JP2006260745A - Perpendicular magnetic recording medium and magnetic recording device - Google Patents

Perpendicular magnetic recording medium and magnetic recording device Download PDF

Info

Publication number
JP2006260745A
JP2006260745A JP2006036811A JP2006036811A JP2006260745A JP 2006260745 A JP2006260745 A JP 2006260745A JP 2006036811 A JP2006036811 A JP 2006036811A JP 2006036811 A JP2006036811 A JP 2006036811A JP 2006260745 A JP2006260745 A JP 2006260745A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
perpendicular magnetic
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006036811A
Other languages
Japanese (ja)
Inventor
Masahiro Oka
正裕 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006036811A priority Critical patent/JP2006260745A/en
Publication of JP2006260745A publication Critical patent/JP2006260745A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high quality perpendicular magnetic recording medium, having the fewer number of bright spots and nearly free from occurrence of peripheral damage, and to provide a magnetic recording device using the same. <P>SOLUTION: The perpendicular magnetic recording medium 1 formed by providing at least a soft magnetic backing layer 3 and a magnetic recording layer composed of a Co alloy containing an oxide sequentially on a non-magnetic substrate 2 is characterized in that the non-magnetic substrate has ≤50 Ωcm resistivity. The magnetic recording device using the perpendicular magnetic recording medium is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、垂直磁気記録媒体およびこれを用いた磁気記録装置に関する。   The present invention relates to a perpendicular magnetic recording medium and a magnetic recording apparatus using the same.

磁気記録装置の記憶容量は、年々急激に増加している。従来、磁気記録装置に使用される磁気ディスク媒体には、長手磁気記録方式が採用されていたが、同方式は、面記録密度を上げるためには、その磁気記録層の膜厚を薄くしなければならないという原理上の制約があった。記録密度の上昇とともに、磁気記録層膜厚は薄くなってきたが、それとともに熱揺らぎの問題が生じた。熱揺らぎとは、磁気記録層の膜厚が極端に薄くなることにより、その磁性薄膜が室温においてもその磁化状態を安定に保つことができなくなる現象であり、磁気記録においては致命的な問題であった。   The storage capacity of magnetic recording devices is increasing rapidly year by year. Conventionally, a longitudinal magnetic recording method has been adopted for a magnetic disk medium used in a magnetic recording apparatus. However, in this method, in order to increase the surface recording density, the thickness of the magnetic recording layer must be reduced. There was a restriction in principle that it had to be. As the recording density increased, the thickness of the magnetic recording layer became thinner, but at the same time, the problem of thermal fluctuation occurred. Thermal fluctuation is a phenomenon in which the magnetic thin film cannot be kept stable even at room temperature when the magnetic recording layer becomes extremely thin, and is a fatal problem in magnetic recording. there were.

そこで近年、垂直磁気記録方式が注目されている(例えば、特許文献1,2参照。)。
垂直磁気記録方式では、従来の長手磁気記録方式において面内方向に向けられていた磁気記録層の磁化容易軸を、磁気記録媒体の表面に対して垂直方向に向けることにより、記録ビットの境界である磁化遷移領域付近の反磁界が小さくなり、このため、記録密度が高くなるほど静磁気的に安定になって、熱揺らぎ耐性が向上することから、面記録密度の向上に適した方式である。また、基板と垂直磁気記録層との間に軟磁性層を形成した場合には、単磁極ヘッドと組み合わせることにより、いわゆる垂直二層媒体として機能し、高い記録能力を得ることができる。このとき、軟磁性層は磁気ヘッドからの記録磁界を還流させる役割を果たしており、記録再生効率を向上させることができる。
Therefore, in recent years, the perpendicular magnetic recording system has been attracting attention (see, for example, Patent Documents 1 and 2).
In the perpendicular magnetic recording system, the magnetization easy axis of the magnetic recording layer, which is oriented in the in-plane direction in the conventional longitudinal magnetic recording system, is oriented in the direction perpendicular to the surface of the magnetic recording medium, so that at the boundary of the recording bit. Since the demagnetizing field in the vicinity of a certain magnetization transition region becomes smaller, and the recording density becomes higher, the magnetic field becomes more stable and the thermal fluctuation resistance is improved. Therefore, this method is suitable for improving the surface recording density. Further, when a soft magnetic layer is formed between the substrate and the perpendicular magnetic recording layer, it can function as a so-called perpendicular double-layer medium by combining with a single pole head, and high recording ability can be obtained. At this time, the soft magnetic layer plays a role of refluxing the recording magnetic field from the magnetic head, so that the recording / reproducing efficiency can be improved.

垂直磁気記録媒体の製造方法にもさまざまな改良が施され、近年では記録層の材料として、Co系合金材料中にSiOなどの酸化物を分散させたものを使用することが主流となりつつある。これは、薄膜中に酸化物が析出した相ができ、これが磁性体であるCo合金を取り囲むような組織を作るために、ノイズ源となる磁化遷移領域を最小限に抑えるためであると言われている。
特開平2−61819号公報 特開2004−146032号公報
Various improvements have also been made in the manufacturing method of perpendicular magnetic recording media, and in recent years, the use of a recording layer material in which an oxide such as SiO 2 is dispersed in a Co-based alloy material is becoming mainstream. . This is said to be due to the formation of a phase in which an oxide is deposited in the thin film, which creates a structure that surrounds the Co alloy, which is a magnetic material, so as to minimize the magnetization transition region that becomes a noise source. ing.
JP-A-2-61819 Japanese Patent Laid-Open No. 2004-146032

前述した従来技術により、垂直磁気記録媒体の問題点であった媒体ノイズの低減が可能となったが、一方で、この酸化物が成膜プロセスの過程においてパーティクルとなって媒体上に付着し、磁気記録時の欠陥となりやすい、という新たな問題が生じた。また、同様に媒体表面をテープバーニッシュ加工する際やヘッドをシークさせる際に、磁気記録層中の酸化物相が起点となって、媒体表面に引っかき傷状の欠陥を生じさせやすい、という問題も明らかになってきている。   The above-described conventional technology has made it possible to reduce the medium noise that has been a problem of the perpendicular magnetic recording medium, but on the other hand, this oxide becomes particles in the course of the film forming process and adheres to the medium. A new problem has arisen that it tends to cause defects during magnetic recording. Similarly, when the surface of the medium is tape burnished or when the head is sought, the oxide phase in the magnetic recording layer is the starting point, and it is easy to cause scratch-like defects on the surface of the medium. It has also become clear.

本発明は前記事情に鑑みてなされ、媒体表面に残留する微小粒子を大幅に低減することができ、輝点数、円周キズ発生率が少ない高品質な垂直磁気記録媒体及びそれを用いた磁気記録装置の提供を目的とする。   The present invention has been made in view of the above circumstances, it is possible to significantly reduce the fine particles remaining on the medium surface, a magnetic recording using bright points, the circumferential scratches incidence less high quality perpendicular magnetic recording medium and it The purpose is to provide a device.

前記目的を達成するため、本発明は、非磁性基板上に少なくとも軟磁性裏打ち層、酸化物を含むCo合金からなる磁気記録層を順次設けてなる垂直磁気記録媒体であって、該非磁性基板の抵抗率が50Ω・cm以下であることを特徴とする垂直磁気記録媒体を提供する。   To achieve the above object, the present invention includes at least a soft magnetic backing layer on a nonmagnetic substrate, a sequentially arranged perpendicular magnetic recording medium comprising a magnetic recording layer made of a Co alloy containing oxide, the non-magnetic substrate A perpendicular magnetic recording medium having a resistivity of 50 Ω · cm or less is provided.

本発明の垂直磁気記録媒体において、非磁性基板の抵抗率が1Ω・cm未満であることが好ましい。   In the perpendicular magnetic recording medium of the present invention, the nonmagnetic substrate preferably has a resistivity of less than 1 Ω · cm.

本発明の垂直磁気記録媒体において、非磁性基板の抵抗率が1×10−4Ω・cm以下であることが好ましい。 In the perpendicular magnetic recording medium of the present invention, the nonmagnetic substrate preferably has a resistivity of 1 × 10 −4 Ω · cm or less.

本発明の垂直磁気記録媒体において、ODT観測輝点カウント数が、35(個/枚)以下であることが好ましい。   In the perpendicular magnetic recording medium of the present invention, the ODT observation bright spot count is preferably 35 (pieces / sheet) or less.

本発明の垂直磁気記録媒体において、ODT観測輝点カウント数が、10(個/枚)以下であることが好ましい。   In the perpendicular magnetic recording medium of the present invention, the ODT observation bright spot count is preferably 10 (pieces / sheet) or less.

本発明の垂直磁気記録媒体において、非磁性基板材料としてシリコンを用いることが好ましい。   In the perpendicular magnetic recording medium of the present invention, it is preferable to use silicon as the nonmagnetic substrate material.

本発明の垂直磁気記録媒体において、非磁性基板材料としてグラファイトカーボンを用いることも好ましい。   In the perpendicular magnetic recording medium of the present invention, it is also preferable to use graphite carbon as the nonmagnetic substrate material.

本発明の垂直磁気記録媒体において、直径が28mm以下の円盤状基板を用いることが好ましい。   In the perpendicular magnetic recording medium of the present invention, it is preferable to use a disk-shaped substrate having a diameter of 28 mm or less.

また本発明は、前述した本発明に係る垂直磁気記録媒体を用いた磁気記録装置を提供する。   The present invention also provides a magnetic recording apparatus using the above-described perpendicular magnetic recording medium according to the present invention.

本発明は、垂直磁気記録媒体の基板として、非磁性基板の抵抗率が50Ω・cm以下の非磁性基板を用いた構成としたので、媒体表面に残留する微小粒子を大幅に低減することができ、輝点数、円周キズ発生率が少ない高品質な垂直磁気記録媒体及びそれを用いた磁気記録装置を提供することができる。   The present invention, as a substrate for a perpendicular magnetic recording medium, the resistance of the non-magnetic substrate has a configuration using the following non-magnetic substrate 50 [Omega · cm, it is possible to significantly reduce the fine particles remaining on the surface of the medium In addition, it is possible to provide a high-quality perpendicular magnetic recording medium with a small number of bright spots and a low incidence of circumferential scratches and a magnetic recording apparatus using the same.

本発明の垂直磁気記録媒体は、非磁性基板上に、軟磁性層および垂直磁気記録層が順に積層された構造を有し、該非磁性基板の抵抗率が50Ω・cm以下であることを特徴とする。前記垂直磁気記録層は、例えばSiOなどのような酸化物を内包する材料である。
一連の成膜はスパッタリング法などの真空成膜法で形成されるのが一般的である。例えば代表的な手法はスパッタリング法である。これは十分に排気を行った真空容器中に酸化物を分散させた合金ターゲットを配置し、プラズマ放電させて成膜を行うが、一般的に金属合金の中にこのような酸化物を分散させた材料を物理成膜法により成膜する場合、局所的な電気伝導度差などの影響によりアーキングが発生しやすい。このとき酸化物が微小な粒子となって真空容器中に飛び散り、媒体表面に付着することが多い。そして、このようにして発生した微小粒子は基板表面に生じた静電気によりひきつけられ、一層多くの磁気記録欠陥をもたらす。こうした静電気の発生を防ぐためには、基板材料が一定の導電性を有することが有効である。
The perpendicular magnetic recording medium of the present invention has a structure in which a soft magnetic layer and a perpendicular magnetic recording layer are sequentially laminated on a nonmagnetic substrate, and the resistivity of the nonmagnetic substrate is 50 Ω · cm or less. To do. The perpendicular magnetic recording layer is a material containing an oxide such as SiO 2 .
A series of film formation is generally performed by a vacuum film formation method such as a sputtering method. For example, a typical method is a sputtering method. This is done by placing an alloy target in which an oxide is dispersed in a sufficiently evacuated vacuum vessel and performing plasma discharge to form a film. Generally, such an oxide is dispersed in a metal alloy. When the material is deposited by a physical deposition method, arcing is likely to occur due to the influence of local electrical conductivity difference. At this time, the oxide often becomes fine particles and scatters in the vacuum vessel and adheres to the surface of the medium. The fine particles generated in this way are attracted by static electricity generated on the substrate surface, resulting in more magnetic recording defects. In order to prevent the generation of such static electricity, it is effective that the substrate material has a certain conductivity.

しかしながら、近年の磁気記録装置、特に基板の直径が小さい小径磁気記録装置においては、耐衝撃性の観点から媒体基板として絶縁体であるガラスを用いることがほとんどであるため、どうしても静電気の発生を抑えることが困難であった。   However, in recent magnetic recording apparatuses, particularly small-diameter magnetic recording apparatuses with a small substrate diameter, glass that is an insulator is almost always used as a medium substrate from the viewpoint of impact resistance. It was difficult.

そこで、これらの問題を解決するために、ガラスと同等の材料力学的性能を有し、かつ一定の電気伝導度をもつ基板が必要であると考え、鋭意検討を行った結果、一般的な半導体レベル以下の電気抵抗率を持つ基板材料を用いることにより、成膜プロセス中に媒体表面に残留する微小粒子を劇的に低減することができ、また、それを起点とする表面傷の発生をも抑制できることを見出した。具体的な基板材料としては、シリコン、グラファイトカーボンが適している。特に優れた耐衝撃性を求められる小径磁気記録装置において、本発明は有効である。   Therefore, in order to solve these problems, we considered that a substrate with material mechanical performance equivalent to that of glass and having a certain electric conductivity was necessary, and as a result of intensive studies, a general semiconductor by using a substrate material having the following electrical resistivity level, it is possible to dramatically reduce the fine particles remaining on the medium surface during the deposition process, also the generation of surface flaws that originate from it It was found that it can be suppressed. As specific substrate materials, silicon and graphite carbon are suitable. The present invention is effective in a small-diameter magnetic recording apparatus that requires particularly excellent impact resistance.

また、原因ははっきりとはわかっていないが、前述の微小粒子の付着は一般的にスパッタリング法の場合、ターゲットの中心に近いところほど激しいため、この意味でも直径の小さい基板であるほど本発明の効果は大きいと考えられる。   In addition, although the cause is not clearly understood, since the adhesion of the fine particles described above is generally more intense near the center of the target in the case of the sputtering method, in this sense as well, the smaller the diameter of the substrate of the present invention. The effect is considered large.

小径の基板サイズとしては、現在48mmφ、27.4mmφ、21.6mmφなどが実用化されようとしているが、特に直径27.4mmφ以下の直径の基板で特に顕著な効果が見出された。   Currently, 48 mmφ, 27.4 mmφ, 21.6 mmφ, and the like are being put to practical use as small-diameter substrate sizes, but a particularly remarkable effect has been found particularly with substrates having a diameter of 27.4 mmφ or less.

請求項2に記載のシリコン材料の場合、半導体産業で生産される単結晶材料はもちろんのこと、欠陥などがあるために半導体材料として不良品と分類される品質のものでも使用できる。ただし、材料力学的な性能、表面粗さが同等であることが必要である。一般的には平均表面粗さRaが0.1nm〜0.2nm程度、ヤング率160〜190GPa、曲げ強度75〜90MPa、硬度約7である。もちろん1枚のウエハーから複数枚の基板を切り出しても構わない。特に27.4mmφ以下の小さな径の基板については、複数枚切り出しのメリットは大きい。ここでも基板直径が小さいものは、同じ基板厚さで比べた場合、高い機械的強度が得られやすい。   For silicon material according to claim 2, single crystal material produced in the semiconductor industry, of course, it can suitably be used for quality classified as defective as a semiconductor material because of the defects and the like. However, material mechanical performance and surface roughness must be equivalent. In general, the average surface roughness Ra is about 0.1 nm to 0.2 nm, Young's modulus is 160 to 190 GPa, bending strength is 75 to 90 MPa, and hardness is about 7. Of course, a plurality of substrates may be cut out from one wafer. Particularly for a substrate having a small diameter of 27.4 mmφ or less, the merit of cutting out a plurality of sheets is great. Here, when the substrate diameter is small, high mechanical strength is easily obtained when compared with the same substrate thickness.

本発明に係る垂直磁気記録媒体の構成の代表的な一例を図1に示す。図1に示す垂直磁気記録媒体1は、非磁性基板2の上に、軟磁性裏打ち層3、配向制御層7、中間層8、垂直磁気記録層9及び保護層10を順に成膜して構成されている。   A typical example of the configuration of the perpendicular magnetic recording medium according to the present invention is shown in FIG. The perpendicular magnetic recording medium 1 shown in FIG. 1, on a non-magnetic substrate 2, a soft magnetic backing layer 3, the orientation control layer 7, intermediate layer 8, and sequentially deposited perpendicular magnetic recording layer 9 and a protective layer 10 constituting Has been.

この非磁性基板2としては、前述した通り、抵抗率が50Ω・cm以下の材料、例えば、シリコン、グラファイトカーボン等からなり、小径の、特に直径27.4mmφ以下の直径の基板が用いられている。   As the non-magnetic substrate 2, as described above, the resistivity is not more than 50 [Omega · cm materials, e.g., silicon, made of graphite carbon or the like, of smaller diameter, a substrate of particular diameter 27.4mmφ following diameters are used .

前記軟磁性裏打ち層3としては、一般的に軟磁性材料といわれるものが使用される。たとえばCoZrNb系合金、FeCo系合金、FeSi系合金などである。この裏打ち軟磁性層3は、垂直磁気記録媒体1の記録再生過程において、記録ヘッドからの磁束を導き、十分なOW(オーバーライト)特性を確保する働きをする。その膜厚は通常100nm程度と厚いが、記録再生が十分行える範囲であればより薄く設定することもできる。   As the soft magnetic backing layer 3, what is generally called a soft magnetic material is used. For example, CoZrNb alloy, FeCo alloy, FeSi alloy and the like. The backing soft magnetic layer 3 guides the magnetic flux from the recording head in the recording / reproducing process of the perpendicular magnetic recording medium 1 and functions to ensure sufficient OW (overwrite) characteristics. The film thickness is usually as thick as about 100 nm, but can be set thinner as long as recording and reproduction can be sufficiently performed.

また、軟磁性裏打ち層3は単層膜のほか、Ruなどの薄い非磁性膜をはさんで2層の軟磁性膜を配置した反磁界結合を有する構造を持たせることもある。図1に示す例示において、軟磁性裏打ち層3は、Ru層5を挟んで第1軟磁性層4と第2軟磁性層6を配置した構造になっている。軟磁性裏打ち層3は磁区を形成しやすく、この磁区からスパイク状のノイズが発生することから、反磁界結合のバイアス磁界を持たせることにより磁壁の発生を抑えることを狙いとするものである。   Further, the soft magnetic backing layer 3 Other monolayer film, there is also possible to provide a structure having a demagnetizing field coupling disposing the soft magnetic film of two layers sandwiching a thin non-magnetic film such as Ru. In the illustration shown in FIG. 1, the soft magnetic backing layer 3 has a structure in which a first soft magnetic layer 4 and a second soft magnetic layer 6 are disposed with a Ru layer 5 interposed therebetween. The soft magnetic backing layer 3 is easy to form a magnetic domain, and spike-like noise is generated from the magnetic domain. Therefore, the soft magnetic backing layer 3 aims to suppress the generation of a domain wall by providing a demagnetizing-coupled bias magnetic field.

軟磁性裏打ち層3の上には、中間層8を設けることが多い。この中間層8は、その上の垂直磁気記録層9の結晶構造を整えるためのものであり、例えば垂直磁気記録層9と同じ稠密六方晶構造をもつ材料、例えばRu膜などが用いられる。その膜厚は、垂直磁気記録層9の記録再生特性が最適になるように調整するが、一般に5〜20nm程度である。ただし、中間層8の膜厚が薄いほど、記録再生ヘッドと軟磁性裏打ち層3との距離が縮まり、OWを確保しやすくなると同時に、トラック幅をより狭く設定しやすくなる。   An intermediate layer 8 is often provided on the soft magnetic backing layer 3. This intermediate layer 8 is for adjusting the crystal structure of the perpendicular magnetic recording layer 9 thereon, and for example, a material having the same dense hexagonal crystal structure as that of the perpendicular magnetic recording layer 9, such as a Ru film, is used. The film thickness is adjusted so as to optimize the recording / reproducing characteristics of the perpendicular magnetic recording layer 9, but is generally about 5 to 20 nm. However, as the film thickness of the intermediate layer 8 is thinner, the distance between the recording / reproducing head and the soft magnetic backing layer 3 is shortened, and it becomes easier to secure OW and at the same time, it becomes easier to set the track width narrower.

垂直磁気記録層9は、実際に情報を記録再生する磁性層であり、一般的には稠密六方晶結晶構造をとり、そのC軸(002)が基板に垂直方向を向いている。材料は各種Co系合金が用いられるが、本発明が特に対象とするのはCo系合金を母材とし、その中にSiOなどの酸化物を含有しているものであり、例えば、Co−Cr−Pt−(SiO)、Co−Cr−Pt−(Cr)などである。これらの酸化物含有材料薄膜は、磁性合金材料を酸化物の析出相が取り囲むような微細構造をとるため、媒体ノイズ源となる磁化遷移領域を最小限にし、結果として媒体ノイズを低減していると考えられている。 The perpendicular magnetic recording layer 9 is a magnetic layer that actually records and reproduces information, and generally has a dense hexagonal crystal structure, and its C axis (002) is perpendicular to the substrate. As the material, various Co-based alloys are used. The present invention is particularly intended for a material having a Co-based alloy as a base material and containing an oxide such as SiO 2. For example, Co— Cr—Pt— (SiO 2 ), Co—Cr—Pt— (Cr 2 O 3 ) and the like. These oxide-containing material thin films have a fine structure in which the magnetic alloy material is surrounded by an oxide precipitation phase, thereby minimizing the magnetization transition region that is a medium noise source and consequently reducing the medium noise. It is believed that.

この垂直磁気記録層9の膜厚は、必要とされる出力等により任意に設定できるが、一般的には5nm〜20nm程度である。また、垂直磁気記録層9の垂直保磁力は、3000Oe〜5500Oe程度で用いられることが多いが、ヘッド性能の変化に応じて変わって行くと考えられる。なお、1Oeは約79A/mである。   The thickness of the perpendicular magnetic recording layer 9 can be arbitrarily set depending on the required output and the like, but is generally about 5 nm to 20 nm. Further, the perpendicular coercive force of the perpendicular magnetic recording layer 9 is often used at about 3000 Oe to 5500 Oe, but is considered to change according to the change in head performance. 1 Oe is about 79 A / m.

また、前記の各層以外にも、垂直磁気記録媒体1の性能を高める目的で、例えば中間層8の下部に、さらに結晶構造を整えるためのシード層あるいは配向制御層7を挿入することができる。配向制御層7の飽和磁化Msは、0〜200emu/ccであることが好ましい。配向制御層7のMsが200emu/ccを超えると、配向制御層7から発生するノイズにより垂直磁気記録層9の記録再生特性が悪化する傾向がある。また、配向制御層7の組成は、垂直磁気記録層9の記録再生特性が最良となるように決めるのが望ましく、最適組成が磁化を持っていても構わないが、特に磁化を持っている必要はない。一般にノイズの発生を考慮すると、配向制御層7のMsは低い方が良いと考えられる。   Also, the other than each layer, in order to enhance the performance of the perpendicular magnetic recording medium 1, for example, the bottom of the intermediate layer 8, it is possible to insert the seed layer or the orientation control layer 7 to adjust the further crystal structure. The saturation magnetization Ms of the orientation control layer 7 is preferably 0 to 200 emu / cc. If the Ms of the orientation control layer 7 exceeds 200 emu / cc, the recording / reproducing characteristics of the perpendicular magnetic recording layer 9 tend to deteriorate due to noise generated from the orientation control layer 7. Further, the composition of the orientation control layer 7, it is desirable to decide as the recording and reproducing characteristics of the perpendicular magnetic recording layer 9 is optimized, the optimum composition may be have a magnetization, must in particular have a magnetization There is no. In general, considering the generation of noise, it is considered that the Ms of the orientation control layer 7 should be low.

さらに、垂直磁気記録層9の上には、保護層10が成膜されるのが一般的である。この保護層10は、垂直磁気記録媒体1の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐ目的で設けられる。この保護層10としては、カーボンの薄膜が用いられることが多く、特に近年では膜密度の高いプラズマCVD膜が用いられることが多い。あるいはCVDカーボン膜とスパッタリングカーボン膜との積層構造なども使用することができる。カーボン膜の膜質が硬くて脆い場合には、媒体表面のキズがより発生しやすいと考えられるため、カーボン膜の成膜条件は慎重に選ぶことが必要である。   Further, a protective layer 10 is generally formed on the perpendicular magnetic recording layer 9. The protective layer 10 is provided for the purpose of preventing corrosion of the perpendicular magnetic recording medium 1 and preventing damage to the medium surface when the magnetic head comes into contact with the medium. As the protective layer 10, a carbon thin film is often used, and in particular, a plasma CVD film having a high film density is often used in recent years. Alternatively, a laminated structure of a CVD carbon film and a sputtering carbon film can also be used. If the film quality of the carbon film is hard and brittle, scratches on the surface of the medium are considered to be more likely to occur, and therefore the conditions for forming the carbon film must be carefully selected.

保護層10の膜厚は、1〜10nmとすることが望ましい。これにより、ヘッドと媒体の距離を小さくできるので高密度記録に好適である。また、保護層10上には、潤滑層を設けることができる。潤滑層に使用される潤滑剤としては、従来公知の材料、例えばパーフルオロポリエーテル、フッ化アルコール、フッ化カルボン酸などを用いることができる。   The thickness of the protective layer 10 is desirably 1 to 10 nm. Accordingly, the distance between the head and the medium can be reduced, which is suitable for high density recording. Further, a lubricating layer can be provided on the protective layer 10. As the lubricant used in the lubricating layer, conventionally known materials such as perfluoropolyether, fluorinated alcohol, and fluorinated carboxylic acid can be used.

図2は、本発明の磁気記録装置の一例を示す図であり、本例示による磁気記録再生装置11は、図1に示す垂直磁気記録媒体1と、垂直磁気記録媒体1を回転駆動させる媒体駆動部12と、垂直磁気記録媒体1に情報を記録再生する磁気ヘッド13と、この磁気ヘッド13を垂直磁気記録媒体1に対して相対運動させるヘッド駆動部14と、記録再生信号処理系15とを備えて構成されている。記録再生信号処理系15は、外部から入力されたデ−タを処理して記録信号を磁気ヘッド13に送ったり、磁気ヘッド13からの再生信号を処理してデ−タを外部に送ることができるようになっている。   FIG. 2 is a diagram showing an example of the magnetic recording apparatus according to the present invention. The magnetic recording / reproducing apparatus 11 according to the present example includes a perpendicular magnetic recording medium 1 shown in FIG. 1 and a medium drive for rotating the perpendicular magnetic recording medium 1. Unit 12, a magnetic head 13 for recording / reproducing information on the perpendicular magnetic recording medium 1, a head driving unit 14 for moving the magnetic head 13 relative to the perpendicular magnetic recording medium 1, and a recording / reproducing signal processing system 15 It is prepared for. Reproducing signal processing system 15, de-input from the outside - to send a data to the outside - or send a recording signal to the magnetic head 13 to process the data, processes the reproduction signal from the magnetic head 13 de It can be done.

以下に実施例と比較例を示し、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

[実施例1〜3、比較例1〜6]
非磁性基板として、以下の2種類の基板を各50枚ずつ用意した。
a)結晶化ガラス基板(直径48mmφ、穴径12mmφ、厚さ0.508mm、平均表面粗さRa=0.5nm、電気抵抗率無限大)。
b)結晶化ガラス基板(直径27.4mmφ、穴径7mmφ、厚さ0.381mm)。
c)結晶化ガラス基板(直径21.6mmφ、穴径6mmφ、厚さ0.381mm)。
d)シリコン基板(直径48mmφ、穴径12mmφ、厚さ0.508mm、平均表面粗さRa=0.5nm、電気抵抗率10000Ω・cm)。
e)シリコン基板(直径27.4mmφ、穴径7mmφ、厚さ0.381mm、電気抵抗率10000Ω・cm)。
f)シリコン基板(直径21.6mmφ、穴径6mmφ、厚さ0.381mm、電気抵抗率10000Ω・cm)。
g)シリコン基板(直径48mmφ、穴径12mmφ、厚さ0.508mm、電気抵抗率10Ω・cm)。
h)シリコン基板(直径27.4mmφ、穴径7mmφ、厚さ0.381mm、電気抵抗率10Ω・cm)。
i)シリコン基板(直径21.6mmφ、穴径6mmφ、厚さ0.381mm、電気抵抗率10Ω・cm)。
[Examples 1-3, Comparative Examples 1-6]
As the non-magnetic substrate, the following two types of substrates were prepared for each 50 sheets.
a) Crystallized glass substrate (diameter 48 mmφ, hole diameter 12 mmφ, thickness 0.508 mm, average surface roughness Ra = 0.5 nm, electrical resistivity infinite).
b) Crystallized glass substrate (diameter 27.4 mmφ, hole diameter 7 mmφ, thickness 0.381 mm).
c) Crystallized glass substrate (diameter 21.6 mmφ, hole diameter 6 mmφ, thickness 0.381 mm).
d) Silicon substrate (diameter 48 mmφ, hole diameter 12 mmφ, thickness 0.508 mm, average surface roughness Ra = 0.5 nm, electrical resistivity 10000 Ω · cm).
e) A silicon substrate (diameter: 27.4 mmφ, hole diameter: 7 mmφ, thickness: 0.381 mm, electric resistivity: 10000 Ω · cm).
f) Silicon substrate (diameter 21.6 mmφ, hole diameter 6 mmφ, thickness 0.381 mm, electrical resistivity 10000 Ω · cm).
g) Silicon substrate (diameter 48 mmφ, hole diameter 12 mmφ, thickness 0.508 mm, electrical resistivity 10 Ω · cm).
h) Silicon substrate (diameter 27.4 mmφ, hole diameter 7 mmφ, thickness 0.381 mm, electrical resistivity 10 Ω · cm).
i) Silicon substrate (diameter 21.6 mmφ, hole diameter 6 mmφ, thickness 0.381 mm, electrical resistivity 10 Ω · cm).

前記a〜iの9種の基板をそれぞれDCマグネトロンスパッタ装置(アネルバ製C−3010)の成膜チャンバ内に収容し、到達真空度2×10−5Paとなるまで成膜チャンバ内を排気した後、Arガス分圧0.6Paの雰囲気中で以下の工程1〜工程5に示すようにスパッタリング、潤滑層塗布を順次行った。 Each of the nine substrates a to i is accommodated in a film forming chamber of a DC magnetron sputtering apparatus (Cnel 1030 manufactured by Anelva), and the film forming chamber is evacuated until the ultimate vacuum is 2 × 10 −5 Pa. Thereafter, sputtering and lubrication layer application were sequentially performed as shown in the following steps 1 to 5 in an atmosphere of Ar gas partial pressure of 0.6 Pa.

・工程1:基板上にFeCoからなる軟磁性裏打ち層を100nmの厚さとなるように成膜した。
・工程2:続いてRu中間層を20nmの厚さとなるように成膜した。
・工程3:続いてCo−Cr−Pt−(SiO)からなる垂直磁気記録層を厚さ10nmとなるように成膜した。
・工程4:続いてプラズマCVD法を用いてカーボン保護層を4nmの厚さとなるように成膜した。
・工程5:スパッタリングに供された基板を真空容器から取り出し、ディッピング法により、保護層上にパーフルオロポリエーテルからなる潤滑層を形成して、垂直磁気記録媒体を得た。
Step 1: A soft magnetic backing layer made of FeCo was formed on the substrate to a thickness of 100 nm.
Step 2: Subsequently, a Ru intermediate layer was formed to a thickness of 20 nm.
Step 3: Subsequently, a perpendicular magnetic recording layer made of Co—Cr—Pt— (SiO 2 ) was formed to a thickness of 10 nm.
Step 4: Subsequently, a carbon protective layer was formed to a thickness of 4 nm by using a plasma CVD method.
Step 5: The substrate subjected to sputtering was taken out of the vacuum vessel, and a lubricating layer made of perfluoropolyether was formed on the protective layer by dipping, to obtain a perpendicular magnetic recording medium.

このようにして各基板につき50枚ずつの垂直磁気記録媒体を作製した。
次に、媒体表面に付着した微小粒子の数を比較するために、磁気ディスク媒体用ODT(Optical Defect Tester)を用いて、すべての媒体の表面のホワイトスポット(輝点)の数をカウントし、媒体1枚当たりの輝点カウント数の平均値をODT観測輝点カウント数平均値とした。ODT観測は、日立ハイテクノロジ社製のODTテスタ、RZ3500を用いて、直径0.010ミクロン以上の欠陥数をカウントすることにより行った。観測領域は、基板直径48.0mmの場合は、半径位置15mm〜22mmの範囲内において、基板直径27.4mmの場合は、半径位置9mm〜13mmの範囲内において、基板直径21.6mmの場合は、半径位置8mm〜10mmの範囲内において、0°〜360°の全円周とした。
In this way, 50 perpendicular magnetic recording media were produced for each substrate.
Next, in order to compare the number of fine particles adhering to the medium surface, the number of white spots (bright spots) on the surface of all the media was counted using an ODT (Optical Defect Tester) for magnetic disk media, The average value of the number of bright spot counts per medium was defined as the average value of the ODT observation bright spot count number. The ODT observation was performed by counting the number of defects having a diameter of 0.010 microns or more using an RDT3500, an ODT tester manufactured by Hitachi High Technology. When the substrate diameter is 48.0 mm, the observation area is within a radius position of 15 mm to 22 mm, when the substrate diameter is 27.4 mm, within a radius position of 9 mm to 13 mm, and when the substrate diameter is 21.6 mm. In the range of radial positions 8 mm to 10 mm, the entire circumference was 0 ° to 360 °.

さらに、磁気ディスク媒体用テープバーニッシュ装置を用いて、全媒体表面のテープ研磨処理を行った。処理条件は、使用研磨テープ3M社製アルミナテープ、ロール荷重30gf(290mN(相対圧))、回転数1000rpm、コンタクト速度0.3mm/sである。その後、高輝度ランプ下で媒体表面を詳細に観察して、テープ研磨によって生じた円周状のキズの有無を調べた。   Furthermore, the tape grinding | polishing process of the whole medium surface was performed using the tape burnish apparatus for magnetic disc media. The processing conditions are: used abrasive tape 3M alumina tape, roll load 30 gf (290 mN (relative pressure)), rotation speed 1000 rpm, contact speed 0.3 mm / s. Thereafter, the surface of the medium was observed in detail under a high-intensity lamp and examined for the presence of circumferential flaws caused by tape polishing.

基板種それぞれについて媒体が50枚、したがって媒体面数は100面調べ、ODT観測輝点カウント数平均値及び円周状キズ発生面数を調べた。この結果を表1にまとめた。   For each substrate type, the number of media was 50, so the number of media surfaces was 100, and the average number of ODT observation bright spot counts and the number of circumferential flaws were investigated. The results are summarized in Table 1.

Figure 2006260745
Figure 2006260745

この結果から、電気抵抗率の相対的に低いシリコン基板を使用することにより、垂直磁気記録媒体の輝点数、円周状キズ発生率を大幅に改善できることが明らかとなった。とりわけその効果は、基板直径が小さいほど顕著に現れるという結果となった。このメカニズムは不詳であるが、この実施例では直径26mmφ以下で明らかに効果が増大していると考えられる。   From this result, it has been clarified that the number of bright spots and the circumferential flaw generation rate of the perpendicular magnetic recording medium can be greatly improved by using a silicon substrate having a relatively low electric resistivity. In particular, the effect was more noticeable as the substrate diameter was smaller. Although this mechanism is unknown, it is considered that the effect is clearly increased at a diameter of 26 mmφ or less in this embodiment.

[実施例4,5および比較例7]
非磁性基板として、以下の3種類の基板を各50枚ずつ用意した。
a)結晶化ガラス基板(直径21.6mmφ、穴径6mmφ、厚さ0.381mm、平均表面粗さRa=0.5nm、電気抵抗率無限大)。
b)シリコン基板(サイズはaのガラス基板と同じ、電気抵抗率3×10−6Ω・cm)。
c)カーボングラファイト基板(サイズはaのガラスと同じ、電気抵抗率4×10−5Ω・cm)。
[Examples 4 and 5 and Comparative Example 7]
As nonmagnetic substrates, the following three types of substrates were prepared for each 50 sheets.
a) Crystallized glass substrate (diameter 21.6 mmφ, hole diameter 6 mmφ, thickness 0.381 mm, average surface roughness Ra = 0.5 nm, electrical resistivity infinite).
b) Silicon substrate (size is the same as the glass substrate of a, electric resistivity 3 × 10 −6 Ω · cm).
c) Carbon graphite substrate (size is the same as glass of a, electric resistivity 4 × 10 −5 Ω · cm).

サイズがさらに小さい基板を用意し、実施例1〜3、比較例1〜6と同じく、前記工程1〜工程5を施し、50枚ずつの垂直磁気記録媒体を作製した。これらの垂直磁気記録媒体について、前述した実施例1〜3、比較例1〜6の場合と同じく、ODT観測輝点カウント数平均値及び円周状キズ発生面数を調べた。この結果を表2にまとめた。   A substrate with a smaller size was prepared, and Steps 1 to 5 were performed as in Examples 1 to 3 and Comparative Examples 1 to 6, and 50 perpendicular magnetic recording media were manufactured. With respect to these perpendicular magnetic recording media, as in the case of Examples 1 to 3 and Comparative Examples 1 to 6 described above, the ODT observation bright spot count average value and the number of circumferential flaw occurrence surfaces were examined. The results are summarized in Table 2.

Figure 2006260745
Figure 2006260745

この結果から、本発明の効果は、より径の小さい基板においても明らかとなった。   From this result, the effect of the present invention was clarified even in a substrate having a smaller diameter.

[実施例6]
表3に示す通り、様々な抵抗率をもつ直径48mm又は直径21.6mmの各種基板をそれぞれ50枚準備した。その中にはシリコン基板が数種類あるが、それらのシリコン基板はそれぞれドーパントとしてBを添加し、その添加量を加減することにより抵抗率を変化させたものである。これらの基板を使用して、前述した実施例1〜3、比較例1〜6と同じく、前記工程1〜工程5を施し、50枚ずつの垂直磁気記録媒体を作製した。これらの垂直磁気記録媒体について、前述した実施例1〜3、比較例1〜6の場合と同じく、ODT観測輝点カウント数平均値及び円周状キズ発生面数を調べた。この結果を表3にまとめた。
[Example 6]
As shown in Table 3, 50 various substrates each having a resistivity of 48 mm in diameter or 21.6 mm in diameter were prepared. Among them, there are several types of silicon substrates, but each of these silicon substrates has a resistivity changed by adding B as a dopant and adjusting the addition amount. Using these substrates, Steps 1 to 5 were performed in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 6, and 50 perpendicular magnetic recording media were manufactured. With respect to these perpendicular magnetic recording media, as in the case of Examples 1 to 3 and Comparative Examples 1 to 6 described above, the ODT observation bright spot count average value and the number of circumferential flaw occurrence surfaces were examined. The results are summarized in Table 3.

Figure 2006260745
Figure 2006260745

以上の実験結果より、以下の事実が明らかとなった。
1)基板材料の抵抗率が50Ω・cmを超えると、成膜プロセス中に垂直磁気記録媒体表面に付着する輝点数が急増する。また同様に同媒体にテープバーニッシュ処理を施した際の円周キズの発生頻度も急激に増加する。
2)同じ基板材料を用いた場合でも基板の直径が小さい方が面積あたりの輝点数、円周キズの発生率ともに高い傾向が認められる。したがって、直径の小さい垂直磁気記録媒体ほど成膜プロセス中に微小粒子による汚染を受けやすく、本発明の効果がより顕著となると考えられる。
From the above experimental results, the following facts were revealed.
1) When the resistivity of the substrate material exceeds 50 Ω · cm, the number of bright spots attached to the surface of the perpendicular magnetic recording medium during the film forming process increases rapidly. Similarly, the frequency of occurrence of circumferential flaws when the media is subjected to tape burnishing also increases rapidly.
2) Even when the same substrate material is used, it is recognized that the smaller the substrate diameter, the higher the number of bright spots per area and the incidence of circumferential scratches. Therefore, it is considered that the perpendicular magnetic recording medium having a smaller diameter is more susceptible to contamination by fine particles during the film forming process, and the effect of the present invention becomes more remarkable.

本発明の垂直磁気記録媒体の一例を示す断面図である。It is sectional drawing which shows an example of the perpendicular magnetic recording medium of this invention. 本発明の磁気記録装置の一例を示す構成図である。It is a block diagram which shows an example of the magnetic recording device of this invention.

符号の説明Explanation of symbols

1・・・垂直磁気記録媒体、2・・・非磁性基板、3・・・軟磁性裏打ち層、4・・・第1軟磁性層、5・・・Ru層、6・・・第2軟磁性層、7・・・配向制御層、8・・・中間層、9・・・垂直磁気記録層、10・・・保護膜、11・・・磁気記録再生装置、12・・・媒体駆動部、13・・・磁気ヘッド、14・・・ヘッド駆動部、15・・・記録再生信号処理系。
DESCRIPTION OF SYMBOLS 1 ... Perpendicular magnetic recording medium, 2 ... Nonmagnetic board | substrate, 3 ... Soft magnetic backing layer, 4 ... 1st soft magnetic layer, 5 ... Ru layer, 6 ... 2nd soft Magnetic layer, 7 ... orientation control layer, 8 ... intermediate layer, 9 ... perpendicular magnetic recording layer, 10 ... protective film, 11 ... magnetic recording / reproducing device, 12 ... medium drive unit , 13 ... magnetic head, 14 ... head drive unit, 15 ... recording / reproduction signal processing system.

Claims (9)

非磁性基板上に少なくとも軟磁性裏打ち層、酸化物を含むCo合金からなる磁気記録層を順次設けてなる垂直磁気記録媒体であって、該非磁性基板の抵抗率が50Ω・cm以下であることを特徴とする垂直磁気記録媒体。   At least a soft magnetic backing layer on a nonmagnetic substrate, a sequentially arranged perpendicular magnetic recording medium comprising a magnetic recording layer made of a Co alloy containing oxide, the resistivity of the non-magnetic substrate is not more than 50 [Omega · cm A perpendicular magnetic recording medium. 非磁性基板の抵抗率が1Ω・cm未満であることを特徴とする請求項1に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the resistivity of the nonmagnetic substrate is less than 1 Ω · cm. 非磁性基板の抵抗率が1×10−4Ω・cm以下であることを特徴とする請求項1に記載の垂直磁気記録媒体。 The perpendicular magnetic recording medium according to claim 1, wherein the resistivity of the nonmagnetic substrate is 1 × 10 −4 Ω · cm or less. ODT観測輝点カウント数が、35(個/枚)以下であることを特徴とする請求項1〜3の何れか1項に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to any one of claims 1 to 3, wherein the ODT observation bright spot count number is 35 (pieces / sheet) or less. ODT観測輝点カウント数が、10(個/枚)以下であることを特徴とする請求項1〜3の何れか1項に記載の垂直磁気記録媒体。   4. The perpendicular magnetic recording medium according to claim 1, wherein the ODT observation bright spot count number is 10 (pieces / sheet) or less. 非磁性基板材料としてシリコンを用いることを特徴とする請求項1に記載の垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein silicon is used as a nonmagnetic substrate material. 非磁性基板材料としてグラファイトカーボンを用いることを特徴とする請求項1に記載の垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein graphite carbon is used as the nonmagnetic substrate material. 直径が28mm以下の円盤状基板を用いることを特徴とする請求項1〜7の何れか1項に記載の垂直磁気記録媒体。   8. The perpendicular magnetic recording medium according to claim 1, wherein a disk-shaped substrate having a diameter of 28 mm or less is used. 請求項1〜8の何れか1項に記載の垂直磁気記録媒体を用いた磁気記録装置。

A magnetic recording apparatus using the perpendicular magnetic recording medium according to claim 1.

JP2006036811A 2005-02-18 2006-02-14 Perpendicular magnetic recording medium and magnetic recording device Abandoned JP2006260745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036811A JP2006260745A (en) 2005-02-18 2006-02-14 Perpendicular magnetic recording medium and magnetic recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005042068 2005-02-18
JP2006036811A JP2006260745A (en) 2005-02-18 2006-02-14 Perpendicular magnetic recording medium and magnetic recording device

Publications (1)

Publication Number Publication Date
JP2006260745A true JP2006260745A (en) 2006-09-28

Family

ID=37099776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036811A Abandoned JP2006260745A (en) 2005-02-18 2006-02-14 Perpendicular magnetic recording medium and magnetic recording device

Country Status (1)

Country Link
JP (1) JP2006260745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065044A1 (en) * 2020-09-25 2022-03-31 富士フイルム株式会社 Magnetic recording head and method for manufacturing same, magnetic recording device, and method for manufacturing magnetic recording medium
WO2022131210A1 (en) * 2020-12-15 2022-06-23 株式会社Uacj Aluminum alloy disc blank for magnetic disc, and magnetic disc

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065044A1 (en) * 2020-09-25 2022-03-31 富士フイルム株式会社 Magnetic recording head and method for manufacturing same, magnetic recording device, and method for manufacturing magnetic recording medium
JP2022053980A (en) * 2020-09-25 2022-04-06 富士フイルム株式会社 Magnetic recording head and method for manufacturing the same, magnetic recording device and method for manufacturing magnetic recording medium
JP7377182B2 (en) 2020-09-25 2023-11-09 富士フイルム株式会社 Magnetic recording head and manufacturing method thereof, magnetic recording device, and manufacturing method of magnetic recording medium
WO2022131210A1 (en) * 2020-12-15 2022-06-23 株式会社Uacj Aluminum alloy disc blank for magnetic disc, and magnetic disc
JP7474356B2 (en) 2020-12-15 2024-04-24 株式会社Uacj Aluminum alloy disk blank for magnetic disk and magnetic disk

Similar Documents

Publication Publication Date Title
JP4585214B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2007272995A (en) Method for determining whether or not magnetic disk device and non-magnetic substrate are good, magnetic disk, and magnetic disk device
US7638020B2 (en) Vertical magnetic recording medium and manufacturing method thereof
JP2007042263A (en) Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
US20090220821A1 (en) Silicon substrate for magnetic recording and method for manufacturing the same
JP2006236474A (en) Magnetic recording medium and magnetic recording/reproducing device
US7357998B2 (en) Disk substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording disk and manufacturing methods thereof
JP2006260745A (en) Perpendicular magnetic recording medium and magnetic recording device
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2006294220A (en) Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording/reproducing device
JP2003288713A (en) Vertical magnetic recording medium, magnetic recording device using the same, and manufacturing method and machine for the vertical magnetic recording medium
JP3945742B2 (en) Magnetic alloy, magnetic recording medium, manufacturing method thereof, target for forming magnetic film, and magnetic recording apparatus
US7663838B2 (en) Production method for magnetic recording medium
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP2005092970A (en) Magnetic recording medium and magnetic storage device
JP3969727B2 (en) Magnetic disk and magnetic recording apparatus
JPWO2010038754A1 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
JP5001768B2 (en) Method for manufacturing perpendicular magnetic recording disk
JP2002203312A (en) Magnetic recording medium, its manufacturing method and device, and magnetic recording/reproducing device
JPH10283626A (en) Magnetic recording medium and production thereof
JP5492453B2 (en) Method for manufacturing magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JP2004234746A (en) Manufacturing method of perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A762