JP2005190902A - Manufacturing method for lithium precursor battery and lithium secondary battery - Google Patents

Manufacturing method for lithium precursor battery and lithium secondary battery Download PDF

Info

Publication number
JP2005190902A
JP2005190902A JP2003432907A JP2003432907A JP2005190902A JP 2005190902 A JP2005190902 A JP 2005190902A JP 2003432907 A JP2003432907 A JP 2003432907A JP 2003432907 A JP2003432907 A JP 2003432907A JP 2005190902 A JP2005190902 A JP 2005190902A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
layer
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003432907A
Other languages
Japanese (ja)
Other versions
JP4368193B2 (en
Inventor
Ryuji Oshita
竜司 大下
Hiromasa Yagi
弘雅 八木
Maruo Jinno
丸男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003432907A priority Critical patent/JP4368193B2/en
Publication of JP2005190902A publication Critical patent/JP2005190902A/en
Application granted granted Critical
Publication of JP4368193B2 publication Critical patent/JP4368193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium precursor battery having a large battery capacity and an excellent cycle property. <P>SOLUTION: In the lithium precursor battery or the lithium secondary battery provided with a positive electrode, a negative electrode comprising a thin film layer of an amorphous material or a microcrystal consisting essentially of silicon and a nonaqueous electrolyte, the negative electrode includes an outermost layer 52 not containing lithium and a layer 51 containing lithium intervening between a negative electrode current collector and the outermost layer. The amount of lithium contained in the layer containing lithium is 1 to 50 per 100 silicon atoms. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池の改良に関し、特にリチウム二次電池用負極の改良に関する。   The present invention relates to an improvement of a lithium secondary battery, and more particularly to an improvement of a negative electrode for a lithium secondary battery.

リチウムイオンを吸蔵、放出する炭素材料を負極活物質とするリチウム二次電池は、リチウムが金属状態で存在しないため、樹枝状(デンドライト状)リチウムの析出がなく安全性やサイクル寿命に優れ、且つ高エネルギー密度で高容量であるので、移動情報端末等の駆動電源として広く利用されている。   A lithium secondary battery using a carbon material that occludes and releases lithium ions as a negative electrode active material is free of dendritic (dendritic) lithium deposition because lithium does not exist in a metallic state, and has excellent safety and cycle life. Because of its high energy density and high capacity, it is widely used as a driving power source for mobile information terminals and the like.

然るに、近年、移動情報端末の多機能化・高機能化が進み、これに伴い消費電力も大きくなった。このため、従来以上に高容量な電池が求められるようになった。   In recent years, however, mobile information terminals have become more multifunctional and sophisticated, and power consumption has increased accordingly. For this reason, a battery having a higher capacity than before has been demanded.

このような背景にあって、リチウム吸蔵能を有しかつ炭素材料よりもリチウム吸蔵量が多いケイ素が、炭素材料に代わる負極用活物質として注目されている。しかし、ケイ素はリチウムの吸蔵・放出による体積変動が大きく、サイクル寿命が短いために実用電池として使用できるほどの性能が得られないという問題があった。   Against this background, silicon having lithium storage capacity and having a larger amount of lithium storage than carbon materials has attracted attention as an active material for a negative electrode that can replace carbon materials. However, since silicon has a large volume fluctuation due to insertion and extraction of lithium and a short cycle life, there has been a problem that performance sufficient for use as a practical battery cannot be obtained.

この問題を解決する手段として、種々の提案がなされており、例えば特許文献1では、非結晶シリコン又は微結晶シリコンを用いる技術が提案されている。   Various proposals have been made as means for solving this problem. For example, Patent Document 1 proposes a technique using amorphous silicon or microcrystalline silicon.

特開2002−83594号公報(要約書)JP 2002-83594 A (Abstract)

この技術では、例えば粗化した集電体上に非結晶シリコン又は微結晶シリコンを主体とする活物質層を堆積させ、充放電することで、柱状の活物質層を形成させる。この手段によると、活物質の膨張収縮が吸収され、電極からの活物質の脱落が防止できる等により、優れたサイクル性能を有する高容量負極が得られる。   In this technique, for example, an active material layer mainly composed of amorphous silicon or microcrystalline silicon is deposited on a roughened current collector, and a columnar active material layer is formed by charging and discharging. According to this means, the high capacity negative electrode having excellent cycle performance can be obtained by absorbing the expansion and contraction of the active material and preventing the active material from falling off the electrode.

しかし、この技術によっても、初期充放電効率が100%にならないとともに、充放電サイクル時に徐々に極板が膨張し、それが原因でサイクル劣化を招くなどの問題がある。   However, even with this technique, the initial charge / discharge efficiency does not reach 100%, and the electrode plate gradually expands during the charge / discharge cycle, which causes cycle deterioration.

他方、リチウムと合金化する金属等を備えた負極に予めリチウムを添加することにより、初期特性を改善する技術が提案されている(特許文献2〜4)。   On the other hand, techniques for improving initial characteristics by adding lithium in advance to a negative electrode including a metal alloyed with lithium have been proposed (Patent Documents 2 to 4).

特開2003−217574号公報(要約書)JP 2003-217574 A (Abstract) 特開平7−326345号公報(要約書)JP-A-7-326345 (abstract) 特開平4−255667号公報(要約書)JP-A-4-255667 (abstract)

しかし、上記各技術においては金属リチウムやリチウム合金を使用するが、金属リチウム等は反応性が高いので取扱性が悪く、また空気と反応してその表面に酸化膜が形成されると導電性が大きく低下するため、初期特性・サイクル特性が低下するという問題がある。   However, in each of the above technologies, metallic lithium or a lithium alloy is used. However, metallic lithium and the like have high reactivity, so that handling is bad, and when an oxide film is formed on the surface by reacting with air, conductivity is reduced. There is a problem in that initial characteristics and cycle characteristics are degraded due to a significant decrease.

発明者らは、上記問題を解決するために鋭意研究を行ったところ、リチウムとケイ素を含む合金層とし、このリチウム−ケイ素合金層を、前記リチウム−ケイ素合金層を負極集電体とリチウムを含まない最表層を設け最表層との間に介在させることにより、空気とリチウムとの反応を確実に抑制しつつ負極にリチウムを含ませることができ、これによって初期特性及びサイクル特性が向上することを見いだした。   The inventors have conducted intensive research to solve the above-mentioned problems. As a result, the alloy layer containing lithium and silicon was used, and the lithium-silicon alloy layer was used as the negative electrode current collector and lithium. By providing an outermost layer not included and interposing between the outermost layer, lithium can be included in the negative electrode while reliably suppressing the reaction between air and lithium, thereby improving initial characteristics and cycle characteristics. I found.

本発明は以上の知見に基づき完成されたものであって、電池容量が大きく、サイクル特性に優れたリチウム二次電池の前身であるリチウム前駆体電池、及びリチウム前駆体電池を経てなるリチウム二次電池を製造する方法を提供することを目的とする。   The present invention has been completed on the basis of the above knowledge, and has a large battery capacity and a lithium precursor battery that is a predecessor of a lithium secondary battery excellent in cycle characteristics, and a lithium secondary battery that has undergone a lithium precursor battery. An object is to provide a method of manufacturing a battery.

上記課題を解決するためのリチウム前駆体電池は、正極と、ケイ素を主成分とする非晶質又は微結晶質薄膜層からなる負極と、非水電解質と、を備えたリチウム前駆体電池において、前記負極は、リチウムを含まない最表層と、負極集電体と前記最表層との間に介在するリチウムを含む層と、を備えることを特徴とする。   A lithium precursor battery for solving the above problems is a lithium precursor battery comprising a positive electrode, a negative electrode composed of an amorphous or microcrystalline thin film layer containing silicon as a main component, and a non-aqueous electrolyte. The negative electrode includes an outermost layer that does not include lithium, and a layer that includes lithium interposed between the negative electrode current collector and the outermost layer.

ここで、「リチウム前駆体電池」とは、充放電を一度も行っていない電池組み立て後の電池のことを意味する。   Here, the “lithium precursor battery” means a battery after battery assembly in which charging / discharging has never been performed.

また、「ケイ素を主成分とする」とは、ケイ素原子の量を100としたとき、他の元素の総量が50以下であることを意味する。   Further, “having silicon as a main component” means that when the amount of silicon atoms is 100, the total amount of other elements is 50 or less.

また、「リチウムを含む」とは、ケイ素の層に意図的にリチウムを含ませたことを意味し、「リチウムを含まない」とは、ケイ素の層に意図的にリチウムを含ませていないことを意味する。したがって、「リチウムを含まない最表層」には、ケイ素原料に由来する不純物としてのリチウムがごく微量に含まれているものであって、ケイ素の層に意図的にリチウムを含ませていない最表層は、「リチウムを含まない最表層」に該当する。   "Lithium is included" means that the silicon layer is intentionally included with lithium, and "does not include lithium" means that the silicon layer is not intentionally included with lithium. Means. Therefore, the “outermost layer not containing lithium” contains a very small amount of lithium as an impurity derived from the silicon raw material, and the outermost layer intentionally does not contain lithium in the silicon layer. Corresponds to “the outermost layer not containing lithium”.

また「非晶質または微結晶質」とは、非晶質及び結晶子サイズが100nm以下の微結晶を意味する。非晶質であるか否かの判定及び微結晶薄膜中の結晶子サイズの測定は、X線回折スペクトル中のピークの有無、及びピークの半値幅をScherrerの式に適用することによって行うことができる。   Further, “amorphous or microcrystalline” means amorphous and microcrystal having a crystallite size of 100 nm or less. The determination of whether or not it is amorphous and the measurement of the crystallite size in the microcrystalline thin film can be performed by applying the presence or absence of a peak in the X-ray diffraction spectrum and the half-width of the peak to the Scherrer equation. it can.

上記リチウム前駆体電池の発明において、前記リチウムを含む層が、負極集電体上に直接形成されている構成とすることができる。   In the invention of the lithium precursor battery, the lithium-containing layer may be directly formed on the negative electrode current collector.

また、前記リチウムを含む層に含まれるリチウム量が、ケイ素原子の量を100としたとき、1以上50以下である構成とすることができる。   Moreover, when the amount of lithium contained in the layer containing lithium is 100, the structure may be 1 or more and 50 or less.

また、前記負極集電体表面の算術平均粗さRaが、0.1μm以上である構成とすることができる。算術平均粗さRaは、日本工業規格(JIS B 0601−1994)に定められている。算術平均粗さRaは、例えば触針式表面粗さ計により測定することができる。   The arithmetic mean roughness Ra of the negative electrode current collector surface may be 0.1 μm or more. The arithmetic average roughness Ra is defined in Japanese Industrial Standard (JIS B 0601-1994). The arithmetic average roughness Ra can be measured by, for example, a stylus type surface roughness meter.

また、前記リチウムを含む層の層厚が、0.5μm以上である構成とすることができる。   Further, the lithium-containing layer may have a thickness of 0.5 μm or more.

また、前記最表層の層厚が、0.5μm以上である構成とすることができる。   The outermost layer may have a thickness of 0.5 μm or more.

また、前記負極は、ケイ素、リチウム以外の異種元素を含む構成とすることができる。異種元素(これはケイ素を主成分とする非晶質又は微結晶質薄膜層(リチウムを含む層、最表層等)に添加される)としては、炭素、アルミニウム、シリコン、リン、亜鉛、ガリウム、ゲルマニウム、ヒ素、カドミウム、インジウム、錫、アンチモン、水銀、タリウム、鉛、ビスマス、具体的には、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタノイド系元素、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀等から選ばれる少なくとも一種の元素が例示できる。これらの中で好ましくはコバルトを用いる。   The negative electrode may include a different element other than silicon and lithium. Different elements (added to amorphous or microcrystalline thin film layers containing silicon as a main component (layers containing lithium, outermost layer, etc.)) include carbon, aluminum, silicon, phosphorus, zinc, gallium, Germanium, arsenic, cadmium, indium, tin, antimony, mercury, thallium, lead, bismuth, specifically scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium And at least one element selected from molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, lanthanoid elements, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, and the like. Of these, cobalt is preferably used.

上記課題を解決するためのリチウム二次電池の製造方法にかかる本発明は、ケイ素を主成分とする非晶質又は微結晶質薄膜層を、負極集電体上に堆積させる負極作製工程を備えるリチウム二次電池の製造方法において、前記負極作製工程が、リチウムを含む層を作製する第一ステップと、前記第一ステップの後、リチウムを含まない最表層を作製する第二ステップと、を備えることを特徴とする。   The present invention according to a method for manufacturing a lithium secondary battery for solving the above-described problem includes a negative electrode manufacturing step of depositing an amorphous or microcrystalline thin film layer mainly composed of silicon on a negative electrode current collector. In the method for manufacturing a lithium secondary battery, the negative electrode manufacturing step includes a first step of manufacturing a layer containing lithium, and a second step of manufacturing an outermost layer not containing lithium after the first step. It is characterized by that.

ここで、「ケイ素を主成分とする」、「非晶質又は微結晶質」、「リチウムを含む層」、および「リチウムを含まない最表層」の意味は前記リチウム前駆体電池にかかる発明における場合と同様である。   Here, the meanings of “silicon-based”, “amorphous or microcrystalline”, “layer containing lithium”, and “outermost layer not containing lithium” in the invention relating to the lithium precursor battery Same as the case.

上記リチウム二次電池の製造方法においては、前記第一ステップが負極集電体上に直接ケイ素を含む層を作製するステップである構成、とすることができる。   In the method for producing a lithium secondary battery, the first step may be a step in which a layer containing silicon is directly formed on the negative electrode current collector.

また、前記第二ステップが前記第一ステップの直後に行われる構成、とすることができる。   Further, the second step may be performed immediately after the first step.

また、前記負極の集電体表面の算術平均粗さRaが0.1μm以上である構成、とすることができる。   Moreover, it can be set as the structure whose arithmetic mean roughness Ra of the collector surface of the said negative electrode is 0.1 micrometer or more.

また、前記リチウムを含む層を作製するステップ及び最表層を作製するステップが真空中に原料を供給して堆積させる方法である構成、とすることができる。   Further, the step of producing the layer containing lithium and the step of producing the outermost layer may be a method in which a raw material is supplied and deposited in a vacuum.

また、前記真空中に原料を供給して堆積させる方法が蒸着法、スパッタリング法のいずれかである構成、とすることができる。
In addition, a configuration in which the raw material is supplied and deposited in the vacuum may be either a vapor deposition method or a sputtering method.

ケイ素にリチウムを含めた層は空気と触れると激しく反応するが、本発明リチウム二次電池の製造方法によると、リチウムを含む層はリチウムを含まない最表層で覆われているため、直接空気と接触することがない。。このため、取扱性を低下させることがなく、しかも予め負極にリチウムを含有させることができる。この構成のリチウム前駆体電池は、初回充放電により負極全体に円滑にリチウムが挿入されるので、初期充放電特性、サイクル特性に優れたリチウム二次電池を簡便に実現することができる。   A layer containing lithium in silicon reacts violently when it comes into contact with air, but according to the method for producing a lithium secondary battery of the present invention, the layer containing lithium is covered with the outermost layer not containing lithium. There is no contact. . For this reason, the handleability is not lowered, and lithium can be previously contained in the negative electrode. In the lithium precursor battery having this configuration, since lithium is smoothly inserted into the entire negative electrode by the first charge / discharge, a lithium secondary battery excellent in initial charge / discharge characteristics and cycle characteristics can be easily realized.

また、ケイ素は充放電に伴うリチウムイオンの吸蔵脱離によって大きく体積が変動するが、リチウムを含む層を負極集電体上に直接形成する構成とすると、リチウムを含む層は予め充電された状態であるので、充放電に伴う活物質の膨張・収縮に起因する活物質と集電体との間の応力を緩和することができる。これにより、充放電に伴う活物質の集電体からの剥離が抑制され、その結果として、サイクル特性が顕著に向上する。   In addition, the volume of silicon greatly fluctuates due to occlusion and desorption of lithium ions associated with charge / discharge, but when the lithium-containing layer is directly formed on the negative electrode current collector, the lithium-containing layer is in a state of being charged in advance. Therefore, the stress between the active material and the current collector due to the expansion / contraction of the active material accompanying charge / discharge can be reduced. Thereby, peeling of the active material from the current collector due to charge / discharge is suppressed, and as a result, the cycle characteristics are remarkably improved.

また、リチウムの添加量は対極の活物質量や電池構成等によって適宜変化させることが必要であるが、添加量が過小であると本発明の効果がほとんど得られず、その一方リチウム量が過大であると、サイクル特性が十分に向上しない。よって、ケイ素原子の量を100としたとき、リチウム原子の量が1以上50以下であるとすることが好ましい。また、より好ましくは、5以上30以下とし、さらに好ましくは10以上20以下とする。   Further, it is necessary to appropriately change the amount of lithium added depending on the amount of active material at the counter electrode, the battery configuration, etc. However, if the amount added is too small, the effect of the present invention is hardly obtained, while the amount of lithium is excessively large. If it is, the cycle characteristics are not sufficiently improved. Therefore, when the amount of silicon atoms is 100, the amount of lithium atoms is preferably 1 or more and 50 or less. More preferably, it is 5 or more and 30 or less, and more preferably 10 or more and 20 or less.

また、負極集電体の表面に凹凸構造が形成されていると、充放電によって図5に示すリチウム−ケイ素を主成分とする柱状構造53が形成される。この柱状構造が形成されると、充放電に伴う負極の膨張収縮による活物質の集電体から脱離が顕著に抑制される。よって、サイクル特性が一層向上する。更にこの凹凸構造の算術平均粗さRaの値が0.1μm以上であると、この効果が十分に発揮される。   Moreover, when the uneven structure is formed on the surface of the negative electrode current collector, the columnar structure 53 mainly composed of lithium-silicon shown in FIG. 5 is formed by charge and discharge. When this columnar structure is formed, desorption from the current collector of the active material due to expansion and contraction of the negative electrode accompanying charge / discharge is remarkably suppressed. Therefore, cycle characteristics are further improved. Further, when the arithmetic average roughness Ra of the concavo-convex structure is 0.1 μm or more, this effect is sufficiently exhibited.

また、前記リチウムを含む層の層厚が0.5μm以上であると、負極に予め含有させるリチウム量を十分に確保でき、その結果としてサイクル劣化が一層小さくなる。   In addition, when the layer thickness of the layer containing lithium is 0.5 μm or more, a sufficient amount of lithium to be previously contained in the negative electrode can be secured, and as a result, cycle deterioration is further reduced.

また、前記最表層は、リチウムの酸化を阻止することができればよく、理論上はケイ素の表面近傍の酸化によって酸素が侵入する厚み(数nm程度と予想される)以上あればよいが、最表層作製上や信頼性の面から、最表層の厚みを0.5μm以上とすることが好ましい。   The outermost layer only needs to be capable of preventing the oxidation of lithium, and theoretically, the outermost layer only needs to be thicker than oxygen penetrated by oxidation near the surface of silicon (which is expected to be several nm). From the viewpoint of production and reliability, the thickness of the outermost layer is preferably 0.5 μm or more.

また、ケイ素を主成分とする非晶質又は微結晶質薄膜層に異種元素が添加されていると、この異種元素がサイクル特性を向上させるように作用する。   Further, when a different element is added to the amorphous or microcrystalline thin film layer containing silicon as a main component, the different element acts to improve cycle characteristics.

また、この異種元素の添加量が過小であると、サイクル特性の向上の効果が十分に得られず、その一方、過大であると活物質であるケイ素量が減少し容量が小さくなるので、異種元素の添加量としては、ケイ素を100質量部としたとき、5〜50質量部の範囲内であることが好ましく、10〜30質量部の範囲内であることがより好ましい。   Further, if the amount of the different element added is too small, the effect of improving the cycle characteristics cannot be sufficiently obtained. On the other hand, if the amount is too large, the amount of silicon as the active material is reduced and the capacity is reduced. The amount of element added is preferably in the range of 5 to 50 parts by mass and more preferably in the range of 10 to 30 parts by mass when silicon is 100 parts by mass.

リチウム二次電池の製造方法にかかる本発明によると、第一の態様の本発明リチウム前駆体電池及びこれを充放電してなるリチウム二次電池を効率よく製造することができる。   According to this invention concerning the manufacturing method of a lithium secondary battery, this invention lithium precursor battery of a 1st aspect and the lithium secondary battery formed by charging / discharging this can be manufactured efficiently.

ここで、前記第一ステップはケイ素を含む層を負極集電体上に直接形成するステップである必要はなく、負極集電体上にシリコン層(異種元素を含んでいてもよい)を形成した後、リチウムを含む層を形成するステップであってもよい。しかし、リチウムイオンの吸蔵脱離に伴う活物質の体積変動と負極集電体との応力を緩和するためには、負極集電体上にリチウムを含む層を直接形成することが好ましい。   Here, the first step does not need to be a step of directly forming a silicon-containing layer on the negative electrode current collector, and a silicon layer (which may contain a different element) is formed on the negative electrode current collector. Thereafter, a step of forming a layer containing lithium may be used. However, in order to relieve the volume fluctuation of the active material accompanying the insertion and extraction of lithium ions and the stress on the negative electrode current collector, it is preferable to directly form a layer containing lithium on the negative electrode current collector.

また、前記第二ステップは前記第一ステップの直後に行う必要はなく、第一ステップの後異種元素を含み、且つリチウムを含まないケイ素層を作製し、その後異種元素やリチウムを含まないケイ素からなる最表層を設けるステップであってもよい。しかし、リチウムを含む層と最表層との間に他の層を設けてもサイクル特性の向上等の効果が得られないので、第一ステップの直後に第二ステップを行うのが製造しやすい。   Further, the second step does not need to be performed immediately after the first step, and after the first step, a silicon layer containing a different element and not containing lithium is produced, and then silicon containing no different element or lithium is used. It may be a step of providing the outermost layer. However, even if another layer is provided between the layer containing lithium and the outermost layer, an effect such as improvement in cycle characteristics cannot be obtained. Therefore, it is easy to manufacture the second step immediately after the first step.

また、前記負極集電体表面の算術平均粗さRaが0.1μm以上であると、充放電によってリチウム−ケイ素の柱状構造が形成され、充放電に伴う負極の膨張収縮によって活物質が集電体から脱離することがなくなる。したがって、サイクル特性が向上する。この凹凸構造の算術平均粗さRaの値が0.1μm以上であると、この効果を十分に発揮できるので好ましい。   Further, when the arithmetic average roughness Ra of the surface of the negative electrode current collector is 0.1 μm or more, a lithium-silicon columnar structure is formed by charging / discharging, and the active material is collected by expansion / contraction of the negative electrode accompanying charging / discharging. No longer detaches from the body. Therefore, cycle characteristics are improved. It is preferable that the arithmetic average roughness Ra of the concavo-convex structure is 0.1 μm or more because this effect can be sufficiently exhibited.

また、前記負極を作製する工程が、真空中に原料を供給して堆積させる方法により行われると、リチウムが空気と接触しない状態でリチウムを含む層を作製できるので、取扱性に優れる。
このような方法として、蒸着法、スパッタリング法が例示できる。
In addition, when the step of manufacturing the negative electrode is performed by a method in which a raw material is supplied and deposited in a vacuum, a layer containing lithium can be manufactured in a state where lithium does not come into contact with air.
Examples of such a method include a vapor deposition method and a sputtering method.

本発明を実施するための最良の形態を、図面に基づいて以下に詳細に説明する。本発明は下記実施の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not change the gist thereof.

図1は本発明の実施の形態に係るラミネート外装体を用いたリチウム前駆体電池(充放電後にはリチウム二次電池となり、以下リチウム二次電池と称する)の斜視図、図2はリチウム二次電池の封口部分拡大断面図である。   FIG. 1 is a perspective view of a lithium precursor battery (a lithium secondary battery after charge / discharge, hereinafter referred to as a lithium secondary battery) using a laminate outer body according to an embodiment of the present invention, and FIG. 2 is a lithium secondary battery. It is a sealing part expanded sectional view of a battery.

本発明のリチウム二次電池は、図2に示すように、外装体40内に負極集電体41と負極活物質層42、正極集電体43と正極活物質層44、両電極を離隔するセパレータ45を有している。また、外装体40内には、非水溶媒にリチウム塩(電解質塩)が溶解されてなる非水電解質46が収納されている。   In the lithium secondary battery of the present invention, as shown in FIG. 2, the negative electrode current collector 41 and the negative electrode active material layer 42, the positive electrode current collector 43 and the positive electrode active material layer 44, and both electrodes are separated in the outer package 40. A separator 45 is provided. In the exterior body 40, a nonaqueous electrolyte 46 in which a lithium salt (electrolyte salt) is dissolved in a nonaqueous solvent is accommodated.

更に、上記負極集電体41には負極タブ47が取り付けられ、封口部40aより外部に突出している。また、図示されていないが、正極集電体43に正極タブ48が取り付けられ、負極タブ47と同様に封口部40aより突出した構造である。このようにして、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。   Further, a negative electrode tab 47 is attached to the negative electrode current collector 41 and protrudes to the outside from the sealing portion 40a. Although not shown, the positive electrode tab 48 is attached to the positive electrode current collector 43, and the structure protrudes from the sealing portion 40 a in the same manner as the negative electrode tab 47. In this way, chemical energy generated inside the battery can be taken out as electrical energy.

ここで、上記外装体は、例えば樹脂層−接着剤層−アルミニウム層−接着剤層−樹脂層が接着された五層構造のアルミラミネートフィルム等を用いることができる。   Here, for example, an aluminum laminate film having a five-layer structure in which a resin layer, an adhesive layer, an aluminum layer, an adhesive layer, and a resin layer are bonded can be used as the outer package.

次に、本発明を実施するための電池作製方法について説明する。   Next, a battery manufacturing method for carrying out the present invention will be described.

〈負極の作製〉
圧延銅箔(厚み18μm)に電解処理で銅粒子を付着させ、算術平均粗さRaを0.1以上とし、負極集電体41を作製した。これを図3に示す電子ビーム蒸着装置の供給ローラからメインローラ周囲を通過し、巻取りローラに巻き取られるように配置した。
また、電子ビーム蒸着源1の坩堝にリチウム、電子ビーム蒸着源2の坩堝にコバルト、電子ビーム蒸着源3の坩堝にシリコンを入れておいた。
<Preparation of negative electrode>
Copper particles were adhered to the rolled copper foil (thickness: 18 μm) by electrolytic treatment, the arithmetic average roughness Ra was set to 0.1 or more, and the negative electrode current collector 41 was produced. This was disposed so as to pass around the main roller from the supply roller of the electron beam vapor deposition apparatus shown in FIG.
Further, lithium was put in the crucible of the electron beam evaporation source 1, cobalt was put in the crucible of the electron beam evaporation source 2, and silicon was put in the crucible of the electron beam evaporation source 3.

まず、チャンバー内を真空ポンプで1×10-4 Pa以下まで排気し、集電体を供給ローラから巻取りローラに移動させながら、リチウム及びシリコンの電子ビーム蒸着源の坩堝に照射する電子ビーム電流を調整して、図4に示すLi−Si層51を形成した。
続いて、シリコンの電子ビーム蒸着源の坩堝に照射する電子ビーム電流を調整してシリコン最表層52を形成した。
この後、各電子ビーム蒸着源の坩堝に照射する電子ビーム電流を調整して坩堝内の材料の蒸発速度を変化させることで、堆積する薄膜の組成、厚みを調整して、最表層(活物質層)を形成した。
なお、電子ビーム蒸着で薄膜を形成すると、集電体が加熱されて変形する、強度が低下するなどの問題があるため、メインローラ中に水を循環させることで集電体を冷却している。ただし、冷却方法はこれに限定されない。
First, the inside of the chamber is evacuated to 1 × 10 −4 Pa or less by a vacuum pump, and the electron beam current is applied to the crucible of the electron beam evaporation source of lithium and silicon while moving the current collector from the supply roller to the take-up roller. Was adjusted to form a Li-Si layer 51 shown in FIG.
Subsequently, the silicon outermost layer 52 was formed by adjusting the electron beam current applied to the crucible of the silicon electron beam evaporation source.
Thereafter, by adjusting the electron beam current applied to the crucible of each electron beam evaporation source and changing the evaporation rate of the material in the crucible, the composition and thickness of the deposited thin film are adjusted, and the outermost layer (active material) Layer).
In addition, when a thin film is formed by electron beam evaporation, the current collector is heated and deformed, and there is a problem that the strength is lowered. Therefore, the current collector is cooled by circulating water through the main roller. . However, the cooling method is not limited to this.

得られた薄膜を集電体とともに2.5×2.5cmの大きさに切り取り,負極タブ47を取り付けることで負極を完成した。   The obtained thin film was cut into a size of 2.5 × 2.5 cm together with the current collector, and a negative electrode tab 47 was attached to complete the negative electrode.

なお、蒸着法以外に、スパッタ法でもほぼ同様の工程により作製することができる。以下に蒸着法とスパッタ法との相違点を説明する。
蒸着法では電子ビームを当てて材料を蒸発させ、基板に堆積させるのに対し、スパッタ法は、高周波や電流を印加し、Arプラズマを当てて材料を飛散させることで基板に堆積させる。
Note that, in addition to the vapor deposition method, the sputtering method can be manufactured by substantially the same process. The difference between the vapor deposition method and the sputtering method will be described below.
In the vapor deposition method, the material is evaporated and deposited on the substrate by applying an electron beam, whereas in the sputtering method, a high frequency or current is applied and the material is scattered by applying Ar plasma to deposit the material on the substrate.

〈正極の作製〉
コバルト酸リチウム90質量部と、人造黒鉛からなる導電剤5質量部と、ポリテトラフルオロエチレンからなる結着剤5質量部と、N−メチル−2−ピロリドン(NMP)とを混合し、活物質スラリーとした。
<Preparation of positive electrode>
90 parts by mass of lithium cobaltate, 5 parts by mass of a conductive agent made of artificial graphite, 5 parts by mass of a binder made of polytetrafluoroethylene, and N-methyl-2-pyrrolidone (NMP) are mixed to obtain an active material A slurry was obtained.

この活物質スラリーをドクターブレードにより厚み18μmのアルミニウム箔からなる正極集電体43の2×2cmの領域に塗布した後乾燥し、スラリー作製時に必要であった有機溶媒を除去した。次いで、この極板の活物質未塗布部分に正極タブ48を取り付け、正極を作製した。   This active material slurry was applied to a 2 × 2 cm region of a positive electrode current collector 43 made of an aluminum foil having a thickness of 18 μm with a doctor blade and then dried to remove the organic solvent necessary for the preparation of the slurry. Subsequently, the positive electrode tab 48 was attached to the active material non-application part of this electrode plate, and the positive electrode was produced.

〈電解質の調製〉
エチレンカーボネートとジエチルカーボネートとを体積比3:7となるように混合した混合溶媒に、電解質塩としてLiPF6を1M(モル/リットル)となるよう溶解し、電解液を作製した。
<Preparation of electrolyte>
LiPF 6 as an electrolyte salt was dissolved to 1 M (mol / liter) in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 to prepare an electrolytic solution.

〈電極体の作製〉
正負極をオレフィン系樹脂からなる微多孔膜(厚み:0.025mm)からなるセパレータを間にし、かつ各極板の幅方向の中心線を一致させて重ね合わせて、電極体を作製した。
<Production of electrode body>
The positive and negative electrodes were overlapped with a separator made of a microporous film (thickness: 0.025 mm) made of an olefin resin in between, and the center lines in the width direction of the electrode plates were aligned to produce an electrode body.

樹脂層−接着剤層−アルミニウム層−接着剤層−樹脂層からなる5層構造のシート状のラミネート材を用意し、アルミラミネート材を二つ折りにして、その上端と左右端を合わせた。次に、正負電極タブ47、48この筒状アルミラミネート材の上端部からが突出するようにして電極体1をその収納空間内に挿入し、この後、正負電極タブ47、48が突出している上端40a及び片側端を溶着した。次いで未だ溶着されていない開口(封止後、封止部4cとなる部分)から電解液を注液した後、封止部を溶着した。各端部の封止には、高周波誘導溶着装置を用いた。   A sheet-like laminate material having a five-layer structure composed of a resin layer-adhesive layer-aluminum layer-adhesive layer-resin layer was prepared, the aluminum laminate material was folded in two, and the upper end and the left and right ends were combined. Next, the positive and negative electrode tabs 47 and 48 are inserted into the storage space so that the upper end portion of the cylindrical aluminum laminate material protrudes, and then the positive and negative electrode tabs 47 and 48 protrude. The upper end 40a and one end were welded. Next, an electrolytic solution was injected from an opening that was not yet welded (portion that becomes the sealing portion 4c after sealing), and then the sealing portion was welded. A high frequency induction welding apparatus was used for sealing each end.

以下、実施例を用いて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1〜4、比較例1、2)
下記表1に示すように、リチウムを含む層の厚み、活物質層(最表層)の厚み、活物質層に含まれる他の元素の条件を変化させたこと以外は、上記実施の形態と同様にして電池を作製した。
なお、実施例4には、最表層のシリコン層に30質量%のコバルトが添加されている。
また、Li−Si層層のLi比率は、全てケイ素100原子に対しリチウム20原子である。
(Examples 1-4, Comparative Examples 1 and 2)
As shown in Table 1 below, the same as in the above embodiment, except that the thickness of the layer containing lithium, the thickness of the active material layer (outermost layer), and the conditions of other elements contained in the active material layer were changed. Thus, a battery was produced.
In Example 4, 30% by mass of cobalt is added to the outermost silicon layer.
Further, the Li ratio of the Li—Si layer is all 20 atoms of lithium with respect to 100 atoms of silicon.

また、上記のように作製した電池を、以下の条件で充放電し、サイクル特性を測定した。試験条件を以下に記載するとともに、試験結果を下記表1に示す。   Moreover, the battery produced as mentioned above was charged / discharged under the following conditions, and the cycle characteristics were measured. The test conditions are described below, and the test results are shown in Table 1 below.

サイクル特性試験
充電条件:定電流 13mA、終止電圧4.2V、25℃
放電条件:定電流 13mA、終止電圧2.75V、25℃
サイクル特性(サイクル容量維持率)(%):(100サイクル目放電容量/最大放電容量)×100
Cycle characteristic test Charging conditions: constant current 13 mA, final voltage 4.2 V, 25C
Discharge conditions: constant current 13 mA, final voltage 2.75 V, 25 ° C.
Cycle characteristics (cycle capacity retention rate) (%): (100th cycle discharge capacity / maximum discharge capacity) × 100

Figure 2005190902
Figure 2005190902

上記表1から、リチウムを含む層を最表層と負極集電体との間に形成した実施例1〜実施例4では、初期容量が5.3〜8.6mAh、容量維持率が46〜78%であったのに対し、リチウムを含む層を形成していない比較例1では、初期容量が3.8mAh、容量維持率が32%と顕著な差があることがわかる。   From Table 1 above, in Examples 1 to 4 in which a layer containing lithium was formed between the outermost layer and the negative electrode current collector, the initial capacity was 5.3 to 8.6 mAh, and the capacity retention ratio was 46 to 78. On the other hand, in Comparative Example 1 in which the layer containing lithium was not formed, it was found that the initial capacity was 3.8 mAh and the capacity retention rate was 32%.

これは、比較例1は負極に予めリチウムが添加されていないので、負極にトラップされ、充放電に寄与しなくなったリチウムが増加したことによるものと考えられる。   This is presumably because, in Comparative Example 1, lithium was not added to the negative electrode in advance, so that the amount of lithium trapped in the negative electrode and no longer contributing to charge / discharge increased.

また、上記表1から、リチウムを含む層を最表層と負極集電体との間に形成した実施例1〜実施例4では、初期容量が5.3〜8.6mAh、容量維持率が46〜78%であったのに対し、リチウムを含む層を最表層に形成した比較例2では、初期容量が1.2mAh、容量維持率が17%と顕著な差があることがわかる。   Further, from Table 1 above, in Examples 1 to 4 in which a layer containing lithium was formed between the outermost layer and the negative electrode current collector, the initial capacity was 5.3 to 8.6 mAh, and the capacity retention ratio was 46. On the other hand, in Comparative Example 2 in which the layer containing lithium was formed as the outermost layer, it was found that the initial capacity was 1.2 mAh and the capacity retention rate was 17%.

これは、比較例2はリチウムが最表層に添加されているので、酸素等と触れたときに最表層が酸化され、負極の導電性が著しく低下したものと考えられる。   This is presumably because, in Comparative Example 2, lithium was added to the outermost layer, so that the outermost layer was oxidized when contacted with oxygen or the like, and the conductivity of the negative electrode was significantly reduced.

また、上記表1から、リチウム量が1.0原子%以上である実施例2〜実施例4では、初期容量が6.9〜8.6mAh、容量維持率が63〜78%であったのに対し、リチウム量が0.5原子%である実施例1では、初期容量が5.3mAh、容量維持率が46%と顕著な差があることがわかる。   Also, from Table 1 above, in Examples 2 to 4 where the amount of lithium was 1.0 atomic% or more, the initial capacity was 6.9 to 8.6 mAh, and the capacity retention rate was 63 to 78%. On the other hand, in Example 1 in which the amount of lithium is 0.5 atomic%, it can be seen that the initial capacity is 5.3 mAh and the capacity retention rate is 46%.

これは、実施例1は負極に予め添加されているリチウムが少ないので、充放電に寄与する負極のリチウム量が少なすぎるためと考えられる。   This is presumably because Example 1 has too little lithium pre-added to the negative electrode, so that the amount of lithium in the negative electrode contributing to charge / discharge is too small.

また、上記表1から、最表層にコバルトが添加されている実施例4では、容量維持率が78%であったのに対し、最表層にコバルトが添加されていない実施例1〜実施例3では、容量維持率が46〜63%と顕著な差があることがわかる。   From Table 1 above, in Example 4 in which cobalt was added to the outermost layer, the capacity retention rate was 78%, whereas in Examples 1 to 3 in which cobalt was not added to the outermost layer. Then, it turns out that a capacity | capacitance maintenance factor has a remarkable difference with 46 to 63%.

これは、実施例4は負極に添加されているコバルトがサイクル特性を向上させるように作用するためと考えられる。   This is considered because Example 4 acts so that cobalt added to the negative electrode improves the cycle characteristics.

〔その他の事項〕
尚、上記実施例ではラミネート外装体を使用したが、円筒形、コイン状、角形等種々の形状にすることができることは当然のことである。また、本発明は正極と負極とを交互に積層した電池や、正負極とセパレータとを巻回してなる電池にも適用できる。
[Other matters]
In the above embodiment, the laminate outer package is used. However, it is a matter of course that various shapes such as a cylindrical shape, a coin shape, and a square shape can be used. The present invention can also be applied to a battery in which positive and negative electrodes are alternately stacked, and a battery in which a positive and negative electrode and a separator are wound.

また、正極活物質としては、リチウム含有遷移金属複合酸化物から選択される一種の化合物、あるいは二種以上の化合物を混合して用いることができ、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、鉄酸リチウム、またはこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等が用いることができる。   Further, as the positive electrode active material, one kind of compound selected from lithium-containing transition metal composite oxides, or a mixture of two or more kinds of compounds can be used. For example, lithium cobaltate, lithium nickelate, manganate Lithium, lithium ferrate, or an oxide obtained by substituting part of the transition metal contained in these oxides with another element can be used.

また、電解質に使用する非水溶媒としては、カーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類、アミド類、スルホン系化合物、エステル類、芳香族炭化水素等から選択される化合物の一種、あるいは二種以上混合して用いることができる。これらの内でも、カーボネート類、ラクトン類、エーテル類、ケトン類、ニトリル類が好ましく、特にカーボネート類がさらに好ましい。これらの具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチルなどがあげられる。   In addition, as the non-aqueous solvent used for the electrolyte, a kind of compound selected from carbonates, lactones, ethers, ketones, nitriles, amides, sulfone compounds, esters, aromatic hydrocarbons, Or it can use in mixture of 2 or more types. Among these, carbonates, lactones, ethers, ketones, and nitriles are preferable, and carbonates are more preferable. Specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl. -2-pentanone, cyclohexanone, acetonitrile, propionitrile, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, ethyl propionate and the like.

また、電解質塩としては、LiN(C25SO22、LiN(CF3SO22、LiCF3SO3、LiPF6、LiBF4、LiAsF6、LiClO4等のリチウム塩から選択される化合物の一種単独で、あるいは二種以上混合して使用することができる。また、前記非水溶媒に対する電解質塩の溶解量は0.5〜2.0モル/リットルとすることが好ましい。 The electrolyte salt is selected from lithium salts such as LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 and LiClO 4. These compounds can be used alone or in combination of two or more. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / liter.

また、上記の実施の形態ではドクターブレードによりスラリーを塗布したが、ダイコーター、ローラコーティング法により塗布することもできる。また、アルミニウム箔のかわりにアルミニウムメッシュを用いても、同様に作製することができる。   Moreover, although slurry was apply | coated with the doctor blade in said embodiment, it can also apply | coat by a die-coater and the roller coating method. Moreover, even if it uses an aluminum mesh instead of an aluminum foil, it can produce similarly.

上記の結果から明らかなように、本発明によると、サイクル特性に優れ、且つ容量の大きいいリチウム二次電池を提供できるという優れた効果を奏する。よって、産業上の利用可能性は大きい。   As is clear from the above results, according to the present invention, there is an excellent effect that a lithium secondary battery having excellent cycle characteristics and a large capacity can be provided. Therefore, industrial applicability is great.

本発明に係るリチウム二次電池の正面図である。It is a front view of the lithium secondary battery which concerns on this invention. 本発明に係るリチウム二次電池の部分断面図である。It is a fragmentary sectional view of the lithium secondary battery which concerns on this invention. 本発明に係るリチウム二次電池を作製するために用いた蒸着装置の概略を示す概念図である。It is a conceptual diagram which shows the outline of the vapor deposition apparatus used in order to produce the lithium secondary battery which concerns on this invention. 本発明に係るリチウム前駆体電池の負極の断面概念図である。It is a cross-sectional conceptual diagram of the negative electrode of the lithium precursor battery which concerns on this invention. 本発明に係るリチウム前駆体電池に対して充放電を行った後の負極の断面概念図である。It is a cross-sectional conceptual diagram of the negative electrode after charging / discharging with respect to the lithium precursor battery which concerns on this invention.

符号の説明Explanation of symbols

40 外装体
41 負極集電体
42 負極活物質層
43 正極集電体
44 正極活物質層
45 セパレータ
46 非水電解質
47 負極タブ
48 正極タブ
51 Si−Li層
52 活物質層(最表層)
53 リチウム−ケイ素柱状構造

40 exterior body 41 negative electrode current collector 42 negative electrode active material layer 43 positive electrode current collector 44 positive electrode active material layer 45 separator 46 nonaqueous electrolyte 47 negative electrode tab 48 positive electrode tab 51 Si-Li layer 52 active material layer (outermost layer)
53 Lithium-silicon columnar structure

Claims (13)

正極と、ケイ素を主成分とする非晶質又は微結晶質薄膜層からなる負極と、非水電解質と、を備えたリチウム前駆体電池において、
前記負極は、リチウムを含まない最表層と、
負極集電体と前記最表層との間に介在するリチウムを含む層と、
を備えることを特徴とするリチウム前駆体電池。
In a lithium precursor battery comprising a positive electrode, a negative electrode composed of an amorphous or microcrystalline thin film layer mainly composed of silicon, and a non-aqueous electrolyte,
The negative electrode has an outermost layer that does not contain lithium,
A layer containing lithium interposed between the negative electrode current collector and the outermost layer;
A lithium precursor battery comprising:
請求項1に記載のリチウム前駆体電池において、
前記リチウムを含む層が負極集電体上に直接形成されている、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1,
The lithium-containing layer is formed directly on the negative electrode current collector;
The lithium precursor battery characterized by the above-mentioned.
請求項1または2に記載のリチウム前駆体電池において、
前記リチウムを含む層に含まれるリチウム量がケイ素原子の量を100としたとき、1以上50以下である、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1 or 2,
When the amount of lithium contained in the layer containing lithium is 100, the amount of silicon atoms is 1 or more and 50 or less.
The lithium precursor battery characterized by the above-mentioned.
請求項1、2または3に記載のリチウム前駆体電池において、
前記負極集電体表面の算術平均粗さRaが0.1μm以上である、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1, 2, or 3,
Arithmetic mean roughness Ra of the negative electrode current collector surface is 0.1 μm or more,
The lithium precursor battery characterized by the above-mentioned.
請求項1、2、3または4に記載のリチウム前駆体電池において、
前記リチウムを含む層の層厚が0.5μm以上である、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1, 2, 3 or 4,
The layer thickness of the layer containing lithium is 0.5 μm or more,
The lithium precursor battery characterized by the above-mentioned.
請求項1、2、3、4または5に記載のリチウム前駆体電池において、
前記最表層の層厚が0.5μm以上である、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1, 2, 3, 4 or 5,
The outermost layer has a layer thickness of 0.5 μm or more.
The lithium precursor battery characterized by the above-mentioned.
請求項1、2、3、4、5または6に記載のリチウム前駆体電池において、
前記負極は、ケイ素、リチウム以外の異種元素を含む、
ことを特徴とするリチウム前駆体電池。
The lithium precursor battery according to claim 1, 2, 3, 4, 5 or 6,
The negative electrode includes a different element other than silicon and lithium.
The lithium precursor battery characterized by the above-mentioned.
ケイ素を主成分とする非晶質又は微結晶質薄膜層を、負極集電体上に堆積させる負極作製工程を備えるリチウム二次電池の製造方法において、
前記負極作製工程が、リチウムを含む層を作製する第一ステップと、
前記第一ステップの後、リチウムを含まない最表層を作製する第二ステップと、
を備えることを特徴とするリチウム二次電池の製造方法。
In a method for producing a lithium secondary battery comprising a negative electrode preparation step of depositing an amorphous or microcrystalline thin film layer mainly composed of silicon on a negative electrode current collector,
The negative electrode manufacturing step, a first step of manufacturing a layer containing lithium,
After the first step, a second step of producing an outermost layer that does not contain lithium;
A method for producing a lithium secondary battery, comprising:
請求項8に記載のリチウム二次電池の製造方法において、
前記第一ステップが、負極集電体上に直接ケイ素を含む層を作製するステップである、
ことを特徴とするリチウム二次電池の製造方法。
In the manufacturing method of the lithium secondary battery according to claim 8,
The first step is a step of producing a layer containing silicon directly on the negative electrode current collector,
A method for producing a lithium secondary battery.
請求項8または9に記載のリチウム二次電池の製造方法において、
前記第二ステップが、前記第一ステップの直後に行われる、
ことを特徴とするリチウム二次電池の製造方法。
In the manufacturing method of the lithium secondary battery according to claim 8 or 9,
The second step is performed immediately after the first step;
A method for producing a lithium secondary battery.
請求項8、9または10に記載のリチウム二次電池の製造方法において、
前記負極集電体表面の算術平均粗さRaが0.1μm以上である、
ことを特徴とするリチウム二次電池の製造方法。
In the manufacturing method of the lithium secondary battery according to claim 8, 9 or 10,
Arithmetic mean roughness Ra of the negative electrode current collector surface is 0.1 μm or more,
A method for producing a lithium secondary battery.
請求項8、9、10または11に記載のリチウム二次電池の製造方法において、
前記負極を作製する工程が、真空中に原料を供給して堆積させる方法により行われる、
ことを特徴とするリチウム二次電池の製造方法。
In the manufacturing method of the lithium secondary battery according to claim 8, 9, 10 or 11,
The step of producing the negative electrode is performed by a method of supplying and depositing a raw material in a vacuum,
A method for producing a lithium secondary battery.
請求項12に記載のリチウム二次電池の製造方法において、
前記真空中に原料を供給して堆積させる方法が、蒸着法またはスパッタリング法である、
ことを特徴とするリチウム二次電池の製造方法。


In the manufacturing method of the lithium secondary battery according to claim 12,
The method of supplying and depositing the raw material in the vacuum is an evaporation method or a sputtering method.
A method for producing a lithium secondary battery.


JP2003432907A 2003-12-26 2003-12-26 Lithium precursor battery and method for producing lithium secondary battery Expired - Fee Related JP4368193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003432907A JP4368193B2 (en) 2003-12-26 2003-12-26 Lithium precursor battery and method for producing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432907A JP4368193B2 (en) 2003-12-26 2003-12-26 Lithium precursor battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005190902A true JP2005190902A (en) 2005-07-14
JP4368193B2 JP4368193B2 (en) 2009-11-18

Family

ID=34790471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432907A Expired - Fee Related JP4368193B2 (en) 2003-12-26 2003-12-26 Lithium precursor battery and method for producing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4368193B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141798A (en) * 2005-11-22 2007-06-07 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium battery, and the lithium battery using the same
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2007335086A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium battery
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
WO2010016217A1 (en) * 2008-08-04 2010-02-11 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JP2010118353A (en) * 2006-10-13 2010-05-27 Panasonic Corp Manufacturing method for negative electrode of nonaqueous electrolyte secondary battery
JP2011096651A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method of electrode, power storage device with electrode, and manufacturing method of power storage device
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
WO2015005648A1 (en) 2013-07-09 2015-01-15 삼성정밀화학 주식회사 Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20150078068A (en) 2013-12-30 2015-07-08 삼성정밀화학 주식회사 Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
EP3203548A4 (en) * 2014-09-29 2018-04-18 LG Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141798A (en) * 2005-11-22 2007-06-07 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium battery, and the lithium battery using the same
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it
JP2007335086A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium battery
JP2010118353A (en) * 2006-10-13 2010-05-27 Panasonic Corp Manufacturing method for negative electrode of nonaqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
EP2104175A2 (en) 2008-03-17 2009-09-23 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8603196B2 (en) 2008-08-04 2013-12-10 Panasonic Corporation Lithium secondary battery manufacturing method comprising forming lithium metal layer and lithium secondary battery
WO2010016217A1 (en) * 2008-08-04 2010-02-11 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JP4602478B2 (en) * 2008-08-04 2010-12-22 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
JPWO2010016217A1 (en) * 2008-08-04 2012-01-19 パナソニック株式会社 Lithium secondary battery manufacturing method and lithium secondary battery
US9142858B2 (en) 2008-08-26 2015-09-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode, negative electrode material, and preparation of Si—O—Al composite
JP2011096651A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method of electrode, power storage device with electrode, and manufacturing method of power storage device
KR20120115116A (en) 2011-04-08 2012-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing cathode active material for nonaqueous electrolyte secondary battery, cathode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP2509139A1 (en) 2011-04-08 2012-10-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative electrode active material for use in non-aqueous electrolyte secondary battery, negative electrode material for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015005648A1 (en) 2013-07-09 2015-01-15 삼성정밀화학 주식회사 Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same
EP3480875A1 (en) 2013-12-25 2019-05-08 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20150078068A (en) 2013-12-30 2015-07-08 삼성정밀화학 주식회사 Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
US10050259B2 (en) 2013-12-30 2018-08-14 Samsung Electronics Co., Ltd. Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
EP3203548A4 (en) * 2014-09-29 2018-04-18 LG Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode
US10199693B2 (en) 2014-09-29 2019-02-05 Lg Chem, Ltd. Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode

Also Published As

Publication number Publication date
JP4368193B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4201509B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4635978B2 (en) Negative electrode and secondary battery
JP3676301B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
KR101162794B1 (en) Method of producing a negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4248240B2 (en) Lithium secondary battery
JP3733065B2 (en) Lithium battery electrode and lithium secondary battery
US8197969B2 (en) Anode and battery
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP2002319431A (en) Lithium secondary cell
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
KR20160004236A (en) Anode and secondary battery
JP2003217574A (en) Negative electrode for secondary battery and secondary battery using the same
JP4368193B2 (en) Lithium precursor battery and method for producing lithium secondary battery
JP4895503B2 (en) Lithium secondary battery
JP2005150038A (en) Lithium secondary battery
JP2004165097A (en) Negative electrode and battery, and manufacturing method of same
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
JP2009016339A (en) Anode and secondary battery
JP2007095445A (en) Nonaqueous electrolyte secondary battery
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP2012164481A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees