JP2007265854A - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
JP2007265854A
JP2007265854A JP2006090661A JP2006090661A JP2007265854A JP 2007265854 A JP2007265854 A JP 2007265854A JP 2006090661 A JP2006090661 A JP 2006090661A JP 2006090661 A JP2006090661 A JP 2006090661A JP 2007265854 A JP2007265854 A JP 2007265854A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
amount
combustion
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006090661A
Other languages
English (en)
Inventor
和政 ▲高▼田
Kazumasa Takada
Yasuo Kuwabara
保雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006090661A priority Critical patent/JP2007265854A/ja
Publication of JP2007265854A publication Critical patent/JP2007265854A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】燃焼器の燃焼温度を所定の温度に保つとともに、燃料電池の出力を安定して得ることのできる燃料電池システム及びその制御方法を提供する。
【解決手段】燃料電池の出力と、燃料電池に供給される改質ガス中の水素量に対する燃料電池で消費された水素量の比である補正後水素利用率Rhとから燃料電池用燃料量Fcを計算する第1燃料量計算手段15と、バーナの燃焼温度Tbと目標温度とから燃焼用燃料補正量Fbを計算する第2燃料量計算手段16とを備える。燃料電池用燃料量Fcと燃焼用燃料補正量Fbとに基づいて改質器に供給する改質用燃料量を制御する。
【選択図】 図2

Description

本発明は、燃料電池から排出されるオフガスを燃焼器によって燃焼させることにより改質器を加熱する燃料電池システム及びその制御方法に関する。
従来、特許文献1、2に記載された燃料電池システム及びその制御方法が知られている。特許文献1に記載された燃料電池システムは、図8に示すように、改質用燃料及び改質水から水素を含む改質ガスを生成する改質器91と、改質ガスと酸化剤ガスとによって発電する燃料電池93と、燃料電池93から排出されるオフガスのみが燃焼エアによって燃焼されることにより改質器91を加熱するバーナ92とを備えている。改質器91に供給される改質用燃料は、流量調整弁95により流量が調整される。また、改質器91には、バーナ92の燃焼温度を測定する温度センサ91aが設けられている。さらに、燃料電池93からの直流出力は、インバータ94により交流出力に変換されるようになっている。また、図9に示すように、改質用燃料の供給量は交流出力設定値により決定されるようになっている。
この燃料電池システムの制御方法では、電力使用状況などに応じて予めわかっている交流出力設定値に対して、図9のグラフに従って、フィードフォワード制御方式によって改質用燃料の供給量を求める。その後、温度センサ91aの測定値に基づいて、燃料電池93の直流出力を調整することによりバーナ92の燃焼温度を制御している。この燃料電池システム及びその制御方法によれば、温度センサ91aの出力値に基づいて燃料電池93の直流出力を調整するだけでバーナ92の燃焼温度を制御することができるため、簡単かつ安価にバーナ92の燃焼温度を制御することができると考えられる。
また、特許文献2に記載された燃料電池システムは、特許文献1に記載された燃料電池システムと同様、改質器、燃料電池及びバーナを備え、バーナの燃焼温度によるフィードバック制御に基づいて改質用燃料を改質器に供給する一方、燃料電池の出力電流から燃料電池オフガス中の残存水素量を推定して、改質器に供給する改質用燃料の量を補正している。
この燃料電池システムでは、燃料電池の出力電流が急激に変動しても、改質器に供給する改質用燃料の量をいち早く補正して追従することができるため、バーナの燃焼温度を制御することができると考えられる。
特開2002−289226号公報 特開2003−92123号公報
しかし、上記特許文献1記載の燃料電池システム及びその制御方法では、改質用燃料の供給量を交流出力設定値により一義的に決めていること、及び燃料電池93の直流出力によりバーナ92の燃焼温度を制御していることから、機器やセンサ等のばらつき、外気温の変化及び経年変化等により、バーナ92の燃焼温度制御性と燃料電池93の出力の安定性とを同時に図ることができない。例えば、経年変化によりバーナ92が劣化した場合、バーナ92の燃焼温度が下がるため、燃料電池93の直流出力を下げて燃料電池93から排出されるオフガスを増加させる。そのため、交流出力が下がってしまい、予定の交流出力が得られなくなってしまう。
また、上記特許文献2記載の燃料電池システムでは、燃料電池の出力電流により改質器に供給する改質用燃料の量が頻繁に変動するため、この改質用燃料の量に基づいて求められるS/C、燃焼エア量等の制御量も頻繁に変動してしまう。そのため、この燃料電池システムでは、燃料電池システムの制御が不安定になるおそれがあり、結果として燃焼器の燃焼温度を所定の温度に保つことができず、燃料電池の出力を安定して得ることができなくなるおそれがある。
本発明は係る従来の問題点に鑑みてなされたものであり、燃焼器の燃焼温度を所定の温度に保つとともに、燃料電池の出力を安定して得ることのできる燃料電池システム及びその制御方法を提供するものである。
上記の課題を解決するために、請求項1に係る燃料電池システムの特徴は、改質用燃料及び改質水から水素を含む改質ガスを生成する改質器と、該改質ガスと酸化剤ガスとによって発電する燃料電池と、該燃料電池から排出されるオフガスが燃焼エアによって燃焼されることにより前記改質器を加熱する燃焼器と、を備えた燃料電池システムにおいて、前記燃料電池の出力と水素利用率とから燃料電池用燃料量を計算する第1燃料量計算手段と、前記燃焼器の燃焼温度と目標温度とから燃焼用燃料補正量を計算する第2燃料量計算手段と、を備え、前記燃料電池用燃料量と前記燃焼用燃料補正量とに基づいて前記改質器に供給する改質用燃料量を制御することである。
請求項2に係る燃料電池システムの特徴は、請求項1において、前記第1燃料量計算手段は、前記燃焼用燃料補正量に基づいて前記水素利用率を補正する水素利用率補正手段を有することである。
請求項3に係る燃料電池システムの特徴は、請求項2において、前記水素利用率補正手段は、前記燃焼用燃料補正量を小さくするように前記水素利用率を補正することである。
請求項4に係る燃料電池システムの特徴は、前記燃焼用燃料補正量は、改質器に供給される水蒸気と改質用燃料中の炭素とのモル比であるS/Cが第1限界値以上、及び燃料電池に供給される改質ガス中の水素量に対する燃料電池で消費された水素量の比である水素利用率が第2限界値以下となる供給量であることである。
請求項5に係る燃料電池システムの制御方法の特徴は、改質用燃料及び改質水から水素を含む改質ガスを生成する改質器と、該改質ガスと酸化剤ガスとによって発電する燃料電池と、該燃料電池から排出されるオフガスが燃焼エアによって燃焼されることにより前記改質器を加熱する燃焼器と、を備えた燃料電池システムの制御方法において、前記燃料電池の出力と水素利用率とから燃料電池用燃料量を計算する第1燃料量計算ルーチンと、前記燃焼器の燃焼温度と目標温度とから燃焼用燃料補正量を計算する第2燃料量計算ルーチンと、を備え、前記燃料電池用燃料量と前記燃焼用燃料補正量とに基づいて前記改質器に供給する改質用燃料量を制御することである。
請求項1に係る燃料電池システムにおいては、燃料電池用燃料量と燃焼用燃料補正量とに基づいて改質器に供給する改質用燃料量を制御するため、燃料電池の直流出力を調整する必要がない。また、燃料電池用燃料量に基づいてS/C、燃焼エア量等の制御量を制御すれば、安定して燃料電池システムを制御することができるとともに、燃焼用燃料補正量の増減によりS/C、燃焼エア量等の制御量に影響を与えることなく、燃焼器の燃焼温度を微調整可能である。したがって、この燃料電池システムによれば、燃焼器の燃焼温度を所定の温度に保つとともに、燃料電池の出力を安定して得ることができる。
請求項2に係る燃料電池システムにおいては、燃焼用燃料補正量に基づいて水素利用率を補正して燃料電池用燃料量を計算するため、燃料電池システムの状況に応じてS/C、燃焼エア量等の制御量を制御することができる。
請求項3に係る燃料電池システムにおいては、燃焼用燃料補正量を小さくするように水素利用率を補正するため、最適な状態で燃料電池システムを運転することができ、ロバスト性も高くなる。
請求項4に係る燃料電池システムにおいては、S/Cが第1限界値以上、水素利用率が第2限界値以下となるように燃焼用燃料補正量を供給しているため、コーキングや燃料電池スタックにおける部分的な水素不足を防止して、機器の破損を防止することができる。
請求項5に係る燃料電池システムの制御方法においては、燃料電池用燃料量と燃焼用燃料補正量とに基づいて改質器に供給する改質用燃料量を制御するため、燃料電池の直流出力を調整する必要がない。また、燃料電池用燃料量に基づいてS/C、燃焼エア量等の制御量を制御すれば、安定して燃料電池システムを制御することができるとともに、燃焼用燃料補正量の増減によりS/C、燃焼エア量等の制御量に影響を与えることなく、燃焼器の燃焼温度を微調整可能である。したがって、この燃料電池システムの制御方法によれば、燃焼器の燃焼温度を所定の温度に保つとともに、燃料電池の出力を安定して得ることができる。
本発明に係る燃料電池システム及びその制御方法を具体化した実施形態を図面に基づいて以下に説明する。図1に示すように、本実施形態に用いられる燃料電池システムは、改質用燃料及び改質水から水素を含む改質ガスを生成する改質器1と、改質ガスと酸化剤ガスであるカソード用空気とによって発電する燃料電池3と、燃料電池3から排出されるアノードオフガス(オフガス)が燃焼エアによって燃焼されることにより改質器1を加熱する燃焼器としてのバーナ2とを備えている。
改質器1は、燃料供給源Sfから供給される改質用燃料と、改質水供給源Swから供給される改質水から改質ガスを生成して燃料電池3に導出するものである。燃料としては天然ガス、プロパンガスなどのガス燃料や灯油、ガソリン、メタノールなどの液体燃料などがあり、本実施形態においては天然ガスを用いている。改質器1に供給される改質用燃料は、制御装置10の指令に応じて、改質用燃料ポンプ5により流量が調整される。また、改質用燃料の流量は流量計6により計測され、その計測データは制御装置10に送られる。改質器1には、バーナ2の燃焼温度Tbすなわち改質器1の内壁温度を測定する温度センサ1aが設けられている。温度センサ1aの測定結果は、制御装置10に出力されるようになっている。
バーナ2は、通常運転時においては、可燃性ガスとして燃料電池3からのアノードオフガスが供給され、その可燃性ガスを空気供給源Saから供給される燃焼エアにより燃焼させて改質器1を加熱するものである。バーナ2の燃焼排ガスは図示しない排気管を通って排気される。ここで、「定常運転」とは、改質器1から燃料電池3の燃料極に供給される改質ガス中の水素、及び空気供給源Saから燃料電池3の酸化剤極に供給される空気を用いて燃料電池3が発電している状態にあることをいう。ただし、バーナ2に着火する起動運転時においては、バーナ2には可燃性ガスとして燃料供給源Sfから燃焼用燃料を供給してもよい。また、改質ガスを安定させる暖機運転時においては、可燃性ガスとして改質器1から改質ガスを燃料電池3をバイパスして供給してもよい。ただし、本実施形態は通常運転時における燃料電池システム及びその制御方法であるため、起動運転時及び暖機運転時における燃料電池システムに係る部分は省略している。
燃料電池3は、改質器1から燃料極に供給される改質ガス中の水素、及び空気供給源Saから酸化剤極に供給される酸化剤ガスであるカソード用空気を用いて発電するものであり、燃料電池3から排出されるアノードオフガスをバーナ2に供給するようになっている。さらに、燃料電池3からの直流出力は、インバータ4により交流出力に変換されるようになっている。制御装置10には、温度センサ1a、改質用燃料ポンプ5、流量計6が電気的に接続されている。制御装置10により燃料電池システムが制御される。
図2は、この燃料電池システムのブロック線図である。この燃料電池システムは、燃料電池3の出力と水素利用率(補正後水素利用率Rh)とから燃料電池用燃料量Fcを計算する第1燃料量計算手段15と、バーナ2の燃焼温度Tbと目標温度とから燃焼用燃料補正量Fbを計算する第2燃料量計算手段16とを備えている。ここで、「水素利用率」とは、燃料電池3に供給される改質ガス中の水素量に対する燃料電池3で消費された水素量の比である。また、本実施形態においては、燃料供給源Sfから改質器1に供給される改質用燃料を計算上、燃料電池用燃料量Fcと燃焼用燃料補正量Fbとに分けている。燃料電池用燃料量Fcとは、改質用燃料のうち燃料電池3において主に発電に使用される改質ガスを生成するものであるとする。この改質ガスの一部はアノードオフガスとして燃料電池3からバーナ2に排出される。また、燃焼用燃料補正量Fbとは、改質用燃料のうち燃料電池3において発電に使用されることのない改質ガスを生成するものとする。この改質ガスは全てアノードオフガスとして燃料電池3からバーナ2に排出される。さらに、「目標温度」は、予め設計によって決められ、改質器1の転化率に基づいて求められる。本実施形態においては、この「目標温度」を燃料電池システムの運転状態によらず一定値としているが、燃料電池3の水素利用率等を考慮したマップを作成し、燃料電池システムの運転状態によって変化させてもよい。
第1燃料量計算手段15は、水素利用率補正手段としての水素利用率補正処理部20と設計燃焼量計算部31と燃料電池用燃料量計算部32とを有している。水素利用率補正処理部20は、燃焼用燃料補正量Fbに基づいて設定水素利用率を補正して補正後水素利用率Rhを求めるものであり、詳細は後述する。設計燃焼量計算部31では、設定発電量すなわち設定出力電流から設計燃料量を求める。ここで、設計燃料量とは、設計段階の水素利用率(例えば80%)の場合に必要とされる改質用燃料量である。具体的には、発電量(出力電流)に対する設計燃料量のマップから設計燃料量を求める。燃料電池用燃料量計算部32では、設計燃料量を補正後水素利用率Rhで除算して、燃料電池用燃料量Fcを求める。
水素利用率補正処理部20は、図3に示すように、ローパスフィルタ部21、偏差計算部22、補正対象判断部2、積算部24、及び水素利用率計算部25を有している。ローパスフィルタ部21では、後述する燃焼用燃料補正量計算部37で計算される燃焼用燃料補正量Fbから高周波成分を取り除いて、ノイズが除去される。なお、カットオフ周波数を5.3×10−4Hzとしている。偏差計算部22では、燃焼用燃料補正量目標値(0)とローパスフィルタ部21でノイズを除去した燃焼用燃料補正量Fbとの偏差を求める。補正対象判断部23では、この偏差が所定のデッドバンド内にあるか否かが判断される。このデッドバンドの幅は水素利用率が±2%に相当する燃焼用燃料補正量Fbの幅である。このように、デッドバンドを設けることにより、頻繁に改質用燃料量を変化させるのを防止して、燃料電池システムの安定性、ロバスト性を高めている。積算部24では、デッドバンド外にある偏差の積算量を求める。この積算量は、PID制御により求めてもよく、マップ制御により求めてもよい。水素利用率計算部25では、設定水素利用率に偏差の積算量を加算して補正後水素利用率Rhを求める。
図2に示すように、第2燃料量計算手段16は、温度センサ1aと偏差計算部36と燃焼用燃料補正量計算部37とを有している。温度センサ1aは、前述したように、バーナ2の燃焼温度Tbすなわち改質器1の内壁温度を測定するものである。温度センサ1aにより燃焼温度Tbが得られる。偏差計算部36では、燃焼温度Tbと燃焼温度目標値との偏差を求める。燃焼用燃料補正量計算部37では、この偏差と設定発電量とから、PID計算により燃焼用燃料補正量Fbを求める。
この燃料電池システムでは、第1燃料量計算手段15及び第2燃料量計算手段16の他に、加算部38、偏差計算部39、改質用燃料ポンプ5、及び流量計6を有している。加算部38では、第1燃料量計算手段15により求められた燃料電池用燃料量Fcと、第2燃料量計算手段16により求められた燃焼用燃料補正量Fbとが加算され、改質用燃料量目標値が計算される。偏差計算部39では、流量計6で計測された改質用燃料の流量と、加算部38で求めた改質用燃料量目標値との偏差を求める。改質用燃料ポンプ5は、この偏差を考慮して、改質用燃料の流量(改質用燃料量)が改質用燃料量目標値となるようにPID制御により演算された値の改質用燃料を燃料供給源Sfから改質器1に送り出す。改質用燃料の流量は流量計6により計測される。
また、燃焼用燃料補正量計算部37で計算される燃焼用燃料補正量Fbは、図4に示す燃焼用燃料補正量上限値と燃焼用燃料補正量下限値との範囲内に入るようにされる。燃焼用燃料補正量上限値は、S/C下限設定値と設定発電量とから上限値計算部41により計算される。また、燃焼用燃料補正量下限値は、水素利用率上限設定値と設定発電量とから下限値計算部42により計算される。ここで、本実施形態においては、S/C下限設定値としての第1限界値を3.0とし、水素利用率上限設定値としての第2限界値を85%としている。これらの値は設計により変更する。S/Cが第1限界値より小さいと、改質器1に供給される水蒸気に対して改質用燃料中の炭素が多すぎるため、コーキングを起こし、改質触媒を劣化させるおそれがあるからである。また、水素利用率が第2限界値より大きいと、燃料電池3において部分的に水素不足が起こるおそれがあり、燃料電池3が劣化するおそれがあるためである。
次に、この燃料電池システムの制御方法について、図5に示す制御プログラムのフローチャートを用いて説明する。この制御プログラムは所定時間ごとに実行される。制御プログラムに起動がかかると、まずステップS1において、燃料電池3が定常運転中であるか否かを調べる。燃料電池3が定常運転中である場合(YES)、ステップS2に進む。また、燃料電池3が定常運転中でない場合(NO)、制御プログラムの実行を終了する。
ステップS2においては、温度センサ1aからバーナ92の燃焼温度Tbを入力する。ステップS3においては、燃焼用燃料補正量Fbを計算する。すなわち、燃焼用燃料補正量Fbは、温度センサ1aから入力した燃焼温度Tbと燃焼温度目標値との偏差を0にする値として求めることができる。この燃焼用燃料補正量Fbは、所定の燃焼用燃料補正量上限値と燃焼用燃料補正量下限値との範囲内に限定される。燃焼用燃料補正量上限値は、S/C下限設定値から計算される。また、燃焼用燃料補正量下限値は、水素利用率上限設定値から計算される。ここで、ステップS2、S3が第2燃料量計算ルーチンである。
ステップS4においては、ステップS3で求めた燃焼用燃料補正量Fbにローパスフィルタ処理を行う。具体的には、カットオフ周波数を5.3×10−4Hzとし、燃焼用燃料補正量Fbから高周波成分を取り除いて、ノイズ成分を除去する。ステップS5においては、ローパスフィルタ処理をした燃焼用燃料補正量Fbが所定の範囲を超えるか否かを調べる。この所定の範囲とは水素利用率が±2%に相当する燃焼用燃料補正量Fbの範囲である。ローパスフィルタ処理をした燃焼用燃料補正量Fbが所定の範囲を超える場合(YES)、ステップS6に進む。また、ローパスフィルタ処理をした燃焼用燃料補正量Fbが所定の範囲を超えない場合(NO)、ステップS7に進む。なお、ローパスフィルタ処理をした燃焼用燃料補正量Fbの代わりに、燃焼用燃料補正量目標値を定めて、この燃焼用燃料補正量目標値とローパスフィルタ処理をした燃焼用燃料補正量Fbとの偏差を用いてもよい。
ステップS6においては、水素利用率の補正を行う。すなわち、記憶されている補正用水素利用率に2%加算又は減算して新たな補正用水素利用率とし、新たな補正用水素利用率と設定水素利用率とを加算して補正後水素利用率Rhとする。なお、新たな補正用水素利用率を補正用水素利用率にオーバーライトしておく。これにより、補正用水素利用率は積算された補正分の水素利用率を表すことになる。
ステップS7においては、燃料電池用燃料量Fcを求める。まず、設定発電量すなわち設定出力電流から、燃料電池3に供給される改質ガス中の水素が100%発電に使用されると仮定した場合の改質用燃料量である設計燃料量をマップから求める。そして、この設計燃料量を補正後水素利用率Rhで除算して、燃料電池用燃料量Fcとする。ここで、ステップS4〜S7が第1燃料量計算ルーチンである。
ステップS8においては、改質用燃料量を計算する。まず、流量計6で計測した改質用燃料の流量を入力する。また、ステップS7で求めた燃料電池用燃料量Fcと、ステップS3で求めた燃焼用燃料補正量Fbとを加算して改質用燃料量目標値とする。そして、流量計6から入力した改質用燃料の流量と改質用燃料量目標値との偏差を求め、この偏差を考慮して、改質用燃料の流量(改質用燃料量)が改質用燃料量目標値となるようにPID計算により演算改質用燃料量を求める。ステップS9においては、改質用燃料ポンプ5に指令を送り、ステップS8で求めた改質用燃料量を燃料供給源Sfから改質器1に供給する。
この燃料電池システムの制御方法を模式的に図6に示す。図6において、G1は燃焼温度Tbのグラフ、G2は燃焼用燃料補正量Fbのグラフ、G3は補正後水素利用率Rhのグラフ、G4は燃料電池用燃料量Fcのグラフである。
まず、時刻T1から、ステップS2において、温度センサ1aから入力したバーナ92の燃焼温度Tbが、グラフG1に示すように下降する。ステップS3では、この燃焼温度Tbと燃焼温度目標値との偏差である燃焼用燃料補正量Fbが求められる。この燃焼用燃料補正量FbはグラフG2に示すように僅かずつ増加するため、ステップS8において求められる燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの和である改質用燃料量も僅かずつ増加する。なお、ステップS7で求められる燃料電池用燃料量Fcは、補正後水素利用率Rhが変化しないため、増加しない。ステップS9において、改質用燃料量が改質器1に供給され、これにより改質器1から生成される改質ガスの量が僅かずつ増加し、燃料電池3からバーナ92に排出されるアノードオフガスの量も僅かずつ増加する。しかし、バーナ92の燃焼温度Tbは、グラフG1で示すように、上昇することなく下降し続ける。
やがて、時刻T2で、ステップS5において、燃焼用燃料補正量Fbが所定の範囲を超えると判断される。これにより、ステップS6において、記憶されている補正用水素利用率から2%減算して新たな補正用水素利用率とし、新たな補正用水素利用率と設定水素利用率とを加算して補正後水素利用率Rhとする水素利用率の補正が行われる。この結果、グラフG3に示すように、補正後水素利用率Rhは2%減少する。なお、新たな補正用水素利用率を補正用水素利用率として記憶しておく。ステップS7においては、設計燃料量を補正後水素利用率Rhで除算して、燃料電池用燃料量Fcを求める。補正用水素利用率は2%減少しているため、グラフG4で示すように、燃料電池用燃料量Fcは水素利用率2%に相当する量だけ増加することになる。ステップS8では、燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの和である改質用燃料量を求める。燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの両方とも増加しているため、改質用燃料量は増加する。ステップS9において、改質用燃料量が改質器1に供給され、これにより改質器1から生成される改質ガスの量が増加し、燃料電池3からバーナ92に排出されるアノードオフガスの量も増加する。これに伴い、バーナ92の燃焼温度Tbは、グラフG1で示すように、上昇する。また、ステップS3で求められる燃焼用燃料補正量Fbは燃焼温度Tbと燃焼温度目標値との偏差から求められるため、グラフG2で示すように、下降して0に近づく。
次に、時刻T3から、ステップS2において、温度センサ1aから入力したバーナ92の燃焼温度Tbが、グラフG1に示すように上降する。ステップS3では、この燃焼温度Tbと燃焼温度目標値との偏差である燃焼用燃料補正量Fbが求められる。この燃焼用燃料補正量FbはグラフG2に示すように僅かずつ減少するため、ステップS8において求められる燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの和である改質用燃料量も僅かずつ減少する。なお、ステップS7で求められる燃料電池用燃料量Fcは、補正後水素利用率Rhが変化しないため、増加しない。ステップS9において、改質用燃料量が改質器1に供給され、これにより改質器1から生成される改質ガスの量が僅かずつ減少し、燃料電池3からバーナ92に排出されるアノードオフガスの量も僅かずつ減少する。しかし、バーナ92の燃焼温度Tbは、グラフG1で示すように、下降することなく上昇し続ける。
やがて、時刻T4で、ステップS5において、燃焼用燃料補正量Fbが所定の範囲を超えると判断される。これにより、ステップS6において、記憶されている補正用水素利用率に2%加算して新たな補正用水素利用率とし、新たな補正用水素利用率と設定水素利用率とを加算して補正後水素利用率Rhとする水素利用率の補正が行われる。この結果、グラフG3に示すように、補正後水素利用率Rhは2%増加する。なお、新たな補正用水素利用率を補正用水素利用率として記憶しておく。ステップS7においては、設計燃料量を補正後水素利用率Rhで除算して、燃料電池用燃料量Fcを求める。補正用水素利用率は2%増加しているため、グラフG4で示すように、燃料電池用燃料量Fcは水素利用率2%に相当する量だけ減少することになる。ステップS8では、燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの和である改質用燃料量を求める。燃焼用燃料補正量Fbと燃料電池用燃料量Fcとの両方とも減少しているため、改質用燃料量は減少する。ステップS9において、改質用燃料量が改質器1に供給され、これにより改質器1から生成される改質ガスの量が減少し、燃料電池3からバーナ92に排出されるアノードオフガスの量も減少する。これに伴い、バーナ92の燃焼温度Tbは、グラフG1で示すように、下降する。また、ステップS3で求められる燃焼用燃料補正量Fbは、グラフG2で示すように、上昇して0に近づく。
この燃料電池システムの定常運転時における実際の制御量のグラフを図7に示す。図7において、G5は燃焼温度Tbのグラフ、G6は燃焼用燃料補正量Fbのグラフ、G6aは燃焼用燃料補正量Fbの上限値のグラフ、G6bは燃焼用燃料補正量Fbの下限値のグラフ、G7は補正後水素利用率Rhのグラフ、G8は燃料電池用燃料量Fcのグラフである。ただし、時刻T6から時刻T7の間において、燃料電池3の出力を1KWから300Wに減少させている。また、時刻T8から時刻T9の間において、燃料電池3の出力を300Wから1KWに増加させている。図7によれば、補正後水素利用率Rhを制御することにより、燃焼温度Tb及び燃焼用燃料補正量Fbが略一定に保たれていることがわかる。
本実施形態の燃料電池システム及びその制御方法においては、燃料電池用燃料量Fcと燃焼用燃料補正量Fbとに基づいて改質用燃料を制御するため、燃料電池3の直流出力を調整する必要がない。また、燃料電池用燃料量Fcに基づいてS/C、燃焼エア量等の制御量を制御しているため、安定して燃料電池システムを制御することができるとともに、燃焼用燃料補正量Fbの増減によりS/C、燃焼エア量等の制御量に影響を与えることなく、バーナ2の燃焼温度Tbを微調整可能である。したがって、この燃料電池システム及びその制御方法によれば、バーナ2の燃焼温度Tbを所定の温度に保つとともに、燃料電池3の出力を安定して得ることができる。
また、この燃料電池システム及びその制御方法においては、燃焼用燃料補正量Fbに基づいて補正後水素利用率Rhを計算し、この補正後水素利用率Rhを用いて燃料電池用燃料量Fcを計算している。そして、燃焼用燃料補正量Fbを小さくするように補正後水素利用率Rhを計算するため、最適な状態で燃料電池システムを運転することができ、ロバスト性も高くなる。
さらに、この燃料電池システム及びその制御方法においては、S/Cが3.0以上、水素利用率が85%以下となるように燃焼用燃料補正量Fbを供給しているため、コーキングや燃料電池スタックにおける部分的な水素不足を防止して、機器の破損を防止することができる。
なお、本発明の燃料電池システム及びその制御方法を実施形態に即して説明したが、本発明はこれらに制限されるものではなく、本発明の技術的思想に反しない限り、適宜変更して適用できることはいうまでもない。
実施形態の燃料電池システム及びその制御方法に係り、燃料電池システムの概要図。 実施形態の燃料電池システムのブロック線図。 実施形態の燃料電池システムに係り、水素利用率補正処理のブロック線図。 実施形態の燃料電池システムに係り、燃焼用燃料補正量の上下限値のブロック線図。 実施形態の燃料電池システムの制御方法に係り、制御プログラムのフローチャート。 実施形態の燃料電池システムの制御方法に係り、制御量の模式的なグラフ。 実施形態の燃料電池システムの制御方法に係り、制御量の実際のグラフ。 従来の燃料電池システム及びその制御方法に係り、燃料電池システムの概要図。 従来の燃料電池システム及びその制御方法に係り、交流出力設定値と改質用燃料の関係を示すグラフ。
符号の説明
1…改質器、2…燃焼器(バーナ)、3…燃料電池、15…第1燃料量計算手段、16…第2燃料量計算手段、20…水素利用率補正手段(水素利用率補正処理部)、Rh…水素利用率(補正後水素利用率)、Tb…燃焼温度、Fc…燃料電池用燃料量、Fb…燃焼用燃料補正量、S4、S5、S6、S7…第1燃料量計算ルーチン、S2、S3…第2燃料量計算ルーチン。

Claims (5)

  1. 改質用燃料及び改質水から水素を含む改質ガスを生成する改質器と、該改質ガスと酸化剤ガスとによって発電する燃料電池と、該燃料電池から排出されるオフガスが燃焼エアによって燃焼されることにより前記改質器を加熱する燃焼器と、を備えた燃料電池システムにおいて、
    前記燃料電池の出力と、前記燃料電池に供給される前記改質ガス中の水素量に対する前記燃料電池で消費された水素量の比である水素利用率とから燃料電池用燃料量を計算する第1燃料量計算手段と、
    前記燃焼器の燃焼温度と目標温度とから燃焼用燃料補正量を計算する第2燃料量計算手段と、を備え、
    前記燃料電池用燃料量と前記燃焼用燃料補正量とに基づいて前記改質器に供給する改質用燃料量を制御することを特徴とする燃料電池システム。
  2. 請求項1において、前記第1燃料量計算手段は、前記燃焼用燃料補正量に基づいて前記水素利用率を補正する水素利用率補正手段を有することを特徴とする燃料電池システム。
  3. 請求項2において、前記水素利用率補正手段は、前記燃焼用燃料補正量を小さくするように前記水素利用率を補正することを特徴とする燃料電池システム。
  4. 前記燃焼用燃料補正量は、改質器に供給される水蒸気と改質用燃料中の炭素とのモル比であるS/Cが第1限界値以上、及び水素利用率が第2限界値以下となる供給量であることを特徴とする燃料電池システム。
  5. 改質用燃料及び改質水から水素を含む改質ガスを生成する改質器と、該改質ガスと酸化剤ガスとによって発電する燃料電池と、該燃料電池から排出されるオフガスが燃焼エアによって燃焼されることにより前記改質器を加熱する燃焼器と、を備えた燃料電池システムの制御方法において、
    前記燃料電池の出力と水素利用率とから燃料電池用燃料量を計算する第1燃料量計算ルーチンと、
    前記燃焼器の燃焼温度と目標温度とから燃焼用燃料補正量を計算する第2燃料量計算ルーチンと、を備え、
    前記燃料電池用燃料量と前記燃焼用燃料補正量とに基づいて前記改質器に供給する改質用燃料量を制御することを特徴とする燃料電池システムの制御方法。
JP2006090661A 2006-03-29 2006-03-29 燃料電池システム及びその制御方法 Pending JP2007265854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090661A JP2007265854A (ja) 2006-03-29 2006-03-29 燃料電池システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090661A JP2007265854A (ja) 2006-03-29 2006-03-29 燃料電池システム及びその制御方法

Publications (1)

Publication Number Publication Date
JP2007265854A true JP2007265854A (ja) 2007-10-11

Family

ID=38638641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090661A Pending JP2007265854A (ja) 2006-03-29 2006-03-29 燃料電池システム及びその制御方法

Country Status (1)

Country Link
JP (1) JP2007265854A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191315A (ja) * 2012-03-12 2013-09-26 Aisin Seiki Co Ltd 燃料電池システム
JP2014049387A (ja) * 2012-09-03 2014-03-17 Osaka Gas Co Ltd 燃料利用率の設定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119164A (ja) * 1986-11-07 1988-05-23 Toshiba Corp 燃料電池発電システム
JP2002164068A (ja) * 2000-11-22 2002-06-07 Denso Corp 燃料電池システム
JP2003157871A (ja) * 2001-11-22 2003-05-30 Toshiba Corp 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP2005190917A (ja) * 2003-12-26 2005-07-14 Fuji Electric Holdings Co Ltd 原燃料制御装置および原燃料制御方法
JP2006066300A (ja) * 2004-08-27 2006-03-09 Aisin Seiki Co Ltd 燃料電池システムの燃焼温度制御装置およびその設計方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119164A (ja) * 1986-11-07 1988-05-23 Toshiba Corp 燃料電池発電システム
JP2002164068A (ja) * 2000-11-22 2002-06-07 Denso Corp 燃料電池システム
JP2003157871A (ja) * 2001-11-22 2003-05-30 Toshiba Corp 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP2005190917A (ja) * 2003-12-26 2005-07-14 Fuji Electric Holdings Co Ltd 原燃料制御装置および原燃料制御方法
JP2006066300A (ja) * 2004-08-27 2006-03-09 Aisin Seiki Co Ltd 燃料電池システムの燃焼温度制御装置およびその設計方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191315A (ja) * 2012-03-12 2013-09-26 Aisin Seiki Co Ltd 燃料電池システム
JP2014049387A (ja) * 2012-09-03 2014-03-17 Osaka Gas Co Ltd 燃料利用率の設定方法

Similar Documents

Publication Publication Date Title
JP6066580B2 (ja) 燃料電池システム
JP2017191710A (ja) 燃料電池システム
JP5052021B2 (ja) 燃料電池システムの制御方法及び燃料電池システム
JP5906423B2 (ja) 水素生成装置および燃料電池システム
JP2018110079A (ja) 燃料電池システム及びその運転方法
JP2007265854A (ja) 燃料電池システム及びその制御方法
JP2015220211A (ja) 燃料電池の制御装置及び燃料電池の制御方法
JP7068052B2 (ja) 燃料電池システム、起動制御プログラム
JP5583354B2 (ja) 燃料電池システム
JP2004063368A (ja) 燃料電池発電システム
JP6827357B2 (ja) 固体酸化物形燃料電池システム
JP6607803B2 (ja) 燃料電池システム
JP2007200771A (ja) 燃料電池発電装置の改質触媒温度制御システムおよびその制御方法
JP2014047083A (ja) 水素含有ガス生成装置及び水素含有ガス生成量調節方法
JP7018733B2 (ja) 固体酸化物形燃料電池
JP2002158019A (ja) 燃料電池発電装置
JP2007073302A (ja) 燃料改質システム
JP2016012521A (ja) 燃料電池システム
JP7226129B2 (ja) 燃料電池システムおよびその制御方法
JP7003655B2 (ja) 燃料電池システム
JP7396176B2 (ja) 燃料電池システム
JP2009298657A (ja) 改質システム
JP5021895B2 (ja) 燃料電池発電システム
JP5922435B2 (ja) 燃料電池システム及びその制御方法
JP2009238622A (ja) 固体酸化物形燃料電池発電システムとその運転制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710