JP2007335086A - Manufacturing method of electrode for lithium battery - Google Patents

Manufacturing method of electrode for lithium battery Download PDF

Info

Publication number
JP2007335086A
JP2007335086A JP2006161806A JP2006161806A JP2007335086A JP 2007335086 A JP2007335086 A JP 2007335086A JP 2006161806 A JP2006161806 A JP 2006161806A JP 2006161806 A JP2006161806 A JP 2006161806A JP 2007335086 A JP2007335086 A JP 2007335086A
Authority
JP
Japan
Prior art keywords
lithium
silicon
film
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006161806A
Other languages
Japanese (ja)
Other versions
JP4961846B2 (en
Inventor
Satoshi Shibuya
聡 澁谷
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006161806A priority Critical patent/JP4961846B2/en
Publication of JP2007335086A publication Critical patent/JP2007335086A/en
Application granted granted Critical
Publication of JP4961846B2 publication Critical patent/JP4961846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the lithium must be removed from the negative electrode in advance for normal battery operation since the negative electrode using the silicon as an active material has an expansion rate large enough to easily generate wrinkling in a collector; and a battery built in combination with the negative electrode using the lithium-silicon alloy film capable of reducing the wrinkling as an active material, and the positive electrode containing the lithium such as LiCoO<SB>2</SB>is unable to operate because both of the electrodes contain the lithium. <P>SOLUTION: The manufacturing method of electrodes for a lithium battery includes a primary step for forming the lithium-silicon alloy film on a collector using the vacuum deposition method, and a secondary step for thermal treatment of the films formed by the primary step. The thermal treatment in the secondary step should be performed under the inert gas atmosphere or vacuum condition in the temperature range from 180°C up to 280°C. This method ensures easy manufacturing of the high-capacity negative electrode with the lithium removed from the lithium-silicon alloy film, and allows the high-capacity lithium battery to be manufactured in combination with the positive electrode containing the lithium such as LiCoO<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はリチウム電池用電極の製造方法に関するものである。   The present invention relates to a method for producing an electrode for a lithium battery.

近年、携帯機器の小型化や多機能化が進み、これに伴って携帯機器の電源としての電池の高容量化が切望されている。現在主に使用されている負極活物質である炭素の理論容量は372mAh/gである。炭素よりも高容量化が可能な活物質として、理論容量が4200mAh/gであるシリコンが有望視されている。したがってシリコンを含む材料およびシリコンを含む材料の構造が数多く検討されている。   In recent years, the miniaturization and multi-functionalization of portable devices have progressed, and accordingly, the capacity of a battery as a power source for portable devices has been eagerly desired. The theoretical capacity of carbon, which is a negative electrode active material mainly used at present, is 372 mAh / g. Silicon having a theoretical capacity of 4200 mAh / g is considered promising as an active material capable of higher capacity than carbon. Therefore, many materials including silicon and structures of materials including silicon have been studied.

それらの1つに、集電体上にシリコンを膜として形成した活物質膜がある。シリコン膜はリチウム吸蔵により約400%と大きく膨張するという報告があり、膨張によって集電体にしわを生じるという課題がある。また、電池作製後最初の充放電時の初期充電容量よりも初期放電容量が小さくなるという課題がある(以下、(初期充電容量)−(初期放電容量)をリテンション容量と呼ぶ)。   One of them is an active material film in which silicon is formed as a film on a current collector. There is a report that the silicon film expands to about 400% due to occlusion of lithium, and there is a problem that the current collector is wrinkled by expansion. In addition, there is a problem that the initial discharge capacity becomes smaller than the initial charge capacity at the time of the first charge / discharge after the battery is manufactured (hereinafter, (initial charge capacity) − (initial discharge capacity) is referred to as retention capacity).

この2つの課題を解決するために、リチウムとシリコンとを同時に成膜したリチウムシリコン合金膜からなる活物質膜が提案されている(例えば、特許文献1参照)。ここでリチウムシリコン合金とは、リチウムとシリコンを混合したものである。合金の組織には固溶体、共晶(共融混合物)、化合物(金属間化合物)あるいはそれらが共存するものなどがあるが、特に限定はしない。   In order to solve these two problems, an active material film made of a lithium silicon alloy film in which lithium and silicon are simultaneously formed has been proposed (for example, see Patent Document 1). Here, the lithium silicon alloy is a mixture of lithium and silicon. The alloy structure includes a solid solution, a eutectic (eutectic mixture), a compound (intermetallic compound), or a material in which they coexist, but is not particularly limited.

シリコン膜は充電によるリチウムの吸蔵により膨張する。シリコン膜が膨張することに起因する応力が集電体にかかり、その応力が所定の値以上になると集電体は弾性変形を超えて不可逆の伸びとなり、その結果しわを生じる。膨張応力による伸びが集電体の弾性変形範囲内であれば、集電体にしわを生じないので望ましい。   A silicon film expand | swells by occlusion of lithium by charge. Stress caused by the expansion of the silicon film is applied to the current collector, and when the stress exceeds a predetermined value, the current collector exceeds elastic deformation and becomes irreversible, resulting in wrinkles. If the elongation due to the expansion stress is within the elastic deformation range of the current collector, it is desirable because the current collector does not wrinkle.

シリコンを集電体上に成膜する際にリチウムを同時に成膜することで、電気化学的にリチウムを吸蔵したシリコン膜に特性が近いと考えられるリチウムシリコン合金膜を得ることができる。こうして得たリチウムシリコン合金膜は、リチウムを含んでいるにもかかわらず集電体に膨張応力がかかっていないと考えられている。   By simultaneously forming lithium when forming silicon on the current collector, it is possible to obtain a lithium silicon alloy film considered to have characteristics close to those of a silicon film electrochemically occluded with lithium. The lithium silicon alloy film thus obtained is considered to have no expansion stress applied to the current collector despite containing lithium.

リチウムとシリコンを同時に成膜したリチウムシリコン合金膜を活物質膜として用いることができれば、集電体にしわを生じない高容量負極として使える。   If a lithium-silicon alloy film in which lithium and silicon are simultaneously formed can be used as an active material film, it can be used as a high-capacity negative electrode that does not cause wrinkles in the current collector.

また、リテンション容量を補填するためには、シリコン膜を活物質膜として電池を作製する前に、シリコン膜にあらかじめリテンション容量分のリチウムを加えておけばよいことが分かっている。リテンション容量としては初期充電容量の5%から8%程度であるという報告があり、この割合以上のリチウムを含むリチウムシリコン合金膜を形成すればよい。   In addition, in order to compensate for the retention capacity, it is known that lithium for the retention capacity may be added to the silicon film in advance before the battery is manufactured using the silicon film as an active material film. It has been reported that the retention capacity is about 5% to 8% of the initial charge capacity, and a lithium silicon alloy film containing lithium of this ratio or more may be formed.

シリコン以外の高容量負極としてはリチウム含有複合窒化物がある。リチウム含有複合窒化物にシリコンの窒化物を加えた負極も提案されている(例えば、特許文献2参照)。
特開2005−190902号公報 特開2003−338282号公報
As a high-capacity negative electrode other than silicon, there is a lithium-containing composite nitride. A negative electrode in which silicon nitride is added to lithium-containing composite nitride has also been proposed (see, for example, Patent Document 2).
JP 2005-190902 A JP 2003-338282 A

特許文献1にある膜中のリチウム原子量をシリコン原子量で割った値(以下、「リチウム/シリコン比」と呼ぶ)が0.01以上0.5以下の範囲は、リテンション容量を補填するための条件であると言える。集電体上に成膜したリチウムシリコン合金膜のリチウム/シリコン比が0.01以上0.5以下と小さければ、この膜を活物質膜として充電した時に大きく膨張する。つまり膨張応力の緩和に役立つのは、リチウム/シリコン比の大きなリチウムシリコン合金膜におけるリテンション容量を超えたリチウム量である。   A value obtained by dividing the amount of lithium atoms in the film of Patent Document 1 by the amount of silicon atoms (hereinafter referred to as “lithium / silicon ratio”) in the range of 0.01 to 0.5 is a condition for supplementing the retention capacity. It can be said that. If the lithium / silicon ratio of the lithium silicon alloy film formed on the current collector is as small as 0.01 or more and 0.5 or less, the film expands greatly when charged as an active material film. That is, it is the amount of lithium exceeding the retention capacity in the lithium silicon alloy film having a large lithium / silicon ratio that helps to relieve the expansion stress.

リチウムとシリコンを同時成膜する際に成膜量を調整してリチウム/シリコン比の大きなリチウムシリコン合金からなる活物質膜を得ることができる。しかし、現在広く用いられているコバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)等のリチウムを含む正極との組み合わせで電池を構成すると動作することができない。 An active material film made of a lithium silicon alloy having a large lithium / silicon ratio can be obtained by adjusting the film formation amount when lithium and silicon are simultaneously formed. However, when a battery is configured with a positive electrode containing lithium such as lithium cobaltate (LiCoO 2 ) or lithium nickelate (LiNiO 2 ) that is widely used at present, the battery cannot be operated.

つまり、リチウム電池は正極・負極の間でリチウムイオンの移動が行われることにより充放電されるが、この組み合わせでは正極・負極共にリチウムを含有した状態であるため、リチウムイオンの移動が行われず充放電できない。つまり、電池として作動させるためにはあらかじめ正極・負極のいずれかからリチウムを脱離させておかなければならないという課題がある。   In other words, the lithium battery is charged and discharged by the movement of lithium ions between the positive electrode and the negative electrode. However, in this combination, both the positive electrode and the negative electrode contain lithium, so the lithium ions do not move and are charged. Unable to discharge. That is, in order to operate as a battery, there is a problem that lithium must be desorbed from either the positive electrode or the negative electrode in advance.

電池作製前に活物質膜からリチウムを脱離させる方法としては、電気化学的に脱離させる電極化成法がある。例えば、リテンション容量以上のリチウムを含有する負極活物質膜を考えた場合、負極活物質膜と対極としてのリチウム箔とを用いてモデルセルを作製し、リチウム箔に対して+1.5V程度になるまで0.1C程度の定電流を流すことにより過剰なリチウムを負極活物質膜から脱離させることができる。しかしながらこの方法ではリチウムを負極活物質膜から脱離させた後に、本来用いるLiCoO等の正極と組み直しして、電池を作製する必要がある。したがって生産性が極めて悪いという課題を有する。 As a method for desorbing lithium from the active material film before manufacturing the battery, there is an electrode formation method for electrochemical desorption. For example, when considering a negative electrode active material film containing lithium having a retention capacity or more, a model cell is manufactured using a negative electrode active material film and a lithium foil as a counter electrode, and the voltage is about +1.5 V with respect to the lithium foil. Excess lithium can be desorbed from the negative electrode active material film by supplying a constant current of about 0.1 C to the upper limit. However, in this method, after desorbing lithium from the negative electrode active material film, it is necessary to reassemble with a positive electrode such as LiCoO 2 originally used to produce a battery. Therefore, there is a problem that productivity is extremely poor.

特許文献2は、リチウム含有複合窒化物とシリコンの窒化物とを混合することで、リチウム含有複合窒化物に含まれるリチウムと、シリコンの窒化物のシリコンとが反応し、リチウム含有複合窒化物にもともと含まれていたリチウムを電気化学的に不活性化する技術である。しかしシリコンの窒化物を加えることで体積あたりの容量が小さくなるという課題を有する。   In Patent Document 2, by mixing a lithium-containing composite nitride and a silicon nitride, lithium contained in the lithium-containing composite nitride reacts with silicon in the silicon nitride to form a lithium-containing composite nitride. This is a technology that electrochemically inactivates lithium originally contained. However, there is a problem that the capacity per volume is reduced by adding silicon nitride.

本発明は、前記従来の課題を解決するもので、高容量のリチウム電池用電極を生産性の高い簡易な方法で得ることが可能な製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a production method capable of obtaining a high-capacity lithium battery electrode by a simple method with high productivity.

前記従来の課題を解決するために、本発明のリチウム電池用電極の製造方法は、集電体上に、リチウムシリコン合金膜を真空成膜する第1工程と、前記第1工程で得られた膜を熱処理する第2工程と、を有する製造方法であって、
第2工程における熱処理は、180℃以上280℃以下の不活性ガス雰囲気中または真空中で行う処理であること、を特徴とする。
In order to solve the above-described conventional problems, the lithium battery electrode manufacturing method of the present invention was obtained in the first step of vacuum-depositing a lithium silicon alloy film on a current collector and the first step. A second step of heat-treating the film,
The heat treatment in the second step is a treatment performed in an inert gas atmosphere of 180 ° C. or higher and 280 ° C. or lower or in a vacuum.

本製造方法は、不活性ガス雰囲気中または真空中で行う熱処理であるので、方法が簡易で生産性が高い。   Since this manufacturing method is a heat treatment performed in an inert gas atmosphere or in a vacuum, the method is simple and the productivity is high.

本発明のリチウム電池用電極の製造方法によれば、シリコン膜を活物質膜として用いた負極において、充電によって生じる活物質膜膨張を低減し、集電体へのしわ生成を抑制した負極を、LiCoO等の正極と組み合わせて高容量のリチウム電池を作製することができる。 According to the method for manufacturing an electrode for a lithium battery of the present invention, in a negative electrode using a silicon film as an active material film, the negative electrode that reduces expansion of the active material film caused by charging and suppresses wrinkle generation on the current collector, A high-capacity lithium battery can be manufactured in combination with a positive electrode such as LiCoO 2 .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態において、同一の部分には同一の番号を記し、重複する記載を省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same parts may be denoted by the same numbers, and overlapping descriptions may be omitted.

(実施の形態)
図1は本発明のリチウム電池用電極の製造プロセスフロー図を示す。
(Embodiment)
FIG. 1 shows a manufacturing process flow diagram of a lithium battery electrode of the present invention.

第1工程では集電体上にリチウムシリコン合金膜を成膜する。リチウムとシリコンとを同時に成膜することによりリチウムシリコン合金膜が得られる。   In the first step, a lithium silicon alloy film is formed on the current collector. A lithium silicon alloy film can be obtained by simultaneously forming lithium and silicon.

成膜は真空成膜法によって行われ、リチウムを主材料とする第1成膜源とシリコンを主材料とする第2成膜源とから、それぞれ飛来したリチウム原子とシリコン原子とが集電体上に析出する。これによって集電体上にリチウムシリコン合金膜が得られる。   The film formation is performed by a vacuum film formation method, in which lithium atoms and silicon atoms flying from a first film formation source mainly made of lithium and a second film formation source mainly made of silicon are collectors. Precipitate on top. Thereby, a lithium silicon alloy film is obtained on the current collector.

真空成膜の方式としては真空蒸着法、スパッタ法、CVD法などのドライプロセスを用いることが出来るが、中でも真空蒸着法は成膜速度に優れているので好ましい。以下では真空蒸着法の場合を例に説明する。   As a vacuum film formation method, a dry process such as a vacuum evaporation method, a sputtering method, a CVD method, or the like can be used. Among them, the vacuum evaporation method is preferable because it has an excellent film formation rate. Below, the case of a vacuum evaporation method is demonstrated to an example.

図2に、リチウムとシリコンとを同時に蒸着する真空蒸着装置の概略図を示す。図2において、真空槽5内は、油回転ポンプ51や油拡散ポンプ52あるいはクライオポンプまたはターボ分子ポンプなどの真空ポンプを用いて真空槽内を0.01Pa程度に排気されている。ステンレス製クヌーセンセル1内にはリチウムが配されており、カーボン製坩堝2内には高純度のシリコンが配されている。また、基板ホルダー4には、集電体としての粗面化銅箔3が保持されている。シャッター41は、成膜を制御する。   FIG. 2 shows a schematic view of a vacuum vapor deposition apparatus for vapor deposition of lithium and silicon simultaneously. In FIG. 2, the vacuum chamber 5 is evacuated to about 0.01 Pa using a vacuum pump such as an oil rotary pump 51, an oil diffusion pump 52, a cryopump, or a turbo molecular pump. Lithium is disposed in the stainless Knudsen cell 1, and high-purity silicon is disposed in the carbon crucible 2. The substrate holder 4 holds a roughened copper foil 3 as a current collector. The shutter 41 controls film formation.

リチウムを真空蒸着する際の成膜源は、抵抗加熱方式をとることが簡便であり好ましい。蒸発源の形状は一般に広く用いられているボート加熱の方式はもとより、クヌーセンセル方式を用いることも出来る。リチウム蒸発源の温度としては例えば500〜600℃である。高温に加熱された活性なリチウムは真空槽中の酸素や水分などの残留ガスと反応して酸化しやすいので、蒸発源近傍にアルゴンなどの不活性ガスを微量導いておくことは有効である。   It is convenient and preferable to use a resistance heating method as a film formation source for vacuum deposition of lithium. As the shape of the evaporation source, the Knudsen cell method can be used as well as the generally used boat heating method. The temperature of the lithium evaporation source is, for example, 500 to 600 ° C. Active lithium heated to a high temperature is likely to be oxidized by reacting with residual gas such as oxygen and moisture in the vacuum chamber. Therefore, it is effective to introduce a small amount of inert gas such as argon in the vicinity of the evaporation source.

一方、シリコンを真空蒸着する際の成膜源は、電子ビーム加熱を熱源とすることが望ましい。その理由は蒸発に際して、シリコンはリチウムに比して高温に加熱することが要求されるからである。溶融するシリコンを保持する方法としては水冷銅ハースを用いても良く、また、炭素や窒化ホウ素などからなる坩堝を用いることも出来る。   On the other hand, it is desirable to use electron beam heating as a heat source as a film forming source when vacuum depositing silicon. The reason is that during evaporation, silicon is required to be heated to a higher temperature than lithium. A water-cooled copper hearth may be used as a method for holding molten silicon, or a crucible made of carbon, boron nitride, or the like may be used.

油回転ポンプや油拡散ポンプあるいはクライオポンプまたはターボ分子ポンプなどの真空ポンプを用いて真空槽内を0.01Pa程度に排気した後、成膜を行う。その際、リチウム/シリコン比が所定の値になるように各成膜源の成膜速度を調整する。   After the vacuum chamber is evacuated to about 0.01 Pa using a vacuum pump such as an oil rotary pump, an oil diffusion pump, a cryopump, or a turbo molecular pump, film formation is performed. At that time, the deposition rate of each deposition source is adjusted so that the lithium / silicon ratio becomes a predetermined value.

第2工程は、前記第1工程で形成されたリチウムシリコン合金膜に対して熱処理を行う。第1工程で形成したリチウムシリコン合金膜中の原子、特にリチウムが熱処理雰囲気中の酸素、窒素や水分などの残留ガスと反応して劣化を生じることを防止するため、熱処理は不活性ガス雰囲気中あるいは真空中で行うことが望ましい。不活性ガス雰囲気としてはアルゴン等の不活性ガスを用いることが出来る。また、熱処理は温度180℃以上280℃以下で行うことが必要である。熱処理温度が180℃未満では活物質膜の組成にほとんど変化は生じない。180℃〜280℃で熱処理することにより、活物質膜中のリチウムが大きく減少する。また、リチウムの融点は179℃であり、熱処理温度を180℃以上にすることでリチウムシリコン合金膜中のリチウムが液化し活物質膜中から排出されるものと思われる。また、熱処理温度が280℃を超えると、リチウムは排出されるとみられるが活物質膜中のシリコンが吸蔵・放出できるリチウム量が大きく減少する。理由は明確でないが、例えば集電体金属が拡散してシリコンと化学反応し、シリコンがリチウムと結合しにくい形態へ変化したと思われる。   In the second step, heat treatment is performed on the lithium silicon alloy film formed in the first step. In order to prevent atoms in the lithium silicon alloy film formed in the first step, in particular lithium, from reacting with residual gases such as oxygen, nitrogen and moisture in the heat treatment atmosphere and causing deterioration, the heat treatment is performed in an inert gas atmosphere. Or it is desirable to carry out in a vacuum. As the inert gas atmosphere, an inert gas such as argon can be used. The heat treatment must be performed at a temperature of 180 ° C. or higher and 280 ° C. or lower. If the heat treatment temperature is less than 180 ° C., the composition of the active material film hardly changes. By performing heat treatment at 180 ° C. to 280 ° C., lithium in the active material film is greatly reduced. The melting point of lithium is 179 ° C., and it is considered that the lithium in the lithium silicon alloy film is liquefied and discharged from the active material film by setting the heat treatment temperature to 180 ° C. or higher. Further, when the heat treatment temperature exceeds 280 ° C., lithium is considered to be discharged, but the amount of lithium that can be stored and released by silicon in the active material film is greatly reduced. The reason is not clear, but for example, it seems that the current collector metal diffuses and chemically reacts with silicon, so that the silicon does not easily bind to lithium.

第1工程および第2工程を経て得られた活物質膜を用いた負極は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどといった一般的に使用されるリチウムを含む正極活物質を含む正極と、微多孔フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどを炭酸エチレンや炭酸ジエチルなどに溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解液と共に用いることで、捲回型や角型あるいはコイン型といった一般的な形状のリチウム二次電池が作製出来る。   The negative electrode using the active material film obtained through the first step and the second step includes a positive electrode including a positive electrode active material containing lithium that is generally used, such as lithium cobaltate, lithium nickelate, and lithium manganate. A separator made of a microporous film, etc., and a lithium ion conductive electrolyte having a generally known composition in which lithium hexafluorophosphate or the like is dissolved in ethylene carbonate or diethyl carbonate. A lithium secondary battery having a general shape such as a rectangular shape, a rectangular shape, or a coin shape can be manufactured.

第1工程で形成するリチウムシリコン合金膜のリチウム/シリコン比としては、充放電によって集電体にしわを生じないことを満たす必要がある。充電によって生じる活物質膜の膨張応力をなくすためには、成膜するシリコン膜厚相当の400%である4倍のリチウムシリコン合金膜を成膜すればよい。成膜条件によってやや異なると推測されるが、リチウム/シリコン比が2.9の時にシリコン膜厚相当の5倍のリチウムシリコン合金が得られたので、比例計算するとリチウム/シリコン比が2.3以上であればシリコン膜厚相当の4倍のリチウムシリコン合金が得られる。   The lithium / silicon ratio of the lithium silicon alloy film formed in the first step needs to satisfy that the current collector is not wrinkled by charge / discharge. In order to eliminate the expansion stress of the active material film caused by charging, a lithium silicon alloy film that is four times as large as 400% corresponding to the thickness of the silicon film to be formed may be formed. It is presumed that it slightly differs depending on the film formation conditions, but when the lithium / silicon ratio was 2.9, a lithium silicon alloy equivalent to five times the silicon film thickness was obtained. Therefore, when proportionally calculated, the lithium / silicon ratio was 2.3. If it is above, the lithium silicon alloy 4 times the silicon film thickness can be obtained.

リチウム/シリコン比の上限としてはリチウムシリコン合金において偏析しないことが必要だと考えられる。SiLi22の相が報告されており、リチウム/シリコン比は4.4である。 It is considered that the upper limit of the lithium / silicon ratio should not be segregated in the lithium silicon alloy. A phase of Si 5 Li 22 has been reported and the lithium / silicon ratio is 4.4.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(実施例1)
前述した図2に示す真空蒸着装置を用いた。リチウムは、本荘ケミカル製のリチウム金属粒子を用い、ステンレス製クヌーセンセル1に入れ、抵抗加熱方式で蒸着を行った。ステンレス製クヌーセンセル吹き出し口の側にはアルゴンガスを1sccm導入しておいた。シリコン21は、高純度化学製の高純度シリコンインゴットを1cm程度の大きさに砕いたものを用い、内径5cmのカーボン製坩堝2に入れ、270度偏向型の電子ビームで加熱して蒸着を行った。成膜の基板は、古河サーキットフォイル製の粗面化銅箔3(芯材35μm厚、Ra=2.0μm)を12cm角に切り出し、10cm角の開口部を設けた蒸着のマスクの役目も果たす基板ホルダー4にセットした。真空槽5内は油回転ポンプ51および油拡散ポンプ52を用いて排気した。
Example 1
The above-described vacuum deposition apparatus shown in FIG. 2 was used. Lithium was deposited in a stainless Knudsen cell 1 using lithium metal particles made by Honjo Chemical, and vapor deposition was performed by a resistance heating method. Argon gas was introduced at 1 sccm on the side of the stainless Knudsen cell outlet. Silicon 21 is a high-purity chemical ingot made of high-purity silicon, crushed to a size of about 1 cm, placed in a carbon crucible 2 having an inner diameter of 5 cm, and heated with a 270-degree deflection electron beam for vapor deposition. It was. The film-forming substrate also serves as an evaporation mask provided with a roughened copper foil 3 (core material 35 μm thickness, Ra = 2.0 μm) made by Furukawa Circuit Foil, cut into 12 cm square and provided with 10 cm square openings. It was set in the substrate holder 4. The vacuum chamber 5 was evacuated using an oil rotary pump 51 and an oil diffusion pump 52.

リチウムおよびシリコンの成膜レートは、2台の水晶振動子膜厚計(図示せず)を用いて測定した。水晶振動子膜厚計は、他方の蒸着によって膜厚計測に影響を受けない場所に設置した。予め一方の材料のみで単独成膜を行い、得られた膜厚の値から比を求め水晶振動子膜厚計に係数を入力しておいた。   Lithium and silicon deposition rates were measured using two quartz crystal thickness meters (not shown). The quartz crystal thickness meter was installed in a place where the thickness measurement was not affected by the other deposition. A single film was formed in advance using only one material, a ratio was obtained from the obtained film thickness value, and a coefficient was input to the crystal oscillator film thickness meter.

リチウム/シリコン比が3となるように、シリコンの成膜レートは0.8nm/sec、リチウムは2.6nm/secになるよう制御した。その際、成膜レートが一定となるように、リチウム蒸着に関しては抵抗加熱ヒータの電流と電圧を制御し、シリコン蒸着に関しては電子ビームの電圧は一定にしたまま電流値を制御した。シャッター41を180分間開くことにより、この条件を維持して成膜を行った。   The silicon deposition rate was controlled to 0.8 nm / sec and lithium to 2.6 nm / sec so that the lithium / silicon ratio was 3. At that time, the current and voltage of the resistance heater were controlled for lithium deposition so that the film formation rate was constant, and the current value was controlled while the electron beam voltage was kept constant for silicon deposition. By opening the shutter 41 for 180 minutes, the film was formed while maintaining this condition.

得られた膜をSEMで断面観察すると、厚さは45μmで、空孔は見られず緻密な膜であった。   When the cross section of the obtained film was observed with an SEM, the thickness was 45 μm, and no pore was seen, and the film was dense.

ICP発光分析を行った結果、リチウムが1.5mg/cm、シリコンが2.1mg/cmという組成であった。リチウム/シリコン比は2.9であり、リチウムとしての膜厚は28μm相当、シリコンとしての膜厚は9μm相当という結果であった。成膜されたリチウムが全て放電に寄与するとした時の放電容量は5.8mAh/cmであり、成膜したシリコンが全て理論値である4.4個のリチウムを吸蔵・放出するとした時の充放電容量は8.8mAh/cmである。 As a result of ICP emission spectrometry, lithium 1.5 mg / cm 2, silicon is a composition of that 2.1 mg / cm 2. The lithium / silicon ratio was 2.9, and the film thickness as lithium was 28 μm, and the film thickness as silicon was 9 μm. The discharge capacity when all deposited lithium contributes to the discharge is 5.8 mAh / cm 2 , and all the deposited silicon absorbs and releases 4.4 lithium, which is the theoretical value. The charge / discharge capacity is 8.8 mAh / cm 2 .

内径10cm長さ50cmの石英ガラス管に純度6Nのアルゴンを1L/minの流量で30分以上流すことにより不活性雰囲気に置換した。前記石英ガラス管に電熱線ヒータを巻いて熱処理装置とした。前記膜から1cm角の試料を切り出し、アルゴン雰囲気中180℃で1時間熱処理した。室温まで冷却した後、前記試料を取り出した。   The inert atmosphere was replaced by flowing argon of purity 6N at a flow rate of 1 L / min for 30 minutes or more through a quartz glass tube having an inner diameter of 10 cm and a length of 50 cm. A heating wire heater was wound around the quartz glass tube to obtain a heat treatment apparatus. A 1 cm square sample was cut from the film and heat-treated at 180 ° C. for 1 hour in an argon atmosphere. After cooling to room temperature, the sample was removed.

熱処理した前記試料を電極6として、旭化成製の厚さ20μmのポリエチレン微多孔膜のセパレータ7を介して、本荘ケミカル製の厚さ300μmのリチウム金属箔8を対極として、R2016のコイン電池を作製した。コイン電池の概要断面図を図3に示す。電極6から集電するための金属円板9、電極を加圧するための皿ばね10、封止および外部での正負の端子の役割を果たすためのケース11、封口板12およびガスケット13からなる。電解液には炭酸エチレン、炭酸ジエチルを体積比1:1で混合し、これに6フッ化リン酸リチウムを1mol/L溶解して調製した溶液を用いた。電解液の含浸は、前記セパレータ7および前記電極6を浸漬することで行った。   Using the heat-treated sample as an electrode 6, a coin battery of R2016 was manufactured using a lithium metal foil 8 of 300 μm thickness made by Honjo Chemical as a counter electrode through a separator 7 of a polyethylene microporous film of 20 μm thickness made by Asahi Kasei. . A schematic cross-sectional view of the coin battery is shown in FIG. It consists of a metal disk 9 for collecting current from the electrode 6, a disc spring 10 for pressurizing the electrode, a case 11 for serving as a sealing and external positive / negative terminal, a sealing plate 12 and a gasket 13. As the electrolytic solution, ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1, and a solution prepared by dissolving lithium hexafluorophosphate at 1 mol / L was used. The impregnation with the electrolytic solution was performed by immersing the separator 7 and the electrode 6.

充放電は電流が0.2mA一定、充放電の終止電圧が0Vおよび1.5Vとなるように行い、終止電圧に達した後は30分間電流を流さないようにして、繰り返し行った。対極にリチウム金属箔を使っているので今回は、活物質膜へのリチウム吸蔵を充電と呼び、リチウム金属箔へのリチウム析出を放電と呼ぶことにした。   Charging / discharging was repeated so that the current was constant at 0.2 mA and the final voltage for charging / discharging was 0 V and 1.5 V, and after reaching the final voltage, no current was allowed to flow for 30 minutes. Since lithium metal foil is used for the counter electrode, this time we decided to call the occlusion of lithium in the active material film as charging and the deposition of lithium on the lithium metal foil as discharging.

充放電の結果を表1に示す。なお充放電は前記の熱処理を経ても多少のリチウムが電極中に残留していることが想定されるため放電から開始した。その結果初回放電で0.5mAh/cm放電した。その後はリテンション容量がなく、7.3mAh/cmの充電と放電を繰り返し行えた。5サイクル後に電池を分解し観察した結果、集電体である銅箔にしわ等の変形は生じていなかった。 Table 1 shows the results of charging and discharging. The charge / discharge was started from the discharge because it was assumed that some lithium remained in the electrode even after the heat treatment. As a result, 0.5 mAh / cm 2 was discharged in the first discharge. Thereafter, there was no retention capacity, and charging and discharging at 7.3 mAh / cm 2 could be repeated. As a result of disassembling and observing the battery after 5 cycles, the copper foil as the current collector was not deformed such as wrinkles.

以上の結果をまとめると、1点目には初回放電容量は当初成膜されたリチウム量からの計算値である5.8mAh/cmより大きく減少した0.5mAh/cmであった。2点目には前記初回放電後に行った1サイクル目の充放電においてリテンション容量がなかった。3点目には充放電後の粗面化銅箔に活物質膜の膨張・収縮によるしわは生じなかった。 To summarize the above results, the initial discharge capacity was 0.5 mAh / cm 2, which was greatly reduced from 5.8mAh / cm 2 a calculated value from the initially deposited lithium amount in the first point. At the second point, there was no retention capacity in charge / discharge in the first cycle after the first discharge. At the third point, wrinkles due to expansion / contraction of the active material film did not occur in the roughened copper foil after charge / discharge.

結果の1点目、2点目では、前記熱処理過程においてリテンション容量+0.5mAh/cm以外のリチウムが液化または蒸発して膜中からなくなったことの証左と考えることができる。ここでリチウムの蒸気圧は融点の179℃で約1E−8Paであり、蒸気圧は非常に低いので蒸発したとは考えにくい。十分な解析はできていないが、リチウムの融点以上の温度でリチウムシリコン合金膜中のリチウムとシリコンの結合が切れ、リチウムが液化し、何らかの力で膜中から排出されたと考えられる。 The first and second points of the results can be considered as evidence that lithium other than the retention capacity +0.5 mAh / cm 2 has been liquefied or evaporated in the heat treatment process and disappeared from the film. Here, the vapor pressure of lithium is about 1E-8 Pa at a melting point of 179 ° C., and the vapor pressure is very low. Although sufficient analysis has not been made, it is considered that the lithium-silicon bond in the lithium-silicon alloy film was cut at a temperature equal to or higher than the melting point of lithium, and the lithium was liquefied and discharged from the film by some force.

同時蒸着の過程で膜中に取り込まれたリチウムのうち、リテンション容量補填分に相当するリチウムは成膜過程および本熱処理中に、電気化学的に不活性となるシリコンとの結合を形成しているものと推定される。前記リテンション容量補填分に相当するリチウムは、シリコンとの結合力が比較的強いため本熱処理工程を経た後でもほとんどそのまま膜中に残るものと推定される。   Of the lithium incorporated into the film during the co-evaporation process, the lithium corresponding to the retention capacity compensation forms a bond with the electrochemically inactive silicon during the film formation process and the main heat treatment. Estimated. It is presumed that lithium corresponding to the retention capacity compensation has a relatively strong bonding force with silicon, and therefore remains in the film as it is even after the heat treatment step.

結果の3点目では、リチウムとシリコンを同時に蒸着したリチウムシリコン合金膜を活物質膜とする電極は、リチウムを対極として同電位まで充電することによる活物質膜の膨張によって生じる膨張応力が粗面化銅箔にかかっても、粗面化銅箔は弾性破壊しないと考えることができる。   In the third result, an electrode having a lithium-silicon alloy film in which lithium and silicon are vapor-deposited at the same time as an active material film has a rough expansion stress caused by the expansion of the active material film by charging to the same potential with lithium as a counter electrode. It can be considered that the roughened copper foil does not elastically break even when it is applied to the copper halide foil.

シリコンのみを蒸着したシリコン膜を活物質とする電極では、リチウムを対極として同電位まで充電すると400%膨張すると言われている。そして実験の結果、シリコン膜厚/銅箔厚の比が0.2以上になるとしわが生じる。35μm厚の銅箔を用いた場合、7μm以上のシリコン膜を成膜し充放電を行うと多数のしわが生じる。   It is said that an electrode using a silicon film on which only silicon is deposited as an active material expands by 400% when charged to the same potential using lithium as a counter electrode. As a result of the experiment, wrinkles occur when the ratio of silicon film thickness / copper foil thickness is 0.2 or more. When a 35 μm thick copper foil is used, a large number of wrinkles are generated when a silicon film of 7 μm or more is formed and charged and discharged.

本発明では9μm相当のシリコンを同時にリチウムも蒸着することで45μmの厚みに成膜している。9μm相当のシリコンを5倍の45μmの厚みで成膜していることになり、充電による膨張応力が非常に小さいか、ないものと考えられる。   In the present invention, silicon having a thickness of 45 μm is formed by simultaneously depositing silicon corresponding to 9 μm and lithium. It is assumed that silicon corresponding to 9 μm is formed with a thickness of 45 μm, which is 5 times, and the expansion stress due to charging is very small or not.

(実施例2)
アルゴン雰囲気中で熱処理する温度が280℃であること以外は実施例1と同様にして電池を作製し、充放電を行った。
(Example 2)
A battery was prepared and charged / discharged in the same manner as in Example 1 except that the heat treatment temperature in the argon atmosphere was 280 ° C.

充放電容量の結果を表1に示す。最初の放電で0.3mAh/cm放電し、その後は6.9mAh/cmの充電と放電を繰り返し行えた。5サイクル後に電池を分解し観察した結果、集電体にしわ等の変形は生じていなかった。 Table 1 shows the results of the charge / discharge capacity. In the first discharge, 0.3 mAh / cm 2 was discharged, and thereafter, charging and discharging of 6.9 mAh / cm 2 were repeated. As a result of disassembling and observing the battery after 5 cycles, the current collector was not deformed such as wrinkles.

(比較例1)
アルゴン雰囲気で熱処理する温度が室温(未処理)、150℃、300℃であること以外は実施例1と同様にして電池を作製し、充放電を行った。
(Comparative Example 1)
A battery was prepared and charged / discharged in the same manner as in Example 1 except that the heat treatment temperature in an argon atmosphere was room temperature (untreated), 150 ° C., and 300 ° C.

充放電容量の結果を表1に示す。熱処理温度が室温及び150℃の場合は、最初の放電で5.0mAh/cm放電し、その後は7.5mAh/cmの充電と放電を繰り返し行えた。5サイクル後に電池を分解し観察した結果、集電体にしわ等の変形は生じていなかった。熱処理温度が300℃の場合は、最初の放電で0.001mAh/cm放電し、その後は0.08mAh/cmの充電と放電を繰り返し行えた。 Table 1 shows the results of the charge / discharge capacity. When the heat treatment temperature was room temperature and 150 ° C., 5.0 mAh / cm 2 was discharged at the first discharge, and thereafter, 7.5 mAh / cm 2 was repeatedly charged and discharged. As a result of disassembling and observing the battery after 5 cycles, the current collector was not deformed such as wrinkles. When the heat treatment temperature was 300 ° C., 0.001 mAh / cm 2 was discharged at the first discharge, and thereafter, 0.08 mAh / cm 2 was repeatedly charged and discharged.

以上のコイン電池の評価によって次のことが分かる。150℃以下での熱処理では、活物質膜はほとんど変化していない。一方、300℃以上の熱処理では、活物質膜が変化しリチウムの吸蔵に寄与できるシリコン原子がほとんどなくなってしまっている。   The following can be understood from the above evaluation of the coin battery. In the heat treatment at 150 ° C. or lower, the active material film hardly changes. On the other hand, in the heat treatment at 300 ° C. or higher, the active material film is changed, and silicon atoms that can contribute to occlusion of lithium are almost lost.

本発明にかかるリチウム電池用電極の製造方法は、リチウム二次電池の製造方法として有用である。   The method for producing an electrode for a lithium battery according to the present invention is useful as a method for producing a lithium secondary battery.

本発明の実施の形態におけるリチウム電池用電極の製造プロセスフローを示す図The figure which shows the manufacturing process flow of the electrode for lithium batteries in embodiment of this invention 本発明の実施の形態におけるリチウムとシリコンとを同時に蒸着する真空蒸着装置の概略図Schematic of a vacuum deposition apparatus for simultaneously depositing lithium and silicon in an embodiment of the present invention 本発明に実施例に用いたコイン電池の概要断面図Schematic sectional view of a coin battery used in an embodiment of the present invention

符号の説明Explanation of symbols

1 ステンレス製クヌーセンセル
2 カーボン製坩堝
3 粗面化銅箔
4 基板ホルダー
5 真空槽
6 電極
7 セパレータ
8 リチウム金属箔
9 金属円板
10 皿ばね
11 ケース
12 封口板
13 ガスケット
21 シリコン
41 シャッター
51 油回転ポンプ
52 油拡散ポンプ
DESCRIPTION OF SYMBOLS 1 Stainless steel Knudsen cell 2 Carbon crucible 3 Roughened copper foil 4 Substrate holder 5 Vacuum tank 6 Electrode 7 Separator 8 Lithium metal foil 9 Metal disc 10 Disc spring 11 Case 12 Sealing plate 13 Gasket 21 Silicon 41 Shutter 51 Oil rotation Pump 52 Oil diffusion pump

Claims (5)

集電体上に、リチウムシリコン合金膜を真空成膜する第1工程と、前記第1工程で得られた膜を熱処理する第2工程と、を有するリチウム電池用電極の製造方法であって、
前記第2工程における前記熱処理は、180℃以上280℃以下の不活性ガス雰囲気中または真空中で行う処理であること、を特徴とするリチウム電池用電極の製造方法。
A method for producing an electrode for a lithium battery, comprising: a first step of vacuum-depositing a lithium silicon alloy film on a current collector; and a second step of heat-treating the film obtained in the first step,
The method for manufacturing an electrode for a lithium battery, wherein the heat treatment in the second step is a treatment performed in an inert gas atmosphere of 180 ° C. or higher and 280 ° C. or lower or in a vacuum.
前記リチウムシリコン合金膜のリチウム/シリコン比が2.3以上4.4以下であること、を特徴とする請求項1記載のリチウム電池用電極の製造方法。   2. The method for producing an electrode for a lithium battery according to claim 1, wherein the lithium silicon alloy film has a lithium / silicon ratio of 2.3 or more and 4.4 or less. 前記リチウムシリコン合金膜のリチウム/シリコン比が2.9以上4.4以下であること、を特徴とする請求項1記載のリチウム電池用電極の製造方法。   The method for producing an electrode for a lithium battery according to claim 1, wherein the lithium silicon alloy film has a lithium / silicon ratio of 2.9 to 4.4. 前記第1工程がリチウムを真空成膜する工程とシリコンを真空成膜する工程とを同時に行う工程であること、を特徴とする請求項1記載のリチウム電池用電極の製造方法。   2. The method for producing an electrode for a lithium battery according to claim 1, wherein the first step is a step of simultaneously performing a step of vacuum-depositing lithium and a step of vacuum-depositing silicon. 前記真空成膜する工程が真空蒸着する工程であること、を特徴とする請求項1または4記載のリチウム電池用電極の製造方法。   5. The method for producing an electrode for a lithium battery according to claim 1, wherein the vacuum film forming step is a vacuum vapor deposition step.
JP2006161806A 2006-06-12 2006-06-12 Method for producing electrode for lithium battery Expired - Fee Related JP4961846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161806A JP4961846B2 (en) 2006-06-12 2006-06-12 Method for producing electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161806A JP4961846B2 (en) 2006-06-12 2006-06-12 Method for producing electrode for lithium battery

Publications (2)

Publication Number Publication Date
JP2007335086A true JP2007335086A (en) 2007-12-27
JP4961846B2 JP4961846B2 (en) 2012-06-27

Family

ID=38934367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161806A Expired - Fee Related JP4961846B2 (en) 2006-06-12 2006-06-12 Method for producing electrode for lithium battery

Country Status (1)

Country Link
JP (1) JP4961846B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096651A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method of electrode, power storage device with electrode, and manufacturing method of power storage device
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
CN107293701A (en) * 2016-03-31 2017-10-24 比亚迪股份有限公司 A kind of lithium ion battery anode active material and preparation method thereof, negative pole and the lithium ion battery comprising the negative pole

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JP2003036840A (en) * 2001-05-18 2003-02-07 Fukuda Metal Foil & Powder Co Ltd Lithium cell negative electrode and its manufacturing method
JP2004165098A (en) * 2002-11-15 2004-06-10 Sony Corp Negative electrode and battery, and manufacturing method of same
JP2004319469A (en) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd Negative electrode active substance and nonaqueous electrolyte secondary cell
WO2005008809A1 (en) * 2003-07-23 2005-01-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005063767A (en) * 2003-08-08 2005-03-10 Mitsui Mining & Smelting Co Ltd Negative electrode material for nonaqueous electrolyte solution secondary battery
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2005190902A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Manufacturing method for lithium precursor battery and lithium secondary battery
JP2005203341A (en) * 2003-12-15 2005-07-28 Nec Corp Secondary battery
JP2006139967A (en) * 2004-11-10 2006-06-01 Sony Corp Negative electrode and battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10208740A (en) * 1997-01-24 1998-08-07 Yuasa Corp Non-aqueous electrolyte battery
JP2003036840A (en) * 2001-05-18 2003-02-07 Fukuda Metal Foil & Powder Co Ltd Lithium cell negative electrode and its manufacturing method
JP2004165098A (en) * 2002-11-15 2004-06-10 Sony Corp Negative electrode and battery, and manufacturing method of same
JP2004319469A (en) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd Negative electrode active substance and nonaqueous electrolyte secondary cell
WO2005008809A1 (en) * 2003-07-23 2005-01-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005063767A (en) * 2003-08-08 2005-03-10 Mitsui Mining & Smelting Co Ltd Negative electrode material for nonaqueous electrolyte solution secondary battery
JP2005203341A (en) * 2003-12-15 2005-07-28 Nec Corp Secondary battery
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2005190902A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Manufacturing method for lithium precursor battery and lithium secondary battery
JP2006139967A (en) * 2004-11-10 2006-06-01 Sony Corp Negative electrode and battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096651A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method of electrode, power storage device with electrode, and manufacturing method of power storage device
JP2012099476A (en) * 2010-11-03 2012-05-24 Sb Limotive Co Ltd Rechargeable battery
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
CN107293701A (en) * 2016-03-31 2017-10-24 比亚迪股份有限公司 A kind of lithium ion battery anode active material and preparation method thereof, negative pole and the lithium ion battery comprising the negative pole

Also Published As

Publication number Publication date
JP4961846B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4208940B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
EP1978580B1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US7316867B2 (en) Method for manufacturing a multi-layered thin film for use as an anode in a lithium secondary battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP5357565B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP5230946B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP4961846B2 (en) Method for producing electrode for lithium battery
JP2010073402A (en) Method for manufacturing negative electrode for lithium secondary battery
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP2005135856A (en) Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery
JP2005085632A (en) Battery
JP5320671B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005085633A (en) Negative electrode and battery
JP2009043523A (en) Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery
JP4183745B2 (en) Lithium battery electrode and method for producing lithium battery electrode
JP2005243371A (en) Positive electrode and rolling-type electrochemistry element using it
JP5238195B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4841125B2 (en) Method for manufacturing lithium secondary battery
JP3935729B2 (en) Electrode for lithium secondary battery
JP5330903B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP4798952B2 (en) Method for manufacturing lithium secondary battery
JP2008124007A (en) Manufacturing method of nonaqueous electrolyte secondary battery, and negative electrode for the nonaqueous electrolyte secondary battery
JP2009163993A (en) Electrode for lithium battery, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees