JP2007272995A - Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device - Google Patents

Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device Download PDF

Info

Publication number
JP2007272995A
JP2007272995A JP2006097561A JP2006097561A JP2007272995A JP 2007272995 A JP2007272995 A JP 2007272995A JP 2006097561 A JP2006097561 A JP 2006097561A JP 2006097561 A JP2006097561 A JP 2006097561A JP 2007272995 A JP2007272995 A JP 2007272995A
Authority
JP
Japan
Prior art keywords
magnetic disk
magnetic
oba
slider
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097561A
Other languages
Japanese (ja)
Inventor
Toshiaki Tachibana
敏彰 橘
Tsutomu Ozawa
強 小澤
Akira Shimada
明 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006097561A priority Critical patent/JP2007272995A/en
Publication of JP2007272995A publication Critical patent/JP2007272995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining whether or not a magnetic disk device and non-magnetic substrate are good, a magnetic disk, and the magnetic disk device for obtaining stable surfacing performance even when a compact slider and amorphous glass substrate are used. <P>SOLUTION: In the magnetic disk, a plurality of layers including magnetic recording layers are layered on the main surface of a non-magnetic substrate to which texture processing is applied in a circumferential direction and magnetic anisotropy in the circumferential direction is imparted. In the disk, when a height at which an occupancy ratio becomes 0.5% in a surface roughness loading curve on the disk surface measured by an atomic force microscope is taken as reference, an occupancy ratio at a position 1.0 nm lower than the reference is OBA -1.0, and an occupancy ratio at a position 1.5 nm lower than the reference is OBA -1.5, the occupancy ratio OBA-1.0 of 30% or lower and the occupancy ratio OBA-1.5 of 65% or lower are regarded as a criterion for determining whether or not the magnetic disk is good. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高密度磁気記録が可能な磁気ディスク装置および非磁性基板の良否判定方法、磁気ディスク、並びにこの磁気ディスクを用いた磁気ディスク装置に関するものである。   The present invention relates to a magnetic disk device capable of high-density magnetic recording, a non-magnetic substrate quality determination method, a magnetic disk, and a magnetic disk device using the magnetic disk.

磁気ディスク装置は、磁気ディスクを回転駆動する駆動機構と、磁気ディスクに対して情報の記録または/および再生を行うヘッド素子を保持するスライダと、このスライダを支持するヘッドサスペンションアセンブリとを有しており、情報の再生時・記録時、スライダは、磁気ディスクの表面から浮上した状態にある。その際、スライダの浮上量は、磁気ディスクの高記録密度化に対応することを目的に10.0nm以下に設定する必要がある。但し、このような低浮上走行を行うと、スライダが磁気ディスク表面の凸部と接触し、その熱により、ヘッド素子からの出力が変動する現象(サーマルアスペリティ)や信頼性低下が発生しやすくなるため、安定した浮上性能を得るには、磁気ディスクの表面粗さを制御する必要がある。   The magnetic disk apparatus has a drive mechanism for rotating the magnetic disk, a slider for holding a head element for recording or / and reproducing information on the magnetic disk, and a head suspension assembly for supporting the slider. During reproduction / recording of information, the slider floats from the surface of the magnetic disk. At that time, it is necessary to set the flying height of the slider to 10.0 nm or less for the purpose of increasing the recording density of the magnetic disk. However, when such low flying travel is performed, the slider comes into contact with the convex portion on the surface of the magnetic disk, and the heat is likely to cause a phenomenon in which the output from the head element fluctuates (thermal asperity) or a decrease in reliability. Therefore, in order to obtain a stable flying performance, it is necessary to control the surface roughness of the magnetic disk.

一方、磁気ディスクでは、非磁性基板の表面にテクスチャー加工を施すことにより、磁気記録層を構成するCo合金層の磁化容易軸を円周方向に配向させ、磁気ディスクに磁気的異方性を付与すれば、SN比などを向上させることが可能となる。但し、テクスチャー加工を施すと、ディスク表面の凸部が削り取られるため、磁気ディスクに対する磁気ヘッドの吸着性が高くなってしまう。従って、磁気ディスクについては、サーマルアスペリティおよび吸着性の双方の観点から、ディスク面の表面粗さを制御する必要がある。   On the other hand, in the magnetic disk, the surface of the nonmagnetic substrate is textured so that the easy axis of magnetization of the Co alloy layer constituting the magnetic recording layer is oriented in the circumferential direction, thereby giving magnetic anisotropy to the magnetic disk. If it does, it will become possible to improve SN ratio etc. However, when texture processing is performed, the convex portion on the disk surface is scraped off, and the magnetic head attracts the magnetic disk. Therefore, for the magnetic disk, it is necessary to control the surface roughness of the disk surface from the viewpoints of both thermal asperity and adsorptivity.

このような表面粗さを制御するにあたって、算術平均粗さRaなどを指標とすることが多いが、テクスチャー加工を施したディスク面のように、算術平均粗さRaが低い場合には、算術平均粗さRaを指標にしても、サーマルアスペリティおよび吸着性などの浮上性能を安定化することができない。そこで、表面粗さ負荷曲線において接触比率が50%となる高さを基準として、高さが1.0nm以上の領域における接触比率値「BH1.0nm」を7%以上15%以下に制御することが提案されている(特許文献1)。   In controlling such surface roughness, arithmetic average roughness Ra or the like is often used as an index. When the arithmetic average roughness Ra is low, such as a textured disk surface, the arithmetic average Even if the roughness Ra is used as an index, the floating performance such as thermal asperity and adsorptivity cannot be stabilized. Therefore, the contact ratio value “BH1.0 nm” in the region where the height is 1.0 nm or more is controlled to 7% or more and 15% or less with reference to the height at which the contact ratio is 50% in the surface roughness load curve. Has been proposed (Patent Document 1).

かかる構成は、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれていることを前提に表面粗さを制御しようとする考えに基づくものである。
特開2005−78708号公報
Such a configuration is based on the idea of controlling the surface roughness on the assumption that the convex portion of the disk surface is pushed in when the slider contacts the disk surface.
JP 2005-78708 A

磁気ディスク装置に用いるスライダに関しては、それを小型化すると、磁気ディスクの内側および外側でのデータ領域の拡大が可能であること、質量低下に伴い、シークスピードが向上すること、振動性や耐衝撃性が向上すること、磁気ディスク表面の凹凸への追従性が向上することなどの利点があることから、ミニ・スライダ、マイクロ・スライダ、ナノ・スライダ、ピコ・スライダへと小型化が図られており、上記特許文献に記載の条件によれば、ピコ・スライダまでは安定した浮上性能を得ることができる。   Regarding sliders used in magnetic disk devices, if the size of the slider is reduced, the data area on the inside and outside of the magnetic disk can be expanded, the seek speed increases with decreasing mass, vibration and shock resistance. As a result, the miniaturization to mini-sliders, micro-sliders, nano-sliders and pico-sliders has been achieved. According to the conditions described in the above-mentioned patent document, stable flying performance can be obtained up to the pico slider.

しかしながら、特許文献1に記載の指標は、磁気ディスクの表面に形成された凸部がわずかに押し込まれている状態のみを想定しているため、フェムト・スライダを用いた場合には、表1を参照して説明する以下の理由から、安定した浮上性能を得ることができないという問題点がある。   However, since the index described in Patent Document 1 assumes only a state in which the convex portion formed on the surface of the magnetic disk is slightly pressed, Table 1 is used when a femto slider is used. There is a problem in that stable levitation performance cannot be obtained for the following reason described with reference.

Figure 2007272995
Figure 2007272995

表1には、ミニ・スライダ、マイクロ・スライダ、ナノ・スライダ、ピコ・スライダ、フェムト・スライダのサイズ、質量、バネ荷重を示してあり、ミニ・スライダからフェムト・スライダに推移するに伴って質量が低下していることがわかる。これに対して、バネ荷重については、マイクロ・スライダからピコ・スライダに推移するまでは小さくなっているにもかかわらず、ピコ・スライダからフェムト・スライダに推移しても、そのサイズ変化に対応できるまでバネ荷重を小さくできていないという事情がある。その結果、ピコ・スライダからフェムト・スライダに推移してもロード時に加わる力が変わらず、逆に、スライダの面積が小さくなった分、スライダと磁気ディスクとの間に加わる圧力が大きくなっている。それ故、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いは、ピコ・スライダとフェムト・スライダとの間で大きく変化しているので、フェムト・スライダを用いる場合には、さらに低い位置までの表面粗さを考慮した厳密な指標が必要になっている。   Table 1 shows the size, mass, and spring load of the mini slider, micro slider, nano slider, pico slider, and femto slider. It can be seen that is decreasing. On the other hand, the spring load is small until it changes from the micro slider to the pico slider, but even if it changes from the pico slider to the femto slider, it can cope with the size change. There is a situation that the spring load has not been reduced. As a result, even when moving from the pico slider to the femto slider, the force applied during loading does not change, and conversely, the pressure applied between the slider and the magnetic disk increases as the slider area decreases. . Therefore, when the slider contacts the disk surface, the degree to which the protrusion on the disk surface is pushed changes greatly between the pico slider and the femto slider, so when using the femto slider, In addition, a strict index is required in consideration of the surface roughness up to a lower position.

また、非磁性基板を構成する材料によって、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いが変化する。すなわち、非磁性基板として結晶性ガラス基板を用いた場合と、アモルファスガラス基板とを用いた場合には、凸部の形状が相違するなどの影響で、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いが変化するので、この点でも、より厳密な指標が必要になっている。   Further, the degree to which the convex portion of the disk surface is pushed when the slider contacts the disk surface varies depending on the material constituting the nonmagnetic substrate. That is, when a crystalline glass substrate is used as the non-magnetic substrate and when an amorphous glass substrate is used, when the slider comes into contact with the disk surface due to the difference in the shape of the projection, the disk surface Since the degree to which the convex portion is pushed changes, a stricter index is necessary also in this respect.

以上の問題点に鑑みて、本発明の課題は、小型のスライダやアモルファスガラス基板を用いた場合でも、安定した浮上性能を得ることのできる磁気ディスク装置および非磁性基板の良否判定方法、磁気ディスク、並びに磁気ディスク装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a magnetic disk device capable of obtaining stable flying performance even when a small slider or an amorphous glass substrate is used, a non-magnetic substrate quality determination method, and a magnetic disk And providing a magnetic disk drive.

上記課題を解決するために、本発明では、非磁性基板の主表面に磁気記録層を含む複数の層が積層された磁気ディスクの良否判定方法において、ディスク表面の表面粗さ負荷曲線を求め、当該負荷曲線において、占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であるものを良品と判定することを特徴とする。   In order to solve the above-mentioned problem, in the present invention, in a quality determination method for a magnetic disk in which a plurality of layers including a magnetic recording layer are laminated on the main surface of a nonmagnetic substrate, a surface roughness load curve of the disk surface is obtained, In the load curve, the occupancy at a position 1.0 nm lower than the reference is OBA-1.0 with the height at which the occupancy is 0.5% as a reference, and the occupancy at a position 1.5 nm lower than the reference. When OBA-1.5 is set, OBA-1.0 is 30% or less and OBA-1.5 is 65% or less.

本発明では、磁気ディスク用の非磁性基板の良否判定方法において、主表面の表面粗さ負荷曲線を求め、当該負荷曲線において、占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であるものを良品と判定することを特徴とする。   In the present invention, in a method for determining the quality of a non-magnetic substrate for a magnetic disk, a surface roughness load curve of a main surface is obtained, and the load curve is based on a height at which the occupation ratio is 0.5%. OBA-1.0 at a position 1.0 nm lower than OBA-1.0, and OBA-1.5 at a position 1.5 nm lower than the reference, OBA-1.0 is 30% or less, and OBA-1.5 is What is less than 65% is determined as a non-defective product.

本発明では、非磁性基板の主表面に磁気記録層を含む複数の層が積層された磁気ディスクにおいて、ディスク表面の表面粗さ負荷曲線で占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であることを特徴とする。   In the present invention, in a magnetic disk in which a plurality of layers including a magnetic recording layer are laminated on the main surface of a nonmagnetic substrate, the height at which the occupation ratio is 0.5% in the surface roughness load curve on the disk surface is used as a reference. When the occupation ratio at a position 1.0 nm lower than the reference is OBA-1.0 and the occupation ratio at a position 1.5 nm lower than the reference is OBA-1.5, OBA-1.0 is 30% or less, and OBA -1.5 is 65% or less.

すなわち、本発明では、原子間力顕微鏡により測定した表面粗さ負荷曲線で占有率が0.5%となる高さ(基準)から1.0nm低い位置での占有率(OBA-1.0)が30%以下、かつ、基準から1.5nm低い位置での占有率(OBA-1.5)が65%以下であることを良好な浮上安定性が得られる指標とする。   That is, in the present invention, the occupation ratio (OBA-1.0) at a position 1.0 nm lower than the height (reference) at which the occupation ratio is 0.5% in the surface roughness load curve measured with an atomic force microscope is 30. %, And the occupancy (OBA-1.5) at a position 1.5 nm lower than the reference is 65% or less is an index for obtaining good floating stability.

本発明では、2つの占有率(OBA-1.0、OBA-1.5)を基準に基づいて表面粗さを規定しているため、基準から1箇所の占有率で表面粗さを規定する場合と比較して厳密に表面粗さを制御できる。それ故、非磁性基板がアモルファスガラスからなる場合や、フェムト・スライダを用いた場合のように、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いが深くなっても浮上安定性との相関性が高い。それ故、テクスチャー加工を施した非磁性基板を用いた磁気ディスクにおいて浮上安定性を確保できる。   In the present invention, since the surface roughness is defined based on two occupancy ratios (OBA-1.0, OBA-1.5) as a standard, it is compared with the case where the surface roughness is defined by one occupancy ratio from the standard. The surface roughness can be strictly controlled. Therefore, when the non-magnetic substrate is made of amorphous glass or when using a femto slider, when the slider comes into contact with the disk surface, the flying surface is stable even if the degree of protrusion of the disk surface becomes deeper. High correlation with sex. Therefore, flying stability can be ensured in a magnetic disk using a textured non-magnetic substrate.

本発明は、前記非磁性基板がアモルファスガラスからなる場合に適用すると効果的である。   The present invention is effective when applied when the non-magnetic substrate is made of amorphous glass.

本発明は、前記磁気ディスクを回転駆動する駆動機構と、前記磁気ディスクに対して情報の記録または/および再生を行うヘッド素子を保持するスライダと、該スライダを支持するヘッドサスペンションアセンブリとを有する磁気ディスク装置において、前記磁気ディスクに対する前記スライダの走行時の浮上量が10.0nm以下である場合に適用すると効果的である。   The present invention provides a magnetic mechanism having a drive mechanism for rotationally driving the magnetic disk, a slider for holding a head element for recording and / or reproducing information on the magnetic disk, and a head suspension assembly for supporting the slider. In a disk device, it is effective when applied when the flying height of the slider with respect to the magnetic disk is 10.0 nm or less.

また、本発明は、前記スライダとして、前記磁気ディスクと対向する面のサイズが1mm×1mm未満のスライダを用いた場合に適用すると効果的である。   The present invention is effective when applied to a slider having a size of a surface facing the magnetic disk of less than 1 mm × 1 mm.

本発明では、2つの占有率(OBA-1.0、OBA-1.5)を基準に基づいて表面粗さを規定しているため、ディスク面の凸部の比較的高い1箇所の占有率で表面粗さを規定する場合と比較して厳密に表面粗さを制御できる。それ故、非磁性基板がアモルファスガラスからなる場合や、フェムト・スライダを用いた場合のように、スライダがディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いが深くなっても浮上安定性との相関性が高い。それ故、テクスチャー加工を施した非磁性基板を用いた磁気ディスクにおいて浮上安定性を確保できる。   In the present invention, the surface roughness is defined on the basis of two occupancy ratios (OBA-1.0, OBA-1.5). Therefore, the surface roughness is obtained at a relatively high occupancy ratio at one convex portion of the disk surface. The surface roughness can be controlled more strictly than in the case where the value is specified. Therefore, when the non-magnetic substrate is made of amorphous glass or when using a femto slider, when the slider comes into contact with the disk surface, the flying surface is stable even if the degree of protrusion of the disk surface becomes deeper. High correlation with sex. Therefore, flying stability can be ensured in a magnetic disk using a textured non-magnetic substrate.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(非磁性基板、磁気ディスクおよび磁気ディスク装置の構成)
図1(a)、(b)はそれぞれ、本発明を適用した磁気ディスクを示す平面図、およびその概略断面図である。図2は、磁気ディスク装置の要部構成を示す説明図である。
(Configuration of non-magnetic substrate, magnetic disk and magnetic disk device)
1A and 1B are a plan view and a schematic sectional view showing a magnetic disk to which the present invention is applied, respectively. FIG. 2 is an explanatory diagram showing a main configuration of the magnetic disk device.

図1(a)、(b)に示す磁気ディスク1は、各種情報を磁気的に記録、再生するための情報記録媒体であり、中心穴111を備えた円形の非磁性基板11の主表面110に下地層12、磁性層13、保護層14、および潤滑層15がこの順に積層された構造を有している。   A magnetic disk 1 shown in FIGS. 1A and 1B is an information recording medium for magnetically recording and reproducing various kinds of information, and a main surface 110 of a circular nonmagnetic substrate 11 having a center hole 111. The underlayer 12, the magnetic layer 13, the protective layer 14, and the lubricating layer 15 are stacked in this order.

非磁性基板11は、例えば、アルミノシリケートガラスなどのアモルファスガラスからなり、図示を省略するが、非磁性基板11の主表面110には、周方向にテクスチャー加工が施されている。非磁性基板11において内端部112および外端部113は各々、面取り加工が施されている。但し、図1(b)には面取り部分の図示を省略してある。このような非磁性基板11は、例えば、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより、アルミノシリケートガラスからなるガラス基板を得、これに、形状加工工程、研磨剤スラリーなどを用いた研磨加工、化学強化処理、ダイアモンドスラリーなどを用いたテクスチャー加工などを施すことにより得られる。化学強化処理としては、ガラス基板表層に含まれる一部のイオンを、そのイオンより大きなイオン半径を有する化学強化処理液中のイオンで置換することにより化学強化を行うイオン交換による化学強化処理法や、ガラス基板表層に含まれるアルカリイオンを除去することにより化学強化を行う脱アルカリ処理による化学強化処理法等が挙げられる。   The nonmagnetic substrate 11 is made of amorphous glass such as aluminosilicate glass, for example. Although not shown, the main surface 110 of the nonmagnetic substrate 11 is textured in the circumferential direction. In the nonmagnetic substrate 11, the inner end portion 112 and the outer end portion 113 are each chamfered. However, the chamfered portion is not shown in FIG. Such a non-magnetic substrate 11 is obtained by, for example, obtaining a glass substrate made of aluminosilicate glass from a molten glass by direct pressing using an upper die, a lower die, and a barrel die, and a shape processing step, an abrasive slurry, etc. It is obtained by applying a polishing process using a chemical, a chemical strengthening process, a texture process using a diamond slurry, or the like. As the chemical strengthening treatment, a chemical strengthening treatment method by ion exchange that performs chemical strengthening by replacing some ions contained in the surface layer of the glass substrate with ions in a chemical strengthening treatment liquid having an ion radius larger than the ions, Examples thereof include a chemical strengthening treatment method by dealkalization treatment in which chemical strengthening is performed by removing alkali ions contained in the surface layer of the glass substrate.

以下、非磁性基板11に対して複数の層を順次形成して磁気ディスク1を製造する方法を説明しながら、磁気ディスク1の構成をさらに詳述する。磁気ディスク1を製造するには、まず、非磁性基板11の主表面110に対してスパッタ法などの気相成膜法を利用して下地層12を形成する。下地層12は、例えば厚さが10nmのCr系合金膜であり、磁性層13の結晶構造を良好にするために形成される。次に、下地層12の上層に対してスパッタ法などの気相成膜法を利用して磁性層13を形成する。磁性層13は、例えば厚さが15nmのCoCrPtB合金からなる。次に、磁性層13の上層に対してCVD法やスパッタ法などの気相成膜法を利用して保護層14を形成する。保護層14は、ダイヤモンドライクカーボンからなり、耐摩耗性を向上させて磁性層13を保護する機能を担っている。次に、保護層14の表面に潤滑層15を浸漬成膜法により形成する。潤滑層15は、磁気ヘッドとの接触した際の衝撃を緩和するなどの機能を担っており、厚さが3nm以下の薄いパーフルオロポリエーテル層などから構成されている。ここで、潤滑層15は、2nm以下、例えば、1.0nm位まで薄膜化される傾向にある。   Hereinafter, the configuration of the magnetic disk 1 will be described in more detail while explaining a method of manufacturing the magnetic disk 1 by sequentially forming a plurality of layers on the nonmagnetic substrate 11. To manufacture the magnetic disk 1, first, the underlayer 12 is formed on the main surface 110 of the nonmagnetic substrate 11 using a vapor deposition method such as sputtering. The underlayer 12 is a Cr-based alloy film having a thickness of 10 nm, for example, and is formed in order to improve the crystal structure of the magnetic layer 13. Next, the magnetic layer 13 is formed on the upper layer of the underlayer 12 by using a vapor deposition method such as sputtering. The magnetic layer 13 is made of, for example, a CoCrPtB alloy having a thickness of 15 nm. Next, the protective layer 14 is formed on the upper layer of the magnetic layer 13 by using a vapor deposition method such as a CVD method or a sputtering method. The protective layer 14 is made of diamond-like carbon and has a function of improving the wear resistance and protecting the magnetic layer 13. Next, the lubricating layer 15 is formed on the surface of the protective layer 14 by an immersion film forming method. The lubrication layer 15 has a function of mitigating impact when coming into contact with the magnetic head, and is composed of a thin perfluoropolyether layer having a thickness of 3 nm or less. Here, the lubricating layer 15 tends to be thinned to 2 nm or less, for example, about 1.0 nm.

このように構成した磁気ディスク1を備えた磁気ディスク装置のうち、例えば、図2に示すLUL(ロード・アンロード)方式を採用したハードディスクドライブ装置100は、ケース8内に、複数枚の磁気ディスク1、これらの磁気ディスク1を支持するとともに回転駆動するスピンドルモータを備えた駆動機構3、磁気ディスク1に対して情報の記録、再生を行うヘッド素子(図示せず)を保持するスライダ2、このスライダ2を磁気ディスク1に対して移動自在に支持するヘッドサスペンションアセンブリ4などを有している。また、図2に示すハードディスクドライブ装置100では、LUL(ロード・アンロード)方式が採用されており、スライダ2は磁気ディスク1が停止しているときは、磁気ディスク1の外側付近に位置するランプと称せられる傾斜台5上に待機しており、磁気ディスク1が回転した後、ガイド機構(図示せず)によってスライダ2がディスク面上に移動してきて記録、再生を行う。   Among the magnetic disk devices including the magnetic disk 1 configured as described above, for example, the hard disk drive device 100 adopting the LUL (load / unload) method shown in FIG. 2 includes a plurality of magnetic disks in the case 8. 1. A drive mechanism 3 having a spindle motor that supports and rotates these magnetic disks 1, a slider 2 that holds a head element (not shown) for recording and reproducing information on the magnetic disk 1, A head suspension assembly 4 that supports the slider 2 with respect to the magnetic disk 1 is provided. 2 employs a LUL (load / unload) system, and the slider 2 is a ramp located near the outside of the magnetic disk 1 when the magnetic disk 1 is stopped. After the magnetic disk 1 rotates, the slider 2 moves onto the disk surface by a guide mechanism (not shown) to perform recording and reproduction.

このように構成したハードディスクドライブ装置100において、磁気ディスク1が回転した際の浮上量が10.0nm以下に設定されている。また、スライダ2は、フェムト・スライダであり、ヘッドサスペンションアセンブリ4の先端部に設けられたジンバルばね(図示せず)などにより磁気ディスク1に向けて所定の荷重が印加されている。   In the hard disk drive device 100 configured as described above, the flying height when the magnetic disk 1 rotates is set to 10.0 nm or less. The slider 2 is a femto slider, and a predetermined load is applied to the magnetic disk 1 by a gimbal spring (not shown) provided at the tip of the head suspension assembly 4.

このようなハードディスクドライブ装置100において、スライダ2が低浮上走行を行う際、スライダ2が磁気ディスク1表面の凸部と接触した際の熱により、サーマルアスペリティや信頼性低下が発生しやすくなるため、安定した浮上性能を得るには、磁気ディスク1の表面粗さを制御する必要がある。また、非磁性基板11にテクスチャー加工を周方向に施すことにより、磁気記録層を構成するCo合金層の磁化容易軸を円周方向に配向させて、磁気ディスク1に磁気的異方性を付与すれば、SN比などを向上させることができる一方、テクスチャー加工によってディスク表面の凸部が削り取られるため、磁気ディスク1に対するスライダ2の吸着性が高くなってしまう。従って、磁気ディスク1については、サーマルアスペリティおよび吸着性の双方の観点から、ディスク面の表面粗さを制御する必要がある。   In such a hard disk drive device 100, when the slider 2 performs low flying travel, thermal asperity and reliability are likely to be reduced due to heat generated when the slider 2 comes into contact with the convex portion on the surface of the magnetic disk 1. In order to obtain stable flying performance, it is necessary to control the surface roughness of the magnetic disk 1. Further, by subjecting the non-magnetic substrate 11 to texturing in the circumferential direction, the easy axis of magnetization of the Co alloy layer constituting the magnetic recording layer is oriented in the circumferential direction, thereby giving magnetic anisotropy to the magnetic disk 1. If this is done, the SN ratio and the like can be improved. On the other hand, the convex portion of the disk surface is scraped off by texturing, so that the adsorptivity of the slider 2 to the magnetic disk 1 becomes high. Therefore, for the magnetic disk 1, it is necessary to control the surface roughness of the disk surface from the viewpoints of both thermal asperity and adsorptivity.

(表面粗さの判定基準)
本形態では、磁気ディスク1のディスク面の表面粗さを制御するにあたって、まず、表面粗さに関して以下の判定基準を設け、この判定基準を満たすように、非磁性基板11に対するテクスチャー加工条件などを管理する。また、このような判定基準に基づいて磁気ディスク1の良否判定を行う。
(Criteria for surface roughness)
In this embodiment, when controlling the surface roughness of the disk surface of the magnetic disk 1, first, the following criteria are set for the surface roughness, and the texture processing conditions for the non-magnetic substrate 11 are set so as to satisfy this criterion. to manage. Further, the quality of the magnetic disk 1 is determined based on such a determination criterion.

図3(a)、(b)は、原子間力顕微鏡(AFM)により測定した磁気ディスクの表面粗さ負荷曲線を示すグラフ、およびこのグラフに対応するディスク表面の凸部分布の説明図である。本形態では、判定基準を規定するにあたって、まず、原子間力顕微鏡により、図3(a)に示す磁気ディスクの表面粗さ負荷曲線を測定する。そして、占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であるものを良品とする。   FIGS. 3A and 3B are graphs showing a surface roughness load curve of a magnetic disk measured by an atomic force microscope (AFM), and an explanatory diagram of a convex distribution on the disk surface corresponding to the graph. . In this embodiment, in order to define the determination criteria, first, the surface roughness load curve of the magnetic disk shown in FIG. 3A is measured by an atomic force microscope. The height at which the occupancy is 0.5% is taken as a reference, the occupancy at a position 1.0 nm lower than the reference is OBA-1.0, and the occupancy at a position 1.5 nm lower than the reference is OBA-1.5. When OBA-1.0 is 30% or less and OBA-1.5 is 65% or less, the product is regarded as a good product.

すなわち、図3(b)に模式的に示すように、スライダが磁気ディスクの表面に接触してディスク表面の凸部が、占有率が0.5%となる高さから1.0nm低い位置まで押し込まれた際、スライダのディスク表面との接触率が30%以下であって、占有率が0.5%となる高さから1.5nm低い位置まで押し込まれた際でも、スライダのディスク表面との接触率が65%以下であるものを良品とする。言い換えれば、本形態の判定基準は、スライダとディスク面が接触した際、ディスク表面の凸部は、占有率が0.5%となる高さから1.0nm〜1.5nm低い位置まで押し込まれる可能性があり、このような場合でも、接触率が所定の値以下であれば、スライダと磁気ディスクとの吸着に起因する不具合が発生しないという考え方に基づいて設定されたものである。   That is, as schematically shown in FIG. 3B, the slider comes into contact with the surface of the magnetic disk, and the protrusion on the disk surface extends from a height where the occupation ratio is 0.5% to a position 1.0 nm lower. When pressed, the contact ratio of the slider to the disk surface is 30% or less, and even when the slider is pressed from a height of 0.5% to a position 1.5 nm lower, Those having a contact ratio of 65% or less are regarded as non-defective products. In other words, the criterion of this embodiment is that when the slider and the disk surface come into contact, the convex part of the disk surface is pushed down to a position 1.0 nm to 1.5 nm lower than the height at which the occupation ratio becomes 0.5%. Even in such a case, as long as the contact rate is equal to or less than a predetermined value, it is set based on the idea that a problem caused by the attraction between the slider and the magnetic disk does not occur.

(判定基準と磁気ディスクの吸着性との関係)
次に、上記の判定基準と、磁気ディスクの吸着性との関係を評価するため、表面粗さ負荷曲線において占有率が0.5%となる高さから0.5nm、1.0nm、1.5nm、2.0nm低い位置での占有率(OBA-0.5、OBA-1.0、OBA-1.5、OBA-2.0)が表2に示すように相違する磁気ディスク(試料a−1、a−2、a−3、b−1、b−2、b−3)を準備した後、これらの磁気ディスクの吸着性を調査するため、図4(a)に示すTD(タッチダウン)−TO(テイクオフ)試験装置で試験を行った。
(Relationship between criteria and magnetic disk adsorption)
Next, in order to evaluate the relationship between the above criteria and the magnetic disk attraction, 0.5 to 1.0 nm from the height at which the occupation ratio becomes 0.5% in the surface roughness load curve. Magnetic disks (samples a-1, a-2, a) having different occupancy ratios (OBA-0.5, OBA-1.0, OBA-1.5, OBA-2.0) at positions 5 nm and 2.0 nm lower as shown in Table 2 -3, b-1, b-2, b-3), and in order to investigate the adsorptivity of these magnetic disks, a TD (touch down) -TO (take-off) test shown in FIG. The device was tested.

Figure 2007272995
Figure 2007272995

図4(a)、(b)は、TD−TO試験装置の説明図、およびその試験結果を示す説明図である。図5は、磁気ディスクの判定基準の技術的な意味を示すグラフである。図4(a)に示すように、TD−TO試験装置200では、排気ポンプ(図示せず)が接続されたデシケータ250内に磁気ディスク1が配置され、磁気ディスク1は、デシケータ250内で駆動機構260によって回転駆動される。また、デシケータ250内には、先端に試験用のスライダ2′を備えたアーム4′が配置されており、試験用のスライダ2′は、磁気ディスク装置と同様、アーム4′により磁気ディスク1に向かう所定の荷重が印加されている。また、アーム4′には、スライダ2′と磁気ディスク1との接触の程度を検出するアコースティックエミッション(AE)センサ(図示せず)が設けられており、AEセンサの検出結果は、A/D変換器210を介してパーソナルコンピュータ220に入力される。   4A and 4B are explanatory diagrams of a TD-TO test apparatus and explanatory diagrams showing the test results. FIG. 5 is a graph showing the technical meaning of the determination criteria for magnetic disks. As shown in FIG. 4A, in the TD-TO test apparatus 200, the magnetic disk 1 is disposed in a desiccator 250 to which an exhaust pump (not shown) is connected. The magnetic disk 1 is driven in the desiccator 250. The mechanism 260 is rotationally driven. In the desiccator 250, an arm 4 'having a test slider 2' at the tip is disposed. The test slider 2 'is attached to the magnetic disk 1 by the arm 4' as in the magnetic disk device. A predetermined load is applied. The arm 4 'is provided with an acoustic emission (AE) sensor (not shown) for detecting the degree of contact between the slider 2' and the magnetic disk 1, and the detection result of the AE sensor is A / D. The data is input to the personal computer 220 via the converter 210.

このようなTD−TO試験装置200では、磁気ディスク1を高速回転させた状態で、デシケータ250内を0.001atmずつ減圧していくと、図4(b)に矢印A1で示すように、AEセンサの出力は微増するだけで推移する。そして、デシケータ250内がある圧力に達した時点でスライダ2′が磁気ディスク1表面に接触すると、矢印A2で示すように、AEセンサの出力が急激に増加する。そのときの圧力がTDP(タッチダウン圧力)である。次に、矢印A3で示すように、デシケータ250内の圧力を上げていってもAEセンサの出力は微減するだけであるが、ある圧力まで戻ると、スライダ2′が再び磁気ディスク1表面から浮上し、矢印A4で示すように、AEセンサからの出力が突然低下する。そのときの圧力がTOP(テイクオフ圧力)である。ここで、TOPとTDPとの差が磁気ディスク1の吸着性を表わし、その差tsが小さい場合、磁気ディスク1の吸着性が低く、良好といえる。   In such a TD-TO test apparatus 200, when the pressure in the desiccator 250 is reduced by 0.001 atm while the magnetic disk 1 is rotated at a high speed, as shown by an arrow A1 in FIG. The sensor output changes only by a slight increase. When the slider 2 'comes into contact with the surface of the magnetic disk 1 when the pressure in the desiccator 250 reaches a certain pressure, the output of the AE sensor increases rapidly as indicated by an arrow A2. The pressure at that time is TDP (touchdown pressure). Next, as indicated by the arrow A3, the output of the AE sensor only slightly decreases even when the pressure in the desiccator 250 is increased. However, when the pressure returns to a certain pressure, the slider 2 'floats again from the surface of the magnetic disk 1. As indicated by the arrow A4, the output from the AE sensor suddenly decreases. The pressure at that time is TOP (take-off pressure). Here, the difference between TOP and TDP represents the adsorptivity of the magnetic disk 1, and when the difference ts is small, the adsorptivity of the magnetic disk 1 is low and it can be said that it is favorable.

そこで、表2に示す各試料についてTD−TO試験を行い、その差tsが小さい場合には、表2に良品(Good)と示し、差tsが大きい場合には、表2に不具合(Not Good)と示した。また、試料b−1、b−2については、再浮上しなかったため、「−」で示してある。表2から分かるように、TD−TO試験において、試料a−1、a−2、a−3は良品で、試料b−1、b−2、b−3は不具合品であるという結果であった。なお、本試験は、気圧が0.91atmの場所で行った。   Therefore, a TD-TO test is performed on each sample shown in Table 2, and when the difference ts is small, it is shown as non-defective (Good) in Table 2, and when the difference ts is large, a failure (Not Good) is shown in Table 2. ). Samples b-1 and b-2 are not re-levitated and are therefore indicated by “−”. As can be seen from Table 2, in the TD-TO test, samples a-1, a-2, and a-3 were non-defective products, and samples b-1, b-2, and b-3 were defective products. It was. In addition, this test was done in the place where atmospheric | air pressure is 0.91 atm.

また、図5には、各試料a−1、a−2、a−3、b−1、b−2、b−3の表面粗さ負荷曲線において占有率が0.5%となる高さ(基準)から下がった寸法(0.5nm、1.0nm、1.5nm、2.0nm)と、占有率(OBA-0.5、OBA-1.0、OBA-1.5、OBA-2.0)との関係をプロットした。その結果、TD−TO試験で良品と判定された試料a−1、a−2、a−3は占有率が低い方に位置し、TD−TO試験で不具合品と判定された試料b−1、b−2、b−3は占有率が高い方に位置する。従って、図5に示すグラフにおいて、TD−TO試験で良品と判定された試料a−1、a−2、a−3の結果と、TD−TO試験で不具合品と判定された試料b−1、b−2、b−3の結果の境界を辿れば、磁気ディスク1の吸着性に関する判定基準を設定できることになる。   Further, FIG. 5 shows a height at which the occupation ratio becomes 0.5% in the surface roughness load curve of each sample a-1, a-2, a-3, b-1, b-2, b-3. Plots the relationship between the dimension (0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm) and the occupancy (OBA-0.5, OBA-1.0, OBA-1.5, OBA-2.0) that are lower than (reference) did. As a result, samples a-1, a-2, and a-3 determined as non-defective products in the TD-TO test are located in the lower occupancy ratios, and samples b-1 determined as defective products in the TD-TO test. , B-2, b-3 are located in the higher occupation ratio. Therefore, in the graph shown in FIG. 5, the results of samples a-1, a-2, and a-3 determined as non-defective products in the TD-TO test and the sample b-1 determined as defective products in the TD-TO test , B-2, and b-3, the determination criteria regarding the attractiveness of the magnetic disk 1 can be set.

但し、表面粗さ負荷曲線で占有率が0.5%となる高さ(基準)から0.5nm低い位置での占有率(OBA-0.5)と、基準から2.0nm低い位置での占有率(OBA-2.0)とでは、TD−TO試験で良品と判定された試料a−1、a−2、a−3の結果と、TD−TO試験で不具合品と判定された試料b−1、b−2、b−3の結果との間に明確な差が見られない。   However, in the surface roughness load curve, the occupancy at the position 0.5 nm lower than the height (reference) where the occupancy is 0.5% (OBA-0.5) and the occupancy at the position 2.0 nm lower than the reference In (OBA-2.0), the results of samples a-1, a-2, a-3 determined as non-defective products in the TD-TO test, and the sample b-1, determined as defective products in the TD-TO test, There is no clear difference between the results of b-2 and b-3.

これに対して、表面粗さ負荷曲線で占有率が0.5%となる高さ(基準)から1.0nm低い位置での占有率(OBA-1.0)と、基準から1.5nm低い位置での占有率(OBA-1.5)とでは、TD−TO試験で良品と判定された試料a−1、a−2、a−3の結果と、TD−TO試験で不具合品と判定された試料b−1、b−2、b−3の結果との間に明確な差が見られる。   On the other hand, in the surface roughness load curve, the occupation ratio (OBA-1.0) at a position 1.0 nm lower than the height (reference) where the occupation ratio is 0.5% and the position 1.5 nm lower than the reference. Occupancy ratio (OBA-1.5) is the result of samples a-1, a-2, a-3 determined as non-defective products in the TD-TO test, and sample b determined as defective products in the TD-TO test. A clear difference is seen between the results of -1, b-2 and b-3.

従って、表面粗さ負荷曲線で占有率が0.5%となる高さ(基準)から1.0nm低い位置での占有率(OBA-1.0)と、基準から1.5nm低い位置での占有率(OBA-1.5)を判定基準に用いれば、良品と不具合品とを確実に判定できるといえ、本発明では、かかる検討を繰り返し行った結果から、表面粗さ負荷曲線で占有率が0.5%となる高さ(基準)から1.0nm低い位置での占有率(OBA-1.0)が30%以下、かつ、基準から1.5nm低い位置での占有率(OBA-1.5)が65%以下である磁気ディスク1について吸着性が良好であると規定した。   Therefore, in the surface roughness load curve, the occupation ratio (OBA-1.0) at a position 1.0 nm lower than the height (reference) where the occupation ratio becomes 0.5% (OBA-1.0) and the occupation ratio at a position 1.5 nm lower than the reference If (OBA-1.5) is used as a criterion, it can be said that a non-defective product and a defective product can be reliably determined. In the present invention, from the result of repeated such studies, the occupation ratio is 0.5 on the surface roughness load curve. The occupancy (OBA-1.0) at a position 1.0 nm lower than the height (reference) is 30% or less, and the occupancy (OBA-1.5) at a position 1.5 nm lower than the reference is 65% or less. The magnetic disk 1 was defined as having good adsorbability.

このように本発明では、2つの占有率(OBA-1.0、OBA-1.5)を基準に基づいて表面粗さを規定しているため、ディスク面の凸部の比較的高い1箇所の占有率で表面粗さを規定する場合と比較して厳密に表面粗さを制御できる。それ故、非磁性基板11がアモルファスガラスからなる場合や、フェムト・スライダを用いた場合のように、スライダ2がディスク表面に接触した際、ディスク表面の凸部が押し込まれる度合いが深くなっても浮上安定性との相関性が高い。それ故、テクスチャー加工を施した非磁性基板11を用いた磁気ディスク1において浮上安定性を確保できる。   As described above, in the present invention, the surface roughness is defined based on the two occupancy ratios (OBA-1.0, OBA-1.5), so that the occupancy ratio at one relatively high portion of the convex portion of the disk surface is obtained. The surface roughness can be controlled more strictly than when the surface roughness is defined. Therefore, even when the non-magnetic substrate 11 is made of amorphous glass or when a slider 2 comes into contact with the disk surface, such as when a femto slider is used, even if the degree of protrusion of the disk surface increases. High correlation with levitation stability. Therefore, the flying stability can be secured in the magnetic disk 1 using the textured nonmagnetic substrate 11.

(良否判定基準の利用方法)
本発明に係る良否判定基準については、それをクリアするような条件で磁気ディスク1の製造条件を設定するのに用いてもよく、また、製造した磁気ディスク1の検査に適用してもよい。
(How to use acceptance criteria)
The pass / fail judgment criteria according to the present invention may be used to set the manufacturing conditions of the magnetic disk 1 under such conditions that it is cleared, or may be applied to the inspection of the manufactured magnetic disk 1.

さらに、磁気ディスク1の製造に用いる非磁性基板11においてテクスチャー加工を終えた後の検査に適用してもよい。このような非磁性基板11を用いれば、良否判定基準をクリアできる磁気ディスク1を製造することができる。   Further, the present invention may be applied to an inspection after the texture processing is finished on the nonmagnetic substrate 11 used for manufacturing the magnetic disk 1. If such a nonmagnetic substrate 11 is used, the magnetic disk 1 that can pass the pass / fail criterion can be manufactured.

(a)、(b)は、本発明を適用した磁気ディスクを示す平面図、およびその概略断面図である。(a), (b) is the top view which shows the magnetic disc to which this invention is applied, and its schematic sectional drawing. 磁気ディスク装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of a magnetic disc apparatus. (a)、(b)は、磁気ディスクの表面粗さ負荷曲線を示すグラフ、およびこのグラフに対応するディスク表面の凸部分布の説明図である。(a), (b) is the graph which shows the surface roughness load curve of a magnetic disc, and explanatory drawing of the convex part distribution of the disc surface corresponding to this graph. (a)、(b)は、TD−TO試験装置の説明図、およびその試験結果を示す説明図である。(a), (b) is explanatory drawing of a TD-TO test apparatus, and explanatory drawing which shows the test result. 本発明における磁気ディスクの判定基準の技術的な意味を示すグラフである。It is a graph which shows the technical meaning of the criterion of the magnetic disc in this invention.

符号の説明Explanation of symbols

1 磁気ディスク
2 スライダ
3 駆動機構
4 ヘッドサスペンションアセンブリ
11 非磁性基板
12 下地層
13 磁性層
14 保護層
15 潤滑層
100 ハードディスクドライブ装置(磁気ディスク装置)
DESCRIPTION OF SYMBOLS 1 Magnetic disk 2 Slider 3 Drive mechanism 4 Head suspension assembly 11 Nonmagnetic substrate 12 Underlayer 13 Magnetic layer 14 Protective layer 15 Lubricating layer 100 Hard disk drive device (magnetic disk device)

Claims (6)

非磁性基板の主表面に磁気記録層を含む複数の層が積層された磁気ディスクの良否判定方法において、
ディスク面の表面粗さ負荷曲線を求め、
当該負荷曲線において、占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であるものを良品と判定することを特徴とする磁気ディスクの良否判定方法。
In the quality determination method of a magnetic disk in which a plurality of layers including a magnetic recording layer are laminated on the main surface of a nonmagnetic substrate,
Obtain the surface roughness load curve of the disk surface,
In the load curve, the occupancy at a position 1.0 nm lower than the reference is OBA-1.0 with the height at which the occupancy is 0.5% as a reference, and the occupancy at a position 1.5 nm lower than the reference. , OBA-1.5 is determined to be non-defective if the OBA-1.0 is 30% or less and the OBA-1.5 is 65% or less.
磁気ディスク用の非磁性基板の良否判定方法において、
主表面の表面粗さ負荷曲線を求め、
当該負荷曲線において、占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であるものを良品と判定することを特徴とする磁気ディスク用の非磁性基板の良否判定方法。
In the quality determination method for non-magnetic substrates for magnetic disks,
Obtain the surface roughness load curve of the main surface,
In the load curve, the occupancy at a position 1.0 nm lower than the reference is OBA-1.0 with the height at which the occupancy is 0.5% as a reference, and the occupancy at a position 1.5 nm lower than the reference. Is a non-magnetic substrate quality determination method for a magnetic disk, wherein OBA-1.0 is 30% or less and OBA-1.5 is 65% or less.
非磁性基板の主表面に磁気記録層を含む複数の層が積層された磁気ディスクにおいて、
ディスク表面の表面粗さ負荷曲線で占有率が0.5%となる高さを基準とし、当該基準から1.0nm低い位置での占有率をOBA-1.0とし、前記基準から1.5nm低い位置での占有率をOBA-1.5としたとき、OBA-1.0が30%以下、かつ、OBA-1.5が65%以下であることを特徴とする磁気ディスク。
In a magnetic disk in which a plurality of layers including a magnetic recording layer are laminated on the main surface of a nonmagnetic substrate,
The height at which the occupancy is 0.5% on the surface roughness load curve of the disk surface is the standard, the occupancy at the position 1.0 nm lower than the standard is OBA-1.0, and the position 1.5 nm lower than the standard A magnetic disk, wherein OBA-1.0 is 30% or less and OBA-1.5 is 65% or less when OBA-1.5 is occupied.
前記非磁性基板は、アモルファスガラスからなることを特徴とする請求項3に記載の磁気ディスク。   The magnetic disk according to claim 3, wherein the nonmagnetic substrate is made of amorphous glass. 請求項3または4に記載の磁気ディスクを備えた磁気ディスク装置であって、
前記磁気ディスクを回転駆動する駆動機構と、前記磁気ディスクに対して情報の記録または/および再生を行うヘッド素子を保持するスライダと、該スライダを支持するヘッドサスペンションアセンブリとを有し、
前記磁気ディスクに対する前記スライダの走行時の浮上量が10.0nm以下であることを特徴とする磁気ディスク装置。
A magnetic disk device comprising the magnetic disk according to claim 3 or 4,
A drive mechanism for rotationally driving the magnetic disk, a slider for holding a head element for recording or / and reproducing information on the magnetic disk, and a head suspension assembly for supporting the slider,
A magnetic disk device, wherein the flying height of the slider with respect to the magnetic disk is 10.0 nm or less.
前記スライダは、前記磁気ディスクと対向する面のサイズが縦1mm未満、かつ、横1mm未満であることを特徴とする請求項5に記載の磁気ディスク装置。   6. The magnetic disk device according to claim 5, wherein a size of a surface of the slider facing the magnetic disk is less than 1 mm in length and less than 1 mm in width.
JP2006097561A 2006-03-31 2006-03-31 Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device Pending JP2007272995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097561A JP2007272995A (en) 2006-03-31 2006-03-31 Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097561A JP2007272995A (en) 2006-03-31 2006-03-31 Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device

Publications (1)

Publication Number Publication Date
JP2007272995A true JP2007272995A (en) 2007-10-18

Family

ID=38675644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097561A Pending JP2007272995A (en) 2006-03-31 2006-03-31 Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device

Country Status (1)

Country Link
JP (1) JP2007272995A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086591A (en) * 2008-09-30 2010-04-15 Hoya Corp Method for manufacturing magnetic disk
JP2010231859A (en) * 2009-03-27 2010-10-14 Hoya Corp Glide inspection method of magnetic disk, and method for manufacturing the magnetic disk
JP2010257502A (en) * 2009-04-21 2010-11-11 Hoya Corp Magnetic disk evaluation method, magnetic disk manufacturing method, and magnetic disk
WO2013146991A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Substrate for mask blank, substrate with multilayer reflective film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and method for manufacturing semiconductor device
WO2014050241A1 (en) * 2012-09-28 2014-04-03 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, and method for producing glass substrate for magnetic disk
WO2015041023A1 (en) * 2013-09-18 2015-03-26 Hoya株式会社 Reflective mask blank and method for manufacturing same, reflective mask, and method for manufacturing semiconductor device
WO2015046095A1 (en) * 2013-09-27 2015-04-02 Hoya株式会社 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate
JP6106813B1 (en) * 2015-09-30 2017-04-05 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134515A (en) * 1995-09-05 1997-05-20 Kao Corp Magnetic recording medium
JP2001143246A (en) * 1999-11-16 2001-05-25 Nippon Sheet Glass Co Ltd Substrate for information recording medium and its manufacturing method as well as information recording medium and information recorder using the same
JP2001160214A (en) * 1999-09-24 2001-06-12 Hitachi Ltd Magnetic recording medium and magnetic disk device
JP2001243617A (en) * 1999-12-21 2001-09-07 Hoya Corp Friction coefficient management method based on surface roughness, substrate for information recording medium, information recording medium and its manufacturing method
JP2004086936A (en) * 2002-08-22 2004-03-18 Showa Denko Kk Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2005203084A (en) * 2004-01-14 2005-07-28 Hitachi Global Storage Technologies Netherlands Bv Engineered interface for low fly height
JP2005317131A (en) * 2004-04-28 2005-11-10 Toshiba Corp Head suspension assembly and disk apparatus provided with the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134515A (en) * 1995-09-05 1997-05-20 Kao Corp Magnetic recording medium
JP2001160214A (en) * 1999-09-24 2001-06-12 Hitachi Ltd Magnetic recording medium and magnetic disk device
JP2001143246A (en) * 1999-11-16 2001-05-25 Nippon Sheet Glass Co Ltd Substrate for information recording medium and its manufacturing method as well as information recording medium and information recorder using the same
JP2001243617A (en) * 1999-12-21 2001-09-07 Hoya Corp Friction coefficient management method based on surface roughness, substrate for information recording medium, information recording medium and its manufacturing method
JP2004086936A (en) * 2002-08-22 2004-03-18 Showa Denko Kk Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2005203084A (en) * 2004-01-14 2005-07-28 Hitachi Global Storage Technologies Netherlands Bv Engineered interface for low fly height
JP2005317131A (en) * 2004-04-28 2005-11-10 Toshiba Corp Head suspension assembly and disk apparatus provided with the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086591A (en) * 2008-09-30 2010-04-15 Hoya Corp Method for manufacturing magnetic disk
JP2010231859A (en) * 2009-03-27 2010-10-14 Hoya Corp Glide inspection method of magnetic disk, and method for manufacturing the magnetic disk
JP2010257502A (en) * 2009-04-21 2010-11-11 Hoya Corp Magnetic disk evaluation method, magnetic disk manufacturing method, and magnetic disk
TWI683176B (en) * 2012-03-30 2020-01-21 日商Hoya股份有限公司 Substrate for reticle base, substrate with multilayer reflective film, reflective reticle base, reflective reticle, transmissive reticle base and transmissive reticle, and method of manufacturing semiconductor device
TWI622851B (en) * 2012-03-30 2018-05-01 Hoya Corp Transmission type photomask base, transmission type photomask, and method for manufacturing semiconductor device
TWI582532B (en) * 2012-03-30 2017-05-11 Hoya Corp A substrate for a mask substrate, a substrate having a multilayer reflective film, a transmissive mask substrate, a reflective mask substrate, a transmission type mask, a reflection type mask and a semiconductor device
KR101477469B1 (en) 2012-03-30 2014-12-29 호야 가부시키가이샤 Substrate for mask blank, substrate with multilayer reflective film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and method for manufacturing semiconductor device
KR20200003947A (en) * 2012-03-30 2020-01-10 호야 가부시키가이샤 Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask, transmissive mask blank, transmissive mask, and method for manufacturing semiconductor device
US10429728B2 (en) 2012-03-30 2019-10-01 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US9897909B2 (en) 2012-03-30 2018-02-20 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
KR102165129B1 (en) 2012-03-30 2020-10-13 호야 가부시키가이샤 Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask, transmissive mask blank, transmissive mask, and method for manufacturing semiconductor device
JP5538637B2 (en) * 2012-03-30 2014-07-02 Hoya株式会社 Mask blank substrate, substrate with multilayer reflective film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and method for manufacturing semiconductor device
WO2013146991A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Substrate for mask blank, substrate with multilayer reflective film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and method for manufacturing semiconductor device
US9348217B2 (en) 2012-03-30 2016-05-24 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
TWI660236B (en) * 2012-03-30 2019-05-21 日商Hoya股份有限公司 Manufacturing method of substrate for photomask substrate, substrate with multilayer reflective film and manufacturing method thereof, reflective photomask substrate and manufacturing method thereof, reflective photomask and manufacturing method thereof, manufacturing method of transmissive photomask substrate, transmission Photomask and method for manufacturing semiconductor device
US10620527B2 (en) 2012-03-30 2020-04-14 Hoya Corporation Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US10580448B2 (en) 2012-09-28 2020-03-03 Hoya Corporation Magnetic-disk glass substrate, magnetic disk and method for manufacturing magnetic-disk glass substrate
US9697860B2 (en) 2012-09-28 2017-07-04 Hoya Corporation Magnetic-disk glass substrate, magnetic disk and method for manufacturing magnetic-disk glass substrate
WO2014050241A1 (en) * 2012-09-28 2014-04-03 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, and method for producing glass substrate for magnetic disk
KR101875790B1 (en) * 2013-09-18 2018-07-06 호야 가부시키가이샤 Reflective mask blank and method for manufacturing same, reflective mask, and method for manufacturing semiconductor device
US9726969B2 (en) 2013-09-18 2017-08-08 Hoya Corporation Reflective mask blank, method of manufacturing same, reflective mask and method of manufacturing semiconductor device
JP5716146B1 (en) * 2013-09-18 2015-05-13 Hoya株式会社 REFLECTIVE MASK BLANK AND MANUFACTURING METHOD THEREFOR, REFLECTIVE MASK AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
WO2015041023A1 (en) * 2013-09-18 2015-03-26 Hoya株式会社 Reflective mask blank and method for manufacturing same, reflective mask, and method for manufacturing semiconductor device
WO2015046095A1 (en) * 2013-09-27 2015-04-02 Hoya株式会社 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
KR20200047800A (en) * 2013-09-27 2020-05-07 호야 가부시키가이샤 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
KR102127907B1 (en) 2013-09-27 2020-06-29 호야 가부시키가이샤 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
KR20170120718A (en) * 2013-09-27 2017-10-31 호야 가부시키가이샤 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
TWI626503B (en) * 2013-09-27 2018-06-11 Hoya股份有限公司 Conductive-film-coated substrate, multilayer-reflective-film-coated substrate, reflective mask blank, reflective mask, and method of manufacturing a semiconductor device
KR102107799B1 (en) 2013-09-27 2020-05-07 호야 가부시키가이샤 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
KR101877896B1 (en) * 2013-09-27 2018-07-12 호야 가부시키가이샤 Substrate provided with conductive film, substrate provided with multi-layer reflection film, reflective mask blank, reflective mask, and semiconductor device manufacturing method
US10527927B2 (en) 2013-09-27 2020-01-07 Hoya Corporation Conductive film coated substrate, multilayer reflective film coated substrate, reflective mask blank, reflective mask, and semiconductor device manufacturing method
US10209614B2 (en) 2013-09-27 2019-02-19 Hoya Corporation Conductive film coated substrate, multilayer reflective film coated substrate, reflective mask blank, reflective mask, and semiconductor device manufacturing method
US9746762B2 (en) 2013-09-27 2017-08-29 Hoya Corporation Conductive film coated substrate, multilayer reflective film coated substrate, reflective mask blank, reflective mask, and semiconductor device manufacturing method
JP2016058128A (en) * 2014-03-31 2016-04-21 Hoya株式会社 Glass substrate for magnetic disk
JP5860195B1 (en) * 2014-03-31 2016-02-16 Hoya株式会社 Glass substrate for magnetic disk
US10032472B2 (en) 2014-03-31 2018-07-24 Hoya Corporation Magnetic-disk glass substrate
CN108133714A (en) * 2014-03-31 2018-06-08 Hoya株式会社 Glass substrate for disc
CN106030709B (en) * 2014-03-31 2018-02-23 Hoya株式会社 Glass substrate for disc
US11024335B2 (en) 2014-03-31 2021-06-01 Hoya Corporation Magnetic-disk glass substrate
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate
CN108133714B (en) * 2014-03-31 2019-08-23 Hoya株式会社 Glass substrate for disc
CN106030709A (en) * 2014-03-31 2016-10-12 Hoya株式会社 Magnetic disk-use glass substrate
JP6106813B1 (en) * 2015-09-30 2017-04-05 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
US10720180B2 (en) 2015-09-30 2020-07-21 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate
WO2017057686A1 (en) * 2015-09-30 2017-04-06 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate body, and method for manufacturing glass substrate for magnetic disk
JP2017130249A (en) * 2015-09-30 2017-07-27 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and manufacturing method of glass substrate for magnetic disk
US11211090B2 (en) 2015-09-30 2021-12-28 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate
US11710505B2 (en) 2015-09-30 2023-07-25 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate

Similar Documents

Publication Publication Date Title
JP5574414B2 (en) Magnetic disk evaluation method and magnetic disk manufacturing method
JP5401066B2 (en) Magnetic disk and manufacturing method thereof
JP2007272995A (en) Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device
CN108847256B (en) Annular substrate, substrate for magnetic disk and manufacturing method thereof, magnetic disk and manufacturing method thereof
JP6426078B2 (en) Glass substrate for magnetic disk, glass substrate, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP2005243131A (en) Magnetic recording medium and magnetic recording/ reproducing device
JP2005243130A (en) Magnetic recording medium and magnetic recording and reproducing device
Johnson et al. Thin-film media—current and future technology
JP2003151233A (en) Head slider adapted to smooth surface magnetic disk, head slider assembly, magnetic disk device, magnetic disk examining and manufacturing method, and magnetic disk device assembling method
JP2008293552A (en) Substrate, magnetic recording medium, its manufacturing method, and magnetic storage device
JP4545714B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
WO2007007650A1 (en) Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JP2006236474A (en) Magnetic recording medium and magnetic recording/reproducing device
US7239483B2 (en) Magnetic disk with specified contact ratio [BH 1.0 nm] and circumferential texturing and magnetic disk apparatus equipped with magnetic disk
JP2024518836A (en) Thermally assisted magnetic recording (HAMR) media with magnesium trapping layer
JP5898381B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND MAGNETIC DISC DEVICE
US7153192B1 (en) Method for selectively sensing and removing asperities from hard disk drive media utilizing active thermally controlled flying heights
JP2005135565A (en) Magnetic disk and magnetic disk device provided with the same
JP2007273000A (en) Magnetic recording medium
JP2005141824A (en) Manufacturing method of glass substrate for magnetic disk , and manufacturing method of the magnetic disk
JP2006260745A (en) Perpendicular magnetic recording medium and magnetic recording device
JP2006099813A (en) Method for manufacturing magnetic recording medium substrate, and method for manufacturing magnetic recording medium using the same
US11074934B1 (en) Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
JP2000348337A (en) Manufacture of magnetic disk, magnetic disk, magnetic disk device, magnetic disk array system, and cleaning tape
JP5184283B2 (en) Manufacturing method of magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100706

A02 Decision of refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A02