性が得られないという問題があった。
そこで、本発明等は種々の検討を行ったところ、ある条件を満たすエージング処理を施すことにより初期の出力特性が向上するという知見を得た。
However, in the non-aqueous electrolyte secondary battery proposed in Patent Document 1 described above, the initial output characteristics, that is, the initial IV characteristics (IV resistance: Note that the IV resistance is a current value at several points in the battery. The voltage when charging or discharging for a certain period of time is measured, and the slope of the voltage with respect to the current value is calculated, which is an index for knowing how much current can flow through the battery.) occured. Here, unless the initial output characteristics are improved, there is a problem that sufficient output / regeneration characteristics cannot be obtained when this type of non-aqueous electrolyte secondary battery is used as a power source for an electric vehicle or the like.
Therefore, the present invention and others have made various studies, and have found that an initial output characteristic is improved by performing an aging process that satisfies a certain condition.

本発明はこのような知見に基づいてなされたものであって、オキサラト錯体をアニオンとするリチウム塩を添加させた非水電解液を備えた非水電解質二次電池に特別のエージング処理を施すことにより、初期の出力特性が向上した非水電解質二次電池を提供することを目的とするものである。   The present invention has been made based on such knowledge, and a special aging treatment is applied to a nonaqueous electrolyte secondary battery including a nonaqueous electrolyte solution to which a lithium salt having an oxalato complex as an anion is added. Thus, an object of the present invention is to provide a nonaqueous electrolyte secondary battery with improved initial output characteristics.

本発明の非水電解質二次電池の製造方法は、リチウムの吸蔵・放出が可能なリチウム遷移金属複合酸化物を正極活物質として含む正極と、リチウムの吸蔵・放出が可能な炭素を負極活物質として含む負極とを外装缶内に挿入した後、当該外装缶内にオキサラト錯体をアニオンとするリチウム塩が添加された非水電解液を注液して形成するようにしている。そして、上記目的を達成するため、オキサラト錯体をアニオンとするリチウム塩が添加された非水電解液の注液後、出荷前に電池電圧が1V以上で、35℃〜85℃の温度雰囲気中に7日(168時間)以内だけ放置するエージング工程を設けるようにしている。   The method for producing a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode containing a lithium transition metal composite oxide capable of occluding and releasing lithium as a positive electrode active material, and a carbon capable of occluding and releasing lithium as a negative electrode active material After inserting the negative electrode included in the outer can into the outer can, a nonaqueous electrolytic solution to which a lithium salt having an oxalato complex as an anion is added is injected into the outer can. And in order to achieve the said objective, after injection | pouring of the non-aqueous electrolyte to which the lithium salt which uses an oxalato complex as an anion was added, the battery voltage is 1V or more in a temperature atmosphere of 35 to 85 degreeC before shipment. An aging process is allowed to be allowed to stand for 7 days (168 hours).

ここで、オキサラト錯体をアニオンとするリチウム塩が添加された非水電解液を注液した後、出荷前に電池電圧が1V以上で、35℃〜85℃の温度雰囲気中に7日(168時間)以内だけ放置すると、初期の出力特性が向上することが明らかになった。これは、電池電圧が1V以上で、35℃〜85℃の温度雰囲気中に放置すると、オキサラト錯体をアニオンとするリチウム塩が還元されて分解し、負極表面に安定でかつリチウムイオンの透過性に優れた被膜が形成されるようになるためと考えられる。そして、負極表面にリチウムイオンの透過性に優れた被膜が形成されることにより、内部抵抗が低下し、初期の出力特性が向上するようになる   Here, after injecting a non-aqueous electrolyte solution to which a lithium salt having an oxalato complex as an anion was added, the battery voltage was 1 V or more before shipment in a temperature atmosphere of 35 ° C. to 85 ° C. for 7 days (168 hours). It is clear that the initial output characteristics are improved when left alone. This is because when the battery voltage is 1 V or higher and left in a temperature atmosphere of 35 ° C. to 85 ° C., the lithium salt having an oxalato complex as an anion is reduced and decomposed, and the negative electrode surface is stable and permeable to lithium ions. It is considered that an excellent film is formed. And, by forming a film with excellent lithium ion permeability on the negative electrode surface, the internal resistance is lowered and the initial output characteristics are improved.

この場合、放置期間が7日(168時間)を超えるようになると、逆に、負極表面に形成される被膜が厚くなりすぎることにより、内部抵抗が高くなって、初期の出力特性が向上しなくなる。このため、放置期間は7日(168時間)以内にする必要がある。
また、放置する温度が35℃未満であると、オキサラト錯体をアニオンとするリチウム塩が分解されにくくなって、負極表面にリチウムイオンの透過性に優れた被膜が形成されにくくなる。一方、放置する温度が85℃を超えるような高温になると、電解質の分解と考えられる電解液の劣化が起こり、電池特性が低下する。このことから、エージングのために放置する温度は35℃以上で、85℃以下にするのが望ましい。
さらに、電池電圧が1V未満であるとオキサラト錯体は分解しないため、電池電圧が1V以上で放置する必要がある。
In this case, when the standing period exceeds 7 days (168 hours), the coating formed on the negative electrode surface becomes too thick, so that the internal resistance increases and the initial output characteristics are not improved. . For this reason, it is necessary to set the leaving period within 7 days (168 hours).
On the other hand, when the standing temperature is less than 35 ° C., the lithium salt having an oxalato complex as an anion is difficult to be decomposed, and a film excellent in lithium ion permeability is hardly formed on the negative electrode surface. On the other hand, when the leaving temperature exceeds 85 ° C., the electrolytic solution is considered to be decomposed and the battery characteristics are deteriorated. For this reason, it is desirable that the temperature left for aging be 35 ° C. or higher and 85 ° C. or lower.
Furthermore, since the oxalato complex does not decompose when the battery voltage is less than 1V, it is necessary to leave the battery voltage at 1V or more.

なお、オキサラト錯体をアニオンとするリチウム塩を添加させるにあたり、添加させるオキサラト錯体をアニオンとするリチウム塩の量が非水溶媒に対して0.01モル/リットルよりも少なくなると、負極上に良好な被膜が十分に形成されなくなる。一方、その添加量が非水溶媒に対して0.2モル/リットルより多くなると、負極の表面に形成される被膜が厚くなりすぎて内部抵抗が上昇するようになる。
このため、非水電解液に添加させるオキサラト錯体をアニオンとするリチウム塩は非水溶媒に対して0.01〜0.2モル/リットルの範囲になるように添加するのが望ましい。
In addition, when adding a lithium salt having an oxalato complex as an anion, if the amount of the lithium salt having an oxalato complex as an anion is less than 0.01 mol / liter with respect to the non-aqueous solvent, it is good on the negative electrode. A film is not sufficiently formed. On the other hand, when the addition amount is more than 0.2 mol / liter with respect to the non-aqueous solvent, the coating formed on the surface of the negative electrode becomes too thick and the internal resistance increases.
For this reason, it is desirable to add the lithium salt having an oxalato complex added to the non-aqueous electrolyte as an anion in a range of 0.01 to 0.2 mol / liter with respect to the non-aqueous solvent.

また、オキサラト錯体をアニオンとするリチウム塩は、中心原子にC24 2-が配位したアニオンを有するリチウム塩であればよく、Li[M(C24xy](ここで、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である)で表わされるものが望ましく、好ましくは、Mがホウ素又はリンからなるものを用いるのが好ましい。特に、リチウム−ビス(オキサラト)ボレート(LiB(C242)またはリチウム−ジフルオロ(オキサラト)ボレート(LiB(C24)F2)を用いるのが好ましい。これは、非水電解液中で錯体がより安定になり、さらに安定した被膜が形成されるためと、コスト面においても非常に有利であることによる。 The lithium salt having an oxalato complex as an anion may be a lithium salt having an anion in which C 2 O 4 2− is coordinated to the central atom, and Li [M (C 2 O 4 ) x R y ] (here Wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is a group selected from halogen, an alkyl group, and a halogen-substituted alkyl group, x is a positive integer, and y is a positive integer 0 or a positive integer) is desirable, and it is preferable to use a material in which M consists of boron or phosphorus. In particular, lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) or lithium-difluoro (oxalato) borate (LiB (C 2 O 4 ) F 2 ) is preferably used. This is because the complex becomes more stable in the non-aqueous electrolyte and a more stable film is formed, and it is very advantageous in terms of cost.

なお、非水電解液における非水溶媒としては、非水電解質二次電池において一般に使用されているものを用いることができ、例えば、エチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート,エチルメチルカーボネート,ジエチルカーボネートなどの鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、非水電解液中にビニレンカーボネート(VC)が含有されていると、負極の表面にさらに良好な被膜が形成されるようになるので好ましい。   In addition, as the nonaqueous solvent in the nonaqueous electrolyte, those generally used in nonaqueous electrolyte secondary batteries can be used, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, Chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate. In addition, it is preferable that vinylene carbonate (VC) is contained in the nonaqueous electrolytic solution because a better film is formed on the surface of the negative electrode.

上述したように、本発明においては、1V以上で、35℃〜85℃の温度雰囲気中に7日以内だけ放置するエージング工程を設けるようにしているので、初期の出力特性が向上した非水電解質二次電池を得ることが可能となる。   As described above, in the present invention, an aging process is provided in which the aging process is performed in a temperature atmosphere of 35C to 85C at 1 V or higher for only 7 days, so that the non-aqueous electrolyte with improved initial output characteristics is provided. A secondary battery can be obtained.

ついで、本発明の実施の形態を以下に説明するが、本発明はこの実施の形態に何ら限定されるものではなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は、本発明の非水電解質二次電池を模式的に示す断面図である。   Next, embodiments of the present invention will be described below. However, the present invention is not limited to these embodiments, and can be implemented with appropriate modifications within a range not changing the object of the present invention. is there. In addition, FIG. 1 is sectional drawing which shows typically the nonaqueous electrolyte secondary battery of this invention.

1.正極板
Li2CO3と(Ni0.4Co0.3Mn0.334とを、Liと(Ni0.4Co0.3Mn0.3)とのモル比が1:1(Li:(Ni0.4Co0.3Mn0.3)=1:1)となるように混合した。ついで、この混合物を空気雰囲気中にて900℃で20時間焼成し、平均粒子径が12.1μmのLiNi0.4Co0.3Mn0.32で表されるリチウム遷移金属酸化物を得て、正極活物質とした。
1. The positive electrode plate Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 O 4 have a molar ratio of Li to (Ni 0.4 Co 0.3 Mn 0.3 ) of 1: 1 (Li: (Ni 0.4 Co 0.3 Mn 0.3 ). = 1: 1). Subsequently, this mixture was fired at 900 ° C. for 20 hours in an air atmosphere to obtain a lithium transition metal oxide represented by LiNi 0.4 Co 0.3 Mn 0.3 O 2 having an average particle size of 12.1 μm, and a positive electrode active material It was.

以上のようにして得られた正極活物質と、導電剤としての炭素粉末と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、質量比で92:5:3となるように、N−メチル−2−ピロリドン(NMP)に添加して混練し、正極スラリーを作製した。作製した正極スラリーを正極芯体11aとしてのアルミニウム箔の上に塗布した後、乾燥させて正極活物質層11bを形成した。その後、圧延ロールを用いて所定の充填密度になるまで圧延し、所定寸法に切断した後、正極集電タブ11cを取り付けて正極板11を作製した。   The positive electrode active material obtained as described above, the carbon powder as the conductive agent, and the polyvinylidene fluoride (PVdF) as the binder were N— in a mass ratio of 92: 5: 3. It was added to methyl-2-pyrrolidone (NMP) and kneaded to prepare a positive electrode slurry. The produced positive electrode slurry was applied on an aluminum foil as the positive electrode core 11a and then dried to form the positive electrode active material layer 11b. Then, it rolled until it became a predetermined packing density using the rolling roll, and after cut | disconnecting to the predetermined dimension, the positive electrode current collection tab 11c was attached and the positive electrode plate 11 was produced.

2.負極板
負極活物質としての人造黒鉛と、結着剤としてのポリイミド(PI)とを溶かした水溶液とを混練して負極スラリーを作製した。この場合、負極活物質:結着剤の質量比が97:3となるようにこれらを添加した。ついで、作製した負極スラリーを負極芯体12aとしての銅箔の上に塗布した後、乾燥させて負極活物質層12bを形成した。その後、圧延ローラーを用いて所定の充填密度になるまで圧延し、負極集電タブ12cを取り付けて負極板12を作製した。
2. Negative electrode plate A negative electrode slurry was prepared by kneading artificial graphite as a negative electrode active material and an aqueous solution in which polyimide (PI) as a binder was dissolved. In this case, these were added so that the negative electrode active material: binder mass ratio was 97: 3. Next, the prepared negative electrode slurry was applied on a copper foil as the negative electrode core 12a and then dried to form a negative electrode active material layer 12b. Then, it rolled until it became a predetermined filling density using the rolling roller, the negative electrode current collection tab 12c was attached, and the negative electrode plate 12 was produced.

3.非水電解液
非水電解液を作製するにあたっては、環状カーボネートのエチレンカーボネート(EC)と、鎖状カーボネートのエチルメチルカーボネート(EMC)を体積比で3:7となるように混合させた混合溶媒に対して、溶質として六フッ化リン酸リチウム(LiPF6)を1モル/リットルの割合で溶解させるとともに、リチウム―ビス(オキサラト)ボレート(LiB(C242)を0.1モル/リットルの割合で溶解させた。このようにして得られた溶液にビニレンカーボネート(VC)を1質量%だけ添加して非水電解液を調製し、これを電解液aとした。
3. Non-aqueous electrolyte In preparing a non-aqueous electrolyte, a mixed solvent in which ethylene carbonate (EC), a cyclic carbonate, and ethyl methyl carbonate (EMC), a chain carbonate, were mixed at a volume ratio of 3: 7. In contrast, lithium hexafluorophosphate (LiPF 6 ) as a solute was dissolved at a rate of 1 mol / liter, and 0.1 mol of lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) was dissolved. / L was dissolved at a rate of 1 liter. Only 1% by mass of vinylene carbonate (VC) was added to the solution thus obtained to prepare a nonaqueous electrolytic solution, which was designated as electrolytic solution a.

一方、上述と同様な混合溶媒に対して、溶質として六フッ化リン酸リチウム(LiPF6)を1モル/リットルの割合で溶解させるとともに、リチウム−ジフルオロ(オキサラト)ボレート(LiB(C24)F2)を0.1モル/リットルの割合で溶解させた溶液に、ビニレンカーボネート(VC)を1質量%だけ添加して非水電解液を調製してこれを電解液bとした。 On the other hand, lithium hexafluorophosphate (LiPF 6 ) is dissolved as a solute at a rate of 1 mol / liter in a mixed solvent similar to the above, and lithium-difluoro (oxalato) borate (LiB (C 2 O 4 ) 1% by mass of vinylene carbonate (VC) was added to a solution in which F 2 ) was dissolved at a rate of 0.1 mol / liter to prepare a nonaqueous electrolytic solution, which was designated as electrolytic solution b.

4.非水電解質二次電池
ついで、上述のように作製した各正極板11と、上述のようにして作製した負極板12とをそれぞれ用い、これらの間にポリプロピレン製微多孔膜からなるセパレータ13を介在させて積層した後、渦巻状にそれぞれ巻回して渦巻状電極群とした。ついで、これらの渦巻状電極群を上部外周に絞り加工を施して絞り部14aを形成した円筒状の金属製外装缶14にそれぞれ挿入した後、負極板12から延出する負極集電タブ12cを金属製外装缶14の内底面に溶接した。一方、正極板11から延出する正極集電タブ11cを、封口体15の正極蓋15bの底面に溶接し、封口体15の外周部にリング状の絶縁ガスケット16を配置した。
4). Non-aqueous electrolyte secondary battery Next, each positive electrode plate 11 manufactured as described above and the negative electrode plate 12 manufactured as described above were used, respectively, and a separator 13 made of a polypropylene microporous film was interposed therebetween. After laminating, they were wound in a spiral shape to form a spiral electrode group. Next, after inserting these spiral electrode groups into a cylindrical metal outer can 14 in which an upper outer periphery is drawn to form a drawn portion 14a, a negative electrode current collecting tab 12c extending from the negative electrode plate 12 is provided. It welded to the inner bottom face of the metal outer can 14. On the other hand, a positive electrode current collecting tab 11 c extending from the positive electrode plate 11 was welded to the bottom surface of the positive electrode lid 15 b of the sealing body 15, and a ring-shaped insulating gasket 16 was disposed on the outer periphery of the sealing body 15.

なお、正極蓋15bの上部にはキャップ状の正極端子15aが配設されていて、このキャップ状の正極端子15a内には正極蓋15bの中心部に形成された排気孔15cを封止する弁板15dとこれを押圧するスプリング15eからなる弁体が配設されている。ついで、上述のようにして調製された非水電解液(a,b)を金属製外装缶14内に注入した。この後、金属製外装缶14の上部外周に形成された絞り部14aの上に、外周部にリング状の絶縁ガスケット16が配置された封口体15を配置した後、金属製外装缶14の上端部14bを封口体15側にかしめて封口した。これにより、設計容量が5Ahの非水電解質二次電池10(A,B)をそれぞれ作製した。なお、電解液aを用いたものを電池Aとし、電解液bを用いたものを電池Bとした。   A cap-like positive electrode terminal 15a is disposed on the upper portion of the positive electrode lid 15b, and a valve for sealing an exhaust hole 15c formed at the center of the positive electrode lid 15b in the cap-like positive electrode terminal 15a. A valve body including a plate 15d and a spring 15e that presses the plate 15d is disposed. Subsequently, the non-aqueous electrolyte (a, b) prepared as described above was injected into the metal outer can 14. Thereafter, after the sealing body 15 having the ring-shaped insulating gasket 16 disposed on the outer peripheral portion is disposed on the narrowed portion 14a formed on the upper outer periphery of the metal outer can 14, the upper end of the metal outer can 14 is disposed. The portion 14b was caulked and sealed to the sealing body 15 side. Thereby, non-aqueous electrolyte secondary batteries 10 (A, B) having a design capacity of 5 Ah were produced. In addition, the thing using the electrolyte solution a was made into the battery A, and the thing using the electrolyte solution b was made into the battery B.

4.エージング
ついで、上述のようにして作製した電池A,Bを用いて、これらの各電池A,Bを25℃の室温下において、1It(Itは定格容量(mA)/1h(時間)で表される数値)の充電電流で4.1Vまで充電させた。このようにして充電を行った後の各電池A,Bを60℃の恒温槽内に放置してエージングを行った。この場合、電池Aを60℃の恒温槽内に、5時間だけ放置したものを電池A1とし、10時間だけ放置したものを電池A2とし、24時間だけ放置したものを電池A3とし、48時間だけ放置したものを電池A4とし、7日(168時間)だけ放置したものを電池A5とし、14日(336時間)だけ放置したものを電池A6とした。また、電池Bを60℃の恒温槽内に、48時間だけ放置したものを電池B1とし、7日(168時間)だけ放置したものを電池B2とし、14日(336時間)だけ放置したものを電池B3とした。なお、エージングを行わなかった電池Aを電池A0とし、エージングを行わなかった電池Bを電池B0とした。
4). Aging Next, using the batteries A and B produced as described above, each of the batteries A and B is expressed as 1 It (It is expressed in rated capacity (mA) / 1 h (hours) at room temperature of 25 ° C. The battery was charged to 4.1 V with a charging current of (numerical value). The batteries A and B after being charged in this way were left in a constant temperature bath at 60 ° C. for aging. In this case, the battery A left in a constant temperature bath at 60 ° C. for 5 hours is designated as battery A1, the battery left for 10 hours is designated as battery A2, and the battery left for 24 hours is designated as battery A3. The battery that was left alone was designated as battery A4, the battery that was left alone for 7 days (168 hours) was designated as battery A5, and the battery that was left alone for 14 days (336 hours) was designated as battery A6. A battery B1 left in a constant temperature bath at 60 ° C. for 48 hours is designated as battery B1, a battery left for 7 days (168 hours) as battery B2, and a battery left for 14 days (336 hours). Battery B3 was obtained. The battery A that was not aged was designated as battery A0, and the battery B that was not aged was designated as battery B0.

5.電池特性試験
ついで、エージングを行わなかった電池A0,B0をそれぞれ25℃の室温下において、1Itの充電電流で4.1Vまで充電させた後、さらに電圧を4.1Vに維持させながら充電電流を減少させ、総充電時間が1.5時間になるように充電させた後、0.1Itの放電電流で3.0Vまで放電させて、エージング前の放電容量を測定した。また、電池A0,B0を25℃の室温下において、1Itの充電電流で充電深度(SOC)が50%になるまで充電させた状態で、それぞれ1It、3It、5It、10It及び15Itの電流で10秒間充電及び放電を行い、それぞれの電池電圧を測定し、各電流値と電池電圧とをプロットして充電時及び放電時におけるI―V特性を求め、得られた直線の傾きから充電時及び放電時におけるエージング前のIV抵抗(mΩ)を求めると、下記の表1に示すような結果となった。
5). Battery characteristics test Next, the batteries A0 and B0 that were not aged were charged to 4.1 V with a charging current of 1 It at a room temperature of 25 ° C., respectively, and then the charging current was maintained while maintaining the voltage at 4.1 V. The battery was charged so that the total charge time was 1.5 hours, and then discharged to 3.0 V with a discharge current of 0.1 It, and the discharge capacity before aging was measured. The batteries A0 and B0 were charged at a current of 1 It, 3 It, 5 It, 10 It, and 15 It, respectively, at a room temperature of 25 ° C. until the depth of charge (SOC) reached 50% with a charging current of 1 It. Charging and discharging for 2 seconds, measuring each battery voltage, plotting each current value and battery voltage to obtain the IV characteristics during charging and discharging, and charging and discharging from the slope of the obtained straight line When the IV resistance (mΩ) before aging at the time was obtained, the results shown in Table 1 below were obtained.

一方、上述のようにエージングを行った電池A1〜A6および電池B1〜B3を用いて、これらの電池A1〜A6および電池B1〜B3をそれぞれ25℃の室温下において、1Itの充電電流で4.1Vまで充電させた後、さらに電圧を4.1Vに維持させながら充電電流を減少させ、総充電時間が1.5時間になるように充電させた後、0.1Itの放電電流で3.0Vまで放電させて、エージング後の放電容量を測定した。   On the other hand, using the batteries A1 to A6 and the batteries B1 to B3 which have been aged as described above, the batteries A1 to A6 and the batteries B1 to B3 are respectively charged at a room temperature of 25 ° C. with a charging current of 1 It. After charging to 1V, the charging current is further reduced while maintaining the voltage at 4.1V, and charging is performed so that the total charging time is 1.5 hours. The discharge capacity after aging was measured.

また、電池A1〜A6および電池B1〜B3を25℃の室温下において、1Itの充電電流で充電深度(SOC)が50%になるまで充電させた状態で、それぞれ1/3It、1It、3It、及び5Itの電流で10秒間充電及び放電を行い、それぞれの電池電圧を測定し、各電流値と電池電圧とをプロットして充電時及び放電時におけるI―V特性を求め、得られた直線の傾きから充電時及び放電時におけるエージング後のIV抵抗(mΩ)を求めると、下記の表1に示すような結果となった。

Figure 2007250288
In addition, the batteries A1 to A6 and the batteries B1 to B3 were charged at a charging current of 1 It at a room temperature of 25 ° C. until the depth of charge (SOC) reached 50%, respectively, 1/3 It, 1 It, 3 It, And charging and discharging at a current of 5 It for 10 seconds, measuring each battery voltage, plotting each current value and the battery voltage, obtaining the IV characteristics at the time of charging and discharging, and obtaining the straight line obtained When the IV resistance (mΩ) after aging during charging and discharging was determined from the slope, the results shown in Table 1 below were obtained.
Figure 2007250288

上記表1の結果から明らかなように、LiB(C242が添加された非水電解液を備えた電池において、電池電圧が4.1Vの状態で60℃の温度雰囲気で7日(168時間)以内のエージングを行った電池A1〜A5は、エージングを行わなかった電池A0よりも、放電時IV抵抗および充電時IV抵抗が共に低くなって、内部抵抗が低くなっているとが分かる。また、LiB(C24)F2が添加された非水電解質を備えた電池においても、電池電圧が4.1Vの状態で60℃の温度雰囲気で7日(168時間)以内のエージングを行った電池B1,B2は、エージングを行わなかった電池B0よりも、放電時IV抵抗および充電時IV抵抗が共に低くなって、内部抵抗が低くなっていることも分かる。 As is clear from the results in Table 1 above, in the battery provided with the non-aqueous electrolyte to which LiB (C 2 O 4 ) 2 was added, the battery voltage was 4.1 V and the temperature was 60 ° C. for 7 days. The batteries A1 to A5 that have been aged within (168 hours) have both lower IV resistance during discharging and IV resistance during charging than the battery A0 that has not been aged, resulting in lower internal resistance. I understand. Moreover, even in a battery equipped with a non-aqueous electrolyte to which LiB (C 2 O 4 ) F 2 is added, aging within 7 days (168 hours) in a temperature atmosphere of 60 ° C. with a battery voltage of 4.1V. It can also be seen that the batteries B1 and B2 that were performed had lower internal resistance due to the lower IV resistance during discharging and IV resistance during charging than the battery B0 that did not undergo aging.

これは、電池電圧が4.1Vの状態で60℃の温度雰囲気中に7日(168時間)以内の期間だけ放置すると、非水電解液に添加されたLiB(C242やLiB(C24)F2などのオキサラト錯体をアニオンとするリチウム塩が還元されて、負極表面に安定でかつリチウムイオンの透過性に優れた被膜が形成されようになり、内部抵抗が低くなったと考えられる。 This is because LiB (C 2 O 4 ) 2 or LiB added to the non-aqueous electrolyte is left in a temperature atmosphere of 60 ° C. for a period of 7 days (168 hours) in a state where the battery voltage is 4.1V. The lithium salt having an oxalato complex such as (C 2 O 4 ) F 2 as an anion is reduced, and a stable and excellent lithium ion permeability film is formed on the negative electrode surface, resulting in a low internal resistance. It is thought.

一方、放置時間が14日(336時間)である電池A6や電池B3は、逆に、エージングを行わなかった電池B0よりも、放電時IV抵抗および充電時IV抵抗が共に上昇して内部抵抗が高くなったことが分かる。これは、放置時間が長時間になりすぎると、負極表面に形成される被膜が厚くなりすぎて、放電時IV抵抗および充電時IV抵抗が共に上昇し、内部抵抗が高くなったと考えられる。
これらのことから、エージングのための放置時間は7日(168時間)以内にするのが望ましいということが分かる。
On the other hand, the battery A6 and the battery B3, which have been left for 14 days (336 hours), on the contrary, have both an increased IV resistance during discharging and an IV resistance during charging, as compared to the battery B0 that has not been aged. You can see that it has become higher. This is presumably because when the standing time was too long, the coating formed on the negative electrode surface became too thick, and both the IV resistance during discharging and the IV resistance during charging increased, and the internal resistance increased.
From these facts, it can be seen that it is desirable that the standing time for aging is within 7 days (168 hours).

6.エージング温度の検討
ついで、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7となるように混合させた混合溶媒に対して、溶質として六フッ化リン酸リチウム(LiPF6)を1モル/リットルの割合で溶解させるとともに、リチウム―ビス(オキサラト)ボレート(LiB(C242)を0.1モル/リットルの割合で溶解させた。このようにして得られた溶液99質量%にビニレンカーボネート(VC)を1質量%だけ添加して非水電解液を調製し、これを電解液cとした。
6). Examination of aging temperature Next, lithium hexafluorophosphate (LiPF 6 ) was used as a solute for a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7. Was dissolved at a rate of 1 mol / liter, and lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) was dissolved at a rate of 0.1 mol / liter. A non-aqueous electrolyte was prepared by adding 1% by mass of vinylene carbonate (VC) to 99% by mass of the solution thus obtained, and this was designated as electrolyte c.

ついで、上述のようにして作製された正極板11と負極板12とセパレータ13とを用いて渦巻状電極群とし、これを円筒状の金属製外装缶14に挿入した後、電解液cを注液して、上述と同様に非水電解質二次電池10を作製し、これを電池Cとした。ついで、電池Cを用いて、25℃の室温下において、1.4Aの充電電流で4.1Vまで充電させた後、充電を行い、これを所定の温度の恒温槽内に所定の時間だけ放置してエージングを行った。この場合、45℃の恒温槽内に13時間だけ放置したものを電池C1とし、60℃の恒温槽内に13時間だけ放置したものを電池C2とし、60℃の恒温槽内に24時間だけ放置したものを電池C3とした。なお、エージングを行わなかったものを電池C0とした。   Next, a spiral electrode group is formed using the positive electrode plate 11, the negative electrode plate 12, and the separator 13 manufactured as described above, and this is inserted into a cylindrical metal outer can 14. The nonaqueous electrolyte secondary battery 10 was produced in the same manner as described above, and this was designated as battery C. Next, the battery C is charged to 4.1 V with a charging current of 1.4 A at a room temperature of 25 ° C. and then charged, and this is left in a constant temperature bath at a predetermined temperature for a predetermined time. Aging was performed. In this case, the battery C1 was left in a 45 ° C. constant temperature bath for 13 hours, the battery C2 was left in the 60 ° C. constant temperature bath for 13 hours, and was left in the 60 ° C. constant temperature bath for 24 hours. This was designated as Battery C3. In addition, the battery C0 was not subjected to aging.

ついで、エージングを行わなかった電池C0を用いて、上述と同様にエージング前の放電容量を測定するとともに、エージング前のIV抵抗(mΩ)を求めると、下記の表2に示すような結果となった。また、エージングを行った電池C1〜C3を用いて、上述と同様にエージング後の放電容量を測定するとともに、エージング後のIV抵抗(mΩ)を求めると、下記の表2に示すような結果となった。

Figure 2007250288
Then, using the battery C0 that was not aged, the discharge capacity before aging was measured in the same manner as described above, and the IV resistance (mΩ) before aging was obtained, and the results shown in Table 2 below were obtained. It was. Further, using the aged batteries C1 to C3, the discharge capacity after aging was measured in the same manner as described above, and the IV resistance (mΩ) after aging was obtained. As a result, the results shown in Table 2 below were obtained. became.
Figure 2007250288

上記表2の結果から明らかなように、エージングを行った電池C1〜C3は、エージングを行わなかった電池C0よりも、放電時IV抵抗および充電時IV抵抗が共に低くなって、内部抵抗が低くなっていることが分かる。この場合、45℃でエージングを行うよりも60℃でエージングを行った方が、さらに放電時IV抵抗および充電時IV抵抗が低くなることから、エージングのための放置温度ができるだけ高温の方がよいことが分かる。   As is apparent from the results in Table 2, the batteries C1 to C3 subjected to aging have both lower IV resistance during discharging and IV resistance during charging and lower internal resistance than the battery C0 not subjected to aging. You can see that In this case, the aging at 60 ° C is lower than the aging at 45 ° C, and the IV resistance during discharging and the IV resistance during charging are further lowered. Therefore, the standing temperature for aging should be as high as possible. I understand that.

ところが、放置する温度が85℃を超えるようになると、電解質の分解と考えられる電解液の劣化が起きて電池特性が低下するようになる。一方、放置する温度が35℃未満であると、オキサラト錯体をアニオンとするリチウム塩が分解されにくくなって、負極表面にリチウムイオンの透過性に優れた被膜が形成されにくくなる。
このことから、エージングのために放置する温度は35℃以上で、85℃以下にするのが望ましいということができる。
なお、電池電圧が1V未満であるとオキサラト錯体は分解しないため、オキサラト錯体が分解する電圧の1V以上、好ましくは1.5V以上で放置するのが望ましい。
However, when the temperature to be left exceeds 85 ° C., the electrolytic solution is considered to be decomposed and the battery characteristics are deteriorated. On the other hand, when the standing temperature is less than 35 ° C., the lithium salt having an oxalato complex as an anion is difficult to be decomposed, and a film excellent in lithium ion permeability is hardly formed on the negative electrode surface.
From this, it can be said that the temperature left for aging is preferably 35 ° C. or more and 85 ° C. or less.
Note that when the battery voltage is less than 1 V, the oxalato complex does not decompose, so it is desirable to leave the battery at 1 V or more, preferably 1.5 V or more of the voltage at which the oxalato complex decomposes.

なお、上述した実施の形態においては、オキサラト錯体をアニオンとするリチウム塩として、リチウム−ビス(オキサラト)ボレート(LiB(C242)またはリチウム−ジフルオロ(オキサラト)ボレート(LiB(C24)F2)を用いる例について説明したが、これらに限られることなく、中心原子にC24 2-が配位したアニオンを有するリチウム塩であればよい。この場合、Li[M(C24xy](ここで、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である)で表わされるものを用いることができ、好ましくは、Mがホウ素又はリンからなるものを用いるのが好ましい。 In the above-described embodiment, lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) or lithium-difluoro (oxalato) borate (LiB (C 2 ) is used as a lithium salt having an oxalato complex as an anion. Although examples using O 4 ) F 2 ) have been described, the present invention is not limited thereto, and any lithium salt having an anion in which C 2 O 4 2− is coordinated to the central atom may be used. In this case, Li [M (C 2 O 4 ) x R y ] (where M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is a halogen, an alkyl group, A group selected from halogen-substituted alkyl groups, x is a positive integer, y is 0 or a positive integer), and preferably, M is a group consisting of boron or phosphorus. Is preferred.

また、上述した実施の形態においては、オキサラト錯体をアニオンとするリチウム塩の添加量を、非水溶媒に対して0.1モル/リットルの割合で溶解させる例について説明したが、オキサラト錯体をアニオンとするリチウム塩の添加量はこれに限られることなく、非水溶媒に対して0.01〜0.2モル/リットルの範囲で添加するようにすればよい。また、また、オキサラト錯体をアニオンとするリチウム塩の他のリチウム塩として、六フッ化リン酸リチウム(LiPF6)を用いる例について説明したが、これに限られることなく、LiAsF6、LiBF4、LiCF3SO3、LiN(Cl2l+1SO2)(Cm2m+1SO2)(l、mは1以上の整数)、LiC(CP2P+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p、q、rは1以上の整数)等を用いるようにしてもよく、これらの溶質は、1種類で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the above-described embodiment, the example in which the addition amount of the lithium salt having the oxalato complex as the anion is dissolved at a rate of 0.1 mol / liter with respect to the non-aqueous solvent has been described. The addition amount of the lithium salt is not limited to this, but may be added in the range of 0.01 to 0.2 mol / liter with respect to the non-aqueous solvent. Further, also, the oxalate complex as another lithium salt of lithium salt having an anion, an example has been described using a lithium hexafluorophosphate (LiPF 6), without being limited thereto, LiAsF 6, LiBF 4, LiCF 3 SO 3, LiN (C l F 2l + 1 SO 2) (C m F 2m + 1 SO 2) (l, m is an integer of 1 or more), LiC (C P F 2P + 1 SO 2) (C q F 2q + 1 SO 2 ) (C r F 2r + 1 SO 2 ) (p, q, and r are integers of 1 or more), etc. may be used, and these solutes are used in one kind. Alternatively, two or more types may be used in combination.

さらに、上述した実施の形態においては、正極活物質としてのLi2(Ni0.4Co0.3Mn0.3)O2を合成する際の出発材料として、Li2CO3と(Ni0.4Co0.3Mn0.334とを用いているが、本発明はこれらに限定されるものではなく、例えば、Liの原料としてLiOH,Li2CO3などを用いてもよく、NiCoMnの原料として、Ni0.4Co0.3Mn0.3(OH)2などを用いてもよい。 Furthermore, in the above-described embodiment, Li 2 CO 3 and (Ni 0.4 Co 0.3 Mn 0.3 ) 3 are used as starting materials when synthesizing Li 2 (Ni 0.4 Co 0.3 Mn 0.3 ) O 2 as the positive electrode active material. Although O 4 is used, the present invention is not limited to these. For example, LiOH, Li 2 CO 3 or the like may be used as a raw material for Li, and Ni 0.4 Co 0.3 Mn may be used as a raw material for NiCoMn. 0.3 (OH) 2 or the like may be used.

本発明の非水電解質二次電池を模式的に示す断面図である。It is sectional drawing which shows typically the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

10…非水電解質二次電池、11…正極板、11a…正極芯体、11b…正極合剤層、11c…正極集電タブ、12…負極板、12a…負極芯体、12b…負極合剤層、12c…負極集電タブ、13…セパレータ、14…金属製外装缶、14a…絞り部、15…封口体、15a…正極端子、15b…正極蓋、15c…排気孔15d…弁板、15e…スプリング、16…絶縁ガスケット
DESCRIPTION OF SYMBOLS 10 ... Non-aqueous electrolyte secondary battery, 11 ... Positive electrode plate, 11a ... Positive electrode core, 11b ... Positive electrode mixture layer, 11c ... Positive electrode current collection tab, 12 ... Negative electrode plate, 12a ... Negative electrode core, 12b ... Negative electrode mixture Layer, 12c ... negative electrode current collecting tab, 13 ... separator, 14 ... metal outer can, 14a ... throttle part, 15 ... sealing body, 15a ... positive electrode terminal, 15b ... positive electrode lid, 15c ... exhaust hole 15d ... valve plate, 15e ... Spring, 16 ... Insulating gasket

Claims (5)

リチウムの吸蔵・放出が可能なリチウム遷移金属複合酸化物を正極活物質として含む正極と、リチウムの吸蔵・放出が可能な炭素を負極活物質として含む負極とを外装缶内に挿入した後、当該外装缶内にオキサラト錯体をアニオンとするリチウム塩が添加された非水電解液を注液して形成する非水電解質二次電池の製造方法であって、
前記オキサラト錯体をアニオンとするリチウム塩が添加された非水電解液の注液後、出荷前に電池電圧が1V以上で、35℃〜85℃の温度雰囲気中に7日以内だけ放置するエージング工程を設けるようにしたことを特徴とする非水電解質二次電池の製造方法。
After inserting a positive electrode containing a lithium transition metal composite oxide capable of occluding and releasing lithium as a positive electrode active material and a negative electrode containing carbon capable of occluding and releasing lithium as a negative electrode active material, A method for producing a non-aqueous electrolyte secondary battery formed by injecting a non-aqueous electrolyte solution to which a lithium salt having an oxalato complex as an anion is added in an outer can,
An aging step in which a battery voltage is 1 V or higher and the product is left in a temperature atmosphere of 35 ° C. to 85 ° C. within 7 days after the injection of a non-aqueous electrolyte solution to which a lithium salt having an oxalato complex as an anion is added. A method for producing a non-aqueous electrolyte secondary battery, wherein:
前記オキサラト錯体をアニオンとするリチウム塩は溶媒に対して0.01〜0.2モル/リットル添加されていることを特徴とする請求項1に記載の非水電解質二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium salt having the oxalato complex as an anion is added in an amount of 0.01 to 0.2 mol / liter with respect to the solvent. 前記オキサラト錯体をアニオンとするリチウム塩はリチウム−ビス(オキサラト)ボレート(LiB(C242)またはリチウム−ジフルオロ(オキサラト)ボレート(LiB(C24)F2)であることを特徴とする請求項1または請求項2に記載の非水電解質二次電池の製造方法。 The lithium salt having the oxalato complex as an anion is lithium-bis (oxalato) borate (LiB (C 2 O 4 ) 2 ) or lithium-difluoro (oxalato) borate (LiB (C 2 O 4 ) F 2 ). The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is produced. 前記非水電解液中の溶質として、オキサラト錯体をアニオンとするリチウム塩の他にリチウム塩が含有されていることを特徴とする請求項1から請求項3のいずれかに記載の非水電解質二次電池の製造方法。   4. The non-aqueous electrolyte 2 according to claim 1, wherein a lithium salt is contained as a solute in the non-aqueous electrolyte in addition to a lithium salt having an oxalato complex as an anion. A method for manufacturing a secondary battery. 前記非水電解液はビニレンカーボネートを含有していることを特徴とする請求項1から請求項4のいずれかに記載の非水電解質二次電池の製造方法。
The said nonaqueous electrolyte contains vinylene carbonate, The manufacturing method of the nonaqueous electrolyte secondary battery in any one of Claims 1-4 characterized by the above-mentioned.
JP2006070254A 2006-03-15 2006-03-15 Method for producing non-aqueous electrolyte secondary battery Active JP5094027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070254A JP5094027B2 (en) 2006-03-15 2006-03-15 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070254A JP5094027B2 (en) 2006-03-15 2006-03-15 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007250288A true JP2007250288A (en) 2007-09-27
JP5094027B2 JP5094027B2 (en) 2012-12-12

Family

ID=38594350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070254A Active JP5094027B2 (en) 2006-03-15 2006-03-15 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5094027B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164082A (en) * 2008-01-10 2009-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2009252489A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Method for manufacturing lithium secondary battery
JP2010118161A (en) * 2008-11-11 2010-05-27 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2010192430A (en) * 2009-02-17 2010-09-02 Samsung Sdi Co Ltd Fire-resistant electrolyte solution for lithium secondary battery, and lithium secondary battery containing the same
KR100988657B1 (en) 2008-05-21 2010-10-18 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP2012064456A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2012053056A1 (en) * 2010-10-19 2012-04-26 トヨタ自動車株式会社 Method for producing batteries
JP2012243478A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2012256439A (en) * 2011-06-07 2012-12-27 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
WO2013175949A1 (en) * 2012-05-22 2013-11-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2013187211A1 (en) * 2012-06-15 2013-12-19 株式会社 日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery; method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
WO2014002611A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2014010476A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP2014026932A (en) * 2012-07-30 2014-02-06 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2014025850A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
JP2014143061A (en) * 2013-01-23 2014-08-07 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
WO2014162809A1 (en) * 2013-04-04 2014-10-09 トヨタ自動車株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing cell
JP2014229563A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Method for manufacturing power storage device
JP2015079726A (en) * 2013-09-10 2015-04-23 株式会社村田製作所 Method for manufacturing nonaqueous electrolyte battery
JP2015153659A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2015159824A1 (en) * 2014-04-18 2015-10-22 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery
JP2016024957A (en) * 2014-07-18 2016-02-08 株式会社Gsユアサ Lithium ion secondary battery
WO2019111958A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
KR20200094784A (en) 2017-12-06 2020-08-07 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for nonaqueous electrolyte batteries and nonaqueous electrolyte batteries using the same
WO2020190076A1 (en) * 2019-03-21 2020-09-24 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676447B (en) * 2019-09-29 2021-06-01 中国科学院化学研究所 High-voltage workable composite anode and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320638A (en) * 1996-05-23 1997-12-12 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2005259592A (en) * 2004-03-12 2005-09-22 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320638A (en) * 1996-05-23 1997-12-12 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2005259592A (en) * 2004-03-12 2005-09-22 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164082A (en) * 2008-01-10 2009-07-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2009252489A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Method for manufacturing lithium secondary battery
JP4725594B2 (en) * 2008-04-04 2011-07-13 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
KR100988657B1 (en) 2008-05-21 2010-10-18 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US7879499B2 (en) 2008-05-21 2011-02-01 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP2010118161A (en) * 2008-11-11 2010-05-27 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2010192430A (en) * 2009-02-17 2010-09-02 Samsung Sdi Co Ltd Fire-resistant electrolyte solution for lithium secondary battery, and lithium secondary battery containing the same
US9099756B2 (en) 2009-02-17 2015-08-04 Samsung Sdi Co., Ltd. Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2012064456A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2012053056A1 (en) * 2010-10-19 2012-04-26 トヨタ自動車株式会社 Method for producing batteries
JP2012243478A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2012256439A (en) * 2011-06-07 2012-12-27 Toyota Motor Corp Manufacturing method of lithium ion secondary battery
US10374255B2 (en) 2012-05-22 2019-08-06 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2013243091A (en) * 2012-05-22 2013-12-05 Toyota Motor Corp Nonaqueous electrolyte secondary battery
WO2013175949A1 (en) * 2012-05-22 2013-11-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR101606316B1 (en) * 2012-05-22 2016-03-24 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
WO2013187211A1 (en) * 2012-06-15 2013-12-19 株式会社 日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery; method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
CN104428942B (en) * 2012-06-29 2017-05-24 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
JP2014011065A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US9768446B2 (en) 2012-06-29 2017-09-19 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
CN104428942A (en) * 2012-06-29 2015-03-18 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
KR20150031314A (en) * 2012-06-29 2015-03-23 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
KR101722863B1 (en) 2012-06-29 2017-04-05 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
EP2869390A4 (en) * 2012-06-29 2015-06-17 Toyota Motor Co Ltd Nonaqueous electrolyte secondary battery
WO2014002611A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2014010476A1 (en) * 2012-07-11 2014-01-16 シャープ株式会社 Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP2014025850A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
JP2014026932A (en) * 2012-07-30 2014-02-06 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2014143061A (en) * 2013-01-23 2014-08-07 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
WO2014162809A1 (en) * 2013-04-04 2014-10-09 トヨタ自動車株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing cell
JP2014203656A (en) * 2013-04-04 2014-10-27 トヨタ自動車株式会社 Nonaqueous electrolytic secondary battery, and manufacturing method thereof
CN105122506A (en) * 2013-04-04 2015-12-02 丰田自动车株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing cell
JP2014229563A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Method for manufacturing power storage device
WO2015076026A1 (en) * 2013-09-10 2015-05-28 株式会社村田製作所 Method for manufacturing nonaqueous electrolyte battery
JP2015079726A (en) * 2013-09-10 2015-04-23 株式会社村田製作所 Method for manufacturing nonaqueous electrolyte battery
JP2015153659A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10199689B2 (en) 2014-02-17 2019-02-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
WO2015159824A1 (en) * 2014-04-18 2015-10-22 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery
JP2016024957A (en) * 2014-07-18 2016-02-08 株式会社Gsユアサ Lithium ion secondary battery
WO2019111958A1 (en) 2017-12-06 2019-06-13 セントラル硝子株式会社 Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
KR20200094784A (en) 2017-12-06 2020-08-07 샌트랄 글래스 컴퍼니 리미티드 Electrolyte for nonaqueous electrolyte batteries and nonaqueous electrolyte batteries using the same
US11502335B2 (en) 2017-12-06 2022-11-15 Central Glass Co., Ltd. Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
WO2020190076A1 (en) * 2019-03-21 2020-09-24 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP5094027B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5094027B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5153135B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US20190013543A1 (en) Nonaqueous electrolyte secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2006196250A (en) Lithium secondary battery
JP2011034893A (en) Nonaqueous electrolyte secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP2008091041A (en) Nonaqueous secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP6390915B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
KR20180036715A (en) Lithium secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP6104536B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3723444B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4248258B2 (en) Lithium secondary battery
JP7235405B2 (en) Non-aqueous electrolyte secondary battery
JP2010277790A (en) Lithium ion secondary battery
JP2013051210A (en) Lithium secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP5242315B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R151 Written notification of patent or utility model registration

Ref document number: 5094027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3