JP2001160214A - Magnetic recording medium and magnetic disk device - Google Patents

Magnetic recording medium and magnetic disk device

Info

Publication number
JP2001160214A
JP2001160214A JP32776199A JP32776199A JP2001160214A JP 2001160214 A JP2001160214 A JP 2001160214A JP 32776199 A JP32776199 A JP 32776199A JP 32776199 A JP32776199 A JP 32776199A JP 2001160214 A JP2001160214 A JP 2001160214A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
underlayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32776199A
Other languages
Japanese (ja)
Other versions
JP2001160214A5 (en
Inventor
Mitsuhiro Shoda
光広 正田
Naoto Endo
直人 遠藤
Tomoyoshi Aida
倫佳 合田
Yuzuru Hosoe
譲 細江
Akira Kato
章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32776199A priority Critical patent/JP2001160214A/en
Publication of JP2001160214A publication Critical patent/JP2001160214A/en
Publication of JP2001160214A5 publication Critical patent/JP2001160214A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium wherein frictional force generated when a magnetic head comes into contact with the magnetic recording medium at the time of recording and reproduction is low while keeping low noise characteristics which is important for realizing high recording density and wherein high sliding reliability can be secured and to provide a magnetic disk device using the magnetic recording medium. SOLUTION: The magnetic recording medium having a magnetic alloy layer consisting essentially of Co, a protective layer and a lubricating layer which are formed in this order on a substrate through a base is characterized in that the base is constituted of a plurality of base layers including a structure having a first base layer consisting essentially of an amorphous layer and a second base layer consisting of a crystalline layer which are laminated in this order and the difference ΔBH[0.01, 50] (=|BH[0.01%]-BH[50%]|) between a height BH[0.01%] and a height BH[50%] corresponding to the heights where the load ratio is 0.01% and 50%, respectively, in the load curve obtained from the surface roughness curve of the magnetic recording medium is >=3 nm and <=6 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,大容量の情報記録
が可能な磁気記録媒体およびこれを用いた磁気記憶装置
に係わり、特に高密度磁気記録に好適な磁気記録媒体及
び磁気ディスク装置に関する。
The present invention relates to a magnetic recording medium capable of recording a large amount of information and a magnetic storage device using the same, and more particularly to a magnetic recording medium and a magnetic disk device suitable for high-density magnetic recording.

【0002】[0002]

【従来の技術】磁気記憶装置に対する大容量化の要求は
現在ますます高まりつつある。記録密度を高くするため
には(1)磁気ヘッド再生部の感度向上,(2)ヘッド
素子と磁気記録媒体の記録膜との距離を短縮する,
(3)信号処理の高効率化,などが挙げられる。
2. Description of the Related Art The demand for large capacity magnetic storage devices is increasing at present. In order to increase the recording density, (1) increase the sensitivity of the magnetic head reproducing section, (2) shorten the distance between the head element and the recording film of the magnetic recording medium,
(3) Higher efficiency of signal processing.

【0003】近年,磁気ヘッドを記録部と再生部に分離
し,再生部に高感度な磁気抵抗効果を利用した素子を用
いた複合型磁気ヘッドの採用が急速に進んだ。また,最
近,ヘッド再生部の感度をさらに向上させるため,複数
の磁性層を非磁性層を介して積層したタイプの磁性層で
生じる非常に大きな磁気抵抗変化(巨大磁気抵抗効果ま
たはスピンバルブ効果)を利用した磁気ヘッドも実用化
されている。これは非磁性層を介した複数の磁性層の相
対的な磁化方向が,媒体からの漏洩磁界により変化し,
磁気抵抗が変化することを利用するものである。
[0003] In recent years, the adoption of a composite magnetic head in which a magnetic head is separated into a recording section and a reproducing section and an element utilizing a highly sensitive magnetoresistive effect is used in the reproducing section has been rapidly advanced. Also, recently, in order to further improve the sensitivity of the head reproducing section, a very large magnetoresistance change (giant magnetoresistance effect or spin valve effect) generated in a magnetic layer in which a plurality of magnetic layers are stacked via a nonmagnetic layer. Magnetic heads utilizing the same have been put to practical use. This is because the relative magnetization directions of the plurality of magnetic layers via the non-magnetic layer change due to the leakage magnetic field from the medium,
This utilizes the fact that the magnetic resistance changes.

【0004】一方,磁気記録媒体に対する高記録密度化
に必要な要素として,(1)磁気ヘッド再生部の感度向
上に対応した磁気記録媒体の低ノイズ化,(2)ヘッド
素子と磁気記録媒体の記録膜との距離(スペーシング)
の短縮に伴う表面粗さの平坦化,(3)保護層の厚さの
低減などが挙げられる。
On the other hand, factors necessary for increasing the recording density of the magnetic recording medium include (1) lowering the noise of the magnetic recording medium corresponding to the improvement in the sensitivity of the magnetic head reproducing section, and (2) reducing the noise between the head element and the magnetic recording medium. Distance from recording film (spacing)
And (3) reduction in the thickness of the protective layer.

【0005】磁気記録媒体の磁性層としては, CoNiC
r,CoCrTa,CoCrPt,CoCrPtTa等のCoを主成分とする合
金を用いた面内磁気記録媒体が広く用いられている。特
に,Ptを含有するCo合金磁性膜は高い保磁力が得られ,
高線記録密度領域での出力を高められることから高記録
密度化に適している。これらのCo合金はc軸を磁化容易
軸とする六方稠密構造(hcp構造)をとり,面内磁気記
録媒体として用いるには,c軸を面内に向けさせるのが
望ましい。そこで,基板上にまず体心立方(bcc)構造を
とる下地層を形成し,その上にCo合金磁性層をエピタキ
シャル成長させ,c軸を面内に向けさせる手法が広く用
いられている。
For the magnetic layer of the magnetic recording medium, CoNiC
In-plane magnetic recording media using alloys containing Co as a main component such as r, CoCrTa, CoCrPt, and CoCrPtTa are widely used. In particular, a Co alloy magnetic film containing Pt has a high coercive force,
Since the output in the high linear recording density region can be increased, it is suitable for high recording density. These Co alloys have a hexagonal close-packed structure (hcp structure) with the c-axis as the axis of easy magnetization. For use as an in-plane magnetic recording medium, the c-axis is desirably oriented in the plane. Therefore, a method of first forming a base layer having a body-centered cubic (bcc) structure on a substrate, epitaxially growing a Co alloy magnetic layer thereon, and directing the c-axis in-plane has been widely used.

【0006】下地層としては,一般にCrが用いられてき
たが,磁性層としてPt等の大きな原子を含む場合には,
CrにTi(特開昭63-197018号)やV(特開昭62-257618
号)を添加して格子間隔を増加さたCr合金下地を用い
て,磁性層と下地層の格子整合性を高めて磁性層のc軸
を膜面に平行に配向させる手法(特開昭63-197018号,
特開昭62-257618号)が提案されている。下地膜の材料
としては,これらの材料以外に,Mo,W,Hf等を含む広
範な材料が使用可能なことが特開昭63-187416号公報に
示されている。また,特開平10-143865号公報に記載の
ように,上記のようなCr合金下地と基板の間にCoを主体
とし,これに酸化傾向の高いCrやZrを含ませた非晶質合
金層を形成し,その表面を酸素雰囲気に曝して表面を若
干酸化することにより媒体ノイズが安定して低減できる
ことが示されている。
Although Cr has been generally used as the underlayer, when the magnetic layer contains large atoms such as Pt,
Cr (Ti) (JP-A-63-197018) and V (JP-A-62-257618)
Using a Cr alloy underlayer with an increased lattice spacing to increase the lattice matching between the magnetic layer and the underlayer and to orient the c-axis of the magnetic layer parallel to the film plane (Japanese Patent Laid-Open No. -197018,
JP-A-62-257618) has been proposed. JP-A-63-187416 discloses that a wide range of materials including Mo, W, Hf and the like can be used as the material of the underlayer in addition to these materials. Further, as described in JP-A-10-143865, an amorphous alloy layer containing Co as a main component between the above Cr alloy base and the substrate and containing Cr or Zr with a high tendency to oxidize. It has been shown that medium noise can be reduced stably by forming the surface of the substrate and exposing the surface to an oxygen atmosphere to slightly oxidize the surface.

【0007】磁気ヘッドと磁気記録媒体の接触等に関す
る信頼性を高める技術としては,以下のようなものが提
案されている。すなわち,特開平5-114127号,特開平8-
297834号には耐摺動信頼性を考慮し,主に装置の起動及
び停止時に行うCSS(コンタクトスタートストップ)で
生じるヘッドクラッシュや媒体の損傷を回避するのに適
した磁気記録媒体の表面形状が提案されている。また,
特開平11-232638にはヘッドと媒体の接触を避けるため
の表面形状が提案されている。特公平7-95369号には接
触型ヘッドを用いたフロッピーディスクの摺動信頼性を
向上するために,媒体表面に突起形状を寄与する方法が
提案されている。
The following techniques have been proposed as techniques for improving the reliability of contact between a magnetic head and a magnetic recording medium. That is, JP-A-5-114127, JP-A-8-114
No. 297834 describes the surface shape of the magnetic recording medium suitable for avoiding head crash and medium damage caused by CSS (contact start / stop) performed when starting and stopping the device, considering the sliding reliability. Proposed. Also,
Japanese Patent Application Laid-Open No. H11-232638 proposes a surface shape for avoiding contact between a head and a medium. Japanese Patent Publication No. 7-95369 proposes a method of contributing a projection shape to the medium surface in order to improve the sliding reliability of a floppy disk using a contact type head.

【0008】さらに,特開平11-110933号には,スペー
シングの短縮化に伴う表面粗さの低減と磁気ヘッド停止
時のヘッド粘着現象の回避を両立するために,媒体の回
転停止時に磁気ヘッドを媒体外に方式待避する方式が提
案されている。
Further, Japanese Patent Application Laid-Open No. 11-110933 discloses a magnetic head when the rotation of a medium is stopped in order to achieve both a reduction in surface roughness due to a reduction in spacing and an avoidance of a head sticking phenomenon when the magnetic head is stopped. Has been proposed to save the data outside the medium.

【0009】[0009]

【発明が解決しようとする課題】上述した従来技術によ
り,磁気記録媒体上でのヘッド粘着現象の回避と,磁気
ヘッド再生部の感度向上に伴う磁気記録媒体の低ノイズ
化が可能となった。ところが,最近,高記録密度を達成
するためにスペーシングが急激に短縮しており,記録再
生時でもヘッドと媒体の接触が避けられないインターフ
ェイス環境になりつつある。そこで,媒体の表面形状に
対して,スペーシングの損失を最小限に抑え,さらに,
高い摺動信頼性を実現できるような要求が出てきてい
る。
According to the above-mentioned prior art, it has become possible to avoid the head sticking phenomenon on the magnetic recording medium and to reduce the noise of the magnetic recording medium due to the improvement of the sensitivity of the magnetic head reproducing section. However, recently, the spacing has been sharply reduced in order to achieve a high recording density, and an interface environment in which contact between the head and the medium is inevitable even during recording / reproducing is coming. Therefore, minimizing the loss of spacing with respect to the surface shape of the medium,
There is a demand for realizing high sliding reliability.

【0010】本発明の第1の目的は,高記録密度化を実
現する上で重要な低ノイズ特性を維持しつつ,上記のよ
うな低浮上環境においても摩擦力が低く,高い摺動信頼
性を確保できる磁気記録媒体を提供することにある。ま
た,第2の目的は信頼性が高い大容量の磁気記憶装置を
提供することにある。
A first object of the present invention is to maintain a low noise characteristic which is important for realizing a high recording density, to have a low frictional force even in the low flying environment as described above, and to achieve a high sliding reliability. It is to provide a magnetic recording medium that can ensure the above. A second object is to provide a high-capacity magnetic storage device with high reliability.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に,基板上に下地層を介してCoを主成分とする磁性合金
層とCを主成分とする保護層,さらに潤滑層をこの順に
形成した磁気記録媒体において,下地層の層構成と媒体
の表面形状の異なる磁気記録媒体を作製してその特性を
評価した。その結果,下地層を実質的に非晶質である第
1の下地層と結晶質である第2の下地層をこの順序に積層
した構造を含む複数の下地層で構成し,かつ,該磁気記
録媒体の表面粗さ曲線から求まる負荷曲線において、負
荷比率が0.01 %となる高さBH[0.01%]と負荷比率が50%と
なる高さBH[50%]の差ΔBH[0.01, 50]=|BH[0.01%]- BH
[50%]|が3nm以上6nm以下とすることにより良好な結果
が得られ,上記本発明の第1の目的が達成できることを
見出した。
In order to solve the above problems, a magnetic alloy layer containing Co as a main component, a protective layer containing C as a main component, and a lubricating layer are formed on a substrate in this order via an underlayer. With respect to the formed magnetic recording media, magnetic recording media having different layer configurations of the underlayer and surface shapes of the media were manufactured, and their characteristics were evaluated. As a result, the underlayer is substantially amorphous.
A load curve determined from a surface roughness curve of the magnetic recording medium is composed of a plurality of underlayers including a structure in which one underlayer and a crystalline second underlayer are laminated in this order. [BH [0.01, 50] = | BH [0.01%]-BH, the difference between the height BH [0.01%] at which the load becomes 0.01% and the height BH [50%] at which the load ratio becomes 50%
[50%] | was set to 3 nm or more and 6 nm or less, good results were obtained, and it was found that the first object of the present invention could be achieved.

【0012】第1の下地層として,実質的に非晶質の層
を形成することにより,その上に形成される結晶質の層
である第2の下地層の結晶を微細にでき,さらに,この
上に形成される磁性層の結晶粒が微細になることによっ
て媒体ノイズが低減される。また,第1の下地層を実質
的に非晶質とすることにより,結晶質膜の場合にその成
長過程で見られる異常に大きな結晶粒の成長を押さえる
ことができる。これにより,磁気ヘッドスライダの浮上
量を下げた場合のスライダ−媒体間の接触確率を下げら
れるので,媒体の低ノイズ化と高信頼性を両立すること
ができる。尚,ここで,「実質的に非晶質」とは透過電
子顕微鏡により制限視野回折像を撮影した際に回折パタ
ーンがハローとして観察されることを指すものと定義す
る。このような磁気記録媒体を構成する層の微細構造
は,基板面に垂直な方向に薄く切り出した試料,あるい
は,基板を機械研磨により薄くした試料を試料面の上下
両方向からイオンシニング法によりさらに薄膜化し,該
当部を透過電子顕微鏡により高倍率で観察するか,また
は,制限視野回折像で回折リングのパターンを観察する
ことにより評価できる。
[0012] By forming a substantially amorphous layer as the first underlayer, the crystal of the second underlayer, which is a crystalline layer formed thereon, can be made finer. Medium noise is reduced by making the crystal grains of the magnetic layer formed thereon finer. Further, by making the first underlayer substantially amorphous, it is possible to suppress the growth of abnormally large crystal grains observed in the growth process of a crystalline film. As a result, the probability of contact between the slider and the medium when the flying height of the magnetic head slider is reduced can be reduced, so that both low noise and high reliability of the medium can be achieved. Here, “substantially amorphous” is defined as indicating that a diffraction pattern is observed as a halo when a selected area diffraction image is taken with a transmission electron microscope. The fine structure of the layers constituting such a magnetic recording medium can be obtained by thinning the sample perpendicular to the substrate surface or thinning the substrate by mechanical polishing from both the top and bottom of the sample surface by ion thinning. It can be evaluated by thinning the film and observing the relevant portion with a transmission electron microscope at a high magnification, or observing the pattern of the diffraction ring with a selected area diffraction image.

【0013】第1の下地層を構成する材料としては,CoC
rZr,NiCrZr,CoP,NiP等を用いることができる。第1の
下地層の主成分としてCoあるいはNiを用いることによ
り,基板との高い密着強度が得られる。さらに,添加元
素としてCrやPを加えることにより第1の下地層に含まれ
るCoあるいはNiの強磁性成分を効果的に低減し, 第1の
下地層の磁化を再生ヘッドから見て無視しうる程度に小
さくすることが可能である。 NiないしCoを主成分と
し,かつCrとZrを同時に含む合金は,Crを加えることに
より,特に,高い耐食性が得られ,さらに,Zrを添加す
ることにより,耐食性を劣化させることなく第1の下地
層を非晶質化することができるので,特に好ましい。P
を添加する場合には,Pの添加によりCoあるいはNiの強
磁性成分の効果的な低減と非晶質化を同時に実現するこ
とができる。 CoCrZrやNiCrZr,NiPなどの表面を酸素雰
囲気に曝して表面を若干酸化することにより,その上に
形成されるCr合金下地の結晶粒を微細にでき,さらにそ
の結晶配向をCo合金のc軸を膜面に平行に向けることが
可能な(100)配向とすることができる。これによ
り,媒体ノイズを安定して低減できる。尚,第1の下地
層に添加されるCrの代わりに,Ti,V,Mo,Nbを添加し
てもCrの場合とほぼ同等の効果が得られる。また,第1
の下地層に添加されるZrの代わりに, Ta,Hf,Y,Wを
添加してもZrの場合とほぼ同等の効果が得られる。ま
た,第1の下地層の厚さは20nm以上,80nm以下であるこ
とが好ましい。厚さが30nm未満の場合には,ヘッドとの
接触による媒体の破壊が生じ易くなる。一方,厚さが80
nmを上回ると,量産の効率が下がるため好ましくない。
第1の下地層の厚さが,30nm以上,65nm以下の範囲にあ
ると,特に高い信頼性と量産効率が実現できるので特に
好ましい。
The material constituting the first underlayer is CoC
rZr, NiCrZr, CoP, NiP and the like can be used. By using Co or Ni as the main component of the first underlayer, high adhesion strength to the substrate can be obtained. Furthermore, by adding Cr or P as an additive element, the ferromagnetic component of Co or Ni contained in the first underlayer can be effectively reduced, and the magnetization of the first underlayer can be ignored when viewed from the read head. It can be as small as possible. For alloys containing Ni or Co as the main component and containing both Cr and Zr, high corrosion resistance can be obtained especially by adding Cr. In addition, the addition of Zr makes the first alloy without deteriorating the corrosion resistance. This is particularly preferable because the underlayer can be made amorphous. P
When P is added, the addition of P can simultaneously realize the effective reduction of the ferromagnetic component of Co or Ni and the amorphization at the same time. By exposing the surface of CoCrZr, NiCrZr, NiP, etc. to an oxygen atmosphere and slightly oxidizing the surface, the crystal grains underlying the Cr alloy formed thereon can be made finer. A (100) orientation that can be oriented parallel to the film plane can be used. Thereby, the medium noise can be reduced stably. It should be noted that even if Cr, Ti, V, Mo, and Nb are added in place of Cr added to the first underlayer, almost the same effect as that of Cr can be obtained. In addition, the first
Even if Ta, Hf, Y, and W are added in place of Zr added to the underlayer, substantially the same effect as in the case of Zr can be obtained. The thickness of the first underlayer is preferably 20 nm or more and 80 nm or less. If the thickness is less than 30 nm, breakage of the medium due to contact with the head is likely to occur. On the other hand, the thickness is 80
If it exceeds nm, the efficiency of mass production decreases, which is not preferable.
It is particularly preferable that the thickness of the first underlayer is in the range of 30 nm or more and 65 nm or less because particularly high reliability and mass production efficiency can be realized.

【0014】第2の下地層の結晶構造は体心立方構造を
持つ非磁性金属であることが望ましい。例えば磁性層と
結晶整合性の良い配向が期待される(100)配向した固溶
体を形成する非磁性Cr基合金等の薄膜が用いられる。こ
こで,(100)配向とは,結晶の(100)面が基板面に平行に
配向することをさす。第2の下地層の材料としては,Cr
Ti合金あるいはCrTiMo合金,CrMo合金等を用いることが
できる。第2の下地層の厚さは3nm以上,60nm以下であ
ることが好ましい。厚さが3nm未満の場合には,その上
に形成される磁性層の結晶性と結晶配向を制御すること
が困難になり,厚さが60nmを上回る場合には,突発的な
結晶粒の異常成長が生じやすくなり,浮上阻害要因とな
り,量産の効率を低下し,好ましくない。第2の下地層
の厚さが15nm以上,35nm以下であると低ノイズで低浮上
信頼性にも優れる媒体を効率良く生産できるので,特に
好ましい。第2の下地層がCrTi合金である場合には,Ti
添加濃度を18at.%以上,23at.%以下とすることが好まし
い。 前記第2のCrTi合金下地層のTi添加濃度を18at.%
未満とすると,その上に形成する磁性層との結晶整合性
が低下する。 一方,Ti添加濃度を23 at.%を超えると下
地層の結晶粒が大きくなり,この下地膜上に連続して形
成した磁性層の結晶粒も大きくなり,媒体ノイズが増大
するので好ましくない。
Preferably, the crystal structure of the second underlayer is a nonmagnetic metal having a body-centered cubic structure. For example, a thin film of a nonmagnetic Cr-based alloy or the like that forms a solid solution having a (100) orientation that is expected to have good crystal matching with the magnetic layer is used. Here, the (100) orientation means that the (100) plane of the crystal is oriented parallel to the substrate surface. The material of the second underlayer is Cr
Ti alloy, CrTiMo alloy, CrMo alloy or the like can be used. The thickness of the second underlayer is preferably 3 nm or more and 60 nm or less. When the thickness is less than 3 nm, it becomes difficult to control the crystallinity and crystal orientation of the magnetic layer formed thereon, and when the thickness is more than 60 nm, sudden abnormalities in crystal grains occur. Growth is likely to occur, which is a factor that hinders floating, and reduces the efficiency of mass production, which is not preferable. It is particularly preferable that the thickness of the second underlayer is 15 nm or more and 35 nm or less because a medium having low noise and excellent low flying reliability can be efficiently produced. If the second underlayer is a CrTi alloy, Ti
It is preferable that the addition concentration is 18 at.% Or more and 23 at.% Or less. The Ti addition concentration of the second CrTi alloy underlayer is 18 at.
If it is less than the above, the crystal matching with the magnetic layer formed thereon is deteriorated. On the other hand, if the Ti addition concentration exceeds 23 at.%, The crystal grains of the underlayer become large, and the crystal grains of the magnetic layer formed continuously on this underlayer also become large, which is not preferable because the medium noise increases.

【0015】さらに, 磁気記録媒体の表面粗さ曲線か
ら求まる負荷曲線において,負荷比率が0.01 %となる高
さBH[0.01%]と負荷比率が50%となる高さBH[50%]の差ΔB
H[0.01, 50](=| BH[0.01%]- BH[50%]|)が3nm以上,
6nm以下とすることにより,ヘッドスライダと媒体が接
触した場合においても,摩擦力を低く押さえることがで
き,これにより更に高い摺動信頼性を確保できる。特に
前述のように第1の下地層として実質的に非晶質の層を
形成した媒体の表面形状をこのような条件を満足するも
のとすることにより,低ノイズ性,低浮上及び高信頼性
を両立できるので好ましい。ΔBH[0.01, 50]が3nm未満
ではヘッドと媒体が接触したときに生じる摩擦力が増大
し,連続摺動試験での寿命が短くなる。また,ヘッドが
ピッチ方向に振動し,記録再生が不安定になるので好ま
しくない。一方,ΔBH[0.01, 50]が6nmを越えるとヘッ
ドスライダと媒体のスペーシングが短縮できず,1イン
チ当たり10ギガビットを越えるような高い記録密度を達
成できなくなるので好ましくない。ΔBH[0.01, 50]が3n
m以上,6nm以下であり,かつ負荷比率が0.01 %となる高
さBH[0.01%]と負荷比率が0.8%となる高さBH[0.8%]の差
ΔBH[0.01, 0.8](=|BH[0.01%]- BH[0.8%]|)が3nm以
下であることが高い摺動信頼性を確保するためにより好
ましい形状である。ΔBH[0.01, 0.8]が3nmを越えると連
続摺動試験での寿命が短くなるので好ましくない。連続
接触時のさらなる信頼性向上のためには,磁気記録媒体
の表面粗さ曲線から求まる負荷曲線において,負荷比率
が1%となる高さBH[1%]と負荷比率が50%となる高さBH[50
%]の差をy(=|BH[1%]- BH[50%]|)とし,負荷比率が1
5%となる高さBH[15%]と負荷比率が50%となる高さBH[50
%]の差をx(=|BH[15%]- BH[50%]|)としたとき,座標
(x, y)で表される点が,xy平面上の点(0.1, 1.6)と
点(1, 3)を結ぶ線分と,点(1, 3)と点(1, 4)を結
ぶ線分と,点(1, 4)と点(0.1, 4)を結ぶ線分と,さ
らに点(0.1, 4)と点(0.1, 1.6)を結ぶ線分で囲まれ
た領域内にあることが好ましく,算術平均粗さ(Ra)が
0.7nm以下であることが最も好ましい。上記範囲外では
連続接触試験での寿命が1桁以上短くなる。
Further, in the load curve obtained from the surface roughness curve of the magnetic recording medium, the difference between the height BH [0.01%] at which the load ratio becomes 0.01% and the height BH [50%] at which the load ratio becomes 50%. ΔB
H [0.01, 50] (= | BH [0.01%]-BH [50%] |) is 3nm or more,
By setting the thickness to 6 nm or less, even when the head slider comes into contact with the medium, the frictional force can be suppressed to a low level, thereby ensuring higher sliding reliability. In particular, by making the surface shape of the medium on which the substantially amorphous layer is formed as the first underlayer satisfy the above conditions as described above, low noise, low flying and high reliability can be obtained. Are both preferred. If ΔBH [0.01, 50] is less than 3 nm, the frictional force generated when the head comes in contact with the medium increases, and the life in the continuous sliding test is shortened. Further, the head vibrates in the pitch direction, and recording and reproduction become unstable, which is not preferable. On the other hand, if ΔBH [0.01, 50] exceeds 6 nm, the spacing between the head slider and the medium cannot be reduced, and a high recording density exceeding 10 gigabits per inch cannot be achieved. ΔBH [0.01, 50] is 3n
The difference between the height BH [0.01%] at which the load ratio is not less than m and 6 nm and the load ratio is 0.01% and the height BH [0.8%] at which the load ratio is 0.8% is ΔBH [0.01, 0.8] (= | BH [0.01%]-BH [0.8%] |) is 3 nm or less, which is a more preferable shape in order to ensure high sliding reliability. If ΔBH [0.01, 0.8] exceeds 3 nm, the life in a continuous sliding test is shortened, which is not preferable. In order to further improve the reliability during continuous contact, in the load curve obtained from the surface roughness curve of the magnetic recording medium, the height BH [1%] where the load ratio becomes 1% and the height BH [1%] where the load ratio becomes 50% Sa BH [50
%] Is y (= | BH [1%]-BH [50%] |), and the load ratio is 1
Height BH [15%] that becomes 5% and height BH [50 that makes the load ratio 50%
%] Is x (= | BH [15%]-BH [50%] |), the point represented by the coordinates (x, y) is the point (0.1, 1.6) on the xy plane. A line connecting point (1, 3), a line connecting point (1, 3) and point (1, 4), a line connecting point (1, 4) and point (0.1, 4), Further, it is preferable that the arithmetic mean roughness (Ra) is within an area surrounded by a line segment connecting the point (0.1, 4) and the point (0.1, 1.6).
Most preferably, it is 0.7 nm or less. Outside the above range, the life in the continuous contact test is shortened by one digit or more.

【0016】さらに1インチ当たり20ギガビットを越え
るような高い記録密度を達成するためには,低浮上化の
点でΔBH[0.01, 50]が3nm以上,4nm以下であることが好
ましい。
In order to achieve a high recording density exceeding 20 gigabits per inch, ΔBH [0.01, 50] is preferably 3 nm or more and 4 nm or less from the viewpoint of low flying height.

【0017】ここで,負荷曲線とはアボットが提唱した
負荷曲線のことであり,負荷比率とは日本工業規格(JI
S B 0601)記載の負荷長さ率のことである(参考文献:
山本,兼田共著「トライボロジー」23頁,理工学社)。
また,算術平均粗さ(Ra)とは日本工業規格(JIS B 06
01)記載の粗さ表現である。
Here, the load curve is a load curve proposed by Abbott, and the load ratio is defined by Japanese Industrial Standards (JI
It refers to the load length ratio described in SB 0601) (Reference:
Yamamoto and Kaneda, "Tribology," p. 23, Science and Engineering.
Arithmetic mean roughness (Ra) is defined as Japanese Industrial Standard (JIS B 06
01) is the roughness expression described.

【0018】上記のような磁気記録媒体の表面形状の形
成方法としては,基板表面に機械加工あるいは化学表面
処理等を施すことにより,ΔBH[0.01, 50]が3nm以上,6
nm以下となる表面形状を形成するのが好ましい。この他
の表面形状形成方法としては,スパッタ法を用いてAl等
の低融点金属を島状に成長させる方法,あるいは,保護
膜表面に散布した微細粒子をマスクとしてAr等でエッチ
ングすることにより保護膜に凹凸を形成する方法等があ
る。しかし,この2つの方法には次に述べるような欠点
がある。すなわち,スパッタ法を用いてAl等の低融点金
属を島状に成長させる方法では,突起を形成する融点の
低い材料は,一般に硬度やヤング率が低く,変形を起こ
しやすい為,耐摺動性の観点から信頼性に欠ける。ま
た,低融点材料を最適な高さおよび密度の島状に成長さ
せるために,最適な下地膜が必要となり,合わせて2つ
のスパッタプロセスが追加され,成膜プロセスの安定性
および制御性が困難になる。また, Ar等のエッチング
により保護膜に凹凸を形成する方法では,マスクとなる
微粒子の凝集が避けられず,その部分が面積の大きな突
起となる。このような面積の大きな突起の上をヘッドが
通過すると,摩擦距離が長くなって高い摩擦熱が生じ,
再生信号に大きなノイズを与えるので好ましくない。一
方,基板表面に形状を形成する方法は,基本的にウエッ
トプロセスで所望の表面形状を形成できるので,上記ド
ライプロセスと比較してコストを低減できる。また,上
記2つの表面形成方法の欠点を克服でき,磁気記録媒体
を安定に量産することが可能である。基板としてはアル
ミノシリケート,ソーダライム等の強化ガラス基板が上
記表面形状を形成する上で好ましいが,上記形状が形成
可能ならば,特に限定するものではない。
As a method of forming the surface shape of the magnetic recording medium as described above, the substrate surface is subjected to machining or chemical surface treatment so that ΔBH [0.01, 50] is 3 nm or more and 6
It is preferable to form a surface shape of less than nm. Other methods for forming the surface shape include growing the low-melting metal such as Al into islands by sputtering, or protecting the surface by etching with Ar or the like using fine particles dispersed on the surface of the protective film as a mask. There is a method of forming irregularities on the film. However, these two methods have the following disadvantages. In other words, in the method of growing a low melting point metal such as Al into an island shape by using a sputtering method, a material having a low melting point for forming projections generally has low hardness and Young's modulus and is liable to be deformed. Lack of reliability from the viewpoint of In addition, in order to grow the low melting point material into islands having an optimum height and density, an optimum base film is required, and two sputtering processes are added in total, which makes it difficult to control the stability and controllability of the film forming process. become. In addition, in the method of forming irregularities on the protective film by etching with Ar or the like, aggregation of fine particles serving as a mask cannot be avoided, and that portion becomes a projection having a large area. When the head passes over a projection with such a large area, the friction distance becomes long and high frictional heat is generated,
This is undesirable because it gives a large noise to the reproduced signal. On the other hand, in the method of forming a shape on the substrate surface, a desired surface shape can be basically formed by a wet process, so that the cost can be reduced as compared with the dry process. In addition, it is possible to overcome the disadvantages of the above two surface forming methods and to stably mass-produce magnetic recording media. As the substrate, a tempered glass substrate such as aluminosilicate or soda lime is preferable for forming the surface shape, but is not particularly limited as long as the shape can be formed.

【0019】磁性層としては,構成元素に占めるコバル
トと白金の濃度が80at.%以下であり,膜面内に磁界を80
0kA/m印加して室温で試料振動型磁力計により測定した
保磁力が240kA/m以上の磁性膜を用いることが好まし
い。これは,高記録密度領域での電磁変換特性に優れる
ことによる。但し保磁力が400kA/mを超えて高すぎると
オーバーライト特性が低下するため,媒体の保磁力は重
ね書き可能な範囲で制御可能な大きさであることが好ま
しい。前記第2の下地層と磁性層の間にさらにCr-Mo等
の下地層を設けても良い。
The concentration of cobalt and platinum in the constituent elements of the magnetic layer is 80 at.
It is preferable to use a magnetic film having a coercive force of 240 kA / m or more measured with a sample vibration magnetometer at room temperature with 0 kA / m applied. This is due to the excellent electromagnetic conversion characteristics in the high recording density region. However, if the coercive force exceeds 400 kA / m and is too high, the overwrite characteristics are degraded. Therefore, it is preferable that the coercive force of the medium is large enough to be controllable within the overwritable range. An underlayer of Cr-Mo or the like may be further provided between the second underlayer and the magnetic layer.

【0020】また,耐摺動信頼性を向上する上で,磁性
層の上部に炭素を主成分とする厚さ3nm〜12nm の保護層
を設け,さらにその上に吸着性のパーフルオロアルキル
ポリエーテル等の潤滑層を厚さ0.5nm〜3nm 設けること
が好ましい。
In order to improve the sliding reliability, a protective layer mainly composed of carbon and having a thickness of 3 to 12 nm is provided on the magnetic layer, and an adsorbable perfluoroalkyl polyether is further formed thereon. It is preferable to provide a lubricating layer having a thickness of 0.5 nm to 3 nm.

【0021】本発明の第2の目的は,磁気記録媒体と,
該磁気記録媒体を駆動する駆動部と,記録部と再生部か
らなる磁気ヘッドと,該磁気ヘッドを上記磁気記録媒体
に対して相対運動させる手段と,ヘッドをランプさせる
機構部と,該磁気ヘッドへの信号入力手段と該磁気ヘッ
ドからの出力信号再生を行なうための記録再生信号処理
手段とを有する磁気記憶装置において,磁気ヘッドの再
生部を互いの磁化方向が外部磁界によって相対的に変化
することによって大きな抵抗変化を生じる複数の導電性
磁性層と,該導電性磁性層の間に配置された導電性非磁
性層を含む磁気抵抗センサで構成し,かつ磁気記録媒体
として,上記の本発明の磁気記録媒体を用いることによ
り達成できる。
A second object of the present invention is to provide a magnetic recording medium,
A drive unit for driving the magnetic recording medium, a magnetic head comprising a recording unit and a reproducing unit, means for moving the magnetic head relative to the magnetic recording medium, a mechanism for ramping the head, and the magnetic head In a magnetic storage device having a signal input means for inputting a signal to the magnetic head and a recording / reproducing signal processing means for reproducing an output signal from the magnetic head, the magnetization directions of the reproducing portions of the magnetic head are relatively changed by an external magnetic field. The present invention as a magnetic recording medium, comprising a magnetoresistive sensor including a plurality of conductive magnetic layers that cause a large change in resistance due to this and a conductive nonmagnetic layer disposed between the conductive magnetic layers. This can be achieved by using the magnetic recording medium described above.

【0022】上記磁気抵抗効果型磁気ヘッドとしては,
その磁気抵抗センサ部を互いに0.06μm以上0.18μm以下
の距離だけ隔てられた軟磁性体からなる2枚のシールド
層の間に形成することが望ましい。シールド層の間隔が
0.18μmよりも大きくなると,500kFCIを超える高線記録
密度領域で十分な再生出力が得られなくなる。また,シ
ールド層の間隔が0.06μmよりも小さくなるとシールド
層と磁気抵抗センサの絶縁性を維持することが容易でな
くなる。前記磁気記録媒体の磁性層の厚さtと記録時に
おける磁気記録媒体に対する磁気ヘッドの相対的な走行
方向に磁界を印加して測定した残留磁束密度Brとの積Br
×tは3.2mA(40ガウス・ミクロン)以上6.4mA(80ガウス・
ミクロン)以下とすることが望ましい。Br×tが3.2mA(40
ガウス・ミクロン)よりも小さくなると記録後の長時間
放置による再生出力の低下により,誤った情報が再生さ
れる危険性が高くなり,また6.4mA(80ガウス・ミクロ
ン)を超えると,記録時の重ね書きが難しくなる。
The magneto-resistance effect type magnetic head includes:
It is desirable that the magnetoresistive sensor section is formed between two shield layers made of a soft magnetic material and separated from each other by a distance of 0.06 μm or more and 0.18 μm or less. The distance between the shield layers
If it is larger than 0.18 μm, sufficient reproduction output cannot be obtained in a high linear recording density region exceeding 500 kFCI. If the distance between the shield layers is smaller than 0.06 μm, it is not easy to maintain the insulation between the shield layers and the magnetoresistive sensor. The product Br of the thickness t of the magnetic layer of the magnetic recording medium and the residual magnetic flux density Br measured by applying a magnetic field in the direction of travel of the magnetic head relative to the magnetic recording medium during recording
× t is 3.2 mA (40 gauss / micron) or more and 6.4 mA (80 gauss / micron)
(Micron) or less. Br × t is 3.2 mA (40
If it is smaller than (Gauss / micron), there is a high risk of incorrect information being reproduced due to a decrease in reproduction output due to long-term storage after recording, and if it exceeds 6.4 mA (80 Gauss / micron), Overwriting becomes difficult.

【0023】上記の磁記記憶装置において,磁気ヘッド
の再生部として,互いの磁化方向が外部磁界によって相
対的に変化することによって大きな抵抗変化を生じる複
数の導電性磁性層と,該導電性磁性層の間に配置された
導電性非磁性層を含む磁気抵抗センサを用いると,400k
FCIを超える最高線記録密度で記録した信号を安定して
再生できるので好ましい。さらに,浮上量が13nm以下,
浮上面レールの面積が1.4平方ミリメートル以下で,質
量が2mg以下の磁気ヘッドスライダー上に磁気ヘッドを
形成することが望ましい。これにより,磁気ヘッドと前
述した突起の衝突確率を低減すると同時に,衝突した場
合の衝撃を小さくでき,1平方インチ当たり11ギガビッ
ト以上の高い記録密度と高い衝撃信頼性を両立させるこ
とができる。
In the magnetic storage device described above, a plurality of conductive magnetic layers which generate a large change in resistance due to a relative change in their magnetization directions by an external magnetic field as a reproducing portion of the magnetic head; Using a magnetoresistive sensor that includes a conductive nonmagnetic layer located between layers,
It is preferable because a signal recorded at the highest linear recording density exceeding FCI can be reproduced stably. Furthermore, the flying height is 13nm or less,
It is desirable to form the magnetic head on a magnetic head slider with a flying surface rail area of 1.4 square millimeters or less and a mass of 2 mg or less. As a result, the probability of collision between the magnetic head and the above-mentioned protrusions can be reduced, and at the same time, the impact in the event of a collision can be reduced, and both high recording density of 11 gigabits per square inch or more and high impact reliability can be achieved.

【0024】[0024]

【発明の実施の形態】以下,本発明の実施例について,
図面を参照し詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
This will be described in detail with reference to the drawings.

【0025】<実施例1>図1は本発明の磁気記録媒体
の一実施の形態の断面構造図である。基板10として,厚
さ0.635mm,2.5インチ型の表面を化学強化したアルミノ
シリケートガラスディスク基板を用いた。この基板を洗
浄した後,その上に,インテバック(Intevac)社製の
枚葉式スパッタリング装置(MDP250B)を用い
て,以下の多層膜を形成した。まず,基板10の上に厚さ
40nmの65at.%Ni-20at.%Cr-15at.%Zr合金から成る第1
の下地層11と11'を基板の両面に形成した。その後,ラ
ンプヒーターにより基板の温度を約230℃に加熱した
後,99%Ar−1%O2混合ガスの圧力5mTorr(ガ
ス流量21sccm)の雰囲気に3.5秒間曝し,その後,厚
さ30nmの80at.%Cr-20at.%Ti合金からなる第2の下地
層12と12'を形成し,その上に厚さ20nmの66at.%Co-22
at.%Cr-12at.%Pt合金からなる磁性層13と13'を形成し,
その上に厚さ8nmの保護層14と14'を形成した。その後,
基板をスパッタ装置から取り出し,保護層上にパーフル
オロアルキルポリエーテルを主成分とする潤滑剤を塗布
して厚さ2nmの潤滑層15と15'を形成した。
Embodiment 1 FIG. 1 is a sectional structural view of an embodiment of a magnetic recording medium according to the present invention. As the substrate 10, a 0.635 mm thick, 2.5-inch type aluminosilicate glass disk substrate whose surface was chemically strengthened was used. After washing this substrate, the following multilayer film was formed thereon using a single-wafer sputtering apparatus (MDP250B) manufactured by Intevac. First, the thickness on the substrate 10
First made of 40nm 65at.% Ni-20at.% Cr-15at.% Zr alloy
Underlayers 11 and 11 ′ were formed on both sides of the substrate. Thereafter, the substrate was heated to a temperature of about 230 ° C. by a lamp heater, and then exposed to an atmosphere of a 99% Ar-1% O 2 mixed gas at a pressure of 5 mTorr (gas flow rate: 21 sccm) for 3.5 seconds. The second underlayers 12 and 12 'made of an.% Cr-20at.% Ti alloy are formed, and a 20 nm thick 66at.% Co-22
forming magnetic layers 13 and 13 'made of at.% Cr-12at.% Pt alloy,
The protective layers 14 and 14 'each having a thickness of 8 nm were formed thereon. afterwards,
The substrate was taken out of the sputtering apparatus, and a lubricant containing perfluoroalkyl polyether as a main component was applied on the protective layer to form lubrication layers 15 and 15 'having a thickness of 2 nm.

【0026】上記第1の下地層11と11', 第2の下地層
12と12', ならびに磁性層13と13'の形成には,すべて
放電ガスとしてArを用い,ガス圧は7mTorr(0.933Pa)
とした。さらに炭素からなる保護層14と14'の形成時に
は放電ガスとして窒素を含有したArを用い10mTorr(1.3
3Pa)とした。
The first underlayers 11 and 11 'and the second underlayer
Ar and a gas pressure of 7 mTorr (0.933 Pa) were used for forming 12 and 12 'and magnetic layers 13 and 13'.
And Further, at the time of forming the protective layers 14 and 14 ′ made of carbon, Ar containing nitrogen was used as a discharge gas and 10 mTorr (1.3
3Pa).

【0027】このようにして形成した磁気記録媒体を切
断し,イオンシニング法により積層薄膜部をすり鉢状に
膜面垂直方向から上下に薄膜化し,第1の下地層の微細
構造を加速電圧200kVで透過電子顕微鏡により観察
した結果,直径が5nmを越えるような結晶粒は観察され
なかった。また,制限視野回折像を撮影したところハロ
ーが観察され,実質的に非晶質であることが確認され
た。
The magnetic recording medium thus formed is cut, and the laminated thin film portion is formed into a mortar-like shape in the shape of a mortar by using an ion thinning method in a vertical direction, and the fine structure of the first underlayer is accelerated at an accelerating voltage of 200 kV. As a result of observation with a transmission electron microscope, no crystal grains having a diameter exceeding 5 nm were observed. When a selected area diffraction image was taken, a halo was observed, and it was confirmed that the halo was substantially amorphous.

【0028】図2は表面粗さ曲線から求まる負荷曲線を
示したものであり,縦軸は負荷比率が50%になる高さBH
[50%]を基準とした高さ(ベアリング高さBH)であり,
横軸は負荷比率を対数表示したものである。ここで,負
荷比率が0.01%のときのベアリング高さBH[0.01%]と負荷
比率が50%のときのベアリング高さBH[50%]の差(=|BH
[0.01%] - BH[50%]|)をΔBH[0.01, 50]と定義する。
FIG. 2 shows a load curve obtained from the surface roughness curve. The vertical axis represents the height BH at which the load ratio becomes 50%.
The height based on [50%] (bearing height BH)
The horizontal axis is a logarithmic representation of the load ratio. Here, the difference between the bearing height BH [0.01%] when the load ratio is 0.01% and the bearing height BH [50%] when the load ratio is 50% (= | BH
[0.01%]-BH [50%] |) is defined as ΔBH [0.01, 50].

【0029】本実施例で用いた基板の表面形状を半径14
〜31mmの範囲内で,両面合わせて8箇所で測定した結
果, 各測定点でのΔBH[0.01, 50]は4.10〜5.05nmの範
囲であり,その平均値は4.59nmであった。 一方,基板
上に潤滑層まで形成した上記媒体の表面形状を半径14〜
31mmの範囲内で,両面合わせて8箇所で測定した結果,
各測定点でのΔBH[0.01, 50]が3.92〜4.96nmの範囲で,
その平均値は4.53nmであった 。このように,基板表面
と磁気記録媒体表面のΔBH[0.01, 50]の差は2%以下と小
さく,媒体の表面形状は基板の表面形状でほぼ決められ
ている。本実施例では,基板の表面形状を変化させて,
媒体表面のΔBH[0.01, 50]が3〜6nmの媒体を作製した。
The surface shape of the substrate used in this embodiment was
As a result of measuring at 8 points on both sides within the range of ~ 31 mm, ΔBH [0.01, 50] at each measurement point was in the range of 4.10 to 5.05 nm, and the average value was 4.59 nm. On the other hand, the surface shape of the above medium formed up to the lubrication layer on the substrate has a radius of 14 to
As a result of measuring at eight places on both sides within the range of 31mm,
When ΔBH [0.01, 50] at each measurement point is in the range of 3.92 to 4.96 nm,
Its average value was 4.53 nm. As described above, the difference between ΔBH [0.01, 50] between the substrate surface and the magnetic recording medium surface is as small as 2% or less, and the surface shape of the medium is substantially determined by the surface shape of the substrate. In this embodiment, by changing the surface shape of the substrate,
A medium having a ΔBH [0.01, 50] of 3 to 6 nm on the medium surface was prepared.

【0030】上記表面形状の測定にはデジタルインスツ
ルメンツ社製の走査型プローブ顕微鏡(SPM)ナノスコ
ープШを用いた。測定範囲は10μm×10μm,スキャンラ
イン数は256本,およびスキャン速度は1本/秒である。
また,曲率半径20nm以下のノンドープシリンコン探針付
きカンチレバーを用いて,タッピングモードによって表
面粗さ曲線を測定した。ここで,タッピングモードとは
ピエゾ加振器を用いてカンチレバーを共振周波数近傍
(約50〜500kHz)で加振させ,表面上を断続的に軽く振
れながら走査する方法である。高さの絶対値はVLSIスタ
ンダード社製のVLSIパターン(Model Number: STS2-18
0, Serial Nuber: 3091-01-105)を用いて較正した。ま
た,高さ分解能は0.02nmで測定した。測定データは負荷
曲線の演算を行う前に,フィルター処理Flatten(order
=2)を行った。
The surface profile was measured using a scanning probe microscope (SPM) Nanoscope II manufactured by Digital Instruments. The measurement range is 10 μm × 10 μm, the number of scan lines is 256, and the scan speed is 1 line / sec.
Using a cantilever with a non-doped syringe probe with a radius of curvature of 20 nm or less, the surface roughness curve was measured by tapping mode. Here, the tapping mode is a method in which a cantilever is vibrated in the vicinity of a resonance frequency (about 50 to 500 kHz) using a piezo vibrator, and scanning is performed while intermittently lightly shaking the surface. The absolute value of the height is a VLSI pattern (Model Number: STS2-18
0, Serial Nuber: 3091-01-105). The height resolution was measured at 0.02 nm. The measured data is filtered before the load curve is calculated.
= 2).

【0031】図3にヘッドと本実施例の媒体の表面が設
定浮上量4nmで接触したときの摩擦力とΔBH[0.01, 50]
の関係を示す。摩擦力はヘッドが取り付けられている平
行バネの変形量を歪みゲージセンサで検出することによ
り測定した。摩擦力の絶対値を導出するために,予め重
さがわかっている分銅で歪みゲージの出力と重さの関係
を求めた。測定半径位置はディスク中心から22mmとし,
スキュー角は0゜とした。ヘッドにはピコサイズ(長手
方向1.2mm×横方向1mm)の負圧スライダを用いた。通常
摩擦力は連続摺動試験の寿命と相関があり,摩擦力が大
きくなるほど寿命は短くなる傾向がある。また,摩擦力
が25mN以上になるとスライダが媒体表面上を安定に滑ら
ず,ピッチ方向の振動が生じ,記録再生が不可能とな
る。本実施例で作製した磁気記録媒体の摩擦力は12〜15
mNであり,摺動信頼性的および記録再生特性的に問題が
生じない範囲である。
FIG. 3 shows the frictional force and ΔBH [0.01, 50] when the head and the surface of the medium of the present embodiment come into contact at the set flying height of 4 nm.
Shows the relationship. The friction force was measured by detecting the amount of deformation of the parallel spring to which the head was attached with a strain gauge sensor. In order to derive the absolute value of the frictional force, the relationship between the output of the strain gauge and the weight was determined using a weight whose weight was known in advance. The measurement radius position is 22mm from the center of the disc.
The skew angle was 0 °. A negative pressure slider having a pico size (1.2 mm in the longitudinal direction × 1 mm in the lateral direction) was used for the head. Normally, the friction force is correlated with the life of the continuous sliding test, and the life tends to be shorter as the friction force increases. If the frictional force exceeds 25 mN, the slider does not slide stably on the surface of the medium, causing vibration in the pitch direction, making recording and reproduction impossible. The frictional force of the magnetic recording medium manufactured in this example is 12 to 15
mN, which is a range that does not cause problems in sliding reliability and recording / reproducing characteristics.

【0032】図4にヘッド浮上量が7nmのときのグライ
ドカウントとΔBH[0.01, 50]の関係を示す。ここで,グ
ライドカウントとはディスク媒体片面の半径位置14〜31
mmの範囲内でヘッドが接触する突起の数である。また,
ヘッドとしてピエゾ素子付きスライダを荷重49mNのサス
ペンションに接着したものを用いた。グライドカウント
の値が5ヶ以下の領域がほぼ量産適用可能な範囲であ
る。本実施例の磁気記録媒体はこの範囲に入っており,
1インチ当たり11ギガビット以上の高い記録密度を実現
することができた。
FIG. 4 shows the relationship between glide count and ΔBH [0.01, 50] when the head flying height is 7 nm. Here, the glide count is a radial position of one side of the disk medium 14 to 31.
It is the number of protrusions that the head contacts within the range of mm. Also,
The head used was a slider with a piezo element bonded to a suspension with a load of 49 mN. The region where the glide count value is 5 or less is almost the range applicable to mass production. The magnetic recording medium of this embodiment falls within this range.
High recording densities of 11 gigabits or more per inch were achieved.

【0033】本発明は基本的に空気膜を主に利用した浮
上型のヘッドを用いている。このような系において,高
い信頼性を確保するためには,ヘッドとの干渉が特に大
きな媒体の表面粗さの中心線(いわゆる負荷比率が50%
になる高さ)より上に出ている媒体表面の形状を制御す
ることが重要である。また,種々の表面形状を有する媒
体の摺動信頼性を調査した結果,媒体が4000rpm以上の
速度で回転し,媒体表面とヘッドが10m/sを越える相対
速度で接触する可能性のあるハードディスク装置におい
ては,負荷比率が0.01%程度となる高さまでの表面形状
を制御する必要のあることが明らかとなった。具体的に
は媒体の表面形状を表す指標として負荷比率が0.01%と
なる高さと負荷比率が50%となる高さの差ΔBH[0.01, 5
0]をとり,このΔBH[0.01, 50]が3〜6nmの範囲となるよ
うに媒体表面の形状を制御することにより,高い信頼性
が得られる。
The present invention basically uses a flying type head mainly utilizing an air film. In such a system, in order to ensure high reliability, the center line of the surface roughness of the medium (so-called load ratio is 50%
It is important to control the shape of the surface of the medium that is above the height. In addition, as a result of investigating the sliding reliability of media having various surface shapes, a hard disk drive where the media rotates at a speed of 4000 rpm or more and the head may contact the media surface at a relative speed exceeding 10 m / s In, it became clear that it was necessary to control the surface shape up to a height where the load ratio was about 0.01%. Specifically, as an index representing the surface shape of the medium, the difference ΔBH [0.01,5 between the height at which the load ratio becomes 0.01% and the height at which the load ratio becomes 50%
0], and by controlling the shape of the medium surface such that ΔBH [0.01, 50] is in the range of 3 to 6 nm, high reliability can be obtained.

【0034】本実施例で作製した媒体の磁性層の厚さt
と記録時における磁気記録媒体に対する磁気ヘッドの相
対的な走行方向に磁界を印加して測定した残留磁束密度
Brとの積Br×tは4.8mA(60ガウス・ミクロン)であり,保
持力が260kA/mであった。この媒体を用いて,孤立再生
波の出力の振幅(0-p値)SLFと記録密度が400kFCIの信
号を記録した場合の積算媒体ノイズNdの比SLF/Ndを評価
しところ,28.3dBという高い値が得られた。ここで,磁
気ヘッドとしては,シールドギャップ長Gsを0.18μmと
した実施例7に記載のスピンバルブ型の再生素子と,ギ
ャップ長が0.25μmの電磁誘導型書き込み素子からなる
磁気ヘッドを用い,ヘッドの浮上量は15nmとした。
The thickness t of the magnetic layer of the medium manufactured in this embodiment
Magnetic flux density measured by applying a magnetic field in the direction of travel of the magnetic head relative to the magnetic recording medium during and after recording
The product Br × t with Br was 4.8 mA (60 gauss / micron) and the holding power was 260 kA / m. Using this medium, we evaluated the ratio SLF / Nd between the output amplitude (0-p value) SLF of the isolated reproduction wave and the integrated medium noise Nd when a signal with a recording density of 400 kFCI was recorded. The value was obtained. Here, as the magnetic head, a magnetic head composed of a spin-valve type reproducing element described in Example 7 with a shield gap length Gs of 0.18 μm and an electromagnetic induction type writing element with a gap length of 0.25 μm was used. Was set to 15 nm.

【0035】<比較例1>上記実施例1で,媒体表面の
ΔBH[0.01, 50]が1〜2.6nmである以外は上記と同一条件
で作成した磁気記録媒体を比較例1とした。図3に本比
較例の媒体の摩擦力とΔBH[0.01, 50]の関係をプロット
した。実施例1の媒体では摩擦力が12〜15mNであるのに
対して,本比較例の媒体の摩擦力は46〜52mNであり,摺
動信頼性の劣化のみならず,安定した記録再生も不可能
である。よって,本比較例では1インチ当たり11ギガビ
ット以上の高い記録密度を達成することは困難である。
Comparative Example 1 A magnetic recording medium prepared in the same manner as in Example 1 except that ΔBH [0.01, 50] on the medium surface was 1 to 2.6 nm was used as Comparative Example 1. FIG. 3 plots the relationship between the frictional force of the medium of this comparative example and ΔBH [0.01, 50]. While the frictional force of the medium of Example 1 was 12 to 15 mN, the frictional force of the medium of this comparative example was 46 to 52 mN, which not only deteriorated the sliding reliability but also prevented stable recording and reproduction. It is possible. Therefore, in this comparative example, it is difficult to achieve a high recording density of 11 gigabits per inch or more.

【0036】<比較例2>上記実施例1で媒体表面のΔ
BH[0.01, 50]が6.3〜9.1nmである以外は上記と同一条件
で作成した磁気記録媒体を比較例2とした。
<Comparative Example 2> The Δ
A magnetic recording medium prepared under the same conditions as above except that BH [0.01, 50] was 6.3 to 9.1 nm was used as Comparative Example 2.

【0037】図3に見るように,比較例2の摩擦力は8
〜13mNであり,実施例1と同等か,それ以下である。こ
の為,摺動信頼性及び安定な記録再生特性には問題が生
じにくい。しかし,図4より,ΔBH[0.01, 50]が大きく
なるに従って,グライドカウントが急激に増加するた
め,ヘッドがクラッシュする確率が高くなり,摺動信頼
性的に問題である。よって,本比較例では1インチ当た
り11ギガビット以上の高い記録密度を達成することは困
難である。
As shown in FIG. 3, the frictional force of Comparative Example 2 was 8
1313 mN, which is equal to or less than that of the first embodiment. For this reason, problems do not easily occur in sliding reliability and stable recording / reproducing characteristics. However, as shown in FIG. 4, as ΔBH [0.01, 50] increases, the glide count sharply increases, so that the probability of head crash increases, which is a problem in sliding reliability. Therefore, in this comparative example, it is difficult to achieve a high recording density of 11 gigabits per inch or more.

【0038】<実施例2>実施例2として,上記実施例
1で,媒体表面のΔBH[0.01, 0.8]が0.22〜3.84nmの範
囲で,それ以外は上記と同一条件で作成した磁気記録媒
体を作製した。ここで,ΔBH[0.01, 0.8]は図2に示す
通りで,負荷比率が0.01%のときのベアリング高さBH[0.
01%]と負荷比率が0.8%のときのベアリング高さBH[0.8%]
の差(=|BH[0.01%] - BH[0.8%]|)のことである。ま
た,実施例2の媒体のΔBH[0.01, 50]を測定した結果,
4.42〜5.38nmの範囲内であった。
<Embodiment 2> As Embodiment 2, a magnetic recording medium prepared in the same manner as in Embodiment 1 except that ΔBH [0.01, 0.8] on the medium surface is in the range of 0.22 to 3.84 nm, and the other conditions are the same as above. Was prepared. Here, ΔBH [0.01, 0.8] is as shown in FIG. 2, and the bearing height BH [0. 0 when the load ratio is 0.01%.
01%] and bearing height BH [0.8%] when the load ratio is 0.8%
Difference (= | BH [0.01%]-BH [0.8%] |). Also, as a result of measuring ΔBH [0.01, 50] of the medium of Example 2,
It was in the range of 4.42 to 5.38 nm.

【0039】図5にヘッドと媒体が設定浮上量4nmで接
触し続けたときにクラッシュするまでの時間とΔBH[0.0
1, 0.8]の関係を示す。ΔBH[0.01, 0.8]が3nmを越える
と,ΔBH[0.01, 0.8]が大きくなるに従って,クラッシ
ュするまでの時間が短くなることがわかる。ΔBH[0.01,
0.8]が大きいということは,表面粗さ頂上部の高さバ
ラツキが大きいということなので,バラツキで高い部分
から塑性変形が生じ,摩耗すると考えられる。本発明で
達成しようとしている1インチ当たり11ギガビット以上
の高い記録密度では磁性層の上に設ける保護膜の厚さが
8nm以下と非常に薄いため,高さバラツキを促すΔBH[0.
01, 0.8]が3nmを越えると,摩耗が大き過ぎて,十分な
耐摺動信頼性を確保することができない。よって,ΔBH
[0.01, 0.8]は0.2nm以上,30nm以下であることが妥当で
ある。
FIG. 5 shows the time until a crash when the head and the medium keep contacting each other at the set flying height of 4 nm and ΔBH [0.0
1, 0.8]. When ΔBH [0.01, 0.8] exceeds 3 nm, it can be seen that as ΔBH [0.01, 0.8] increases, the time to crash decreases. ΔBH [0.01,
0.8] means that the height variation at the top of the surface roughness is large, so it is considered that the plastic deformation occurs from the high part due to the variation and wear occurs. At a high recording density of 11 gigabits per inch or more to be achieved by the present invention, the thickness of the protective film provided on the magnetic layer is reduced.
Since the thickness is very thin, less than 8 nm, ΔBH [0.
When [01, 0.8] exceeds 3 nm, the abrasion is too great and sufficient sliding reliability cannot be ensured. Therefore, ΔBH
It is appropriate that [0.01, 0.8] is not less than 0.2 nm and not more than 30 nm.

【0040】<実施例3>実施例3として,上記実施例
1で,第1の下地層の厚さが0〜90nmの範囲で,それ以
外は上記と同一条件で作製した磁気記録媒体と,第2の
下地層の厚さが0〜100nmの範囲で,それ以外は上記と同
一条件で作製した磁気記録媒体の2種類を作製した。図
6にヘッドと媒体が設定浮上量4nmで接触し続けたとき
にクラッシュするまでの時間と第1の下地層の厚さの関
係を示す。また,図7にヘッド浮上量が7nmのときのグ
ライドカウントと第2の下地層の厚さの関係を示す。
<Embodiment 3> As Embodiment 3, a magnetic recording medium manufactured under the same conditions as above in Embodiment 1 except that the thickness of the first underlayer is in the range of 0 to 90 nm, and Two types of magnetic recording media were manufactured under the same conditions as above except that the thickness of the second underlayer was in the range of 0 to 100 nm. FIG. 6 shows the relationship between the time until the head crashes and the thickness of the first underlayer when the head and the medium continue to contact each other at the set flying height of 4 nm. FIG. 7 shows the relationship between the glide count and the thickness of the second underlayer when the head flying height is 7 nm.

【0041】図6より,第1の下地層の厚さが20nm以上
では250時間経過しても,クラッシュは確認できない。
一方,20nm未満ではクラッシュするまでの時間が短く,
厚さが20nm以上と比較しておよそ半分以下であり,ヘッ
ドと媒体間の動的接触頻度が高いインタフェイスでは摺
動耐力不足である。また,通常,媒体の各層を形成する
のに用いるスパッタ装置では本実施例で用いたインテバ
ック社製の成膜装置に限らず,膜厚とターゲットの寿命
はほぼ反比例するので,膜厚が厚いとターゲットの消費
量が多くなり,原価が高くなる。また,量産タクトの短
縮およびターゲットの交換頻度の低減を図るためには,
成膜室を追加しなければならず,余分なコストが必要に
なる。よって,第1の下地層の厚さは80nm以下が適当で
ある。
FIG. 6 shows that no crash can be confirmed even if 250 hours have passed when the thickness of the first underlayer is 20 nm or more.
On the other hand, if it is less than 20 nm, the time to crash is short,
The thickness is less than half the thickness compared to 20 nm or more, and the interface with high frequency of dynamic contact between the head and the medium has insufficient sliding resistance. In general, the sputtering apparatus used to form each layer of the medium is not limited to the film forming apparatus manufactured by Intevac Corporation used in the present embodiment. And the consumption of the target increases, and the cost increases. Also, in order to reduce mass production tact and reduce the frequency of target replacement,
It is necessary to add a film forming chamber, and extra cost is required. Therefore, the thickness of the first underlayer is suitably 80 nm or less.

【0042】図7より,グライドカウントは第2の下地
層の厚さが60nm以下で4ヶ以下であるのに対して,厚さ
が60nmを上回るとグライドカウントが著しく増加する。
これは上述したように結晶質特有の問題で,膜厚が厚く
なると媒体表面に対して垂直方向に異常成長し易くな
り,厚さが60nmを上回ると浮上量7nmで飛行しているヘ
ッドに接触すると推定できる。一方, 第2の下地層の
厚さが2nmの媒体では保持力が120kA/mであり,1インチ
当たり11ギガビット以上の高記録密度で必要とされる24
0kA/m以上にはとても及ばない。第2の下地層の厚さは3
nm以上,好ましくは8nm以上必要である。
As shown in FIG. 7, the glide count is 4 or less when the thickness of the second underlayer is 60 nm or less, whereas the glide count is significantly increased when the thickness exceeds 60 nm.
This is a problem specific to crystalline materials as described above. When the film thickness is large, it is easy to grow abnormally in the direction perpendicular to the medium surface, and when the film thickness exceeds 60 nm, it comes into contact with the head flying at a flying height of 7 nm. Then it can be estimated. On the other hand, a medium with a second underlayer thickness of 2 nm has a coercive force of 120 kA / m, which is required at a high recording density of 11 gigabits per inch or more.
It is far below 0kA / m. The thickness of the second underlayer is 3
nm or more, preferably 8 nm or more.

【0043】<実施例4>図8は本発明の磁気記録媒体
の一実施の形態の断面構造図である。基板70として,厚
さ0.635mm,2.5インチ型の表面を化学強化したアルミノ
シリケートガラス基板を用いた。この基板を洗浄した
後,その上に,インテバック(Intevac)社製の枚葉式
スパッタリング装置(MDP250B)を用いて,以下
の多層膜を形成した。まず,ランプヒーターにより基板
の温度を約230℃に加熱した後,基板70の上に厚さ0〜10
0nmの80at.%Cr-20at.%Ti合金から成る下地層71と71'
を基板の両面に形成した。その上に厚さ20nmの66at.%
Co-22at.%Cr-12at.%Pt合金からなる磁性層72と72'を形
成し,その上に厚さ8nmの保護層73と73'を形成した。そ
の後,基板をスパッタ装置から取り出し,保護層上にパ
ーフルオロアルキルポリエーテルを主成分とする潤滑剤
を塗布して厚さ2nmの潤滑層74と74'を形成した磁気記
録媒体を作製した。ここで,媒体の表面形状をAFMを用
いて実施例1と同一条件で測定した結果,半径14〜31mm
の範囲内で,両面合わせて8箇所の測定点でΔBH[0.01,
50]が3.20〜5.61nmであった。
<Embodiment 4> FIG. 8 is a sectional structural view of an embodiment of a magnetic recording medium according to the present invention. As the substrate 70, a 0.635 mm-thick, 2.5-inch aluminosilicate glass substrate whose surface was chemically strengthened was used. After washing this substrate, the following multilayer film was formed thereon using a single-wafer sputtering apparatus (MDP250B) manufactured by Intevac. First, the temperature of the substrate is heated to about 230 ° C. by a lamp heater, and then the thickness of 0 to 10
Underlayers 71 and 71 ′ made of 0 nm 80 at.% Cr-20 at.% Ti alloy
Was formed on both sides of the substrate. On top of that, 66at.% Of 20nm thickness
Magnetic layers 72 and 72 'made of a Co-22at.% Cr-12at.% Pt alloy were formed, and protective layers 73 and 73' having a thickness of 8 nm were formed thereon. Thereafter, the substrate was taken out of the sputtering apparatus, and a lubricant containing perfluoroalkyl polyether as a main component was applied on the protective layer to produce a magnetic recording medium in which lubricating layers 74 and 74 'having a thickness of 2 nm were formed. Here, the surface shape of the medium was measured using the AFM under the same conditions as in Example 1, and as a result, the radius was 14 to 31 mm.
BBH [0.01,
50] was 3.20 to 5.61 nm.

【0044】図9に浮上量7nmでのグライドカウントと
下地層の厚さの関係を示す。グライドカウントは下地層
の厚さが50nm以下で4ヶ以下であるのに対して,厚さが5
0nmを上回るとグライドカウントが著しく増加する。こ
れは上述したように結晶質特有の問題で,膜厚が厚くな
ると媒体表面に対して垂直方向に異常成長し易くなり,
厚さが60nmを上回ると浮上量7nmで飛行しているヘッド
に接触すると推定できる。このように,基板と結晶質の
下地層の間に実質的に非晶質なる下地層を形成しなくて
も,結晶質の下地層の厚さが50nm以下であるならば,1
インチ当たり11ギガビット以上の高記録密度で必要な低
浮上性および耐摺動性を確保できる。
FIG. 9 shows the relationship between the glide count at a flying height of 7 nm and the thickness of the underlayer. The glide count is less than 4 when the thickness of the underlayer is 50 nm or less,
Above 0 nm, glide count increases significantly. This is a problem peculiar to crystalline as described above. As the film thickness increases, abnormal growth tends to occur in the direction perpendicular to the medium surface.
If the thickness exceeds 60 nm, it can be estimated that the head comes in contact with the flying head at a flying height of 7 nm. As described above, even if a substantially amorphous underlayer is not formed between the substrate and the crystalline underlayer, if the thickness of the crystalline underlayer is 50 nm or less, 1
The required low levitation and sliding resistance can be secured at a high recording density of 11 gigabits per inch or more.

【0045】<実施例5>図2に示す負荷比率におい
て,負荷比率1%のときのベアリング高さBH[1%]と負荷比
率50%のときのベアリング高さBH[50%]の差をyと定義す
る。また,負荷比率15%のときのベアリング高さBH[15%]
と負荷比率50%のときのベアリング高さBH[50%]の差をx
と定義する。
<Embodiment 5> In the load ratio shown in FIG. 2, the difference between the bearing height BH [1%] when the load ratio is 1% and the bearing height BH [50%] when the load ratio is 50% is shown. Defined as y. Also, bearing height BH [15%] when the load ratio is 15%
And the bearing height BH [50%] at a load ratio of 50%
Is defined.

【0046】実施例5として,媒体のyが0.81〜4.35nm
で,xが0.11〜1.66nmの範囲にある表面形状を基板の表
面形状を変化させて作製した。また,上記表面形状以外
は実施例4と同一条件で作製した。図10にヘッドと媒
体が設定浮上量4nmで接触し続けたときに,2000時間以
上クラッシュしなかった媒体を○,500時間以上,2000
時間未満でクラッシュした媒体を△,500時間未満でク
ラッシュした媒体を×とし,縦軸にy,横軸にxを設け,
マッピングしたものである。図10において,yが座標
(x, y)で表される点(0.1, 1.6)と点(1, 3)を結ぶ
直線よりも小さい領域では500時間未満でクラッシュに
至る。点(0.1, 1.6)と点(1, 3)を結ぶ直線は粗さの
中心付近(負荷比率15%)の高さxと中間付近(負荷比率
1%)の高さyの関係を表しており,任意のxに対して摩耗
特性的に必要なy(限界高さ)が存在することを示して
いる。この限界高さこそが低浮上,高信頼性を確保する
ための表面設計に必要な因子である。そこで,この限界
高さ以下では,ヘッドを長時間,安定に支持することが
できず,クラッシュに至ると考えられる。さらにxが1nm
を越える領域と,yが4nmを越える領域では2000時間未満
でクラッシュに至る。ヘッドと媒体の摩擦環境下で,媒
体表面が徐々に摩耗し始めると,粗さの中心付近も接触
対象となり得る。そのとき,xが大きければ大きいほ
ど,より高いところで,大きな接触面積が生じ,摩擦力
が増大する。yが点(0.1, 1.6)と点(1,3)を結ぶ直線
以上で,xが1nmを越える領域では,長時間の連続接触試
験の課程で摩擦力が増大し,2000時間未満でクラッシュ
したと推察される。一方, yが4nmを越える領域では,
粗さが大きく,ヘッドと激しく干渉するため,摩耗を抑
制できず,2000時間未満でクラッシュしたと考えられ
る。
In the fifth embodiment, the medium y is 0.81 to 4.35 nm.
Thus, a surface shape having x in the range of 0.11 to 1.66 nm was produced by changing the surface shape of the substrate. Except for the above surface shape, it was manufactured under the same conditions as in Example 4. FIG. 10 shows that the medium that did not crash for 2000 hours or more when the head and the medium continued to contact at the set flying height of 4 nm was marked with a circle.
A medium that crashed in less than 500 hours was marked with △, a medium that crashed in less than 500 hours was marked with x, y was set on the vertical axis, and x was set on the horizontal axis
It is a mapping. In FIG. 10, in an area smaller than a straight line connecting point (0.1, 1.6) and point (1, 3) where y is represented by coordinates (x, y), a crash occurs in less than 500 hours. The straight line connecting point (0.1, 1.6) and point (1, 3) is the height x near the center of the roughness (load ratio 15%) and near the middle (load ratio).
1%), which indicates that there is a necessary y (limit height) for wear characteristics for any x. This critical height is the factor necessary for the surface design to ensure low levitation and high reliability. Therefore, if the height is less than the limit height, the head cannot be stably supported for a long time, and it is considered that a crash occurs. X is 1 nm
Crashes occur in less than 2,000 hours for the region exceeding y and the region where y exceeds 4 nm. If the surface of the medium gradually starts to wear under the friction environment between the head and the medium, the vicinity of the center of the roughness may also be a contact target. At that time, the larger the value of x, the larger the contact area at a higher position, and the greater the frictional force. In the region where y is more than the straight line connecting point (0.1, 1.6) and point (1, 3) and x exceeds 1 nm, the frictional force increased during the long-term continuous contact test, and crashed in less than 2000 hours It is inferred. On the other hand, in the region where y exceeds 4 nm,
It is considered that the roughness was so large that it severely interfered with the head, so that wear could not be suppressed, and that it crashed in less than 2000 hours.

【0047】以上より,図10において座標(x, y)で
表される点が,xy平面上の点(0.1,1.6)と点(1, 3)
を結ぶ線分と,点(1, 3)と点(1, 4)を結ぶ線分と,
点(1, 4)と点(0.1, 4)を結ぶ線分と,さらに点(0.
1, 4)と点(0.1, 1.6)を結ぶ線分で囲まれた領域
(A)内であれば,2000時間以上の摺動耐力が確保で
き,1インチ当たり20ギガビット以上の高記録密度で必
要な低浮上性および耐摺動性を確保できる。また,非晶
質の層からなる下地層がなくても,十分な特性が得られ
た。ここで,領域(A)の範囲内の算術平均粗さ(Ra)
を実施例1と同一の条件でAFMによって測定した結果,
0.21〜0.69nmであった。
As described above, the point represented by the coordinates (x, y) in FIG. 10 is the point (0.1, 1.6) and the point (1, 3) on the xy plane.
And a line connecting points (1, 3) and (1, 4)
A line segment connecting point (1, 4) and point (0.1, 4) and point (0.
In the area (A) surrounded by the line connecting the points (1, 4) and the points (0.1, 1.6), a sliding resistance of 2000 hours or more can be secured, and a high recording density of 20 gigabits or more per inch can be obtained. Necessary low levitation and sliding resistance can be secured. Sufficient characteristics were obtained even without an underlayer consisting of an amorphous layer. Here, the arithmetic average roughness (Ra) within the area (A)
Was measured by AFM under the same conditions as in Example 1.
0.21 to 0.69 nm.

【0048】<実施例6>図10において,媒体の表面
粗さが領域(A)内にあり,yが2.91〜3.13nmで,xが0.
42〜0.50nmである媒体で,表面形状以外は非晶質からな
る下地層を持つ実施例1と同一条件の磁気記録媒体を実
施例6として作製した。ここで,実施例6の算術平均粗
さ(Ra)は,0.39〜0.48nmであった。
<Embodiment 6> In FIG. 10, the surface roughness of the medium is in the region (A), y is 2.91 to 3.13 nm, and x is 0.2.
A magnetic recording medium having a thickness of 42 to 0.50 nm and having the same conditions as in Example 1 having an underlayer made of amorphous except for the surface shape was produced as Example 6. Here, the arithmetic average roughness (Ra) of Example 6 was 0.39 to 0.48 nm.

【0049】この媒体とヘッドを設定浮上量4nmで連続
接触試験した結果,3000時間以上クラッシュせずに稼働
し続けることが確認でき,1インチ当たり40ギガビット
以上の高記録密度で必要な低浮上性および耐摺動性を確
保できた。
As a result of a continuous contact test of the medium and the head at the set flying height of 4 nm, it was confirmed that the medium and the head continued to operate without crash for more than 3000 hours, and the low flying performance required at a high recording density of 40 gigabits per inch or more was obtained. And the sliding resistance was secured.

【0050】<実施例7>実施例1から6に記載した磁
気記録媒体91と,該磁気記録媒体を駆動する駆動部92
と,記録部と再生部からなる磁気ヘッド93と,該磁気ヘ
ッドを上記磁気記録媒体に対して相対運動させる手段94
と,該磁気ヘッドへの信号入力手段と該磁気ヘッドから
の出力信号再生を行なうための記録再生信号処理手段95
及びアンロード時に待避する機構部96とを有する磁気記
憶装置を図11に示すように構成した。
<Embodiment 7> The magnetic recording medium 91 described in Embodiments 1 to 6 and a drive unit 92 for driving the magnetic recording medium
A magnetic head 93 comprising a recording unit and a reproducing unit; and means 94 for moving the magnetic head relative to the magnetic recording medium.
Signal input means to the magnetic head, and recording / reproducing signal processing means 95 for reproducing an output signal from the magnetic head.
FIG. 11 shows a magnetic storage device having a mechanical unit 96 that is retracted during unloading.

【0051】前記磁気ヘッドの再生部は磁気抵抗効果型
磁気ヘッドで構成されるようにした。図12は磁気ヘッ
ドの構造を示す模式的斜視図である。このヘッドは基体
401上に形成された記録用の電磁誘導型ヘッドと再生用
の磁気抵抗効果型ヘッドを併せ持つ複合型ヘッドであ
る。前記記録ヘッドはコイル402を挟む上部記録磁極403
と下部記録磁極兼上部シールド層404からなり,記録磁
極間のギャップ長は0.27μmとした。また,コイルには
厚さ3μmの銅を用いた。前記再生用ヘッドは磁気抵抗
センサ405とその両端の電極パターン406からなり,磁気
抵抗センサは下部記録磁極兼上部シールド層404と下部
シールド層407で挟まれ,2つのシールド層間の距離は
0.15μmとした。尚,この図では記録磁極間のギャップ
層,及びシールド層と磁気抵抗センサ間のギャップ層は
省略してある。
The reproducing section of the magnetic head is constituted by a magnetoresistive head. FIG. 12 is a schematic perspective view showing the structure of the magnetic head. This head is a substrate
This is a composite head having both an electromagnetic induction type head for recording and a magnetoresistive head for reproduction formed on 401. The recording head has an upper recording magnetic pole 403 sandwiching a coil 402.
And a lower recording magnetic pole / upper shield layer 404. The gap length between the recording magnetic poles was 0.27 μm. Further, copper having a thickness of 3 μm was used for the coil. The reproducing head comprises a magnetoresistive sensor 405 and electrode patterns 406 at both ends of the magnetoresistive sensor. The magnetoresistive sensor is sandwiched between a lower recording magnetic pole / upper shield layer 404 and a lower shield layer 407. The distance between the two shield layers is
It was set to 0.15 μm. In this figure, the gap layer between the recording magnetic poles and the gap layer between the shield layer and the magnetoresistive sensor are omitted.

【0052】図13に磁気抵抗センサの断面構造を示
す。磁気センサの信号検出領域500は,互いの磁化方向
が外部磁界によって相対的に変化することによって大き
な抵抗変化を生じる複数の導電性磁性層と,この導電性
磁性層の間に配置された導電性非磁性層を含む磁気抵抗
センサ(スピンバルブ型の再生素子)によって構成され
る。この磁気センサの構造は,ギャップ層501上に,Ta
バッファ層502,第1の磁性層503,銅で構成された中間
層504,第2の磁性層505,Fe-50at.%Mn合金からなる反
強磁性層506が順次形成された構造である。前記第1の
磁性層にはNi-20at.%Fe合金を使用し,第2の磁性層に
はコバルトを使用した。反強磁性層からの交換磁界によ
り,第2の磁性層の磁化は一方向に固定されている。こ
れに対し,第2の磁性層と非磁性層を介して接する第1
の磁性層の磁化の方向は,磁気記録媒体からの漏洩磁界
により変化するため,抵抗変化が生じる。
FIG. 13 shows a sectional structure of the magnetoresistive sensor. The signal detection area 500 of the magnetic sensor is composed of a plurality of conductive magnetic layers that generate a large resistance change when their magnetization directions change relative to each other due to an external magnetic field, and a conductive layer disposed between the conductive magnetic layers. It is constituted by a magnetoresistive sensor (spin-valve type reproducing element) including a nonmagnetic layer. The structure of this magnetic sensor is such that Ta
It has a structure in which a buffer layer 502, a first magnetic layer 503, an intermediate layer 504 made of copper, a second magnetic layer 505, and an antiferromagnetic layer 506 made of an Fe-50at.% Mn alloy are sequentially formed. A Ni-20at.% Fe alloy was used for the first magnetic layer, and cobalt was used for the second magnetic layer. The magnetization of the second magnetic layer is fixed in one direction by the exchange magnetic field from the antiferromagnetic layer. On the other hand, the first magnetic layer and the first magnetic layer which are in contact with each other via the non-magnetic layer.
Since the direction of magnetization of the magnetic layer changes due to the leakage magnetic field from the magnetic recording medium, a resistance change occurs.

【0053】信号検出領域の両端にはテーパー形状に加
工されたテーパー部507がある。このテーパー部は,第
1の磁性層を単磁区化するための永久磁石層508と,そ
の上に形成された信号を取り出すための一対の電極406
からなる。永久磁石層は保磁力が大きく,磁化方向が容
易に変化しないことが必要であり ,Co-Cr-Pt合金を用
いた。
At both ends of the signal detection area, there are tapered portions 507 which are formed into a tapered shape. The tapered portion includes a permanent magnet layer 508 for converting the first magnetic layer into a single magnetic domain, and a pair of electrodes 406 formed thereon for extracting a signal.
Consists of The permanent magnet layer must have a large coercive force and the magnetization direction must not change easily, and a Co-Cr-Pt alloy was used.

【0054】実施例1から5に記載した本発明の磁気記
録媒体と,図12に示した上記ヘッドと組み合わせて,
図11に示す磁気記憶装置を構成した。上記のいずれの
媒体を用いた場合にも,このようにして構成した磁気記
憶装置によって,1平方インチ当たり11ギガビット以上
の記録密度を実現することができた。
By combining the magnetic recording medium of the present invention described in Examples 1 to 5 with the above-described head shown in FIG.
The magnetic storage device shown in FIG. 11 was configured. When using any of the above media, the magnetic storage device configured as described above could achieve a recording density of 11 gigabits per square inch or more.

【0055】本実施例では,最小浮上量が10nm,浮上面
レールの面積が1.4平方ミリメートル以下で,質量が2m
g以下の磁気ヘッドスライダー上に磁気抵抗効果型磁気
ヘッドが形成されている磁気ヘッドを用いた。スライダ
ーの浮上面レールの面積を1.4平方ミリメートル以下と
し,さらに,質量を2mg以下とすることにより,耐衝撃
信頼性を向上できる。これにより,高い記録密度と高い
衝撃性を両立させることができ,1平方インチ当たり11
ギガビット以上の記録密度で30万時間以上の平均故障
時間間隔(MTBF)を実現ができた。
In this embodiment, the minimum flying height is 10 nm, the area of the flying surface rail is 1.4 square millimeters or less, and the mass is 2 m.
A magnetic head having a magnetoresistive magnetic head formed on a magnetic head slider of g or less was used. By setting the area of the slider's air bearing surface rail to 1.4 mm2 or less and the mass to 2 mg or less, the impact reliability can be improved. As a result, it is possible to achieve both high recording density and high impact resistance.
With a recording density of gigabit or more, a mean time between failures (MTBF) of 300,000 hours or more was realized.

【0056】<実施例8>図1に本発明の磁気記録媒体
の一実施の形態の断面構造図を示す。基板10として,厚
さ0.635mm,2.5インチ型の表面を化学強化したアルミノ
シリケートガラスディスク基板を用いた。この基板を洗
浄した後,その上に,インテバック(Intevac)社製の
枚葉式スパッタリング装置(MDP250B)を用い
て,以下の多層膜を形成した。まず,基板10の上に厚さ
40nmの83at.%Ni-17at.%P合金から成る第1の下地層11
と11'を基板の両面に形成した。その後,ランプヒータ
ーにより基板の温度を約230℃に加熱した後,厚さ30n
mの80at.%Cr-20at.%Ti合金からなる第2の下地層12と1
2'を形成し,その上に厚さ20nmの66at.%Co-22at.%Cr-
12at.%Pt合金からなる磁性層13と13'を形成し,その上
に厚さ8nmの保護層14と14'を形成した。その後,基板を
スパッタ装置から取り出し,保護層上にパーフルオロア
ルキルポリエーテルを主成分とする潤滑剤を塗布して厚
さ2nmの潤滑層15と15'を形成した。
<Embodiment 8> FIG. 1 is a sectional structural view of a magnetic recording medium according to an embodiment of the present invention. As the substrate 10, a 0.635 mm thick, 2.5-inch type aluminosilicate glass disk substrate whose surface was chemically strengthened was used. After washing this substrate, the following multilayer film was formed thereon using a single-wafer sputtering apparatus (MDP250B) manufactured by Intevac. First, the thickness on the substrate 10
40 nm 83at.% Ni-17at.% P alloy first underlayer 11
And 11 'were formed on both sides of the substrate. After that, the temperature of the substrate is heated to about 230 ° C. by a lamp heater, and the thickness is 30 n.
Second underlayers 12 and 1 made of 80 at.% Cr-20 at.% Ti alloy
2 'is formed thereon, and a 20 nm thick 66at.% Co-22at.% Cr-
Magnetic layers 13 and 13 'made of a 12 at.% Pt alloy were formed, and protective layers 14 and 14' having a thickness of 8 nm were formed thereon. Thereafter, the substrate was taken out of the sputtering apparatus, and a lubricant containing perfluoroalkyl polyether as a main component was applied on the protective layer to form lubricant layers 15 and 15 'having a thickness of 2 nm.

【0057】上記第1の下地層11と11', 第2の下地層
12と12', ならびに磁性層13と13'の形成には,すべて
放電ガスとしてArを用い,ガス圧は7mTorr(0.933Pa)
とした。さらに炭素からなる保護層14と14'の形成時に
は放電ガスとして窒素を含有したArを用い10mTorr(1.3
3Pa)とした。
The first underlayers 11 and 11 'and the second underlayer
Ar and a gas pressure of 7 mTorr (0.933 Pa) were used for forming 12 and 12 'and magnetic layers 13 and 13'.
And Further, at the time of forming the protective layers 14 and 14 ′ made of carbon, Ar containing nitrogen was used as a discharge gas and 10 mTorr (1.3
3Pa).

【0058】このようにして形成した磁気記録媒体を切
断し,イオンシニング法により積層薄膜部をすり鉢状に
膜面垂直方向から上下に薄膜化し,第1の下地層の微細
構造を加速電圧200kVで透過電子顕微鏡により観察
した結果,直径が5nmを越えるような結晶粒は観察され
なかった。また,制限視野回折像を撮影したところハロ
ーが観察され,実質的に非晶質であることが確認され
た。
The magnetic recording medium thus formed is cut, and the laminated thin film portion is formed into a mortar-like shape by an ion thinning method so as to be vertically thinner from a direction perpendicular to the film surface, and the fine structure of the first underlayer is accelerated at an accelerating voltage of 200 kV. As a result of observation with a transmission electron microscope, no crystal grains having a diameter exceeding 5 nm were observed. When a selected area diffraction image was taken, a halo was observed, and it was confirmed that the halo was substantially amorphous.

【0059】また,本実施例の表面形状を半径14〜31mm
の範囲内で,両面合わせて8箇所で測定した結果, 各
測定点でのΔBH[0.01, 50]は4.22〜5.29nmの範囲にあっ
た。
The surface shape of this embodiment is set to a radius of 14 to 31 mm.
As a result of measurement at eight locations on both sides within the range, ΔBH [0.01, 50] at each measurement point was in the range of 4.22 to 5.29 nm.

【0060】上述より,Ni-P合金からなる第1の下地層
でも,第1の下地層が実質的に非晶質であり,媒体のΔ
BH[0.01, 50]が3nm以上,6nm以下である磁気記録媒体が
作製できた。
As described above, even in the first underlayer made of the Ni—P alloy, the first underlayer is substantially amorphous,
A magnetic recording medium having a BH [0.01, 50] of 3 nm or more and 6 nm or less was produced.

【0061】本実施例で作製した媒体の孤立再生波の出
力の振幅(0-p値)SLFと記録密度が400kFCIの信号を記
録した場合の積算媒体ノイズNdの比SLF/Ndを評価しとこ
ろ,26.4dBという高い値が得られた。ここで,磁気ヘッ
ドとしては,シールドギャップ長Gsを0.18μmとした実
施例4に記載のスピンバルブ型の再生素子と,ギャップ
長が0.25μmの電磁誘導型書き込み素子からなる磁気ヘ
ッドを用い,ヘッドの浮上量は15nmとした。
The ratio SLF / Nd of the output amplitude (0-p value) SLF of the isolated reproduction wave of the medium manufactured in this embodiment and the integrated medium noise Nd when a signal having a recording density of 400 kFCI was recorded was evaluated. , A high value of 26.4 dB was obtained. Here, as the magnetic head, a magnetic head composed of the spin-valve reproducing element described in Example 4 in which the shield gap length Gs was 0.18 μm and an electromagnetic induction type writing element having a gap length of 0.25 μm was used. Was set to 15 nm.

【0062】[0062]

【発明の効果】本発明の磁気記録媒体は、高記録密度を
実現する上で重要な低ノイズ特性を維持しつつ、磁気デ
ィスク装置稼働中の極低浮上環境下で生じる磁気ヘッド
と磁気記録媒体の接触損傷を抑制し、高い摺動信頼性が
実現できる。
According to the magnetic recording medium of the present invention, a magnetic head and a magnetic recording medium which are generated in an extremely low flying environment while a magnetic disk drive is operating while maintaining low noise characteristics important for realizing high recording density. The contact damage of the contact is suppressed, and high sliding reliability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の一例を示す断面模式
図。
FIG. 1 is a schematic sectional view showing an example of a magnetic recording medium of the present invention.

【図2】磁気記録媒体の負荷曲線の一例。FIG. 2 is an example of a load curve of a magnetic recording medium.

【図3】摩擦力と表面形状の関係を示す図。FIG. 3 is a diagram showing a relationship between a frictional force and a surface shape.

【図4】グライドカウントと表面形状の関係を示す図。FIG. 4 is a diagram showing a relationship between glide count and surface shape.

【図5】摺動試験におけるクラッシュするまでの時間と
表面形状の関係を示す図。
FIG. 5 is a diagram showing a relationship between a time until a crash and a surface shape in a sliding test.

【図6】摺動試験におけるクラッシュするまでの時間と
第1の下地膜厚の関係を示す図。
FIG. 6 is a diagram showing a relationship between a time until a crash and a first underlayer thickness in a sliding test.

【図7】グライドカウントと第2の下地膜厚の関係を示
す図。
FIG. 7 is a diagram showing a relationship between a glide count and a second underlayer thickness.

【図8】本発明の磁気記録媒体の一例を示す断面模式
図。
FIG. 8 is a schematic sectional view showing an example of the magnetic recording medium of the present invention.

【図9】非晶質下地層がない場合のグライドカウントと
結晶質下地膜厚の関係を示す図。
FIG. 9 is a diagram showing the relationship between glide count and the thickness of a crystalline underlayer when there is no amorphous underlayer.

【図10】摺動試験におけるクラッシュするまでの時間
と表面形状の関係を示すマップ図。
FIG. 10 is a map diagram showing a relationship between a time until a crash and a surface shape in a sliding test.

【図11】本発明の磁気ディスク装置の模式図。FIG. 11 is a schematic view of a magnetic disk drive according to the present invention.

【図12】本発明の磁気ディスク装置における磁気ヘッ
ドの磁気抵抗センサの断面構造の一例を示す模式図。
FIG. 12 is a schematic diagram showing an example of a sectional structure of a magnetoresistive sensor of a magnetic head in the magnetic disk drive of the present invention.

【図13】本発明の磁気ディスク装置における磁気ヘッ
ドの磁気抵抗センサの断面構造の一例を示す断面模式
図。
FIG. 13 is a schematic sectional view showing an example of a sectional structure of a magnetoresistive sensor of a magnetic head in the magnetic disk drive of the present invention.

【符号の説明】[Explanation of symbols]

10…基板、11,11'…第1の下地層、12,12'…第2の下地
層、13,13'…磁性層、14,14'…保護層、15,15'…潤滑
層、70…基板、71,71'…下地層、72,72'…磁性層、73,7
3'…保護層、74,74'…潤滑層、91…磁気記録媒体、92…
磁気記録媒体を駆動する駆動部、93…磁気ヘッド、94…
磁気ヘッドを磁気記録媒体に対して相対運動させる手
段、95…記録再生信号処理手段、96…アンロード時に待
避する機構部、401…基体、402…コイル、403…上部記
録磁極、404…下部記録磁極兼上部シールド層、405…磁
気抵抗センサ、406…電極パターン、407…下部シールド
層、500…磁気センサの信号検出領域、501…ギャップ
層、502…Taバッファ層、503…第1の磁性層、504…中
間層、505…第2の磁性層、506…反強磁性層、507…テ
ーパー部、508…永久磁石層
10 ... substrate, 11,11 '... first underlayer, 12,12' ... second underlayer, 13,13 '... magnetic layer, 14,14' ... protective layer, 15,15 '... lubricant layer, 70: substrate, 71, 71 ': underlayer, 72, 72': magnetic layer, 73, 7
3 ': protective layer, 74, 74': lubricating layer, 91: magnetic recording medium, 92:
Drive section for driving the magnetic recording medium, 93 ... magnetic head, 94 ...
Means for moving the magnetic head relative to the magnetic recording medium, 95: recording / reproducing signal processing means, 96: a mechanical unit for retreating during unloading, 401: base, 402: coil, 403: upper recording magnetic pole, 404: lower recording Magnetic pole and upper shield layer, 405: magnetoresistive sensor, 406: electrode pattern, 407: lower shield layer, 500: signal detection area of magnetic sensor, 501: gap layer, 502: Ta buffer layer, 503: first magnetic layer Reference numeral 504 denotes an intermediate layer 505 denotes a second magnetic layer 506 denotes an antiferromagnetic layer 507 denotes a tapered portion 508 denotes a permanent magnet layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 合田 倫佳 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 細江 譲 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 加藤 章 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 Fターム(参考) 5D006 BB01 BB07 CA01 CA05 CA06 DA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Rinka Goda 2880 Kozu, Kozuhara-shi, Kanagawa Prefecture, Ltd.Storage Systems Division, Hitachi, Ltd. Within Storage System Division (72) Inventor Akira Kato 2880 Kozu, Odawara-shi, Kanagawa Prefecture F-term (reference) 5D006 BB01 BB07 CA01 CA05 CA06 DA03 in Hitachi, Ltd. Storage System Division

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板上に下地層を介してCoを主成分とする
磁性合金層、保護層、潤滑層をこの順に形成した磁気記
録媒体において、前記下地層が実質的に非晶質の層から
成る第1の下地層と結晶質の層からなる第2の下地層をこ
の順序に積層した構造を含む複数の下地層で構成され、
かつ、該磁気記録媒体の表面粗さ曲線から求まる負荷曲
線における、負荷比率が0.01 %となる高さBH[0.01%]と
負荷比率が50%となる高さBH[50%]の差ΔBH[0.01, 50]
(=|BH[0.01%]- BH[50%]|)が3nm以上6nm以下である
ことを特徴とする磁気記録媒体。
1. A magnetic recording medium in which a magnetic alloy layer containing Co as a main component, a protective layer, and a lubricating layer are formed in this order on a substrate via an underlayer, wherein the underlayer is a substantially amorphous layer. A plurality of underlayers including a structure in which a first underlayer made of and a second underlayer made of a crystalline layer are stacked in this order,
Further, in the load curve obtained from the surface roughness curve of the magnetic recording medium, the difference ΔBH [between the height BH [0.01%] at which the load ratio becomes 0.01% and the height BH [50%] at which the load ratio becomes 50%. 0.01, 50]
(= | BH [0.01%]-BH [50%] |) is 3 nm or more and 6 nm or less.
【請求項2】磁気記録媒体の表面粗さ曲線から求まる負
荷曲線において、負荷比率が0.01 %となる高さBH[0.01
%]と負荷比率が0.8%となる高さBH[0.8%]の差ΔBH[0.01,
0.8](=|BH[0.01%]- BH[0.8%]|)が0.2nm以上3nm以下
であることを特徴とする請求項1に記載の磁気記録媒
体。
2. A load curve obtained from a surface roughness curve of a magnetic recording medium, wherein a height BH [0.01] at which a load ratio becomes 0.01%.
%] And height BH [0.8%] at which the load ratio becomes 0.8% ΔBH [0.01,
2. The magnetic recording medium according to claim 1, wherein 0.8] (= | BH [0.01%]-BH [0.8%] |) is not less than 0.2 nm and not more than 3 nm.
【請求項3】上記第1の下地層が,CoあるいはNiを主成
分とする実質的に非晶質の合金から成り、かつ、第2の
下地層がCrあるいはCrを主成分とする合金から成ること
を特徴とする請求項1または2に記載の磁気記録媒体。
3. The first underlayer is made of a substantially amorphous alloy containing Co or Ni as a main component, and the second underlayer is made of Cr or an alloy containing Cr as a main component. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is formed.
【請求項4】上記第1の下地層の厚さが20nm以上80nm以
下であり、かつ、上記第2の下地層の厚さが3nm以上60nm
以下であることを特徴とする請求項1から3のいずれか
に記載の磁気記録媒体。
4. The semiconductor device according to claim 1, wherein said first underlayer has a thickness of 20 nm to 80 nm, and said second underlayer has a thickness of 3 nm to 60 nm.
4. The magnetic recording medium according to claim 1, wherein:
【請求項5】基板上に下地層を介してCoを主成分とする
磁性合金層と保護層、さらに潤滑層をこの順に形成した
磁気記録媒体において、前記下地層が3nm以上50nm以下
の厚みを持つ結晶質の層から成り、かつ、該磁気記録媒
体の表面粗さ曲線から求まる負荷曲線における、負荷比
率が0.01 %となる高さBH[0.01%]と負荷比率が50%となる
高さBH[50%]の差ΔBH[0.01, 50](=|BH[0.01%]- BH[50
%]|)が3nm以上6nm以下であることを特徴とする磁気記
録媒体。
5. A magnetic recording medium comprising a magnetic alloy layer containing Co as a main component, a protective layer, and a lubricating layer formed in this order on a substrate with an underlayer interposed therebetween, wherein the underlayer has a thickness of 3 nm or more and 50 nm or less. And a height BH [0.01%] at which the load ratio is 0.01% and a height BH at which the load ratio is 50% in the load curve obtained from the surface roughness curve of the magnetic recording medium. [50%] difference ΔBH [0.01, 50] (= | BH [0.01%]-BH [50
%] |) Is 3 nm or more and 6 nm or less.
【請求項6】磁気記録媒体の表面粗さ曲線から求まる負
荷曲線において、負荷比率が0.01 %となる高さBH[0.01
%]と負荷比率が0.8%となる高さBH[0.8%]の差ΔBH[0.01,
0.8](=|BH[0.01%]- BH[0.8%]|)が0.2nm以上,3nm
以下であることを特徴とする請求項5に記載の磁気記録
媒体。
6. A load curve obtained from a surface roughness curve of a magnetic recording medium, wherein a height BH [0.01] at which a load ratio is 0.01%.
%] And height BH [0.8%] at which the load ratio becomes 0.8% ΔBH [0.01,
0.8] (= | BH [0.01%]-BH [0.8%] |) is 0.2nm or more, 3nm
The magnetic recording medium according to claim 5, wherein:
【請求項7】基板上に下地層を介して磁性合金層、保護
層、潤滑層をこの順に形成した磁気記録媒体において、
該磁気記録媒体の表面粗さ曲線から求まる負荷曲線にお
ける、負荷比率が1%となる高さBH[1%]と負荷比率が50%
となる高さBH[50%]の差をy(=|BH[1%]- BH[50%]|)と
し、負荷比率が15%となる高さBH[15%]と負荷比率が50%
となる高さBH[50%]の差をx(=|BH[15%]- BH[50%]|)
としたとき、座標(x, y)で表される点が、xy平面上の
点(0.1, 1.6)と点(1, 3)を結ぶ線分と、点(1, 3)
と点(1, 4)を結ぶ線分と、点(1, 4)と点(0.1, 4)
を結ぶ線分と、さらに点(0.1, 4)と点(0.1, 1.6)を
結ぶ線分で囲まれた領域内にあることを特徴とする磁気
記録媒体。
7. A magnetic recording medium in which a magnetic alloy layer, a protective layer, and a lubricating layer are formed in this order on a substrate with an underlayer interposed therebetween.
In the load curve obtained from the surface roughness curve of the magnetic recording medium, the height BH [1%] at which the load ratio is 1% and the load ratio are 50%
The difference between the heights BH [50%] is y (= | BH [1%]-BH [50%] |), and the height BH [15%] at which the load ratio is 15% and the load ratio are 50 %
X (= | BH [15%]-BH [50%] |)
Then, the point represented by the coordinates (x, y) is a line segment connecting the point (0.1, 1.6) and the point (1, 3) on the xy plane, and the point (1, 3)
Segment connecting point (1, 4) and point (1, 4) and point (0.1, 4)
The magnetic recording medium is located within an area surrounded by a line segment connecting the points (0.1, 4) and (0.1, 1.6).
【請求項8】基板上に下地層を介して磁性合金層、保護
層、潤滑層をこの順に形成した磁気記録媒体において、
該磁気記録媒体の表面粗さ曲線から求まる算術平均粗さ
(Ra)が0.2nm以上0.7nm以下であることを特徴とする請
求項7に記載の磁気記録媒体。
8. A magnetic recording medium in which a magnetic alloy layer, a protective layer, and a lubricating layer are formed in this order on a substrate via an underlayer.
The magnetic recording medium according to claim 7, wherein an arithmetic average roughness (Ra) obtained from a surface roughness curve of the magnetic recording medium is 0.2 nm or more and 0.7 nm or less.
【請求項9】基板上に下地層を介してCoを主成分とする
磁性合金層、保護層、潤滑層をこの順に形成した磁気記
録媒体において、前記下地層が実質的に非晶質の層から
成る第1の下地層と結晶質の層からなる第2の下地層をこ
の順序に積層した構造を含む複数の下地層で構成される
ことを特徴とする請求項7または8に記載の磁気記録媒
体。
9. A magnetic recording medium in which a magnetic alloy layer containing Co as a main component, a protective layer, and a lubricating layer are formed in this order on a substrate via an underlayer, wherein the underlayer is a substantially amorphous layer. 9. The magnetic layer according to claim 7, wherein the magnetic layer comprises a plurality of underlayers including a structure in which a first underlayer made of and a second underlayer made of a crystalline layer are laminated in this order. recoding media.
【請求項10】基板の表面粗さ曲線から求まる負荷曲線
において、負荷比率が0.01 %となる高さBH[0.01%]と負
荷比率が50%となる高さBH[50%]の差ΔBH[0.01, 50](=
|BH[0.01%]- BH[50%]|)が3nm以上6nm以下であること
を特徴とする請求項1から5のいずれかに記載の磁気記
録媒体。
10. In a load curve obtained from a surface roughness curve of a substrate, a difference ΔBH [between a height BH [0.01%] at which the load ratio becomes 0.01% and a height BH [50%] at which the load ratio becomes 50%. 0.01, 50] (=
6. The magnetic recording medium according to claim 1, wherein | BH [0.01%]-BH [50%] |) is 3 nm or more and 6 nm or less.
【請求項11】磁気記録媒体と、該磁気記録媒体を駆動
する駆動部と、記録部と再生部からなる磁気ヘッドと、
該磁気ヘッドを上記磁気記録媒体に対して相対運動させ
る手段と、該磁気ヘッドをランプさせる機構部と、該磁
気ヘッドへの信号入力手段と、該磁気ヘッドからの出力
信号再生を行なうための記録再生信号処理手段とを有す
る磁気ディスク装置において、該磁気ヘッドの再生部が
互いの磁化方向が外部磁界によって相対的に変化するこ
とによって大きな抵抗変化を生じる複数の導電性磁性層
と、該導電性磁性層の間に配置された導電性非磁性層を
含む磁気抵抗センサで構成され、かつ磁気記録媒体が請
求項1から10に記載の磁気記録媒体であることを特徴
とする磁気ディスク装置。
11. A magnetic recording medium, a driving unit for driving the magnetic recording medium, a magnetic head including a recording unit and a reproducing unit,
Means for moving the magnetic head relative to the magnetic recording medium, a mechanism for ramping the magnetic head, signal input means for the magnetic head, and recording for reproducing an output signal from the magnetic head In a magnetic disk drive having reproduction signal processing means, a plurality of conductive magnetic layers in which a reproducing portion of the magnetic head causes a large resistance change due to a relative change in magnetization direction of each other due to an external magnetic field; A magnetic disk drive comprising a magnetoresistive sensor including a conductive nonmagnetic layer disposed between magnetic layers, and wherein the magnetic recording medium is the magnetic recording medium according to any one of claims 1 to 10.
JP32776199A 1999-09-24 1999-11-18 Magnetic recording medium and magnetic disk device Pending JP2001160214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32776199A JP2001160214A (en) 1999-09-24 1999-11-18 Magnetic recording medium and magnetic disk device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-269867 1999-09-24
JP26986799 1999-09-24
JP32776199A JP2001160214A (en) 1999-09-24 1999-11-18 Magnetic recording medium and magnetic disk device

Publications (2)

Publication Number Publication Date
JP2001160214A true JP2001160214A (en) 2001-06-12
JP2001160214A5 JP2001160214A5 (en) 2005-10-13

Family

ID=26548951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32776199A Pending JP2001160214A (en) 1999-09-24 1999-11-18 Magnetic recording medium and magnetic disk device

Country Status (1)

Country Link
JP (1) JP2001160214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296889C (en) * 2003-08-29 2007-01-24 株式会社东芝 Magnetic disk and magnetic disk apparatus equipped with magnetic disk
JP2007272995A (en) * 2006-03-31 2007-10-18 Hoya Corp Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device
WO2022209935A1 (en) * 2021-03-31 2022-10-06 ソニーグループ株式会社 Magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296889C (en) * 2003-08-29 2007-01-24 株式会社东芝 Magnetic disk and magnetic disk apparatus equipped with magnetic disk
US7239483B2 (en) 2003-08-29 2007-07-03 Kabushiki Kaisha Toshiba Magnetic disk with specified contact ratio [BH 1.0 nm] and circumferential texturing and magnetic disk apparatus equipped with magnetic disk
JP2007272995A (en) * 2006-03-31 2007-10-18 Hoya Corp Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device
WO2022209935A1 (en) * 2021-03-31 2022-10-06 ソニーグループ株式会社 Magnetic recording medium

Similar Documents

Publication Publication Date Title
US20090311557A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
JP2011253597A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2012009086A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2011248969A (en) Perpendicular magnetic disk
TW200540820A (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP5227634B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP2009116930A (en) Vertical magnetic recording medium and magnetic recording and reproducing device using the same
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2006120231A (en) Perpendicular magnetic recording medium
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP2006302426A (en) Perpendicular magnetic recording medium and its manufacturing method
US6509111B1 (en) Magnetic recording media and magnetic disk apparatus
JP2009146522A (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6878439B2 (en) Magnetic recording medium, its production process and magnetic recording device
JP5616606B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US6852432B2 (en) Magnetic recording media and magnetic disk apparatus
JP2001160214A (en) Magnetic recording medium and magnetic disk device
JP2014056622A (en) Perpendicular magnetic recording medium
JP5105594B2 (en) Perpendicular magnetic recording medium
JP4637785B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP4358068B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP5395991B2 (en) Method for manufacturing perpendicular magnetic recording medium
CN101308668A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP4944471B2 (en) Magnetic disk and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A621 Written request for application examination

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20060510

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028