JP2007250537A - Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it - Google Patents

Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it Download PDF

Info

Publication number
JP2007250537A
JP2007250537A JP2007036075A JP2007036075A JP2007250537A JP 2007250537 A JP2007250537 A JP 2007250537A JP 2007036075 A JP2007036075 A JP 2007036075A JP 2007036075 A JP2007036075 A JP 2007036075A JP 2007250537 A JP2007250537 A JP 2007250537A
Authority
JP
Japan
Prior art keywords
active material
material layer
current collector
electrode plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007036075A
Other languages
Japanese (ja)
Other versions
JP5130738B2 (en
JP2007250537A5 (en
Inventor
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007036075A priority Critical patent/JP5130738B2/en
Publication of JP2007250537A publication Critical patent/JP2007250537A/en
Publication of JP2007250537A5 publication Critical patent/JP2007250537A5/ja
Application granted granted Critical
Publication of JP5130738B2 publication Critical patent/JP5130738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for non-aqueous electrolyte secondary battery which uses a high capacity active material, and can achieve reduction of stress at both ends in width direction of the current collector at the time of expansion and contraction by storage of lithium ions without remarkable deterioration of capacity, and to provide a non-aqueous electrolyte secondary battery using the same. <P>SOLUTION: The electrode plate 20 for non-aqueous electrolyte secondary battery comprises a current collector 22 and an electrode active material layer 24 including an electrode active material capable of storage and release of lithium ions. The electrode active material layer 24 is composed of a first active material layer 21 formed at the center of the current collector 22 and a second active material layer 23 formed at the both end parts in width direction of the current collector 22. The thickness of the second active material layer 23 is larger by more than 0% and 50% or less than that of the first active material layer 21. A non-aqueous electrolyte secondary battery using this is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、集電体と、集電体の表面に形成された電極活物質層とを有する非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery electrode plate having a current collector and an electrode active material layer formed on the surface of the current collector, and a nonaqueous electrolyte secondary battery using the same.

近年、非水電解質二次電池の高容量化のための電極活物質(以下、活物質ともいう)として、Si(ケイ素)やSn(スズ)などの元素を含む電極材料が注目されている。例えば、Siの理論放電容量は約4199mAh/gであり、黒鉛の理論放電容量の約11倍である。   In recent years, electrode materials containing elements such as Si (silicon) and Sn (tin) have attracted attention as electrode active materials (hereinafter also referred to as active materials) for increasing the capacity of non-aqueous electrolyte secondary batteries. For example, the theoretical discharge capacity of Si is about 4199 mAh / g, which is about 11 times the theoretical discharge capacity of graphite.

しかしながら、これらの活物質は、リチウムイオンを吸蔵する際に構造が大きく変化し、膨張する。その結果、活物質粒子が割れたり、集電体から活物質層が剥がれたりすることによって、活物質と集電体との間の電子伝導性が低下し、結果としてサイクル特性といった電池特性が低下する。   However, these active materials undergo a large change in structure when they absorb lithium ions and expand. As a result, the active material particles are cracked or the active material layer is peeled off from the current collector, resulting in a decrease in electronic conductivity between the active material and the current collector, resulting in a decrease in battery characteristics such as cycle characteristics. To do.

そのため、放電容量が若干低下するがSiやSnの酸化物、窒化物または酸窒化物を用いることによって膨張収縮を軽減することが試みられている。   Therefore, although the discharge capacity is slightly reduced, attempts have been made to reduce expansion and contraction by using Si, Sn oxides, nitrides, or oxynitrides.

また、活物質層に、リチウムイオン吸蔵時の膨張空間をあらかじめ設けておくことが提案されている。   In addition, it has been proposed that an active material layer is provided with an expansion space in advance when lithium ions are stored.

例えば特許文献1には、リチウム(Li)とは合金化しない材料からなる集電体上に、Liと合金化する金属またはこの金属を含有する合金からなる薄膜が形成された非水電解質二次電池用電極板(以下、電極板ともいう)が開示されている。この従来例においては、集電体上に所定のパターンで選択的に凹凸状電極活物質層を形成し、この凹凸状電極物質層の形成にはフォトレジスト法とメッキ技術などを適用している。さらに、柱状に形成された活物質間の空隙が活物質の体積膨張を吸収することによって、活物質の破壊を回避する内容を開示している。また、集電体の上に凹凸状にパターン化されて形成された活物質層を備える電極を用いて、従来の電池と同様にセパレータを介して正極活物質と対向させた非水電解質二次電池が開示されている。   For example, Patent Document 1 discloses a non-aqueous electrolyte secondary in which a thin film made of a metal alloyed with Li or an alloy containing this metal is formed on a current collector made of a material that is not alloyed with lithium (Li). A battery electrode plate (hereinafter also referred to as an electrode plate) is disclosed. In this conventional example, an uneven electrode active material layer is selectively formed in a predetermined pattern on a current collector, and a photoresist method and a plating technique are applied to the formation of the uneven electrode material layer. . Furthermore, the content which avoids destruction of an active material is disclosed by the space | gap between the active materials formed in columnar shape absorbing the volume expansion of an active material. In addition, a non-aqueous electrolyte secondary that is made to face a positive electrode active material through a separator in the same manner as a conventional battery, using an electrode including an active material layer that is formed in a concavo-convex pattern on a current collector A battery is disclosed.

また特許文献2には、Li合金メッキ型の電極において、充放電サイクルの繰り返しや捲回時のメッキ電極層のクラックを防止するために、集電体の幅方向の両端部にメッキ層を含まない構成が開示されている。
特開2004−127561号公報 特開平8−130005号公報
Patent Document 2 includes a plated layer at both ends in the width direction of the current collector to prevent cracking of the plated electrode layer during repeated charging / discharging cycles and winding in a Li alloy plating type electrode. No configuration is disclosed.
JP 2004-127561 A JP-A-8-130005

しかしながら、前記特許文献1に記載の構成を有する電極板は、活物質層を構成する粒子が充放電時に顕著に膨張収縮するために、集電体に働く応力が大きく、集電体の幅方向の端部で破断が生じやすい。また、前記特許文献2に記載の構成を有する電極のように、集電体の幅方向の両端部に活物質層を形成しない部分を設けた場合には、容量の低下が大きい上に、この集電体露出部分の集電体材料が削れやすく、電池組立工程で微粉が発生し、電池性能のバラツキが生じるおそれがある。   However, the electrode plate having the configuration described in Patent Document 1 has a large stress acting on the current collector because the particles constituting the active material layer significantly expand and contract during charge and discharge, and the width direction of the current collector is large. Breaking is likely to occur at the ends. In addition, when the portion where the active material layer is not formed is provided at both end portions in the width direction of the current collector as in the electrode having the configuration described in Patent Document 2, the capacity is greatly reduced. The current collector material in the exposed portion of the current collector is likely to be scraped, and fine powder is generated in the battery assembly process, which may cause variations in battery performance.

本発明は、前記従来の課題を解決するもので、高容量活物質を用い、かつリチウムイオ
ンの吸蔵による膨張収縮時の、集電体箔の幅方向の両端部における応力の低減を、顕著な容量低下なしに実現することが出来る非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and is able to remarkably reduce stress at both ends in the width direction of the current collector foil during expansion and contraction using a high-capacity active material and occlusion of lithium ions. It aims at providing the electrode plate for nonaqueous electrolyte secondary batteries which can be implement | achieved without capacity reduction, and a nonaqueous electrolyte secondary battery using the same.

前記従来の課題を解決するために、本発明の非水電解質二次電池用電極板は、集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な電極活物質を含む電極活物質層と、を有する用電極板であって、
前記電極活物質層は、集電体の中央部に形成された第1の活物質層と、集電体の幅方向の両端部に形成された、第1の活物質層よりも薄い第2の活物質層とからなることを特徴とするものである。
In order to solve the conventional problems, an electrode plate for a non-aqueous electrolyte secondary battery according to the present invention includes a current collector and an electrode active material capable of inserting and extracting lithium ions formed on the current collector. An electrode active material layer comprising:
The electrode active material layer includes a first active material layer formed at the center of the current collector and a second active material layer formed at both ends in the width direction of the current collector and thinner than the first active material layer. It is characterized by comprising an active material layer.

また本発明の電極板は、前記第2の活物質層の厚さが、前記第1の活物質層の厚さの0%以上、50%以下であること、を特徴とするものである。さらに前記電極活物質層は気相法で作製された層であること、を特徴とするものである。   In the electrode plate of the present invention, the thickness of the second active material layer is 0% or more and 50% or less of the thickness of the first active material layer. Further, the electrode active material layer is a layer produced by a vapor phase method.

本構成を有する非水電解質二次電池用電極板を用いた場合には、集電体の幅方向の両端部に対する応力を軽減することが可能となるので、集電体の破断を防止することが出来る。   When the electrode plate for a non-aqueous electrolyte secondary battery having this configuration is used, it is possible to reduce the stress on both ends in the width direction of the current collector, so that the current collector is prevented from being broken. I can do it.

また、本発明の電池は、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、本発明の非水電解質二次電池用電極板からなる負極板と、セパレータと、から構成される極板群と、リチウムイオン伝導性を有する電解質と、を含む電池であって、
極板群は、正極板と電極板とをセパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とする。
The battery of the present invention includes a positive electrode plate containing a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode plate made of the electrode plate for a nonaqueous electrolyte secondary battery of the present invention, and a separator. A battery comprising an electrode plate group and an electrolyte having lithium ion conductivity,
The electrode plate group is formed by winding or folding a positive electrode plate and an electrode plate in the length direction via a separator.

本構成の非水電解質二次電池は、信頼性の高い非水電解質二次電池用電極板を用いることで、高容量で信頼性の高い非水電解質二次電池とすることが出来る。   The non-aqueous electrolyte secondary battery having this configuration can be a high-capacity and highly reliable non-aqueous electrolyte secondary battery by using a highly reliable non-aqueous electrolyte secondary battery electrode plate.

本発明の非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池によれば、高容量活物質を用い、かつリチウムイオンの吸蔵による活物質膨張収縮時の集電体端部に対する応力を軽減することで、集電体の破断を防止することが出来る。その結果、高容量で信頼性の高い電池とすることが出来る。   According to the electrode plate for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using the same according to the present invention, a current collector end using a high-capacity active material and during expansion and contraction of the active material due to occlusion of lithium ions By reducing the stress on the part, it is possible to prevent the current collector from being broken. As a result, a battery with high capacity and high reliability can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態)
図1は本発明の実施の形態における電極板の概略平面図であり、図2は図1におけるA−A’における断面構造を示す概略断面図である。図1と図2とにおいて、同じ構成要素については同じ符号を用いる。図1および図2において、電極板20は、集電体22と、集電体22の表面上に形成された電極活物質層24とを有する。図2に示すように集電体22の両面に電極活物質層24が形成されていてもよいし、集電体22の片方の面にのみ電極活物質層24が形成されていてもよい。電極活物質層24は、集電体22の中央部に形成された第1の活物質層21と、集電体22の幅方向の両端部に形成され、第1の活物質層よりも薄い第2の活物質層23と、からなる。第2の活物質層23は集電体22の幅方向の両端部に所定の幅Wで形成されている。
(Embodiment)
FIG. 1 is a schematic plan view of an electrode plate according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing a cross-sectional structure taken along line AA ′ in FIG. 1 and 2, the same reference numerals are used for the same components. 1 and 2, the electrode plate 20 has a current collector 22 and an electrode active material layer 24 formed on the surface of the current collector 22. As shown in FIG. 2, the electrode active material layer 24 may be formed on both surfaces of the current collector 22, or the electrode active material layer 24 may be formed only on one surface of the current collector 22. The electrode active material layer 24 is formed at the first active material layer 21 formed at the center of the current collector 22 and at both ends in the width direction of the current collector 22, and is thinner than the first active material layer. A second active material layer 23. The second active material layer 23 is formed with a predetermined width W at both ends in the width direction of the current collector 22.

さらに、第2の活物質層23の厚さは、第1の活物質層21の厚さに対して0%より大
きく50%以下である。ここで、集電体22の中央部に形成された第1の活物質層21とは、電池構成時に正極板と対向し、充放電に関与する活物質層を意味し、通常ほぼ均一な厚さで形成されている。また、集電体22の幅方向の両端部とは、図1に示すようにある程度の面積を有しており、集電体22の端部断面部を意味するものではない。
Furthermore, the thickness of the second active material layer 23 is greater than 0% and equal to or less than 50% with respect to the thickness of the first active material layer 21. Here, the first active material layer 21 formed in the central portion of the current collector 22 is an active material layer that is opposed to the positive electrode plate during battery construction and is involved in charge and discharge, and has a generally uniform thickness. Is formed. Further, both end portions of the current collector 22 in the width direction have a certain area as shown in FIG. 1 and do not mean end cross sections of the current collector 22.

従来の電極板においては、電極活物質層が集電体の端部までほぼ均一に設けられているか、あるいは前述した特許文献2に示されるように、集電体の幅方向の両端部において電極活物質層を形成しない領域が設けられていた。   In the conventional electrode plate, the electrode active material layer is provided almost uniformly up to the end of the current collector, or as shown in Patent Document 2 described above, the electrodes are formed at both ends in the width direction of the current collector. A region where no active material layer was formed was provided.

電極活物質層が集電体の幅方向の端部までほぼ均一に設けられている従来の電極板では、充放電による電極活物質層の膨張収縮に伴う応力が、集電体の中央付近と幅方向端部とで同程度に発生する。これに対して集電体の実用的な機械的強度は、集電体中央部付近では集電体材料の引っ張り強度によって規定されるが、集電体の幅方向端部では実用的な機械強度が集電体材料の引き裂き強度によって規定される。例えば集電体材料としてCu箔を用いた場合、電池製造工程時の極板スリットの工程で、集電体の切断面に微小なキズが発生することがあり、充放電による膨張収縮時に前記微小クラック部分を基点にした集電体の破断が生じやすい。   In the conventional electrode plate in which the electrode active material layer is provided almost uniformly up to the end in the width direction of the current collector, the stress accompanying the expansion and contraction of the electrode active material layer due to charge / discharge is near the center of the current collector. It occurs to the same extent at the end in the width direction. On the other hand, the practical mechanical strength of the current collector is defined by the tensile strength of the current collector material near the center of the current collector, but is practical mechanical strength at the widthwise end of the current collector. Is defined by the tear strength of the current collector material. For example, when Cu foil is used as the current collector material, a minute scratch may occur on the cut surface of the current collector in the electrode slit process during the battery manufacturing process, and the microscopic damage may occur during expansion / contraction due to charge / discharge. The current collector based on the crack portion tends to break.

これに対して本発明の電極板20においては、集電体22の幅方向端部における電極活物質層(第2の活物質層23)の厚みは幅方向中央部における電極活物質層(第1の活物質層21)の厚みに比べて薄く、そのため充放電による膨張収縮による集電体22への応力が低減できる。そのため充放電を繰り返したときにも、集電体端部を基点とした集電体22および電極板20の破断を防止することが出来る。   On the other hand, in the electrode plate 20 of the present invention, the thickness of the electrode active material layer (second active material layer 23) at the end in the width direction of the current collector 22 is the same as that of the electrode active material layer (first in the width direction). Therefore, the stress on the current collector 22 due to expansion and contraction due to charge / discharge can be reduced. Therefore, even when charging / discharging is repeated, breakage of the current collector 22 and the electrode plate 20 with the current collector end as a base point can be prevented.

一方、電極活物質層そのもののクラックを防止するために、特許文献2に示されるように集電体の幅方向の両端部において電極活物質層を形成しない領域を設けることが開示されている。特許文献2の場合には、また、電極活物質層が全く形成されていない集電体端部領域と電極活物質層形成領域で集電体にかかる応力の差が大きく、充放電の結果、二つの領域の境界で集電体の損傷が発生しやすい。また、正極板に対向する位置の電極板上に電極活物質層が全く存在しないとリチウムの析出が顕著に発生し、電池の信頼性が低下するため、正極板と電極板の位置あわせに高い精度が要求され、生産性が低下する。さらには集電体の幅方向の両端部の電極活物質層が形成されない領域は集電体箔が露出しており、電池製造工程における電極板のスリットや巻き取りの際に集電体の露出部分が工程設備と摺動接触する可能性が高い。そのため、集電体22の表面の削り取りや脱落により、集電体材料からなる微粉が発生する場合がある。こうした金属材料の微粉は電池信頼性の低下要因となる。   On the other hand, in order to prevent cracking of the electrode active material layer itself, as disclosed in Patent Document 2, it is disclosed that regions where no electrode active material layer is formed are provided at both ends in the width direction of the current collector. In the case of Patent Document 2, there is a large difference in stress applied to the current collector in the current collector end region where the electrode active material layer is not formed at all and the electrode active material layer formation region. Current collector damage is likely to occur at the boundary between the two regions. In addition, if there is no electrode active material layer on the electrode plate at a position opposite to the positive electrode plate, lithium deposition occurs remarkably and the reliability of the battery is lowered. Therefore, the alignment of the positive electrode plate and the electrode plate is high. Accuracy is required and productivity is reduced. Furthermore, the current collector foil is exposed in the region where the electrode active material layer at both ends in the width direction of the current collector is not formed, and the current collector is exposed when slitting or winding the electrode plate in the battery manufacturing process. There is a high possibility that the part will be in sliding contact with the process equipment. Therefore, fine powder made of the current collector material may be generated by scraping or dropping off the surface of the current collector 22. Such a fine powder of the metal material becomes a factor of lowering the battery reliability.

これに対して本発明の電極板20の構成においては、集電体22の幅方向の端部にまで第2の活物質層23が形成されているので、集電体22の端部領域と第1の活物質層22の形成領域とで集電体22にかかる応力の差は小さい。従って、充放電を繰り返しても、二つの領域の境界における集電体22の損傷は発生しにくい。また、集電体22の幅方向端部にまで第2の活物質層23が形成されているので、正・電極板の位置あわせがずれた場合にもリチウムの析出が軽微であり、電池の信頼性低下を防止できる。さらには、集電体22は幅方向端部まで第2の活物質層23に覆われているので、電池製造工程における取扱いを経ても集電体22材料の削れが生じにくく、金属微粉の発生による電池信頼性の低下を防止できる。   On the other hand, in the configuration of the electrode plate 20 of the present invention, the second active material layer 23 is formed up to the end of the current collector 22 in the width direction. The difference in stress applied to the current collector 22 between the formation region of the first active material layer 22 is small. Therefore, even if charging / discharging is repeated, the current collector 22 is hardly damaged at the boundary between the two regions. Further, since the second active material layer 23 is formed up to the end in the width direction of the current collector 22, lithium deposition is slight even when the positive electrode plate is misaligned. Reduced reliability can be prevented. Further, since the current collector 22 is covered with the second active material layer 23 up to the end in the width direction, the material of the current collector 22 is hardly scraped even after handling in the battery manufacturing process, and the generation of metal fines is generated. It is possible to prevent a decrease in battery reliability due to.

集電体22の幅方向における、第2の活物質層23が形成されている領域の幅Wは、1mm以上10mm以下であることが望ましい。この幅Wが1mm未満では集電体端部での破断防止の効果が小さく、幅Wが10mmを超えないことが、高エネルギー密度な電池を
得るために望ましい。この幅Wは電極板20の全長に亘って通常一定であるが、本発明の効果を損なわない範囲で有れば、一定である必要はない。また、集電体22の一方の端部に形成された第2の活物質層23の幅ともう一方の端部に形成された第2の活物質層23の幅とが同じでも良く、異なっていても良い。
The width W of the region where the second active material layer 23 is formed in the width direction of the current collector 22 is preferably 1 mm or more and 10 mm or less. If this width W is less than 1 mm, the effect of preventing breakage at the end of the current collector is small, and it is desirable for the width W not to exceed 10 mm in order to obtain a battery with a high energy density. The width W is normally constant over the entire length of the electrode plate 20, but need not be constant as long as the effect of the present invention is not impaired. Further, the width of the second active material layer 23 formed at one end of the current collector 22 may be the same as the width of the second active material layer 23 formed at the other end. May be.

また、電極活物質層24(第1の活物質層21および第2の活物質層23)に含まれる活物質としては、リチウムと電気化学的に反応するものであれば特に制限はないが、リチウムとの反応性が比較的高く、高容量が期待できるケイ素単体、ケイ素合金、ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズ単体、スズ合金、スズと酸素とを含む化合物、およびスズと窒素とを含む化合物よりなる群から選択される少なくとも1種を含むことが好ましい。本発明による改善度合いが顕著となるからである。   The active material contained in the electrode active material layer 24 (the first active material layer 21 and the second active material layer 23) is not particularly limited as long as it reacts electrochemically with lithium. Silicon simple substance, silicon alloy, compound containing silicon and oxygen, compound containing silicon and nitrogen, simple substance of tin, tin alloy, compound containing tin and oxygen, which has relatively high reactivity with lithium and can be expected to have a high capacity And at least one selected from the group consisting of compounds containing tin and nitrogen. It is because the improvement degree by this invention becomes remarkable.

第1の活物質層21の集電体22の中央部での厚みは作製する電池の性能によって異なるが、概ね3〜40μmの範囲である。第1の活物質層21の厚さが3μm未満になると、電池全体に占める活物質の割合が小さくなり、電池のエネルギー密度が低下する。また、第1の活物質層21の厚さが40μmを超えると、活物質層の剥がれが発生しやすくなったり、充放電時の活物質層の膨張収縮による集電体22と第1の活物質層21との界面における応力が大きくなったり、本発明の構成を用いた場合でも集電体の変形などが発生しやすくなる。   The thickness of the first active material layer 21 at the center of the current collector 22 varies depending on the performance of the battery to be manufactured, but is generally in the range of 3 to 40 μm. When the thickness of the first active material layer 21 is less than 3 μm, the proportion of the active material in the entire battery decreases, and the energy density of the battery decreases. Further, when the thickness of the first active material layer 21 exceeds 40 μm, the active material layer tends to be peeled off, or the current collector 22 and the first active material layer due to expansion / contraction of the active material layer during charge / discharge. The stress at the interface with the material layer 21 is increased, and even when the configuration of the present invention is used, the current collector is easily deformed.

リチウムとの反応性の観点からは、活物質は非晶質または低結晶性であることが好ましい。ここでいう低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。なお結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また非晶質とは、X線回折分析で得られる回折像において、2θ=15〜40°の範囲にブロードなピークを有することを言う。   From the viewpoint of reactivity with lithium, the active material is preferably amorphous or low crystalline. The term “low crystallinity” as used herein refers to a region where the crystal grain size is 50 nm or less. Note that the grain size of the crystal grains is calculated by the Scherrer equation from the half-value width of the peak with the highest intensity in the diffraction image obtained by X-ray diffraction analysis. Amorphous means having a broad peak in the range of 2θ = 15 to 40 ° in a diffraction image obtained by X-ray diffraction analysis.

集電体22には銅、ニッケルなどを含む金属箔を用いることが出来る。強度、電池としての体積効率、取り扱いの容易性などの観点から集電体22の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。集電体22の表面は平滑であってもよいが、電極活物質層24との付着強度を高めるために、Ra=0.1〜4μm程度の凹凸があってもよい。集電体表面の凹凸は電極活物質層24を構成する粒子間に空隙を形成する効果を併せ持つ。付着力、コストなどの点から、より好ましくはRa=0.4〜2.5μmである。   A metal foil containing copper, nickel, or the like can be used for the current collector 22. The thickness of the current collector 22 is preferably 4 to 30 μm, more preferably 5 to 10 μm, from the viewpoints of strength, volumetric efficiency as a battery, and ease of handling. The surface of the current collector 22 may be smooth, but in order to increase the adhesion strength with the electrode active material layer 24, there may be unevenness of about Ra = 0.1 to 4 μm. The unevenness on the surface of the current collector also has the effect of forming voids between the particles constituting the electrode active material layer 24. From the viewpoints of adhesive force, cost, etc., Ra = 0.4 to 2.5 μm is more preferable.

本実施の形態における電極板20は、例えば以下に示す方法によって作製可能である。図3および図4は、本実施の形態における電極板20を構成するための製造装置の一例を示す概略図であり、図4は後述する遮蔽体移動機構の一例を示す概略斜視図である。図3において、真空槽2内は排気ポンプ1で排気されている。真空槽2中で巻き出しロール8から巻き出された集電体22は、搬送ローラ5および円筒状の第1キャン6および第2キャン7の周面に沿って走行し、巻き取りロール3に巻き取られる。ここで使用する集電体22は銅、ニッケルなどからなるシート状の箔である。活物質付与源9には、ケイ素またはスズが坩堝などに入れられている。活物質付与源9は電子ビームなどの加熱装置(図示せず)により加熱され、ケイ素またはスズが蒸発する。   The electrode plate 20 in the present embodiment can be manufactured by the following method, for example. 3 and 4 are schematic views illustrating an example of a manufacturing apparatus for configuring the electrode plate 20 in the present embodiment, and FIG. 4 is a schematic perspective view illustrating an example of a shield moving mechanism described later. In FIG. 3, the inside of the vacuum chamber 2 is exhausted by the exhaust pump 1. The current collector 22 unwound from the unwinding roll 8 in the vacuum chamber 2 travels along the peripheral surfaces of the transport roller 5 and the cylindrical first can 6 and the second can 7, It is wound up. The current collector 22 used here is a sheet-like foil made of copper, nickel or the like. In the active material application source 9, silicon or tin is put in a crucible or the like. The active material application source 9 is heated by a heating device (not shown) such as an electron beam, and silicon or tin evaporates.

遮蔽板10の開口部において、集電体22が第1キャン6に沿った状態で活物質付与源9から飛来するケイ素やスズなどにさらされることにより、集電体22上にケイ素やスズの第1の活物質層21(図示せず)が形成される。次に第2キャン7に沿った状態で集電体22が活物質付与源9から飛来するケイ素やスズなどにさらされることにより、もう一方の面にもケイ素やスズの第1の活物質層21(図示せず)が形成される。この際、第1キャン6および第2キャン7に近接して、集電体22の走行方向に平行な線状遮蔽体41
が、集電体22や活物質層から所定の距離を保って、多条に設置される。蒸発源から飛来する活物質材料の一部は、線状遮蔽体41により集電体22上への付着を阻害される。そのため線状遮蔽体41に相対する位置では、集電体22上に形成される活物質層の厚みを薄くすることで、第2の活物質層23が出来る。なお、第2の活物質層23の形成に影響が出ない程度に線状遮蔽体41の一部が集電体22や活物質層に接触していても良い。
When the current collector 22 is exposed to silicon, tin, or the like flying from the active material application source 9 in the state along the first can 6 in the opening of the shielding plate 10, silicon or tin is deposited on the current collector 22. A first active material layer 21 (not shown) is formed. Next, when the current collector 22 is exposed to silicon, tin, or the like flying from the active material application source 9 in a state along the second can 7, the first active material layer of silicon or tin is also formed on the other surface. 21 (not shown) is formed. At this time, a linear shield 41 that is close to the first can 6 and the second can 7 and is parallel to the traveling direction of the current collector 22.
However, it is installed in multiple strips at a predetermined distance from the current collector 22 and the active material layer. Part of the active material flying from the evaporation source is prevented from adhering to the current collector 22 by the linear shield 41. Therefore, the second active material layer 23 can be formed by reducing the thickness of the active material layer formed on the current collector 22 at a position facing the linear shield 41. Note that a part of the linear shield 41 may be in contact with the current collector 22 or the active material layer to the extent that the formation of the second active material layer 23 is not affected.

線状集電体41の上への活物質材料の堆積量が多くなると、活物質層が薄くなる領域が広がってくる。そこで、長時間の成膜を行う際には、遮蔽体移動機構により、線状遮蔽体41を移動させることが望ましい。この遮蔽体移動機構は、線状遮蔽体41を送出リール44と回収リール45とで移動させる遮蔽体移動機構42Bのような方式であっても良いし、線状遮蔽体41を巡回する遮蔽体移動機構42Aのような方式であっても良い。遮蔽体移動機構が遮蔽体移動機構42Bのように送出リール44と回収リール45を有する場合には、常に新しい線状遮蔽体41が供出されるので、線状遮蔽体41による対向部の活物質層厚み低減度合いが一定となる。また、遮蔽体移動機構が遮蔽体移動機構42Aのよう巡回方式である場合には、図4に示すように、途中に高屈曲部43を設けることにより、線状遮蔽体41に付着した活物質材料の大半を脱落させ、それによって線状遮蔽体41による対向部の活物質層厚み低減度合いを一定とすることが出来る。   As the amount of active material deposited on the linear current collector 41 increases, the area where the active material layer becomes thinner spreads. Therefore, when performing film formation for a long time, it is desirable to move the linear shield 41 by the shield moving mechanism. This shield moving mechanism may be a system such as a shield moving mechanism 42B that moves the linear shield 41 between the delivery reel 44 and the collection reel 45, or a shield that circulates the linear shield 41. A system like the moving mechanism 42A may be used. When the shield moving mechanism has the delivery reel 44 and the recovery reel 45 as in the shield moving mechanism 42B, a new linear shield 41 is always provided, so that the active material at the opposing portion by the linear shield 41 is provided. The degree of layer thickness reduction is constant. In addition, when the shield moving mechanism is a cyclic system like the shield moving mechanism 42A, as shown in FIG. 4, an active material attached to the linear shield 41 is provided by providing a highly bent portion 43 in the middle. Most of the material is dropped off, whereby the active material layer thickness reduction degree of the opposing portion by the linear shield 41 can be made constant.

線状遮蔽体41にはステンレスなどの金属線や金属帯、ポリイミドなどの耐熱性樹脂からなる線状長尺体を用いることが出来る。線状遮蔽体41の直径あるいは幅は、作製する第2の活物質層23の幅や、作製する電池の形状によって異なるが、後述するスリットの際に第2の活物質層23の幅Wを確保できる幅で有ればよい。   As the linear shield 41, a linear long body made of a heat-resistant resin such as a metal wire such as stainless steel, a metal band, or polyimide can be used. The diameter or width of the linear shield 41 varies depending on the width of the second active material layer 23 to be manufactured and the shape of the battery to be manufactured, but the width W of the second active material layer 23 is set at the time of a slit described later. It suffices to have a width that can be secured.

集電体上22に電極活物質層24を形成した後、電池製造工程のためにスリットを行う。スリットは線状遮蔽体41の対向位置、すなわち第2の活物質層23に沿って行われる。これによって集電体22の幅方向の両端部において第2の活物質層23を有する電極板20を形成することが出来る。   After the electrode active material layer 24 is formed on the current collector 22, a slit is formed for the battery manufacturing process. The slit is made at a position facing the linear shield 41, that is, along the second active material layer 23. As a result, the electrode plate 20 having the second active material layer 23 can be formed at both ends in the width direction of the current collector 22.

第2の活物質層23の形成状態は、線状遮蔽体41の厚さ、直径や幅、線状遮蔽体41と集電体22との距離、活物質付与源9と集電体22との距離などによって、第2の活物質層23の幅と厚さとを調整することが出来る。線状遮蔽体41と集電体22とは一部接触していても良く、両者の距離は0〜80mm程度であることが第2の活物質層23の幅を限定する上で望ましい。線状遮蔽体41と集電体22との距離は、線状遮蔽体41の直径あるいは幅の4倍以下であることが、線状遮蔽体41の効果により第2の活物質層23を設ける上で望ましい。活物質付与源9と集電体22との距離は真空蒸着法などの気相法を用いる場合には100〜600mm程度であることが、膜厚分布や材料利用効率の点から望ましい。   The formation state of the second active material layer 23 includes the thickness, diameter and width of the linear shield 41, the distance between the linear shield 41 and the current collector 22, the active material application source 9 and the current collector 22. The width and thickness of the second active material layer 23 can be adjusted depending on the distance of the distance. The linear shield 41 and the current collector 22 may be partially in contact with each other, and the distance between them is preferably about 0 to 80 mm in order to limit the width of the second active material layer 23. The distance between the linear shield 41 and the current collector 22 is not more than four times the diameter or width of the linear shield 41. The second active material layer 23 is provided by the effect of the linear shield 41. Desirable above. The distance between the active material application source 9 and the current collector 22 is preferably about 100 to 600 mm in the case of using a vapor phase method such as a vacuum evaporation method from the viewpoint of film thickness distribution and material utilization efficiency.

ケイ素と酸素とを含む化合物、ケイ素と窒素とを含む化合物、スズと酸素とを含む化合物、またはスズと窒素とを含む化合物の活物質層を形成する場合には、酸素ガスや窒素ガスをガス導入管11から導入し、これらのガス雰囲気下や、そのイオン化雰囲気下で活物質付与源9からケイ素やスズを蒸発させることにより、本発明の電極板20が得られる。ガスをイオン化する場合には高周波の印加やイオン銃の使用等がガスの反応性向上に有効である。   When forming an active material layer of a compound containing silicon and oxygen, a compound containing silicon and nitrogen, a compound containing tin and oxygen, or a compound containing tin and nitrogen, oxygen gas or nitrogen gas is used as a gas. The electrode plate 20 of the present invention can be obtained by introducing silicon through the introduction tube 11 and evaporating silicon or tin from the active material application source 9 in these gas atmospheres or in the ionized atmosphere thereof. In the case of ionizing a gas, application of a high frequency, use of an ion gun, etc. are effective for improving gas reactivity.

本発明の構成を持つ電極活物質層24の作製方法は、本発明の構造を得ることが出来るものであれば特に限定されないが、蒸着法、スパッタ法、CVD法などの気相法(ドライプロセス)を用いることが好ましい。上述した製造方法のように、気相法を用いると、電極活物質層24(第1の活物質層21および第2の活物質層23)の形成厚さや幅、形成位置などの制御が、他の製法と比較して容易だからである。   The manufacturing method of the electrode active material layer 24 having the configuration of the present invention is not particularly limited as long as the structure of the present invention can be obtained, but a vapor phase method (dry process, such as a vapor deposition method, a sputtering method, a CVD method). ) Is preferably used. When the vapor phase method is used as in the manufacturing method described above, control of the formation thickness, width, formation position, and the like of the electrode active material layer 24 (the first active material layer 21 and the second active material layer 23) can be controlled. This is because it is easier than other methods.

こうした手法により得られた電極板20は、LiCoO、LiNiO、LiMnなどといった一般的に使用される正極活物質を含む正極板と、微多孔性フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどをエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類に溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解液と共に用いることで、非水電解質二次電池を作製出来る。 The electrode plate 20 obtained by such a method includes a positive electrode plate containing a commonly used positive electrode active material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , a separator made of a microporous film, etc. A nonaqueous electrolyte secondary battery can be produced by using lithium phosphate or the like together with an electrolyte having lithium ion conductivity having a generally known composition in which cyclic carbonates such as ethylene carbonate and propylene carbonate are dissolved.

また、本発明の電極は様々な形状の非水電解質二次電池に適用可能であり、電池の形状や封止形態は特に限定されないが、本発明は特に折り畳み型や捲回型の二次電池に対して有効である。捲回型非水電解質二次電池に適用する場合には、以下に示す構成を有することが好ましい。図面を参照しながら説明する。   Further, the electrode of the present invention can be applied to various shapes of nonaqueous electrolyte secondary batteries, and the shape and sealing form of the battery are not particularly limited, but the present invention is particularly a folding type or wound type secondary battery. It is effective against. When applied to a wound nonaqueous electrolyte secondary battery, it is preferable to have the following configuration. This will be described with reference to the drawings.

図5は、本発明の捲回型非水電解質二次電池の概略断面図である。図5において、正極31と本発明の帯状の電極板20とは、それらの間に配置された、両極板よりも幅広な帯状のセパレータ33とともに捲回され、極板群32を形成している。正極31にはアルミニウムなどからなる正極リード34が接続され、その一端は周縁にポリプロピレンなどからなる絶縁パッキン40が配された封口板39に接続されている。電極板20には銅などからなる電極リード35が接続され、その一端は極板群32を収容する電池缶38に接続されている。電極リード35は、例えば第2の活物質層23の一部を剥離して集電体22を露出させ、そこに溶接などにより電気的接続がされている。また、予め集電体22に、わずかに露出部を形成しておき、そこに電極リード35を接続しても良い。極板群32の上下には、それぞれ上部絶縁リング36および下部絶縁リング37が配されている。極板群32には、前述したリチウムイオン伝導性を有する電解質(図示せず)が含浸されている。電池缶38の開口は、封口板39で塞がれている。   FIG. 5 is a schematic cross-sectional view of a wound nonaqueous electrolyte secondary battery of the present invention. In FIG. 5, the positive electrode 31 and the strip-shaped electrode plate 20 of the present invention are wound together with a strip-shaped separator 33 arranged between them and wider than the bipolar plates to form a plate group 32. . A positive electrode lead 34 made of aluminum or the like is connected to the positive electrode 31, and one end thereof is connected to a sealing plate 39 in which an insulating packing 40 made of polypropylene or the like is arranged on the periphery. An electrode lead 35 made of copper or the like is connected to the electrode plate 20, and one end thereof is connected to a battery can 38 that accommodates the electrode plate group 32. For example, a part of the second active material layer 23 is peeled off to expose the current collector 22, and the electrode lead 35 is electrically connected thereto by welding or the like. Alternatively, a slightly exposed portion may be formed in the current collector 22 in advance, and the electrode lead 35 may be connected thereto. An upper insulating ring 36 and a lower insulating ring 37 are arranged above and below the electrode plate group 32, respectively. The electrode plate group 32 is impregnated with the above-described electrolyte (not shown) having lithium ion conductivity. The opening of the battery can 38 is closed with a sealing plate 39.

ここで、電極板20として形成された、集電体22上の幅方向の両端部に形成された第2の活物質層23の厚みは、集電体22上の中央部に形成された第1の活物質層21の厚みに対して0%を超えて50%以下の領域を有する。これによって充放電による電極活物質層24が膨張収縮を繰り返しても集電体22端部を基点とした破断を防止することが出来る。なお、電極板20の全長にわたって第2の活物質層23の厚みが第1の活物質層21の厚みに対して0%を超えて50%以下である必要は必ずしもなく、電池設計や工程上の都合で極板の一部に限って、上記の範囲から逸することは本発明の主旨を損なうものではない。   Here, the thickness of the second active material layer 23 formed at the both ends in the width direction on the current collector 22 formed as the electrode plate 20 is the first thickness formed at the central portion on the current collector 22. One active material layer 21 has a region exceeding 0% and not more than 50% with respect to the thickness. Thereby, even if the electrode active material layer 24 due to charging / discharging repeatedly expands and contracts, it is possible to prevent breakage with the end of the current collector 22 as a base point. Note that the thickness of the second active material layer 23 is not necessarily greater than 0% and not more than 50% with respect to the thickness of the first active material layer 21 over the entire length of the electrode plate 20. For the reasons described above, deviating from the above range only for a part of the electrode plate does not impair the gist of the present invention.

以下では本発明を具体的な実施例により説明する。   In the following, the present invention will be explained by specific examples.

(実施例1)
古河サーキットホイル(株)製の粗面化銅箔(35ミクロン厚、第1の面はRa=2ミクロン、第2の面はRa=1ミクロン)を集電体とし、第1の面上に真空蒸着法によって電極活物質層を形成し、電極を作製した。電極活物質層は、0.005Paまで真空槽を排気後、日本電子(株)製の270度偏向型電子銃を用いてシリコンを酸素導入雰囲気中(流量 30sccm)で加熱することによって蒸発させ、集電体上に堆積させることによって行った。第1の活物質層は20nm/秒の堆積速度で集電体上に堆積させて形成し、第2の活物質層の厚みが第1の活物質層の厚みの25%程度となるように遮蔽部の位置を集電体から20mm程度にして調整した。なお電極物質層は、集電体の幅方向に第1の活物質層が約58mm継続した後、第2の活物質層が2mm程度形成されるような繰り返し構造とした。次に第2の活物質層の中央線付近に沿ってカミソリ刃を用いて切断し、集電体の中央部に形成された第1の活物質層と、集電体の幅方向の端部に形成された第2の活物質層と、からなる電極を得た。研磨断面のSEM観察では、第2の活物質層の厚さは5ミクロン、第1の活物質層の厚さは20ミクロンであった。
Example 1
Furukawa Circuit Foil Co., Ltd. roughened copper foil (thickness 35 microns, first surface Ra = 2 microns, second surface Ra = 1 microns) current collector on the first surface An electrode active material layer was formed by a vacuum vapor deposition method to produce an electrode. After evacuating the vacuum chamber to 0.005 Pa, the electrode active material layer is evaporated by heating silicon in an oxygen-introducing atmosphere (flow rate 30 sccm) using a 270 degree deflection electron gun manufactured by JEOL Ltd., This was done by depositing on a current collector. The first active material layer is formed by being deposited on the current collector at a deposition rate of 20 nm / second so that the thickness of the second active material layer is about 25% of the thickness of the first active material layer. The position of the shielding part was adjusted to about 20 mm from the current collector. The electrode material layer has a repeating structure in which the first active material layer is formed in the width direction of the current collector for about 58 mm and then the second active material layer is formed about 2 mm. Next, it cut | disconnects using the razor blade along the centerline vicinity of the 2nd active material layer, the 1st active material layer formed in the center part of an electrical power collector, and the edge part of the width direction of an electrical power collector The electrode which consists of the 2nd active material layer formed in this was obtained. In SEM observation of the polished cross section, the thickness of the second active material layer was 5 microns, and the thickness of the first active material layer was 20 microns.

作製した電極(60mm幅、4m長)を、活物質層が石英製四角柱の高さ方向の角に接するように、張力1.2kg、折れ角160度(鈍角)で押しつけて、速度2m/分で走行させた。電極を1m走行させた後の石英製四角柱の、電極が摺動した角を光学顕微鏡観察した。図6はその結果である。図6において、白い部分が石英製四角柱の表面であり、黒い部分は空間である。図6に示すとおり、石英製四角柱の、電極が摺動した角付近の表面には、電極から微粉が剥離したことに起因する汚れはほとんど無かった(図6)。また、電極上の活物質層表面には、石英製四角柱の角との摺動により発生する摺動痕は、目視では確認できなかった。   The prepared electrode (60 mm wide, 4 m long) was pressed at a tension of 1.2 kg and a bending angle of 160 degrees (obtuse angle) so that the active material layer was in contact with the height direction corner of the quartz quadrangular prism, and the speed was 2 m / Ran in minutes. The angle at which the electrode slid in the quartz quadrangular column after running the electrode for 1 m was observed with an optical microscope. FIG. 6 shows the result. In FIG. 6, the white part is the surface of the quartz quadrangular prism, and the black part is the space. As shown in FIG. 6, the surface of the quartz square column near the corner where the electrode slid was hardly contaminated due to the fine powder peeling off from the electrode (FIG. 6). In addition, on the surface of the active material layer on the electrode, the sliding trace generated by sliding with the corner of the quartz quadrangular column could not be visually confirmed.

(比較例1)
実施例1と同様の集電体の上に真空蒸着法によって電極活物質層を形成し、電極を作製した。電極活物質層は、実施例1と同様の方法および条件でシリコンを酸素導入雰囲気気で蒸発させ、集電体上に堆積させることによって行った。また、電極活物質層は、集電体の中央部に形成し、集電体の長さ方向に別のテープ形状の銅箔であらかじめマスキングすることによって、活物質層が形成されない領域を設けた。なお電極物質層は、集電体の幅方向に第1の活物質層が約58mm継続した後、活物質層が形成されずに銅箔露出する部分が2mm程度形成されるような繰り返し構造とした。次に銅箔露出部分の長さ方向に沿って両端を、カミソリ刃を用いて切断し、集電体の幅方向両端部に第2の活物質層を形成せずに、銅箔を露出させた電極(60mm幅、4m長)を得た。研磨断面のSEM観察より、第1の活物質層の厚さは20ミクロンであった。
(Comparative Example 1)
An electrode active material layer was formed on the same current collector as in Example 1 by vacuum vapor deposition to produce an electrode. The electrode active material layer was formed by evaporating silicon in an oxygen-introduced atmosphere and depositing it on the current collector using the same method and conditions as in Example 1. In addition, the electrode active material layer is formed in the central portion of the current collector, and a region where the active material layer is not formed is provided by masking in advance with another tape-shaped copper foil in the length direction of the current collector. . The electrode material layer has a repetitive structure in which the first active material layer continues for about 58 mm in the width direction of the current collector, and then the active material layer is not formed, and the exposed portion of the copper foil is formed about 2 mm. did. Next, cut both ends along the length direction of the exposed portion of the copper foil with a razor blade to expose the copper foil without forming the second active material layer at both ends of the current collector in the width direction. An electrode (60 mm wide, 4 m long) was obtained. From the SEM observation of the polished cross section, the thickness of the first active material layer was 20 microns.

作製した電極を、実施例1と同様の配置で石英製の角柱に相対させ、幅方向あたりの張力200g/cmで2m/分の速度で摺動した。1m走行後、実施例1と同様の手法により石英製四角柱の、電極が摺動した角を光学顕微鏡観察した。図7において、白い部分が石英製四角柱の表面であり、黒い部分は空間である。図7に示すとおり、集電体から剥がれ落ちた銅粉が、石英製四角柱の、電極が摺動した角付近の表面に白い点として観察された。一方、電極の銅箔露出部分の表面には、石英製四角柱の角との摺動により発生した摺動痕が目視で確認できた。   The produced electrode was made to face a quartz prism in the same arrangement as in Example 1, and slid at a speed of 2 m / min with a tension of 200 g / cm in the width direction. After traveling for 1 m, the corner of the quartz quadrangular column where the electrode slid was observed with an optical microscope in the same manner as in Example 1. In FIG. 7, the white portion is the surface of the quartz quadrangular prism, and the black portion is the space. As shown in FIG. 7, the copper powder peeled off from the current collector was observed as white dots on the surface of the quartz square column near the corner where the electrode slid. On the other hand, on the surface of the exposed portion of the copper foil of the electrode, sliding traces generated by sliding with the corners of the quartz quadrangular prism were visually confirmed.

本発明にかかる非水電解質二次電池用電極板、およびそれを用いた非水電解質二次電池は、高容量活物質を用い、かつ表面が粗面化した集電体を用いても電池組立時等の集電体の削れを軽減することができ、電池の信頼性が向上するので、非水電解質二次電池用電極、およびそれを用いた非水電解質二次電池として有用である。   An electrode plate for a non-aqueous electrolyte secondary battery according to the present invention and a non-aqueous electrolyte secondary battery using the same are assembled even if a high-capacity active material is used and a current collector having a rough surface is used. Since the current collector can be less worn and the reliability of the battery is improved, it is useful as a nonaqueous electrolyte secondary battery electrode and a nonaqueous electrolyte secondary battery using the same.

また電気二重層キャパシタの一方の電極の活物質を、カーボンブラックからグラファイトに変更し、電解液をリチウムイオン含有の非水電解液へ変更することによりエネルギー密度を向上させた電気化学キャパシタが検討されている。本発明の電極板を、このような電気化学キャパシタのグラファイト電極に代えて使用することにより、電気化学キャパシタの信頼性を向上させることができる。   In addition, an electrochemical capacitor that has improved energy density by changing the active material of one electrode of the electric double layer capacitor from carbon black to graphite and changing the electrolyte to a non-aqueous electrolyte containing lithium ions has been studied. ing. By using the electrode plate of the present invention instead of the graphite electrode of such an electrochemical capacitor, the reliability of the electrochemical capacitor can be improved.

本発明の実施の形態における電極板の概略平面図Schematic plan view of an electrode plate in an embodiment of the present invention 本発明の実施の形態における電極板の概略断面図Schematic sectional view of an electrode plate in an embodiment of the present invention 本発明の実施の形態における製造装置の一例を示す概略図Schematic which shows an example of the manufacturing apparatus in embodiment of this invention 本発明の実施の形態における遮蔽体移動機構の一例を示す概略斜視図The schematic perspective view which shows an example of the shield moving mechanism in embodiment of this invention 本発明の実施の形態における捲回型非水電解質二次電池の概略断面図Schematic sectional view of a wound nonaqueous electrolyte secondary battery in an embodiment of the present invention 本発明の実施例における石製製角柱の表面顕微鏡写真Surface micrograph of a stone prism in an embodiment of the present invention 比較例における石製製角柱の表面顕微鏡写真Surface micrograph of stone prism in comparative example

符号の説明Explanation of symbols

1 排気ポンプ
2 真空槽
3 巻き取りロール
5 搬送ローラ
6 第1キャン
7 第2キャン
8 巻き出しロール
9 活物質付与源
10 遮蔽板
11 ガス導入管
20 電極板
21 第1の活物質層
22 集電体
23 第2の活物質層
24 電極活物質層
31 正極板
32 極板群
33 セパレータ
34 正極リード
35 電極リード
36 上部絶縁リング
37 下部絶縁リング
38 電池缶
39 封口板
40 絶縁パッキン
41 線状遮蔽体
42A、42B 遮蔽体移動機構
43 高屈曲部
44 送出リール
45 回収リール
DESCRIPTION OF SYMBOLS 1 Exhaust pump 2 Vacuum tank 3 Winding roll 5 Conveyance roller 6 1st can 7 2nd can 8 Unwinding roll 9 Active material provision source 10 Shielding plate 11 Gas introduction pipe 20 Electrode plate 21 1st active material layer 22 Current collection Body 23 Second active material layer 24 Electrode active material layer 31 Positive electrode plate 32 Electrode plate group 33 Separator 34 Positive electrode lead 35 Electrode lead 36 Upper insulating ring 37 Lower insulating ring 38 Battery can 39 Sealing plate 40 Insulating packing 41 Linear shield 42A, 42B Shield moving mechanism 43 High bending portion 44 Delivery reel 45 Collection reel

Claims (4)

集電体と、前記集電体上に形成されたリチウムイオンを吸蔵および放出可能な電極活物質を含む電極活物質層と、を有する非水電解質二次電池用電極板であって、
前記電極活物質層は、前記集電体の中央部に形成された第1の活物質層と、前記集電体の幅方向の両端部に形成され、第1の活物質層よりも薄い第2の活物質層とからなることを特徴とする非水電解質二次電池用電極板。
An electrode plate for a nonaqueous electrolyte secondary battery, comprising: a current collector; and an electrode active material layer containing an electrode active material capable of inserting and extracting lithium ions formed on the current collector,
The electrode active material layer is formed at a first active material layer formed at the center of the current collector and at both ends in the width direction of the current collector, and is thinner than the first active material layer. An electrode plate for a non-aqueous electrolyte secondary battery, comprising: 2 active material layers.
前記第2の活物質層の厚さは、前記第1の活物質層の厚さの0%以上、50%以下であること、を特徴とする請求項1に記載の非水電解質二次電池用電極板。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the thickness of the second active material layer is 0% or more and 50% or less of the thickness of the first active material layer. Electrode plate. 前記負電極物質層は気相法で作製された層であること、を特徴とする請求項1に記載の非水電解質二次電池用電極板。   The electrode plate for a nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode material layer is a layer produced by a vapor phase method. リチウムイオンを吸蔵・放出可能な正極活物質を含む正極板と、請求項1から3に記載の非水電解質二次電池用電極板からなる負極板と、セパレータと、から構成される極板群と、
リチウムイオン伝導性を有する電解質と、を含む非水電解質二次電池であって、前記極板群は、前記正極板と前記非水電解質二次電池用電極板とを前記セパレータを介して長さ方向に捲回または折り畳んで構成されていること、を特徴とする非水電解質二次電池。
An electrode plate group comprising a positive electrode plate containing a positive electrode active material capable of inserting and extracting lithium ions, a negative electrode plate comprising the electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, and a separator. When,
A non-aqueous electrolyte secondary battery comprising a lithium ion conductive electrolyte, wherein the electrode plate group includes a length of the positive electrode plate and the electrode plate for the non-aqueous electrolyte secondary battery through the separator. A non-aqueous electrolyte secondary battery characterized by being wound or folded in a direction.
JP2007036075A 2006-02-16 2007-02-16 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5130738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036075A JP5130738B2 (en) 2006-02-16 2007-02-16 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006038991 2006-02-16
JP2006038991 2006-02-16
JP2007036075A JP5130738B2 (en) 2006-02-16 2007-02-16 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2007250537A true JP2007250537A (en) 2007-09-27
JP2007250537A5 JP2007250537A5 (en) 2010-03-11
JP5130738B2 JP5130738B2 (en) 2013-01-30

Family

ID=38594571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036075A Expired - Fee Related JP5130738B2 (en) 2006-02-16 2007-02-16 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5130738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960266A (en) * 2023-09-21 2023-10-27 河南锂动电源有限公司 Pole piece lithium supplementing device, pole piece lithium supplementing system and pole piece lithium supplementing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261075A (en) * 1990-03-10 1991-11-20 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH10241725A (en) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd Alkali secondary battery
JP2000268813A (en) * 1999-03-19 2000-09-29 Toyota Motor Corp Battery, electrode structure of capacitor, and manufacture of electrode
WO2004109839A1 (en) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
JP2005190902A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Manufacturing method for lithium precursor battery and lithium secondary battery
JP2005209533A (en) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261075A (en) * 1990-03-10 1991-11-20 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPH10241725A (en) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd Alkali secondary battery
JP2000268813A (en) * 1999-03-19 2000-09-29 Toyota Motor Corp Battery, electrode structure of capacitor, and manufacture of electrode
WO2004109839A1 (en) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
JP2005190902A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Manufacturing method for lithium precursor battery and lithium secondary battery
JP2005209533A (en) * 2004-01-23 2005-08-04 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116960266A (en) * 2023-09-21 2023-10-27 河南锂动电源有限公司 Pole piece lithium supplementing device, pole piece lithium supplementing system and pole piece lithium supplementing method

Also Published As

Publication number Publication date
JP5130738B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5210162B2 (en) Anode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
JP4647014B2 (en) Batteries, electrodes and current collectors used therefor
JP4036889B2 (en) battery
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4850405B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5189210B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010097843A (en) Lithium-ion secondary battery
JPWO2010079754A1 (en) Electrochemical element electrode manufacturing method, electrochemical element electrode, and electrochemical element
JP4368193B2 (en) Lithium precursor battery and method for producing lithium secondary battery
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JP5130737B2 (en) Nonaqueous electrolyte secondary battery
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP4899793B2 (en) Vacuum deposition equipment
JP5130738B2 (en) Nonaqueous electrolyte secondary battery
JP2008103231A (en) Electrode for lithium secondary battery
JP2008098038A (en) Collector, pole plate for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery using the same
JP5103789B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2008010419A (en) Manufacturing method of electrode for electrochemical element, and electrochemical element including it
JP2007328932A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP5034236B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2011154786A (en) Apparatus for manufacturing electrode plate of electrochemical device
JP2011082008A (en) Electrode for electrochemical element, method of manufacturing the same, and lithium ion battery
JP2005293852A (en) Manufacturing method of lithium secondary battery and anode for the lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees