JP2004086936A - Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device - Google Patents

Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device Download PDF

Info

Publication number
JP2004086936A
JP2004086936A JP2002242518A JP2002242518A JP2004086936A JP 2004086936 A JP2004086936 A JP 2004086936A JP 2002242518 A JP2002242518 A JP 2002242518A JP 2002242518 A JP2002242518 A JP 2002242518A JP 2004086936 A JP2004086936 A JP 2004086936A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
magnetic recording
recording medium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002242518A
Other languages
Japanese (ja)
Other versions
JP2004086936A5 (en
Inventor
Hiroshi Osawa
大澤 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002242518A priority Critical patent/JP2004086936A/en
Priority to SG200304489A priority patent/SG123562A1/en
Priority to US10/645,625 priority patent/US7006328B2/en
Publication of JP2004086936A publication Critical patent/JP2004086936A/en
Publication of JP2004086936A5 publication Critical patent/JP2004086936A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic recording medium which has superior electromagnetic conversion characteristic and is suitable for high density recording. <P>SOLUTION: The magnetic recording medium has at least an orientation adjusting layer, a non-magnetic base layer, a magnetic layer and a protective film in that order on a glass substrate having streaks on its surface. The orientation adjusting layer is formed to include one or more kinds of metals selected from Co, Ni and Fe and one or more kinds of metals selected from W, Mo, Ta and Nb. Moreover, the orientation adjusting layer is formed to include at least one alloy selected from a Co-W system alloy, a Co-Mo system alloy, a Co-Ta system alloy, a Co-Nb system alloy, a Ni-Ta system alloy, a Ni-Nb system alloy, an Fe-W system alloy, a Fe-Mo system alloy and a Fe-Nb system alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク装置などに用いられる磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置に関するものである。
【0002】
【従来の技術】
磁気記録再生装置の1種であるハ−ドディスク装置(HDD)は、現在その記録密度が年率60%で増えており今後もその傾向は続くと言われている。高記録密度に適した磁気記録用ヘッドの開発、磁気記録媒体の開発が進められている。
【0003】
ハ−ドディスク装置に用いられる磁気記録媒体は、高記録密度化が要求されており、これに伴い保磁力の向上、媒体ノイズの低減が求められている。
【0004】
ハ−ドディスク装置に用いられる磁気記録媒体としては、磁気記録媒体用の基板にスパッタリング法により金属膜を積層した構造が主流となっている。磁気記録媒体に用いられる基板としては、アルミニウム基板とガラス基板が広く用いられている。アルミニウム基板とは鏡面研磨したAl−Mg合金の基体上にNi−P系合金膜を無電解メッキで10μm程度の厚さに形成し、その表面を更に鏡面仕上げしたものである。ガラス基板にはアモルファスガラスと結晶化ガラスの2種類がある。どちらのガラス基板も鏡面仕上げしたものが用いられる。
【0005】
現在一般的に用いられているハ−ドディスク装置用磁気記録媒体においては、非磁性基板上に非磁性下地層(Ni−Al系合金、Cr、Cr系合金等)、非磁性中間層(Co−Cr、Co−Cr−Ta系合金等)、磁性層(Co−Cr−Pt−Ta、Co−Cr−Pt−B系合金等)、保護膜(カ−ボン等)が順次成膜されており、その上に液体潤滑剤からなる潤滑膜が形成されている。
【0006】
磁気ディスク装置などの高記録密度化に伴い、円周方向の磁気異方性を有した磁気記録媒体とすることによる電磁変換特性の良好なものが求められている。そのために、現在、アルミニウム合金にNiPをメッキした基板(「アルミ基板」ともいう。)を用いた磁気記録媒体はNiP表面に機械的に溝を円周方向に入れる(「メカニカルテクスチャー加工」という。)ことにより円周方向に磁気異方性を持たせている。
【0007】
一方、非磁性基板、例えばガラス基板は耐衝撃性にすぐれた剛性を有し、かつ、すぐれた平坦性を有するので、高記録密度に適した非磁性基板といえる。非磁性基板にガラスを用いた磁気記録媒体に円周方向の磁気異方性を付与することができれば、優れた電磁変換特性が得られることが期待される。
【0008】
ガラス基板にメカニカルテクスチャー加工を施し、テクスチャー条痕を形成する方法はいくつか知られている。例えば、微細且つ均一なテクスチャー条痕を形成するために、水酸基を有する溶液を含有した砥粒懸濁液とプラスチック繊維からなる織布テープを用いることが提案されている(例えば、特許文献1参照。)。
【0009】
また、微細且つ均一なテクスチャー条痕を形成するために、ダイアモンド砥粒とCeO砥粒を一緒に用いることが提案されている(例えば、特許文献2参照。)。
【0010】
しかし、ガラス基板はテクスチャー条痕を形成しただけでは円周方向に充分な磁気異方性を付与することは難しい。そのため、ライン状テクスチャーが表面に形成されたガラス基板に、円周方向の磁気異方性を付与するため、スパッタ法によりNiとPとを少なくとも含むアモルファス層を形成させることが提案されている(例えば、特許文献3参照。)。
【0011】
【特許文献1】
特許第3117438号明細書
【0012】
【特許文献2】
米国特許第6248395号明細書
【0013】
【特許文献3】
特開2001−209927号公報
【0014】
【発明が解決しようとする課題】
テクスチャー条痕が形成されたガラス基板に、NiとPとを少なくとも含むアモルファス層を形成させることは、NiPがメッキされたアルミ基板と同じ状況を作り出す試みである。この方法によりCr系下地膜、Co系磁性層、保護膜を順次形成した場合に磁気異方性は発現する。しかしながら、NiとPを少なくとも含むアモルファス層を用いた場合、高保持力、高角型比を出すことが難しく良好な電磁変換特性を得られない。
【0015】
本発明は、上記事情に鑑みてなされたものである。本発明は、条痕が表面に形成されたガラス基板をもちいて、円周方向の磁気異方性を有する、高保持力、高角型比で電磁変換特性の良好な磁気記録媒体とその製造方法、および磁気記録再生装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明者等は上記問題を解決するために、鋭意努力検討した結果、配向調整層にCo、NiおよびFeから選ばれる何れか1種類以上の成分とW、Mo、TaおよびNbから選ばれる何れか1種類以上の成分から構成される合金層を用いることにより磁気記録再生装置の特性を向上できることを見出し本発明を完成した。即ち本発明は以下に関する。
【0017】
(1)表面に条痕を有するガラス基板上に、配向調整層、非磁性下地層、磁性層及び保護膜をこの順で有する磁気記録媒体において、前記配向調整層がCo、NiおよびFeから選ばれる何れか1種類以上と、W、Mo、TaおよびNbから選ばれる何れか1種類以上とを含むことを特徴とする磁気記録媒体。
【0018】
(2)前記配向調整層が、Co−W系合金、Co−Mo系合金、Co−Ta系合金、Co−Nb系合金、Ni−Ta系合金、Ni−Nb系合金、Fe−W系合金、Fe−Mo系合金、Fe−Nb系合金の中から選択される少なくとも1つの合金を含むことを特徴とする(1)に記載の磁気記録媒体。
【0019】
(3)前記配向調整膜の膜厚が、10オングストローム〜300オングストロームの範囲内であることを特徴とする(1)または(2)に記載の磁気記録媒体。
【0020】
(4)前記ガラス基板が、アモルファスガラスであることを特徴とする(1)〜(3)の何れか1項に記載の磁気記録媒体。
【0021】
(5)前記条痕の線密度が、7500(本/mm)以上であることを特徴とする(1)〜(4)の何れか1項に記載の磁気記録媒体。
【0022】
(6)磁性層の磁気的異方性指数(円周方向の保持力/半径方向の保持力)が、1.05以上であることを特徴とする(1)〜(5)の何れか1項に記載の磁気記録媒体。
【0023】
(7)残留磁化量の磁気的異方性指数(円周方向の残留磁化量/半径方向の残留磁化量)が、1.05以上であることを特徴とする(1)〜(6)の何れか1項に記載の磁気記録媒体。
【0024】
(8)前記非磁性下地層が、Cr層、または、Ti、Mo、Al、Ta、W、Ni、B、SiおよびVから選ばれる1種以上を含有するCr合金層を含むことを特徴とする(1)〜(7)の何れか1項に記載の磁気記録媒体。
【0025】
(9)磁性層が、Co−Cr−Pt系合金、Co−Cr−Pt−Ta系合金、Co−Cr−Pt−B系合金、Co−Cr−Pt−B−Y系合金(YはTa、または、Cuである。)から選ばれる何れか1種以上を含むことを特徴とする(1)〜(8)の何れか1項に記載の磁気記録媒体。
【0026】
(10)(1)〜(9)の何れか1項に記載の磁気記録媒体と、磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置。
【0027】
【発明の実施の形態】
本発明の磁気記録媒体は、表面に条痕を有するガラス基板上に、配向調整層、非磁性下地層、磁性層及び保護膜をこの順で有する磁気記録媒体において、配向調整層がCo、NiおよびFeから選ばれる何れか1種類以上と、W、Mo、TaおよびNbから選ばれる何れか1種類以上とを含むことを特徴とする。
【0028】
図1は、本発明の磁気記録媒体の一実施形態を模式的に示したものであり、1はガラス基板、2は配向調整膜、3は非磁性下地層、4は磁性層、5は保護膜を示す。
【0029】
ガラス基板1に用いられるガラスとしては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては、汎用のソーダライムガラス、アルミノほう珪酸ガラス、アルミノシリケートガラスを使用できる。また結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。なかでも特に、硬度などの物性が均一なアモルファスガラスを用いると、表面に均一なテクスチャ加工を施すことができるため好ましい。
【0030】
ガラス基板1には、例えば固定砥粒を用いたラッピングテープや遊離砥粒によるメカニカルテクスチャ加工などにより、表面に条痕を形成する。ガラス基板1表面に形成された条痕は基板円周方向に沿うものであることが好ましい。条痕が表面に形成されたガラス基板1の表面平均粗さRaは、0.1nm〜1nm(1オングストローム〜10オングストローム)、好ましくは0.2nm〜0.8nm(2オングストローム〜8オングストローム)の範囲内とするのが望ましい。
【0031】
表面平均粗さRaが0.1nm未満であると、ガラス基板1が過度に平滑になり磁性膜4の磁気異方性を高める効果が薄れる。また表面平均粗さRaが1nmを越えると、媒体表面の平滑性が低くなりグライドハイト特性が低下し、記録再生時において磁気ヘッドのフライングハイトを低くするのが難しくなる。
【0032】
ガラス基板1の表面は、線密度が7500(本/mm)以上の条痕を有していることが好ましい。線密度はガラス基板の半径方向に測定したものである。線密度が7500(本/mm)以上としたのは、条痕の効果が磁気的特性(例えば保磁力の向上効果。)、電磁変換特性(例えばSNR(Signal to Noise Ratio)、PW50の向上効果。)により反映されるからである。さらに好ましくは線密度が20000(本/mm)以上の条痕を有していれば上述の効果がより一層顕著になる。
【0033】
なお線密度の上限は、200000(本/mm)である。線密度が200000(本/mm)を超えると、条痕の線間隔が50オングストローム未満となってしまい、非磁性下地層の粒径の方が大きくなり、磁気記録媒体の磁気異方性を低下させる。
【0034】
条痕は基板に対して主に円周方向を有しているのが好ましい。ここで、条痕とは、半径方向の断面において山と谷との間の高低の距離が0.02nm〜20nmの範囲内(より好ましくは、0.05nm〜10nmの範囲内。)の、表面の凹凸形状のことである。この範囲の表面の凹凸形状による磁気異方性が電磁変換特性の向上に有効だからである。また20nmを越えた条痕は、凹凸が大きすぎるので近傍の条痕の均一性に影響を与えるおそれがある。
【0035】
条痕は、例えば固定砥粒を用いたラッピングテープや遊離砥粒によるメカニカルテクスチャ加工などにより形成するのが好ましい。
【0036】
条痕の線密度は、例えば測定装置として、AFM(Atomic Force Microscope。Degital Instrument社(米国)製)を用いることができる。
【0037】
線密度の測定条件は次のようにする。スキャン幅は1μm、スキャンレートは1Hz、測定数は256、モードはタッピングモードとする。試料であるガラス基板の半径方向にプローブを走査し、AFMのスキャン画像を得る。Flatten Orderの次数を2として平滑化処理のひとつであるPlane FitAuto処理を、Scan画像に対してX軸とY軸とに実施して画像の平滑化補正を行う。平滑化補正済みの画像に対して、約0.5μm×約0.5μmのボックスを設定してその範囲の線密度を算出する。線密度はX軸中心線とY軸中心線の両方に沿ったゼロ交差点の総数を1mm当りに換算して算出する。すなわち、線密度は半径方向1mm当りのテクスチャー条痕の山と谷の数となる。
【0038】
試料面内の各箇所を測定してその測定値の平均値、標準偏差を求める。その平均値をもってガラス基板の条痕の線密度とする。測定箇所の個数は、平均値、標準偏差を求められる個数とすることができる。たとえば、測定数は10点とすることができる。またそのうちの最大値、最小値を除いた8点で平均値、標準偏差を求めると測定異常値を除くことができるので測定精度を向上させることができる。
【0039】
配向調整膜2は、直上に形成される非磁性下地膜3の結晶配向性を整え、さらにはその上に形成される磁性膜4の結晶配向性を調整し、磁性膜4の円周方向の磁気異方性を向上させるためのものである。また配向調整膜2は、結晶配向性を調整するだけでなく、非磁性下地膜3および磁性膜4中の結晶粒を微細化する結晶粒微細化膜としても機能する。
配向調整膜2には、Co、NiおよびFeから選ばれる何れか1種類以上の成分とW、Mo、TaおよびNbから選ばれる何れか1種類以上の成分から構成される合金層を用いることが出来る。
【0040】
上述の配向調整膜2に用いられる合金層の組成は特に限定されるものではない。しかし、好ましくは、Co、Ni及びFeの合計含有率が25at%〜70at%の範囲内であり、W、Mo、Ta及びNbの合計含有率が30at%〜75at%の範囲内であることが望ましい。Co、Ni及びFeの合計含有率が25at%未満では非磁性下地層の結晶配向が十分ではなく保持力を低下させる。Co、Ni及びFeの合計含有率が70at%超えると、配向調整膜が磁化を持ってしまい好ましくない。、Mo、Ta及びNbの合計含有率が30at%未満では、磁性膜の円周方向の磁気異方性が低下してしまう。Mo、Ta及びNbの合計含有率が75at%を超えると非磁性下地層の結晶配向が十分ではなく保持力を低下させる。
【0041】
上述の配向調整膜2には、より好ましくはCo−W系合金、Co−Mo系合金、Co−Ta系合金、Co−Nb系合金、Ni−Ta系合金、Ni−Nb系合金、Fe−W系合金、Fe−Mo系合金、Fe−Nb系合金の中から選択される少なくとも1つの合金層を用いることが望ましい。本発明者等の鋭意努力により、Fe7W6構造を含む合金を用いることが磁性膜の円周方向の磁気異方性をより向上させることを見いだした。これらの合金層の組成範囲はFe7W6構造を25%以上含有することが磁性膜の円周方向の磁気異方性をより向上させるために効果がある。すなわち、CoW系合金のWの組成範囲は30at%〜85at%が好ましい。CoMo系合金のMoの組成範囲は30at%〜85at%が好ましい。CoTa系合金のTaの組成範囲は38at%〜65at%が好ましい。CoNb系合金のNbの組成範囲は37at%〜86at%が好ましい。NiTa系合金のTaの組成範囲は38at%〜63at%が好ましい。NiNb系合金のNbの組成範囲は31at%〜86at%が好ましい。Fe−W系合金のWの組成範囲は37at%〜86at%が好ましい。Fe−Mo系合金のMoの組成範囲は35at%〜85at%が好ましい。Fe−Nb系合金のNbの組成範囲は40at%〜86at%が好ましい。
【0042】
Co−W系合金、Co−Mo系合金、Co−Ta系合金、Co−Nb系合金、Ni−Ta系合金、Ni−Nb系合金、Fe−W系合金、Fe−Mo系合金、Fe−Nb系合金はそれぞれ単独でも特性は発揮するし、これらのいくつかが組み合わさった合金でも同様の特性を発現する。例えば、Co−W−Mo系合金、Co−Ni−Nb系合金、Co−W−Mo−Ta系合金などでも同様の特性を発現する。
【0043】
本発明における配向調整膜の膜厚は10オングストローム〜300オングストロームの範囲内であるとことが好ましい。配向調整膜の膜厚が10オングストローム未満では、非磁性下地層の結晶配向が十分ではなく保持力を低下させる。配向調整膜の膜厚が300オングストロームを超えると磁性膜の円周方向の磁気異方性が低下してしまう。さらに好ましくは、配向調整膜の膜厚は20オングストローム〜100オングストロームの範囲内である方が、磁性膜の円周方向の磁気異方性を上げるために望ましい。
【0044】
本発明における配向調整膜には、補助的効果を有する元素を添加しても良い。添加元素としてはTi,V,Cr,Mn,Zr,Hf,Ru,B,Al,Si,Pなどが例示される。添加元素の合計含有率は20at%以下であることが好ましい。合計含有率が20at%を超えると上述の配向調整膜の効果が低下してしまう。合計含有量の下限は、0.1at%であり、含有量が0.1at%未満では添加元素の効果が無くなる。
【0045】
非磁性下地層3にはCr層、または、CrとTi、Mo、Al、Ta、W、Ni、B、SiおよびVから選ばれる1種もしくは2種類以上とからなるCr合金層を用いることが好ましい。
【0046】
Cr層では格子定数が小さいので、Cr−Mo,Cr−W,Cr−V、Cr−Ti系合金などのように、Mo,W,V、Tiなどを添加してCrの格子定数を広げ、磁性層のCo合金と格子定数がマッチングするようにすることが、磁気記録媒体のSNR特性向上の点から好ましい。
【0047】
上述のCr層、または、Cr合金層にBを添加することは、結晶微細化に効果があり、磁気記録媒体のSNR特性向上の点から好ましい。
【0048】
非磁性下地層3のCr層またはCr合金層の結晶配向は、(100)面を優先配向面とするのが好ましい。その結果、非磁性下地層の上に形成した磁性層のCo合金の結晶配向がより強く(11・0)を示すので、磁気的特性例えば保持力(Hc)の向上効果、記録再生特性例えばSNRの向上効果が得られる。
【0049】
なお、結晶面表記の中の「・」は、結晶面を表すミラ−ブラベ−指数の省略形を示す。すなわち、結晶面を表わすのにCoのような六方晶系では、通常(hkil)と4つの指数で表わすが、この中で「i」に関してはi=−(h+k)と定義されており、この「i」の部分を省略した形式では、(hk・l)と表記する。
【0050】
磁性層4は、直下の非磁性下地層の、例えば(100)面と充分に良く格子がマッチングするCoを主原料としたCo合金であって、hcp構造である材料とするのが好ましい。例えば、Co−Cr−Ta系、Co−Cr−Pt系、Co−Cr−Pt−Ta系、Co−Cr−Pt−B−Ta系、Co−Cr−Pt−B−Cu系合金から選ばれた何れか1種を含むものとするのが好ましい。
【0051】
例えば、Co−Cr−Pt系合金の場合、Crの含有量は10at%〜25at%の範囲内、Ptの含有量は8at%〜16at%の範囲内とするのがSNR向上の点から好ましい。
【0052】
例えば、Co−Cr−Pt−B系合金の場合、Crの含有量は10at%〜25at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は1at%〜20at%の範囲内とするのがSNR向上の点から好ましい。
【0053】
例えば、Co−Cr−Pt−B−Ta系合金の場合、Crの含有量は10at%〜25at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は1at%〜20at%の範囲内、Taの含有量は1at%〜4at%の範囲内とするのがSNR向上の点から好ましい。
【0054】
例えば、Co−Cr−Pt−B−Cu系合金の場合、Crの含有量は10at%〜25at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は2at%〜20at%の範囲内、Cuの含有量は1at%〜4at%の範囲内とするのがSNR向上の点から好ましい。
【0055】
磁性層4の膜厚は15nm以上であれば熱揺らぎの観点から問題ないが、高記録密度への要求から40nm以下であるのが好ましい。40nmを越えると、磁性層の結晶粒径が増大してしまい、好ましい記録再生特性が得られないからである。磁性層は、多層構造としても良く、その材料は上記のなかから選ばれる何れかを用いた組み合わせとすることができる。多層構造とした場合、非磁性下地層の直上は、Co−Cr−Pt−B−Ta系合金またはCo−Cr−Pt−B−Cu系合金またはCo−Cr−Pt−B系合金からなるものであるのが、記録再生特性の、SNR特性の改善の点からは好ましい。最上層は、Co−Cr−Pt−B−Cu系合金またはCo−Cr−Pt−B系合金からなるものであるのが、記録再生特性の、SNR特性の改善の点からは好ましい。
【0056】
非磁性下地層3と磁性層4との間にCo合金のエピタキシャル成長を助長する目的として非磁性中間層を設けるのが好ましい。磁気的特性例えば保磁力の向上効果、記録再生特性例えばSNRの向上効果が得られる。非磁性中間層はCo、Crを含むものとすることができる。Co−Cr系合金としたときCrの含有量は25at%〜45at%の範囲内であるのがSNR向上の点から好ましい。非磁性中間層の膜厚は0.5nm〜3nmの範囲内であるのがSNR向上の点から好ましい。
【0057】
非磁性下地層3と磁性層4との間に磁気記録媒の熱減磁を改善するために、反強磁性結合層を設けることもできる。反強磁性結合層は安定化層と非磁性結合層から形成される。安定化層には磁性を有したCo−Ru系合金、Co−Cr系合金、Co−Cr−Pt系合金、Co−Cr−Pt−B系合金、Co−Cr−Ta系合金などを用いることができる。非磁性結合層にはRuを用いることが好ましい。Ruの膜厚は0.8nm前後であると反強磁性結合強度が極大値になるので好ましい。
【0058】
磁性層4にBを含む場合には、非磁性下地層と磁性層との境界付近において、B濃度が1at%以上の領域におけるCr濃度が40at%以下となっているのが好ましい。CrとBとが高濃度で共存するのを防ぎ、CrとBとの共有結合性化合物の生成を極力抑え、その結果それによる磁性層中の配向の低下を防ぐことができるからである。
【0059】
保護膜5は、従来の公知の材料、例えば、カ−ボン、SiCの単体またはそれらを主成分とした材料を使用することができる。保護膜の膜厚は1nm〜10nmの範囲内であるのが高記録密度状態で使用した場合の、磁気的スペ−シングの低減または耐久性の点から好ましい。磁気的スペーシングとは、ヘッドのリードライト素子と磁性層との距離を表す。磁気的スペーシングが狭くなるほど電磁変換特性は向上する。なお保護膜はヘッドのリードライト素子と磁性層の間に存在するので、磁気的スペーシングを広げる要因となる。
【0060】
保護膜5上には必要に応じ例えばパ−フルオロポリエ−テルのフッ素系潤滑剤からなる潤滑層を設けることができる。
【0061】
本発明の磁気記録媒体の磁性層は、1.05以上(より好ましくは1.1以上)である磁気的異方性指数(OR)を有しているのが好ましい。磁気異方性指数は、(円周方向の保持力/半径方向の保持力)で表される。
【0062】
磁気異方性指数が1.05以上であると、より磁気的特性例えば保磁力の向上効果、電磁変換特性、例えばSNR、PW50の向上効果が得られる。磁気的異方性指数は円周方向の保持力(Hc)と半径方向のHcの比として定義されるが、磁気記録媒体の保持力が高保持力化したために、磁気的異方性指数が低めに測定されたしまうことがある。
【0063】
本発明においては、この点を補足するために、残留磁化量の磁気的異方性指数も合わせて使用する。残留磁化量の磁気的異方性指数(MrtOR)は、円周方向の残留磁化量(Mrt)と半径方向の、残留磁化量(Mrt)の比(MrtOR=円周方向のMrt/半径方向のMrt)で定義される。残留磁化量の磁気異方性指数が1.05以上、より好ましくは1.1以上であると、より磁気的特性例えば保磁力の向上効果、電磁変換特性、例えばSNR、PW50の向上効果が得られる。
【0064】
なお、ORおよびMrtORの値の上限は、理想的には磁性膜の全ての磁区が円周方向を向いた場合であり、この場合には磁気異方性指数の分母が0となり、無限大となる。
【0065】
磁気的異方性指数、および残留磁化量の磁気的異方性指数の測定にはVSM(Vibrating Sample Magnetometer)を使用する。
【0066】
図2は、上記磁気記録媒体を用いた磁気記録再生装置の例を示すものである。ここに示す磁気記録再生装置は、図1に示す構成の磁気記録媒体20と、磁気記録媒体20を回転駆動させる媒体駆動部21と、磁気記録媒体20に情報を記録再生する磁気ヘッド22と、この磁気ヘッド22を磁気記録媒体20に対して相対運動させるヘッド駆動部23と、記録再生信号処理系24とを備えている。記録再生信号処理系24は、外部から入力されたデ−タを処理して記録信号を磁気ヘッド22に送ったり、磁気ヘッド22からの再生信号を処理してデ−タを外部に送ることができるようになっている。本発明の磁気記録再生装置に用いる磁気ヘッド22には、再生素子として異方性磁気抵抗効果(AMR)を利用したMR(magnetoresistance)素子だけでなく、巨大磁気抵抗効果(GMR)を利用したGMR素子などを有したより高記録密度に適したヘッドを用いることができる。
【0067】
また、本発明の磁気記録再生装置は、ガラス基板に直接テクスチャー加工を施して製造した磁気記録媒体を用いているので、安価で高記録密度な磁気記録再生装置である。
【0068】
また、本発明の磁気記録再生装置は、平均粗さが小さくまた微小うねりも小さい磁気記録媒体を用いているので、電磁変換特性が向上しているのに加えて、スペーシングロスを低減させるためにヘッドを低浮上状態で使用してもエラー特性が良好である磁気記録再生装置である。
【0069】
上記磁気記録再生装置によれば、高記録密度に適した磁気記録再生装置を製造することが可能となる。
【0070】
次に本発明の製造方法の一例を説明する。
【0071】
ガラス基板としては、アモルファスガラス、結晶化ガラスのどちらも用いることができるが、例えばテクスチャー加工を行った際に条痕がより均一に入ることから、アモルファスガラスを使用することが好ましい。
【0072】
ガラス基板は、平均表面粗さRaが2nm(20オングストロ−ム)以下、好ましくは1nm以下であるとことが望ましい。
【0073】
また、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下。)であるのが好ましい。端面のチャンファ−部の面取り部、側面部の少なくとも一方の、いずれの表面平均粗さRaが10nm以下(より好ましくは9.5nm以下。)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面粗さ測定装置P−12(KLM−Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。
【0074】
最初に、ガラス基板の表面に線密度が7500(本/mm)以上である条痕を形成するように、基板の表面にテクスチャー加工を施す。例えば、ガラス基板の表面に線密度が7500(本/mm)以上であるテクスチャー条痕が形成されるように、基板の表面に固定砥粒または/および遊離砥粒を用いた機械的加工(「メカニカルテクスチャー加工」ともいう。)により円周方向にテクスチャを施す。例えば、基板の表面に研磨テープを押し付け接触させ、基板と研磨テープとの間に研磨砥粒を含む研磨スラリーを供給して、基板を回転させると供に、研磨テープを送ることによるテクスチャー加工をおこなう。基板の回転は200rpm〜1000rpmの範囲内とすることができる。研磨スラリーの供給量は10ml/分〜100ml/分の範囲内とすることができる。研磨テープの送り速度は、1.5mm/分〜150mm/分の範囲内とすることができる。研磨スラリーに含まれる砥粒の粒径はD90(累積質量%が90質量%に相当する時の粒径値)で0.05μm〜0.3μmとすることができる。テープの押し付け力は1kgf〜15kgf(9.8N〜147N)の範囲内とすることができる。線密度が7500(本/mm)以上(より好ましくは20000(本/mm)以上。)のテクスチャー条痕を形成するように、これらの条件を設定するのが好ましい。
【0075】
テクスチャー条痕が表面に形成されたガラス基板1の表面平均粗さRaは0.1nm〜1nm(1オングストローム〜10オングストローム)、好ましくは0.2nm〜0.8nm(2オングストローム〜8オングストローム)の範囲内とするのが望ましい。
【0076】
オッシレーションを加えたテクスチャー加工を施すことができる。オッシレーションとは、テープを基板の円周方向に走行させると同時に、テープを基板の半径方向に揺動させる操作のことである。オッシレーションの条件は60回/分〜1200回/分とするのが好ましい。
【0077】
テクスチャー加工の方法としては、線密度が7500(本/mm)以上のテクスチャー条痕を形成する方法を用いることができ、前述したメカニカルテクスチャーによる方法以外に固定砥粒を用いた方法、固定砥石を用いた方法、レーザー加工を用いた方法を用いることができる。
【0078】
膜を形成するためのスパッタリングの条件は例えば次のようにする。形成に用いるチャンバ内は真空度が10−4Pa〜10−7Paの範囲内となるまで排気する。チャンバ内にテクスチャー条痕が表面に形成されたガラス基板を収容して、スパッタ−用ガスとしてArガスを導入して放電させてスパッタ成膜をおこなう。このとき、供給するパワ−は0.2kW〜2.0kWの範囲内とし、放電時間と供給するパワ−を調節することによって、所望の膜厚を得ることができる。
【0079】
配向調整膜と非磁性下地層の間には、その表面を酸素雰囲気に曝露する工程を有することが好ましい。曝露する酸素雰囲気は、例えば5×10−4Pa以上の酸素ガスを含む雰囲気とするのが好ましい。また曝露用の雰囲気ガスを水と接触させたものを用いることもできる。また曝露時間は、0.5秒〜15秒の範囲内とするのが好ましい。例えば、配向調整膜を形成後チャンバから取出し外気雰囲気または酸素雰囲気中に曝露させることが好ましい。またはチャンバから取り出さずチャンバ内に大気または酸素を導入して曝露させる方法を用いることも好ましい。特に、チャンバ内で曝露させる方法は、真空室から取り出すような煩雑な工程がいらないので、非磁性下地層、磁性層の成膜を含めて一連の成膜工程として続けて処理することができるので好ましい。その場合は例えば、到達真空度が10−6Pa以下において5×10−4Pa以上の酸素ガスを含む雰囲気とするのが好ましい。なお、酸素による暴露時の酸素ガス圧の上限であるが、大気圧での暴露も可能であるが、好ましくは、5×10−2Pa以下とするのが良い。
【0080】
ガラス基板は加熱することにより非磁性下地層、および、磁性層の結晶配向性を向上させることが出来る。ガラス基板の加熱温度は100℃〜400℃の範囲であることが好ましい。また、配向調整膜を成膜後、加熱することがより好ましい。
【0081】
非磁性下地層を形成した後、15nm〜40nmの膜厚を有した磁性層を磁性層の材料からなるスパッタリング用タ−ゲットを用いて同様にスパッタリング法により形成する。スパッタリング用タ−ゲットはCo−Cr−Ta系、Co−Cr−Pt系、Co−Cr−Pt−Ta系、Co−Cr−Pt−B−Ta系、Co−Cr−Pt−B−Cu系から選ばれた何れか1種を含むものを原料としたものを用いることができる。例えば、Co−Cr−Pt系合金の場合、Crの含有量は10at%〜25at%の範囲内、Ptの含有量は8at%〜16at%の範囲内とすることができる。例えば、Co−Cr−Pt−B−Ta系合金の場合、Crの含有量は16at%〜24at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は2at%〜8at%の範囲内、Taの含有量は1at%〜4at%の範囲内とすることができる。例えば、Co−Cr−Pt−B−Cu系合金の場合、Crの含有量は16at%〜24at%の範囲内、Ptの含有量は8at%〜16at%の範囲内、Bの含有量は2at%〜8at%の範囲内、Cuの含有量は1at%〜4at%の範囲内とすることができる。
【0082】
ここで、非磁性下地層のCrまたはCr合金の結晶配向は優先配向面が(100)を示しているように形成するのが好ましい。
【0083】
非磁性下地層と磁性層との間に非磁性中間層を設ける場合は、Co−Cr系合金(Crの含有量は25at%〜45at%の範囲内。)を原料としたスパッタリング用タ−ゲットを用いるのが好ましい。このとき、磁性層にBを含む場合には、非磁性下地層と磁性層との境界付近において、B濃度が1at%以上の領域におけるCr濃度が40at%以下となるようなスパッタ−条件で成膜するのが好ましい。
【0084】
磁性層を形成した後、公知の方法、例えばスパッタリング法、プラズマCVD法またはそれらの組み合わせを用いて保護膜、たとえばカ−ボンを主成分とする保護膜を形成する。
【0085】
さらに、保護膜上には必要に応じパ−フルオロポリエ−テルのフッ素系潤滑剤をディップ法、スピンコ−ト法などを用いて塗布し潤滑層を形成する。
【0086】
【実施例】
(実施例1)
ガラス基板には日本板硝子製アモルファスガラスGD−7を使用した。ガラス基板のサイズは外径65mm、内径20mm、板厚0.635mmである。
【0087】
上記ガラス基板にメカニカルテクスチャー加工を施した。メカニカルテクスチャー加工の条件は以下の通りである。スラリーに含まれる砥粒はD90が0.15μmのダイアモンド砥粒を使用した。スラリーは50ml/分で加工が開始される前に2秒間滴下した。研磨テープにはポリエステル製の織物布を使用した。研磨テープの送りは75mm/分とした。ディスクの回転数は600rpmとした。ディスクの揺動は120回/分とした。テープの押し付け力は2.0kgf(19.6N)とした。加工時間は10秒とした。基板表面を、DegitalInstrument社製AFMで測定したところ、平均粗さRaが4オングストローム、線密度が25000本/mmのテクスチャー条痕を有するガラス基板が得られた。
【0088】
この基板を十分に洗浄し乾燥した後、 DCマグネトロンスパッタ装置(アネルバ社(日本)製C3010)内にセットした。真空到達度を2×10−7Torr(2.7×10−5Pa)まで排気した後、配向調整膜として、Co―W合金(Co:45at%、W:55at%)からなるタ−ゲットも用いて常温にて1nm積層した。
【0089】
その後、基板を250℃に加熱した。加熱後、酸素暴露を0.05Paで5秒間実施した。非磁性下地層として、Cr−Ti―B合金(Cr:83at%、Ti:15at%、B:2at%)からなるタ−ゲットを用いて8nm積層した。非磁性中間層としてはCo―Cr合金(Co:65at%、Cr:35at%)からなるタ−ゲットを用いて2nm積層した。磁性層としてCo−Cr−Pt−B合金(Co:60at%、Cr:22at%、Pt:12at%、B:6at%)からなるタ−ゲットを用いて磁性層であるCoCrPtB合金層を20nmの膜厚で形成し、保護膜(カ−ボン)5nmを積層した。成膜時のAr圧は3mTorr(0.4Pa)とした。パ−フルオロポリエ−テルからなる潤滑剤20nmをディップ法で塗布し潤滑層を形成した。
【0090】
その後グライドテスタ−を用いて、テスト条件のグライド高さを0.4μインチとして、グライドテストを行ない、合格した磁気記録媒体をリ−ドライトアナライザ−RWA1632(GUZIK社(米国)製)を用いて記録再生特性を調べた。記録再生特性は、再生信号出力(TAA)、孤立波再生出力の半値幅(PW50)、SNR、オ−バライト(OW)などの電磁変換特性を測定した。記録再生特性の評価には、再生部に巨大磁気抵抗(GMR)素子を有する複合型薄膜磁気記録ヘッドを用いた。ノイズの測定は500kFCIのパタ−ン信号を書き込んだ時の、1MHzから375kFCI相当周波数までの積分ノイズを測定した。再生出力を250kFCIで測定し、SNR=20×log(再生出力/1MHzから375kFCI相当周波数までの積分ノイズ)として算出した。保磁力(Hc)および角形比(S*)の測定にはカ−効果式磁気特性測定装置(RO1900、日立電子エンジニアリング社(日本)製)を用いた。磁気的異方性指数(OR)、および残留磁化量の磁気的異方性指数(MrtOR)の測定にはVSM(BHV−35、理研電子社(日本)製)を用いた。
【0091】
(実施例2〜33)
配向調整膜の合金組成と膜厚を表1に示すとおりにした以外は、実施例1と同様の処理をした。
【0092】
(実施例34)
配向調整膜として、Co−W合金(Co:45at%、W:55at%)からなるタ−ゲットも用いて常温にて5nm積層した。非磁性中間層の代わりに反強磁性結合層を設けた。安定化層にはCo−Ru合金(Co:80at%、Ru:20at%)からなるタ−ゲットも用いて2nm積層した。非磁性結合層にはRuからなるタ−ゲットも用いて0.8nm積層した。これ以外は、実施例1と同様の処理をした。
【0093】
(比較例1〜33)
ガラス基板にメカニカルテクスチャーを施さないこと、および、配向調整膜の合金組成と膜厚を表2に示すとおりにした以外は、実施例1と同様の処理をした。
【0094】
(比較例34〜36)
配向調整膜の合金組成と膜厚を表2に示すとおりにした以外は、実施例1と同様の処理をした。
【0095】
実施例1〜33、比較例1〜36の保持力(Hc)、角型比、磁気的異方性指数(OR)、および残留磁化量の磁気的異方性指数(MrtOR)、電磁変換特性の結果を表1、表2に示す。実施例1〜7は配向調整膜Co−W系合金(Co:45at%、W:55at%)の膜厚の傾向を示す。膜厚が25〜300オングストロームの範囲で良好な円周方向の磁気異方性が得られており、電磁変換特性が優れている。さらに膜厚が25〜100オングストロームの範囲でさらに良好な円周方向の磁気異方性が得られており、電磁変換特性を優れている。実施例8〜30では配向調整膜の合金組成を変化させた。Co−W系合金、Co−Mo系合金、Co−Ta系合金、Co−Nb系合金、Ni−Ta系合金、Ni−Nb系合金、Fe−W系合金、Fe−Mo系合金、Fe−Nb系合金で良好な円周方向の磁気異方性が得られており、記録再生特性が優れている。実施例31〜33では配向調整膜に3元系合金を用いた。Co−W−Mo系合金、Co−W−Ta系合金、Co−Ni−W系合金で良好な円周方向の磁気異方性が得られており、電磁変換特性が優れている。
【0096】
比較例1〜33は、テクスチャー条痕が表面に形成されないガラス基板を用いて、実施例1〜33の配向調整膜の合金組成を用いた。テクスチャー条痕が表面に形成されないないので、何れも磁気異方性は発現していない。電磁変換特性も実施例と比較して劣っていることが分かる。
【0097】
比較例34〜36は、テクスチャー条痕が表面に形成されたガラス基板に、配向調整膜としてNi−P系合金(Ni:80at%、P:20at%)を用いた。円周方向の磁気異方性は発現しているが、保持力、角型比が低いために良好な電磁変換特性は得られていない。
【0098】
【表1】

Figure 2004086936
【0099】
【表2】
Figure 2004086936
【0100】
【発明の効果】
本発明の磁気記録媒体は、少なくとも、円周方向に条痕が形成されたガラス基板、配向調整層、非磁性下地層、磁性層及び保護膜をこの順で有する磁気記録媒体において、前記配向調整層にCo、NiおよびFeから選ばれる何れか1種類以上の成分とW、Mo、TaおよびNbから選ばれる何れか1種類以上の成分から構成される合金層を含むことを特徴とする磁気記録媒体であるので、円周方向の磁気異方性が発現し、電磁変換特性が向上する。その結果、高記録密度に適した磁気記録媒が得られる。
【図面の簡単な説明】
【図1】本発明の磁気記録媒体の概略断面図を示す。
【図2】本発明の磁気記録媒体を用いた磁気記録再生装置を示す。
【符号の説明】
1 ガラス基板
2 配向調整膜
3 非磁性下地層
4 磁性層
5 保護膜
20 磁気記録媒体
21 媒体駆動部
22 磁気ヘッド
23 ヘッド駆動部
24 記録再生信号処理系[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium used for a hard disk device and the like, a method for manufacturing a magnetic recording medium, and a magnetic recording / reproducing apparatus.
[0002]
[Prior art]
Hard disk drives (HDDs), which are one type of magnetic recording / reproducing devices, are currently increasing their recording density at an annual rate of 60%, and it is said that the trend will continue in the future. Development of a magnetic recording head suitable for a high recording density and development of a magnetic recording medium have been advanced.
[0003]
A magnetic recording medium used in a hard disk drive is required to have a high recording density, and accordingly, an improvement in coercive force and a reduction in medium noise are required.
[0004]
As a magnetic recording medium used in a hard disk drive, a structure in which a metal film is laminated on a substrate for a magnetic recording medium by a sputtering method is mainly used. Aluminum substrates and glass substrates are widely used as substrates used for magnetic recording media. The aluminum substrate is obtained by forming a Ni-P-based alloy film to a thickness of about 10 µm on a mirror-polished Al-Mg alloy substrate by electroless plating, and further mirror-finish the surface thereof. There are two types of glass substrates, amorphous glass and crystallized glass. Both glass substrates used are mirror-finished.
[0005]
In a magnetic recording medium for a hard disk drive generally used at present, a non-magnetic underlayer (Ni-Al alloy, Cr, Cr-based alloy, etc.) and a non-magnetic intermediate layer (Co -Cr, Co-Cr-Ta-based alloy, etc.), a magnetic layer (Co-Cr-Pt-Ta, Co-Cr-Pt-B-based alloy, etc.), and a protective film (carbon, etc.) are sequentially formed. And a lubricating film made of a liquid lubricant is formed thereon.
[0006]
With the increase in recording density of magnetic disk devices and the like, a magnetic recording medium having magnetic anisotropy in the circumferential direction and having good electromagnetic conversion characteristics is required. For this reason, at present, a magnetic recording medium using a substrate obtained by plating NiP on an aluminum alloy (also referred to as “aluminum substrate”) is mechanically provided with grooves in the surface of the NiP in the circumferential direction (referred to as “mechanical texture processing”). ) To provide magnetic anisotropy in the circumferential direction.
[0007]
On the other hand, a non-magnetic substrate, for example, a glass substrate has rigidity with excellent impact resistance and excellent flatness, and thus can be said to be a non-magnetic substrate suitable for high recording density. If magnetic anisotropy in the circumferential direction can be imparted to a magnetic recording medium using glass for the non-magnetic substrate, it is expected that excellent electromagnetic conversion characteristics can be obtained.
[0008]
Several methods are known for forming a texture streak by subjecting a glass substrate to mechanical texture processing. For example, in order to form fine and uniform texture streaks, it has been proposed to use a woven fabric tape composed of an abrasive suspension containing a solution having a hydroxyl group and a plastic fiber (for example, see Patent Document 1). .).
[0009]
Also, in order to form fine and uniform texture streaks, diamond abrasive grains and CeO 2 It has been proposed to use abrasive grains together (see, for example, Patent Document 2).
[0010]
However, it is difficult for the glass substrate to impart sufficient magnetic anisotropy in the circumferential direction only by forming texture streaks. Therefore, it has been proposed to form an amorphous layer containing at least Ni and P by sputtering in order to impart circumferential magnetic anisotropy to a glass substrate having a linear texture formed on the surface thereof ( For example, see Patent Document 3.)
[0011]
[Patent Document 1]
Patent No. 3117438
[0012]
[Patent Document 2]
U.S. Pat. No. 6,248,395
[0013]
[Patent Document 3]
JP 2001-209927 A
[0014]
[Problems to be solved by the invention]
Forming an amorphous layer containing at least Ni and P on a glass substrate on which texture streaks are formed is an attempt to create the same situation as an aluminum substrate plated with NiP. Magnetic anisotropy appears when a Cr-based underlayer, a Co-based magnetic layer, and a protective film are sequentially formed by this method. However, when an amorphous layer containing at least Ni and P is used, it is difficult to obtain a high coercive force and a high squareness ratio, and good electromagnetic conversion characteristics cannot be obtained.
[0015]
The present invention has been made in view of the above circumstances. The present invention relates to a magnetic recording medium having circumferential magnetic anisotropy, high coercive force, high squareness ratio and good electromagnetic conversion characteristics using a glass substrate having a streak formed on the surface, and a method of manufacturing the same. And a magnetic recording / reproducing apparatus.
[0016]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, the orientation adjusting layer has at least one selected from the group consisting of Co, Ni and Fe and any one selected from the group consisting of W, Mo, Ta and Nb. The present inventors have found that the characteristics of a magnetic recording / reproducing apparatus can be improved by using an alloy layer composed of one or more kinds of components, and completed the present invention. That is, the present invention relates to the following.
[0017]
(1) In a magnetic recording medium having an alignment adjusting layer, a non-magnetic underlayer, a magnetic layer and a protective film in this order on a glass substrate having a streak on the surface, the alignment adjusting layer is selected from Co, Ni and Fe. A magnetic recording medium comprising at least one kind selected from the group consisting of W, Mo, Ta and Nb.
[0018]
(2) The alignment adjustment layer is made of a Co-W alloy, a Co-Mo alloy, a Co-Ta alloy, a Co-Nb alloy, a Ni-Ta alloy, a Ni-Nb alloy, or a Fe-W alloy. (1) The magnetic recording medium according to (1), comprising at least one alloy selected from the group consisting of Fe, Mo-based alloy, and Fe-Nb-based alloy.
[0019]
(3) The magnetic recording medium according to (1) or (2), wherein the thickness of the alignment adjusting film is in a range of 10 Å to 300 Å.
[0020]
(4) The magnetic recording medium according to any one of (1) to (3), wherein the glass substrate is an amorphous glass.
[0021]
(5) The magnetic recording medium according to any one of (1) to (4), wherein the linear density of the streaks is 7500 (lines / mm) or more.
[0022]
(6) The magnetic layer according to any one of (1) to (5), wherein a magnetic anisotropy index (retention force in a circumferential direction / retention force in a radial direction) of the magnetic layer is 1.05 or more. Item 7. The magnetic recording medium according to Item 1.
[0023]
(7) The magnetic recording medium according to (1) to (6), wherein the magnetic anisotropy index of the residual magnetization (the residual magnetization in the circumferential direction / the residual magnetization in the radial direction) is 1.05 or more. The magnetic recording medium according to claim 1.
[0024]
(8) The non-magnetic underlayer includes a Cr layer or a Cr alloy layer containing at least one selected from Ti, Mo, Al, Ta, W, Ni, B, Si and V. The magnetic recording medium according to any one of (1) to (7).
[0025]
(9) The magnetic layer is made of a Co-Cr-Pt-based alloy, a Co-Cr-Pt-Ta-based alloy, a Co-Cr-Pt-B-based alloy, or a Co-Cr-Pt-BY-based alloy (Y is Ta Or Cu.) The magnetic recording medium according to any one of (1) to (8), wherein the magnetic recording medium includes at least one selected from the group consisting of:
[0026]
(10) A magnetic recording / reproducing apparatus comprising: the magnetic recording medium according to any one of (1) to (9); and a magnetic head for recording / reproducing information on / from the magnetic recording medium.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The magnetic recording medium of the present invention is a magnetic recording medium having an alignment adjusting layer, a non-magnetic underlayer, a magnetic layer, and a protective film in this order on a glass substrate having a streak on the surface. And one or more selected from W, Mo, Ta and Nb.
[0028]
FIG. 1 schematically shows an embodiment of the magnetic recording medium of the present invention, wherein 1 is a glass substrate, 2 is an alignment adjusting film, 3 is a non-magnetic underlayer, 4 is a magnetic layer, and 5 is a protection layer. Show the membrane.
[0029]
Examples of the glass used for the glass substrate 1 include amorphous glass and crystallized glass. As the amorphous glass, general-purpose soda lime glass, aluminoborosilicate glass, and aluminosilicate glass can be used. As the crystallized glass, lithium-based crystallized glass can be used. In particular, it is preferable to use amorphous glass having uniform physical properties such as hardness, since a uniform texture can be applied to the surface.
[0030]
Streaks are formed on the surface of the glass substrate 1 by, for example, lapping tape using fixed abrasive grains or mechanical texture processing using free abrasive grains. The striations formed on the surface of the glass substrate 1 are preferably along the circumferential direction of the substrate. The surface average roughness Ra of the glass substrate 1 on which the streaks are formed is in the range of 0.1 nm to 1 nm (1 Å to 10 Å), preferably 0.2 nm to 0.8 nm (2 Å to 8 Å). It is desirable to be within.
[0031]
When the surface average roughness Ra is less than 0.1 nm, the glass substrate 1 becomes excessively smooth, and the effect of increasing the magnetic anisotropy of the magnetic film 4 is reduced. On the other hand, when the surface average roughness Ra exceeds 1 nm, the smoothness of the medium surface is reduced, the glide height characteristics are reduced, and it is difficult to reduce the flying height of the magnetic head during recording and reproduction.
[0032]
The surface of the glass substrate 1 preferably has streaks having a linear density of 7500 (lines / mm) or more. The linear density is measured in the radial direction of the glass substrate. The reason why the linear density is set to 7500 (lines / mm) or more is that the effect of the streaks is the effect of improving the magnetic characteristics (for example, the effect of improving the coercive force), the electromagnetic conversion characteristics (for example, the SNR (Signal to Noise Ratio), and the effect of improving the PW50. )). More preferably, if the linear density has a streak of 20,000 (lines / mm) or more, the above-described effect becomes more remarkable.
[0033]
Note that the upper limit of the linear density is 200000 (lines / mm). If the linear density exceeds 200000 (lines / mm), the line spacing between the streaks will be less than 50 angstroms, the particle size of the non-magnetic underlayer will be larger, and the magnetic anisotropy of the magnetic recording medium will decrease. Let it.
[0034]
The striations preferably have a predominantly circumferential direction with respect to the substrate. Here, the streak refers to a surface in which a height distance between a peak and a valley in a radial cross section is in a range of 0.02 nm to 20 nm (more preferably, in a range of 0.05 nm to 10 nm). Is the uneven shape. This is because the magnetic anisotropy due to the surface unevenness in this range is effective for improving the electromagnetic conversion characteristics. In addition, the streaks exceeding 20 nm may affect the uniformity of the nearby streaks because the unevenness is too large.
[0035]
The striations are preferably formed by, for example, lapping tape using fixed abrasive grains or mechanical texture processing using free abrasive grains.
[0036]
The linear density of the streaks can be measured using, for example, an AFM (Atomic Force Microscope, manufactured by Digital Instrument, USA).
[0037]
The measurement conditions of the linear density are as follows. The scan width is 1 μm, the scan rate is 1 Hz, the number of measurements is 256, and the mode is a tapping mode. The probe is scanned in the radial direction of a glass substrate as a sample, and an AFM scan image is obtained. A Plan FitAuto process, which is one of the smoothing processes, is performed on the X-axis and the Y-axis of the Scan image by setting the order of the Flatten Order to 2, and the image is smoothed and corrected. A box of about 0.5 μm × about 0.5 μm is set for the image after the smoothing correction, and the line density in that range is calculated. The linear density is calculated by converting the total number of zero-crossing points along both the X-axis center line and the Y-axis center line into 1 mm. That is, the linear density is the number of peaks and valleys of texture streaks per 1 mm in the radial direction.
[0038]
Each point in the sample surface is measured, and the average value and standard deviation of the measured values are obtained. The average value is defined as the linear density of the streaks on the glass substrate. The number of measurement points can be a number for which an average value and a standard deviation can be obtained. For example, the number of measurements can be 10 points. When the average value and the standard deviation are calculated at eight points excluding the maximum value and the minimum value, the measurement abnormal value can be removed, so that the measurement accuracy can be improved.
[0039]
The orientation adjusting film 2 adjusts the crystal orientation of the non-magnetic base film 3 formed immediately above, further adjusts the crystal orientation of the magnetic film 4 formed thereon, and adjusts the crystal orientation of the magnetic film 4 in the circumferential direction. This is for improving magnetic anisotropy. The orientation adjusting film 2 not only adjusts the crystal orientation, but also functions as a crystal grain refinement film that refines crystal grains in the non-magnetic underlayer 3 and the magnetic film 4.
For the orientation adjusting film 2, an alloy layer composed of at least one kind of component selected from Co, Ni and Fe and at least one kind of component selected from W, Mo, Ta and Nb may be used. I can do it.
[0040]
The composition of the alloy layer used for the above-mentioned alignment adjustment film 2 is not particularly limited. However, preferably, the total content of Co, Ni and Fe is in the range of 25 at% to 70 at%, and the total content of W, Mo, Ta and Nb is in the range of 30 at% to 75 at%. desirable. If the total content of Co, Ni and Fe is less than 25 at%, the crystal orientation of the nonmagnetic underlayer is not sufficient, and the coercive force is reduced. If the total content of Co, Ni and Fe exceeds 70 at%, the orientation adjusting film has magnetization, which is not preferable. If the total content of Mo, Ta, and Nb is less than 30 at%, the magnetic anisotropy in the circumferential direction of the magnetic film decreases. When the total content of Mo, Ta, and Nb exceeds 75 at%, the crystal orientation of the nonmagnetic underlayer is not sufficient, and the coercive force is reduced.
[0041]
The above-mentioned alignment adjusting film 2 is more preferably made of a Co-W-based alloy, a Co-Mo-based alloy, a Co-Ta-based alloy, a Co-Nb-based alloy, a Ni-Ta-based alloy, a Ni-Nb-based alloy, a Fe- It is desirable to use at least one alloy layer selected from a W-based alloy, an Fe-Mo-based alloy, and an Fe-Nb-based alloy. The present inventors have made intensive efforts and found that the use of an alloy containing the Fe7W6 structure further improves the magnetic anisotropy in the circumferential direction of the magnetic film. The composition range of these alloy layers containing 25% or more of the Fe7W6 structure is effective for further improving the magnetic anisotropy in the circumferential direction of the magnetic film. That is, the composition range of W in the CoW alloy is preferably 30 at% to 85 at%. The Mo composition range of the CoMo alloy is preferably 30 at% to 85 at%. The composition range of Ta in the CoTa-based alloy is preferably from 38 at% to 65 at%. The composition range of Nb in the CoNb-based alloy is preferably from 37 at% to 86 at%. The composition range of Ta of the NiTa-based alloy is preferably from 38 at% to 63 at%. The composition range of Nb in the NiNb-based alloy is preferably from 31 at% to 86 at%. The composition range of W in the Fe-W alloy is preferably from 37 at% to 86 at%. The composition range of Mo in the Fe—Mo alloy is preferably 35 at% to 85 at%. The composition range of Nb in the Fe—Nb alloy is preferably 40 at% to 86 at%.
[0042]
Co-W based alloy, Co-Mo based alloy, Co-Ta based alloy, Co-Nb based alloy, Ni-Ta based alloy, Ni-Nb based alloy, Fe-W based alloy, Fe-Mo based alloy, Fe- Each of the Nb-based alloys exerts its properties even when used alone, and an alloy in which some of them are combined exhibits similar properties. For example, a Co-W-Mo-based alloy, a Co-Ni-Nb-based alloy, a Co-W-Mo-Ta-based alloy, etc. exhibit similar characteristics.
[0043]
In the present invention, the thickness of the alignment adjusting film is preferably in the range of 10 Å to 300 Å. If the thickness of the orientation adjusting film is less than 10 Å, the crystal orientation of the nonmagnetic underlayer is not sufficient, and the coercive force is reduced. If the thickness of the orientation adjusting film exceeds 300 angstroms, the magnetic anisotropy in the circumferential direction of the magnetic film decreases. More preferably, the thickness of the orientation adjusting film is in the range of 20 Å to 100 Å in order to increase the magnetic anisotropy in the circumferential direction of the magnetic film.
[0044]
An element having an auxiliary effect may be added to the alignment adjusting film in the present invention. Examples of the additional element include Ti, V, Cr, Mn, Zr, Hf, Ru, B, Al, Si, P and the like. The total content of the additional elements is preferably 20 at% or less. If the total content exceeds 20 at%, the effect of the above-mentioned alignment adjusting film is reduced. The lower limit of the total content is 0.1 at%, and if the content is less than 0.1 at%, the effect of the added element is lost.
[0045]
As the nonmagnetic underlayer 3, a Cr layer or a Cr alloy layer composed of Cr and one or more kinds selected from Ti, Mo, Al, Ta, W, Ni, B, Si and V can be used. preferable.
[0046]
Since the lattice constant of the Cr layer is small, the lattice constant of Cr is increased by adding Mo, W, V, Ti or the like, as in the case of a Cr-Mo, Cr-W, Cr-V, or Cr-Ti alloy. It is preferable to match the lattice constant with the Co alloy of the magnetic layer from the viewpoint of improving the SNR characteristics of the magnetic recording medium.
[0047]
The addition of B to the above-described Cr layer or Cr alloy layer is effective for crystal refinement, and is preferable from the viewpoint of improving the SNR characteristics of the magnetic recording medium.
[0048]
Regarding the crystal orientation of the Cr layer or Cr alloy layer of the nonmagnetic underlayer 3, it is preferable that the (100) plane be the preferential orientation plane. As a result, since the crystal orientation of the Co alloy of the magnetic layer formed on the nonmagnetic underlayer is stronger (11.0), the magnetic properties such as the coercive force (Hc) are improved, and the recording / reproducing properties such as the SNR are improved. Is obtained.
[0049]
In addition, “•” in the crystal plane notation indicates an abbreviation of the Miller-Brabé index indicating the crystal plane. That is, in a hexagonal system such as Co to represent a crystal plane, it is usually represented by (hkil) and four indices. Among them, "i" is defined as i =-(h + k). In a format in which the part of “i” is omitted, it is described as (hk · l).
[0050]
The magnetic layer 4 is preferably a Co alloy mainly composed of Co whose lattice is sufficiently well matched to, for example, the (100) plane of the nonmagnetic underlayer immediately below, and is preferably a material having an hcp structure. For example, it is selected from Co-Cr-Ta-based, Co-Cr-Pt-based, Co-Cr-Pt-Ta-based, Co-Cr-Pt-B-Ta-based, and Co-Cr-Pt-B-Cu-based alloys. It is preferable to include any one of them.
[0051]
For example, in the case of a Co—Cr—Pt-based alloy, it is preferable that the Cr content be in the range of 10 at% to 25 at% and the Pt content be in the range of 8 at% to 16 at% from the viewpoint of improving the SNR.
[0052]
For example, in the case of a Co-Cr-Pt-B-based alloy, the Cr content is in the range of 10 at% to 25 at%, the Pt content is in the range of 8 at% to 16 at%, and the B content is 1 at% to It is preferable to be within the range of 20 at% from the viewpoint of improving the SNR.
[0053]
For example, in the case of a Co-Cr-Pt-B-Ta alloy, the content of Cr is in a range of 10 at% to 25 at%, the content of Pt is in a range of 8 to 16 at%, and the content of B is 1 at%. % To 20 at%, and the Ta content is preferably in a range of 1 at% to 4 at% from the viewpoint of improving the SNR.
[0054]
For example, in the case of a Co-Cr-Pt-B-Cu alloy, the Cr content is in the range of 10 at% to 25 at%, the Pt content is in the range of 8 at% to 16 at%, and the B content is 2 at%. % To 20 at%, and the Cu content is preferably in the range of 1 at% to 4 at% from the viewpoint of improving the SNR.
[0055]
If the thickness of the magnetic layer 4 is 15 nm or more, there is no problem from the viewpoint of thermal fluctuation, but it is preferably 40 nm or less from the demand for high recording density. If the thickness exceeds 40 nm, the crystal grain size of the magnetic layer increases, and favorable recording / reproducing characteristics cannot be obtained. The magnetic layer may have a multilayer structure, and the material thereof may be a combination using any one of the above. In the case of a multilayer structure, the layer immediately above the nonmagnetic underlayer is made of a Co-Cr-Pt-B-Ta alloy, a Co-Cr-Pt-B-Cu alloy, or a Co-Cr-Pt-B alloy. Is preferable from the viewpoint of improving the SNR characteristics of the recording / reproducing characteristics. The uppermost layer is preferably made of a Co-Cr-Pt-B-Cu-based alloy or a Co-Cr-Pt-B-based alloy from the viewpoint of improving the recording / reproducing characteristics and the SNR characteristics.
[0056]
It is preferable to provide a nonmagnetic intermediate layer between the nonmagnetic underlayer 3 and the magnetic layer 4 for the purpose of promoting epitaxial growth of a Co alloy. The effect of improving magnetic characteristics such as coercive force and the effect of improving recording / reproducing characteristics such as SNR can be obtained. The non-magnetic intermediate layer may contain Co and Cr. When a Co—Cr alloy is used, the content of Cr is preferably in the range of 25 at% to 45 at% from the viewpoint of improving the SNR. The thickness of the nonmagnetic intermediate layer is preferably in the range of 0.5 nm to 3 nm from the viewpoint of improving the SNR.
[0057]
An antiferromagnetic coupling layer may be provided between the nonmagnetic underlayer 3 and the magnetic layer 4 in order to improve the thermal demagnetization of the magnetic recording medium. The antiferromagnetic coupling layer is formed from a stabilizing layer and a nonmagnetic coupling layer. For the stabilizing layer, use a magnetic Co-Ru alloy, Co-Cr alloy, Co-Cr-Pt alloy, Co-Cr-Pt-B alloy, Co-Cr-Ta alloy, etc. Can be. It is preferable to use Ru for the non-magnetic coupling layer. It is preferable that the Ru film thickness is about 0.8 nm because the antiferromagnetic coupling strength has a maximum value.
[0058]
When the magnetic layer 4 contains B, it is preferable that the Cr concentration in the region where the B concentration is 1 at% or more is 40 at% or less near the boundary between the nonmagnetic underlayer and the magnetic layer. This is because Cr and B can be prevented from coexisting at a high concentration, and the generation of a covalent compound of Cr and B can be suppressed as much as possible. As a result, a decrease in the orientation in the magnetic layer can be prevented.
[0059]
The protective film 5 can be made of a conventionally known material, for example, a simple substance of carbon or SiC or a material containing these as a main component. The thickness of the protective film is preferably in the range of 1 nm to 10 nm from the viewpoint of reduction of magnetic spacing or durability when used in a high recording density state. Magnetic spacing refers to the distance between the read / write element of the head and the magnetic layer. The electromagnetic conversion characteristics improve as the magnetic spacing decreases. Since the protective film exists between the read / write element of the head and the magnetic layer, it becomes a factor for expanding the magnetic spacing.
[0060]
If necessary, a lubricating layer made of, for example, a perfluoropolyether fluorine-based lubricant can be provided on the protective film 5.
[0061]
The magnetic layer of the magnetic recording medium of the present invention preferably has a magnetic anisotropy index (OR) of 1.05 or more (more preferably 1.1 or more). The magnetic anisotropy index is represented by (circumferential holding force / radial holding force).
[0062]
When the magnetic anisotropy index is 1.05 or more, the effect of improving magnetic properties such as coercive force and the effect of improving electromagnetic conversion properties such as SNR and PW50 can be obtained. The magnetic anisotropy index is defined as the ratio of the coercive force (Hc) in the circumferential direction to the coercive force in the radial direction. However, since the coercive force of the magnetic recording medium is increased, the magnetic anisotropy index becomes higher. Sometimes measured too low.
[0063]
In the present invention, in order to supplement this point, the magnetic anisotropy index of the residual magnetization is also used. The magnetic anisotropy index (MrtOR) of the remanent magnetization is defined as the ratio of the remanent magnetization (Mrt) in the circumferential direction to the remanent magnetization (Mrt) in the radial direction (MrtOR = Mrt in the circumferential direction / Mrt in the radial direction). (Mrt). When the magnetic anisotropy index of the residual magnetization amount is 1.05 or more, more preferably 1.1 or more, the effect of improving magnetic properties such as coercive force and the effect of improving electromagnetic conversion properties such as SNR and PW50 are obtained. Can be
[0064]
Note that the upper limit of the values of OR and MrrtOR is ideally when all the magnetic domains of the magnetic film are oriented in the circumferential direction. In this case, the denominator of the magnetic anisotropy index is 0, and Become.
[0065]
A VSM (Vibrating Sample Magnetometer) is used for measuring the magnetic anisotropy index and the magnetic anisotropy index of the residual magnetization.
[0066]
FIG. 2 shows an example of a magnetic recording / reproducing apparatus using the above magnetic recording medium. The magnetic recording / reproducing apparatus shown here includes a magnetic recording medium 20 having the configuration shown in FIG. 1, a medium driving unit 21 for driving the magnetic recording medium 20 to rotate, a magnetic head 22 for recording / reproducing information on / from the magnetic recording medium 20, A head drive unit 23 for moving the magnetic head 22 relative to the magnetic recording medium 20 and a recording / reproducing signal processing system 24 are provided. The recording / reproducing signal processing system 24 processes data input from the outside and sends a recording signal to the magnetic head 22, or processes a reproducing signal from the magnetic head 22 and sends the data to the outside. I can do it. The magnetic head 22 used in the magnetic recording / reproducing apparatus of the present invention includes not only a magnetoresistive (MR) element using an anisotropic magnetoresistive effect (AMR) as a reproducing element but also a GMR using a giant magnetoresistive effect (GMR). It is possible to use a head having elements and the like and suitable for higher recording density.
[0067]
Further, the magnetic recording / reproducing apparatus of the present invention is a magnetic recording / reproducing apparatus which is inexpensive and has a high recording density because a magnetic recording medium manufactured by directly texturing a glass substrate is used.
[0068]
Further, the magnetic recording / reproducing apparatus of the present invention uses a magnetic recording medium having a small average roughness and a small undulation, so that in addition to improving the electromagnetic conversion characteristics, the magnetic recording / reproducing apparatus can reduce spacing loss. The magnetic recording / reproducing apparatus has good error characteristics even when the head is used in a low flying state.
[0069]
According to the magnetic recording / reproducing apparatus, it is possible to manufacture a magnetic recording / reproducing apparatus suitable for high recording density.
[0070]
Next, an example of the production method of the present invention will be described.
[0071]
Either amorphous glass or crystallized glass can be used as the glass substrate. For example, amorphous glass is preferably used because, for example, when texture processing is performed, streaks enter more uniformly.
[0072]
It is desirable that the glass substrate has an average surface roughness Ra of 2 nm (20 angstroms) or less, preferably 1 nm or less.
[0073]
Further, it is preferable that the minute waviness (Wa) of the surface is 0.3 nm or less (more preferably, 0.25 nm or less). It is preferable for the flight stability of the magnetic head to use at least one of the chamfered part and the side part of the chamfered part of the end face having a surface average roughness Ra of 10 nm or less (more preferably 9.5 nm or less). . The minute waviness (Wa) can be measured as a surface average roughness in a measurement range of 80 μm using, for example, a surface roughness measuring device P-12 (manufactured by KLM-Tencor).
[0074]
First, the surface of the glass substrate is textured so as to form streaks having a linear density of 7500 (lines / mm) or more. For example, mechanical processing using fixed abrasive grains and / or free abrasive grains on the surface of a glass substrate such that a texture streak having a linear density of 7500 (lines / mm) or more is formed on the surface of the glass substrate (“ Texture is also applied in the circumferential direction by "mechanical texture processing." For example, a polishing tape is pressed against and brought into contact with the surface of the substrate, a polishing slurry containing abrasive grains is supplied between the substrate and the polishing tape, and when the substrate is rotated, texturing is performed by sending the polishing tape. Do it. The rotation of the substrate can be in the range from 200 rpm to 1000 rpm. The supply amount of the polishing slurry can be in the range of 10 ml / min to 100 ml / min. The feed speed of the polishing tape can be in the range of 1.5 mm / min to 150 mm / min. The particle size of the abrasive grains contained in the polishing slurry can be 0.05 μm to 0.3 μm as D90 (particle size value when the cumulative mass% corresponds to 90 mass%). The pressing force of the tape can be in the range of 1 kgf to 15 kgf (9.8 N to 147 N). These conditions are preferably set so as to form a texture streak having a linear density of 7,500 (lines / mm) or more (more preferably, 20,000 (lines / mm) or more).
[0075]
The surface average roughness Ra of the glass substrate 1 on which the texture streaks are formed is in the range of 0.1 nm to 1 nm (1 Å to 10 Å), preferably 0.2 nm to 0.8 nm (2 Å to 8 Å). It is desirable to be within.
[0076]
Texture processing with oscillation can be applied. Oscillation is an operation in which the tape is run in the circumferential direction of the substrate and, at the same time, the tape is rocked in the radial direction of the substrate. The oscillation condition is preferably set to 60 times / minute to 1200 times / minute.
[0077]
As a method of the texture processing, a method of forming a texture streak having a linear density of 7500 (lines / mm) or more can be used. In addition to the method using the mechanical texture described above, a method using fixed abrasive grains, a method using a fixed grindstone, The method used and the method using laser processing can be used.
[0078]
The sputtering conditions for forming the film are, for example, as follows. The degree of vacuum is 10 in the chamber used for formation. -4 Pa-10 -7 Exhaust until the pressure falls within the range of Pa. A glass substrate having a texture streak formed on its surface is accommodated in a chamber, and an Ar gas is introduced as a sputtering gas and discharged to form a sputter film. At this time, the supplied power is in the range of 0.2 kW to 2.0 kW, and a desired film thickness can be obtained by adjusting the discharge time and the supplied power.
[0079]
Preferably, a step of exposing the surface to an oxygen atmosphere is provided between the orientation adjusting film and the nonmagnetic underlayer. The oxygen atmosphere to be exposed is, for example, 5 × 10 -4 It is preferable to use an atmosphere containing an oxygen gas of Pa or more. Alternatively, a gas in which an atmosphere gas for exposure is brought into contact with water can be used. The exposure time is preferably in the range of 0.5 seconds to 15 seconds. For example, it is preferable to take out the orientation adjusting film from the chamber after the formation and expose the film to an outside air atmosphere or an oxygen atmosphere. Alternatively, it is also preferable to use a method in which air or oxygen is introduced into the chamber and exposed without removing the chamber from the chamber. In particular, the method of exposing in the chamber does not require a complicated process such as taking out from a vacuum chamber, so that the process can be continuously performed as a series of film forming processes including the formation of the nonmagnetic underlayer and the magnetic layer. preferable. In that case, for example, the ultimate vacuum degree is 10 -6 5 × 10 below Pa -4 It is preferable to use an atmosphere containing an oxygen gas of Pa or more. The upper limit of the oxygen gas pressure at the time of exposure with oxygen is, although exposure at atmospheric pressure is possible, preferably 5 × 10 -2 It is better to be Pa or less.
[0080]
By heating the glass substrate, the crystal orientation of the non-magnetic underlayer and the magnetic layer can be improved. The heating temperature of the glass substrate is preferably in the range of 100C to 400C. It is more preferable to heat after forming the alignment adjusting film.
[0081]
After the formation of the nonmagnetic underlayer, a magnetic layer having a thickness of 15 nm to 40 nm is similarly formed by a sputtering method using a sputtering target made of the material of the magnetic layer. Sputtering targets are Co-Cr-Ta, Co-Cr-Pt, Co-Cr-Pt-Ta, Co-Cr-Pt-B-Ta, Co-Cr-Pt-B-Cu. And those containing any one selected from the group consisting of: For example, in the case of a Co—Cr—Pt-based alloy, the Cr content can be in the range of 10 at% to 25 at%, and the Pt content can be in the range of 8 at% to 16 at%. For example, in the case of a Co—Cr—Pt—B—Ta alloy, the Cr content is in the range of 16 at% to 24 at%, the Pt content is in the range of 8 at% to 16 at%, and the B content is 2 at%. % To 8 at%, and the Ta content can be in a range of 1 at% to 4 at%. For example, in the case of a Co-Cr-Pt-B-Cu alloy, the Cr content is in the range of 16 at% to 24 at%, the Pt content is in the range of 8 at% to 16 at%, and the B content is 2 at%. % To 8 at%, and the Cu content can be in the range of 1 at% to 4 at%.
[0082]
Here, the crystal orientation of Cr or the Cr alloy of the nonmagnetic underlayer is preferably formed such that the preferential orientation plane indicates (100).
[0083]
When a non-magnetic intermediate layer is provided between the non-magnetic underlayer and the magnetic layer, a sputtering target using a Co-Cr-based alloy (Cr content is in the range of 25 to 45 at%) as a raw material. It is preferable to use At this time, when B is contained in the magnetic layer, the sputtering is performed under such a sputtering condition that the Cr concentration in the region where the B concentration is 1 at% or more and the Cr concentration is 40 at% or less near the boundary between the nonmagnetic underlayer and the magnetic layer. It is preferred to film.
[0084]
After forming the magnetic layer, a protective film, for example, a protective film containing carbon as a main component, is formed by a known method, for example, a sputtering method, a plasma CVD method, or a combination thereof.
[0085]
Further, if necessary, a perfluoropolyether fluorine-based lubricant is applied on the protective film by using a dipping method, a spin coating method or the like to form a lubricating layer.
[0086]
【Example】
(Example 1)
Amorphous glass GD-7 manufactured by Nippon Sheet Glass was used for the glass substrate. The size of the glass substrate is an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm.
[0087]
The glass substrate was subjected to mechanical texture processing. The conditions of the mechanical texture processing are as follows. As abrasive grains contained in the slurry, diamond abrasive grains having a D90 of 0.15 μm were used. The slurry was dropped at 50 ml / min for 2 seconds before processing started. A woven cloth made of polyester was used for the polishing tape. The feed of the polishing tape was 75 mm / min. The rotation speed of the disk was 600 rpm. The disk was rocked at 120 times / minute. The pressing force of the tape was 2.0 kgf (19.6 N). The processing time was 10 seconds. When the substrate surface was measured by AFM manufactured by Digital Instrument, a glass substrate having texture streaks having an average roughness Ra of 4 angstroms and a linear density of 25,000 lines / mm was obtained.
[0088]
After sufficiently washing and drying the substrate, it was set in a DC magnetron sputtering apparatus (C3010 manufactured by Anelva (Japan)). 2 × 10 vacuum reach -7 Torr (2.7 × 10 -5 After evacuation to Pa), a 1 nm lamination was performed at room temperature using a target made of a Co—W alloy (Co: 45 at%, W: 55 at%) as an alignment adjusting film.
[0089]
Thereafter, the substrate was heated to 250 ° C. After the heating, oxygen exposure was performed at 0.05 Pa for 5 seconds. As a nonmagnetic underlayer, a target made of a Cr-Ti-B alloy (Cr: 83 at%, Ti: 15 at%, B: 2 at%) was laminated to a thickness of 8 nm. The nonmagnetic intermediate layer was laminated to a thickness of 2 nm using a target made of a Co—Cr alloy (Co: 65 at%, Cr: 35 at%). A target made of a Co—Cr—Pt—B alloy (Co: 60 at%, Cr: 22 at%, Pt: 12 at%, B: 6 at%) is used as the magnetic layer, and the CoCrPtB alloy layer as the magnetic layer is formed to a thickness of 20 nm. A protective film (carbon) having a thickness of 5 nm was laminated. The Ar pressure during film formation was 3 mTorr (0.4 Pa). 20 nm of a lubricant composed of perfluoropolyether was applied by a dipping method to form a lubricating layer.
[0090]
Thereafter, a glide test was performed using a glide tester with a glide height of 0.4 μ inch under test conditions, and passed magnetic recording media were recorded using a read-write analyzer RWA1632 (manufactured by GUZIK (USA)). The reproduction characteristics were examined. The recording / reproducing characteristics were measured for electromagnetic conversion characteristics such as a reproduction signal output (TAA), a half-width of a solitary wave reproduction output (PW50), SNR, and overwrite (OW). For evaluation of the recording / reproducing characteristics, a composite thin-film magnetic recording head having a giant magnetoresistive (GMR) element in the reproducing section was used. The noise was measured by measuring the integrated noise from 1 MHz to a frequency corresponding to 375 kFCI when a 500 kFCI pattern signal was written. The reproduction output was measured at 250 kFCI, and calculated as SNR = 20 × log (reproduction output / 1 integrated noise from 1 MHz to 375 kFCI equivalent frequency). For measurement of coercive force (Hc) and squareness ratio (S *), a car effect type magnetic property measuring device (RO1900, manufactured by Hitachi Electronics Engineering, Ltd. (Japan)) was used. VSM (BHV-35, manufactured by Riken Denshi Co., Japan) was used for measurement of the magnetic anisotropy index (OR) and the magnetic anisotropy index (MrtOR) of the residual magnetization.
[0091]
(Examples 2 to 33)
The same treatment as in Example 1 was performed except that the alloy composition and the film thickness of the orientation adjusting film were as shown in Table 1.
[0092]
(Example 34)
As an alignment adjusting film, a target made of a Co-W alloy (Co: 45 at%, W: 55 at%) was also laminated at a normal temperature by 5 nm. An antiferromagnetic coupling layer was provided instead of the nonmagnetic intermediate layer. The stabilizing layer was laminated to a thickness of 2 nm using a target made of a Co-Ru alloy (Co: 80 at%, Ru: 20 at%). The non-magnetic coupling layer was formed to have a thickness of 0.8 nm by using a target made of Ru. Except for this, the same processing as in Example 1 was performed.
[0093]
(Comparative Examples 1 to 33)
The same processing as in Example 1 was performed except that the mechanical texture was not applied to the glass substrate, and the alloy composition and the film thickness of the alignment adjusting film were as shown in Table 2.
[0094]
(Comparative Examples 34 to 36)
The same treatment as in Example 1 was performed, except that the alloy composition and the film thickness of the orientation adjusting film were as shown in Table 2.
[0095]
Coercive force (Hc), squareness ratio, magnetic anisotropy index (OR), magnetic anisotropy index of residual magnetization (MrtOR), electromagnetic conversion characteristics of Examples 1 to 33 and Comparative Examples 1 to 36 Tables 1 and 2 show the results. Examples 1 to 7 show the tendency of the thickness of the orientation adjustment film Co—W-based alloy (Co: 45 at%, W: 55 at%). Good magnetic anisotropy in the circumferential direction is obtained when the film thickness is in the range of 25 to 300 angstroms, and the electromagnetic conversion characteristics are excellent. Further, when the film thickness is in the range of 25 to 100 angstroms, more favorable circumferential magnetic anisotropy is obtained, and the electromagnetic conversion characteristics are excellent. In Examples 8 to 30, the alloy composition of the orientation adjusting film was changed. Co-W based alloy, Co-Mo based alloy, Co-Ta based alloy, Co-Nb based alloy, Ni-Ta based alloy, Ni-Nb based alloy, Fe-W based alloy, Fe-Mo based alloy, Fe- Good circumferential magnetic anisotropy is obtained with an Nb-based alloy, and the recording / reproducing characteristics are excellent. In Examples 31 to 33, a ternary alloy was used for the alignment adjusting film. Co-W-Mo alloys, Co-W-Ta alloys, and Co-Ni-W alloys have good magnetic anisotropy in the circumferential direction, and have excellent electromagnetic conversion characteristics.
[0096]
In Comparative Examples 1 to 33, a glass substrate having no texture streaks formed on the surface was used, and the alloy composition of the alignment adjusting film in Examples 1 to 33 was used. Since no texture streaks are formed on the surface, none of them exhibit magnetic anisotropy. It can be seen that the electromagnetic conversion characteristics are also inferior to those of the examples.
[0097]
In Comparative Examples 34 to 36, a Ni—P-based alloy (Ni: 80 at%, P: 20 at%) was used as an alignment adjusting film on a glass substrate having texture streaks formed on the surface. Although magnetic anisotropy in the circumferential direction is exhibited, good electromagnetic conversion characteristics have not been obtained due to low coercive force and squareness.
[0098]
[Table 1]
Figure 2004086936
[0099]
[Table 2]
Figure 2004086936
[0100]
【The invention's effect】
The magnetic recording medium of the present invention is a magnetic recording medium having at least a glass substrate on which circumferential grooves are formed, an alignment adjusting layer, a non-magnetic underlayer, a magnetic layer, and a protective film in this order. A magnetic recording characterized in that the layer includes an alloy layer composed of one or more components selected from Co, Ni and Fe and one or more components selected from W, Mo, Ta and Nb. Since the medium is a medium, magnetic anisotropy in the circumferential direction is exhibited, and electromagnetic conversion characteristics are improved. As a result, a magnetic recording medium suitable for high recording density is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a magnetic recording medium of the present invention.
FIG. 2 shows a magnetic recording / reproducing apparatus using the magnetic recording medium of the present invention.
[Explanation of symbols]
1 Glass substrate
2 Alignment adjustment film
3 Non-magnetic underlayer
4 Magnetic layer
5 Protective film
20 Magnetic recording media
21 Medium drive unit
22 Magnetic head
23 Head drive unit
24 Recording / playback signal processing system

Claims (10)

表面に条痕を有するガラス基板上に、配向調整層、非磁性下地層、磁性層及び保護膜をこの順で有する磁気記録媒体において、前記配向調整層がCo、NiおよびFeから選ばれる何れか1種類以上と、W、Mo、TaおよびNbから選ばれる何れか1種類以上とを含むことを特徴とする磁気記録媒体。In a magnetic recording medium having an alignment adjusting layer, a non-magnetic underlayer, a magnetic layer and a protective film in this order on a glass substrate having a streak on its surface, the alignment adjusting layer is selected from Co, Ni and Fe. A magnetic recording medium comprising at least one kind and any one or more kinds selected from W, Mo, Ta and Nb. 前記配向調整層が、Co−W系合金、Co−Mo系合金、Co−Ta系合金、Co−Nb系合金、Ni−Ta系合金、Ni−Nb系合金、Fe−W系合金、Fe−Mo系合金、Fe−Nb系合金の中から選択される少なくとも1つの合金を含むことを特徴とする請求項1に記載の磁気記録媒体。The orientation adjustment layer is made of a Co-W alloy, a Co-Mo alloy, a Co-Ta alloy, a Co-Nb alloy, a Ni-Ta alloy, a Ni-Nb alloy, a Fe-W alloy, or a Fe- alloy. 2. The magnetic recording medium according to claim 1, comprising at least one alloy selected from a Mo-based alloy and an Fe-Nb-based alloy. 前記配向調整膜の膜厚が、10オングストローム〜300オングストロームの範囲内であることを特徴とする請求項1または2に記載の磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein the thickness of the alignment adjusting film is in a range of 10 Å to 300 Å. 前記ガラス基板が、アモルファスガラスであることを特徴とする請求項1〜3の何れか1項に記載の磁気記録媒体。The magnetic recording medium according to claim 1, wherein the glass substrate is an amorphous glass. 前記条痕の線密度が、7500(本/mm)以上であることを特徴とする請求項1〜4の何れか1項に記載の磁気記録媒体。The magnetic recording medium according to any one of claims 1 to 4, wherein the linear density of the streaks is 7500 (lines / mm) or more. 磁性層の磁気的異方性指数(円周方向の保持力/半径方向の保持力)が、1.05以上であることを特徴とする請求項1〜5の何れか1項に記載の磁気記録媒体。The magnetic layer according to any one of claims 1 to 5, wherein the magnetic layer has a magnetic anisotropy index (retention force in the circumferential direction / retention force in the radial direction) of 1.05 or more. recoding media. 残留磁化量の磁気的異方性指数(円周方向の残留磁化量/半径方向の残留磁化量)が、1.05以上であることを特徴とする請求項1〜6の何れか1項に記載の磁気記録媒体。The magnetic anisotropy index (remaining magnetization amount in the circumferential direction / remaining magnetization amount in the radial direction) of the residual magnetization amount is 1.05 or more, and is set to any one of claims 1 to 6. The magnetic recording medium according to the above. 前記非磁性下地層が、Cr層、または、Ti、Mo、Al、Ta、W、Ni、B、SiおよびVから選ばれる1種以上を含有するCr合金層を含むことを特徴とする請求項1〜7の何れか1項に記載の磁気記録媒体。The non-magnetic underlayer comprises a Cr layer or a Cr alloy layer containing at least one selected from Ti, Mo, Al, Ta, W, Ni, B, Si and V. The magnetic recording medium according to any one of claims 1 to 7. 磁性層が、Co−Cr−Pt系合金、Co−Cr−Pt−Ta系合金、Co−Cr−Pt−B系合金、Co−Cr−Pt−B−Y系合金(YはTa、または、Cuである。)から選ばれる何れか1種以上を含むことを特徴とする請求項1〜8の何れか1項に記載の磁気記録媒体。The magnetic layer is made of a Co-Cr-Pt alloy, a Co-Cr-Pt-Ta alloy, a Co-Cr-Pt-B alloy, or a Co-Cr-Pt-BY alloy (Y is Ta or The magnetic recording medium according to any one of claims 1 to 8, comprising at least one selected from Cu). 請求項1〜9の何れか1項に記載の磁気記録媒体と、磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置。A magnetic recording / reproducing apparatus comprising: the magnetic recording medium according to claim 1; and a magnetic head for recording / reproducing information on / from the magnetic recording medium.
JP2002242518A 2002-08-22 2002-08-22 Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device Pending JP2004086936A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002242518A JP2004086936A (en) 2002-08-22 2002-08-22 Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
SG200304489A SG123562A1 (en) 2002-08-22 2003-08-21 Method and system for validating detected rates ofreceived variable rate speech frames
US10/645,625 US7006328B2 (en) 2002-08-22 2003-08-22 Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242518A JP2004086936A (en) 2002-08-22 2002-08-22 Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005369438A Division JP2006092745A (en) 2005-12-22 2005-12-22 Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Publications (2)

Publication Number Publication Date
JP2004086936A true JP2004086936A (en) 2004-03-18
JP2004086936A5 JP2004086936A5 (en) 2006-02-16

Family

ID=32051582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242518A Pending JP2004086936A (en) 2002-08-22 2002-08-22 Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device

Country Status (2)

Country Link
JP (1) JP2004086936A (en)
SG (1) SG123562A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317181A (en) * 2004-03-31 2005-11-10 Hoya Corp Glass substrate for magnetic disk and magnetic disk
WO2006019063A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
WO2006095842A1 (en) * 2005-03-07 2006-09-14 Showa Denko K.K. Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2007272995A (en) * 2006-03-31 2007-10-18 Hoya Corp Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device
CN100414611C (en) * 2004-08-16 2008-08-27 昭和电工株式会社 Magnetic recording medium and magnetic recording and reproducing device
US7993497B2 (en) 2005-11-21 2011-08-09 Wd Media (Singapore) Pte. Ltd. Magnetic disk and magnetic disk manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0148842B1 (en) * 1993-07-22 1998-10-15 가나이 쯔또무 Magnetic recording medium, process for producing the same and magnetic recording system
US6582758B2 (en) * 2000-03-17 2003-06-24 Showa Denko Kabushiki Kaisha Process of producing a magnetic recording medium
US6821653B2 (en) * 2000-09-12 2004-11-23 Showa Denko Kabushiki Kaisha Magnetic recording medium, process for producing the same, and magnetic recording and reproducing apparatus
US6761982B2 (en) * 2000-12-28 2004-07-13 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process and apparatus thereof, and magnetic recording and reproducing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317181A (en) * 2004-03-31 2005-11-10 Hoya Corp Glass substrate for magnetic disk and magnetic disk
WO2006019063A1 (en) * 2004-08-16 2006-02-23 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
CN100414611C (en) * 2004-08-16 2008-08-27 昭和电工株式会社 Magnetic recording medium and magnetic recording and reproducing device
US7550211B2 (en) 2004-08-16 2009-06-23 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
WO2006095842A1 (en) * 2005-03-07 2006-09-14 Showa Denko K.K. Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7993497B2 (en) 2005-11-21 2011-08-09 Wd Media (Singapore) Pte. Ltd. Magnetic disk and magnetic disk manufacturing method
JP2007272995A (en) * 2006-03-31 2007-10-18 Hoya Corp Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device

Also Published As

Publication number Publication date
SG123562A1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US6926977B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7006328B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US20090130346A1 (en) Magnetic Recording Medium, Production Process Thereof, and Magnetic Recording and Reproducing Apparatus
US6942933B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7550211B2 (en) Magnetic recording medium and magnetic recording and reproducing device
US20040230049A9 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target
US6727010B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate
JP2007048397A (en) Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device
JP2004086936A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
JP2003338018A (en) Magnetic recording medium and its manufacturing method
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP2004152424A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recorder/reproducing device
US20060204792A1 (en) Magnetic recording medium, production process therefor, and magnetic recording and reproducing apparatus
JP2006099948A (en) Magnetic recording medium and magnetic recording and reproducing device
US20080166597A1 (en) Magnetic Recording Medium, Production Process Thereof, and Magnetic Recording and Reproducing Apparatus
JP3962415B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
WO2006090510A1 (en) Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus
JP2006302480A (en) Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus
JP2004046994A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006286161A (en) Magnetic recording medium, production method thereof, and magnetic recording and reproducing apparatus
JP2004039196A (en) Magnetic recording medium, its manufacturing method, and magnetic recording/reproducing device
JP2006085888A5 (en)
JP2003338029A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
JP2003132515A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing apparatus
JP2006092745A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20051221

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A02 Decision of refusal

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061114

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070105