JP2009043523A - Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery - Google Patents

Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP2009043523A
JP2009043523A JP2007206540A JP2007206540A JP2009043523A JP 2009043523 A JP2009043523 A JP 2009043523A JP 2007206540 A JP2007206540 A JP 2007206540A JP 2007206540 A JP2007206540 A JP 2007206540A JP 2009043523 A JP2009043523 A JP 2009043523A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
lithium secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007206540A
Other languages
Japanese (ja)
Inventor
Hiroshi Higuchi
洋 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007206540A priority Critical patent/JP2009043523A/en
Publication of JP2009043523A publication Critical patent/JP2009043523A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To overcome the problems that, since a negative electrode material made of a metal element or its alloy expands and contracts in a great extent at reaction of occlusion/release of lithium ion, electric joint with a collector can not be maintained, leading to decrease of a capacity. <P>SOLUTION: The negative electrode for a lithium secondary battery is manufactured by a method of depositing lithium and silicon as active materials for the negative electrode for a lithium secondary battery aslant at the same time on the surface of a collector 3 with its surface roughened with ruggednesses. With the negative electrode for the lithium secondary battery manufactured in this method, columnar negative electrode active material particles 21 are in a more expanded state than at initial formation, so that there is no risk of collision among the columnar negative electrode active material particles 21 or break of the collector, giving birth to the negative electrode with excellent cycle characteristics. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サイクル特性に優れたリチウム二次電池用負極の製造方法、およびその製造方法により製造されたリチウム二次電池用負極に関する。   The present invention relates to a method for producing a negative electrode for a lithium secondary battery excellent in cycle characteristics, and a negative electrode for a lithium secondary battery produced by the production method.

携帯用通信機器は、小型化と用途の多様化により、近年益々需要が増加している。また、携帯用通信機器に用いられる二次電池は、放電容量の増大と寿命の延長という性能向上が求められている。特に、エネルギー密度の高いリチウム二次電池が、生産量を顕著に伸張している。   In recent years, the demand for portable communication devices has been increasing due to downsizing and diversification of applications. In addition, secondary batteries used in portable communication devices are required to have improved performance such as increased discharge capacity and extended life. In particular, lithium secondary batteries with high energy density have significantly increased production.

現在市販されているリチウム二次電池の多くは、正極にLiCoOなどのLi含有複合酸化物、負極に黒鉛を用いて構成されている。黒鉛を用いた負極材料は、LiCで示される組成までしかリチウムイオンを吸蔵できないので、負極材料である黒鉛の体積当たりの容量は、372mAh/gが最大値となる。この値は金属リチウムの理論容量の約1/5に過ぎないので、現在のリチウム二次電池の構成では、エネルギー密度の向上が限界となってきた。 Many of the lithium secondary batteries currently on the market are configured using a Li-containing composite oxide such as LiCoO 2 for the positive electrode and graphite for the negative electrode. Since the negative electrode material using graphite can occlude lithium ions only up to the composition represented by LiC 6 , the capacity per volume of graphite as the negative electrode material has a maximum value of 372 mAh / g. Since this value is only about 1/5 of the theoretical capacity of metallic lithium, the current lithium secondary battery configuration has been limited in improving energy density.

そこで、リチウムイオンを可逆的に吸蔵および放出できることが知られているAl、Ga、In、Si、Ge、Sn、Pb、As、Sb、Biといった金属元素、あるいはそれらの合金が、リチウム二次電池の負極材料として用いられつつある。前記の金属元素、あるいはそれらの合金の体積当たりのリチウムイオンの理論容量は、例えば、Alは2167mAh/cm、Siは2377mAh/cm、Geは2344mAh/cm、Snは1982mAh/cm、Pbは1720mAh/cm、Sbは1679mAh/cm、Biは1768mAh/cmとなる。すなわち、黒鉛を用いた炭素質材料と比較して、前記の金属元素、あるいはそれらの合金を負極材料とすると、体積当たりの容量を大きくすることができる。しかしながら、その一方で、前記の金属元素、あるいはそれらの合金は、リチウムイオンの吸蔵・放出反応の際に生じる膨張・収縮が大きいので、集電体との電気的接合が保持できなくなり、容量が減少するという課題がある。 Accordingly, a metal element such as Al, Ga, In, Si, Ge, Sn, Pb, As, Sb, Bi, or an alloy thereof, which is known to be able to reversibly store and release lithium ions, is a lithium secondary battery. It is being used as a negative electrode material. Wherein the metal element or the theoretical capacity of lithium ions per volume of their alloys, is, for example, Al is 2167mAh / cm 3, Si is 2377mAh / cm 3, Ge is 2344mAh / cm 3, Sn is 1982mAh / cm 3, Pb is 1720 mAh / cm 3 , Sb is 1679 mAh / cm 3 , and Bi is 1768 mAh / cm 3 . That is, in comparison with a carbonaceous material using graphite, the capacity per volume can be increased by using the metal element or the alloy thereof as a negative electrode material. However, on the other hand, the above metal elements or their alloys have a large expansion / contraction generated during the lithium ion storage / release reaction, so that the electrical connection with the current collector cannot be maintained and the capacity is reduced. There is a problem of decreasing.

その課題に対して、予め凹凸を設けて表面を粗化させた集電体に、負極活物質を加熱生成したガスを斜め方向から照射することで、集電体表面に柱状負極活物質粒を密着形成する電極が検討されている。柱状負極活物質粒を密着形成する際、集電体表面に設けられた凹凸のマスク効果を利用して、互いに隣り合う柱状負極活物質粒の間に一定間隔を設けることで、膨張時の柱状負極活物質粒同士の衝突を回避させることができる(例えば、特許文献1参照)。
特開2005−196970号公報
In response to the problem, columnar negative electrode active material particles are formed on the surface of the current collector by irradiating the current obtained by heating and generating the negative electrode active material from an oblique direction onto a current collector that has been roughened by providing unevenness in advance. An electrode that forms a close contact has been studied. When the columnar negative electrode active material grains are formed in close contact with each other, by utilizing the uneven mask effect provided on the surface of the current collector, a certain interval is provided between the columnar negative electrode active material grains adjacent to each other. Collisions between the negative electrode active material particles can be avoided (see, for example, Patent Document 1).
JP-A-2005-196970

上記従来の負極の製造方法によれば、柱状負極活物質粒が形成される集電体表面の粗化状態を制御することで、互いに隣り合う柱状負極活物質粒の間に適度な間隔を設けることができ、膨張時の柱状負極活物質粒同士の衝突をある程度は回避できる。   According to the above-described conventional negative electrode manufacturing method, by controlling the roughened state of the current collector surface on which the columnar negative electrode active material particles are formed, an appropriate interval is provided between the columnar negative electrode active material particles adjacent to each other. The collision between the columnar negative electrode active material particles during expansion can be avoided to some extent.

しかしながら、柱状負極活物質粒が膨張するのに必要な空間を確保する観点では、集電体表面の粗化状態の制御のみでは十分に対応できない場合がある。特に、集電体表面の傾斜方向に対して垂直な方向には、マスク効果が得られず、傾斜方向に対して平行な方向よ
りも少ない膨張空間しか確保できないので、膨張時の柱状負極活物質粒同士の衝突を回避できる十分な間隔を確保できないという課題がある。
However, from the viewpoint of securing the space necessary for the columnar negative electrode active material particles to expand, there are cases where it is not possible to sufficiently cope with the control of the roughened state of the current collector surface alone. In particular, since the mask effect is not obtained in the direction perpendicular to the inclination direction of the current collector surface, and less expansion space can be secured than in the direction parallel to the inclination direction, the columnar negative electrode active material during expansion There is a problem that it is not possible to secure a sufficient interval for avoiding collision between grains.

上記の課題を解決するために、本発明は、表面に凹凸が設けられて粗化されている集電体の表面に、リチウム二次電池負極用の活物質を、集電体の表面に斜めから蒸着させるリチウム二次電池用負極の製造方法であって、活物質は、リチウムと珪素であり、リチウムと珪素を同時に集電体に蒸着させるリチウム二次電池用負極の製造方法とする。   In order to solve the above-described problems, the present invention provides an active material for a lithium secondary battery negative electrode on a surface of a current collector that is roughened by providing irregularities on the surface, and is oblique to the surface of the current collector. A method for producing a negative electrode for a lithium secondary battery, wherein the active materials are lithium and silicon, and the lithium and silicon are vapor-deposited on a current collector at the same time.

本発明の製造方法により、集電体表面に、珪素がリチウムイオンを吸蔵して膨張した状態と実質的に同一状態の柱状負極活物質粒が形成されたリチウム二次電池用負極を製造することができる。   By the production method of the present invention, a negative electrode for a lithium secondary battery in which columnar negative electrode active material grains having substantially the same state as silicon expanded and occluded lithium ions is formed on the current collector surface. Can do.

本発明のリチウム二次電池用負極の製造方法によれば、放電時にリチウムイオンを放出して体積を収縮させた柱状負極活物質粒が、充電時に再度、リチウムイオンを吸蔵して膨張しても、柱状負極活物質粒同士の衝突が起きにくく、集電体と柱状負極活物質粒の十分な密着性の確保が可能な、サイクル特性に優れたリチウム二次電池用負極を製造することができる。   According to the method for producing a negative electrode for a lithium secondary battery of the present invention, even if the columnar negative electrode active material particles whose volume has been shrunk by discharging lithium ions during discharging, occlude lithium ions again during expansion and expand. In addition, it is possible to manufacture a negative electrode for a lithium secondary battery excellent in cycle characteristics, in which collision between columnar negative electrode active material particles hardly occurs, and sufficient adhesion between the current collector and the columnar negative electrode active material particles can be secured. .

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
〈リチウム二次電池用負極20の製造装置〉
図1は、本発明の実施の形態1におけるリチウム二次電池用負極20の製造装置である蒸着装置13の概略図である。図1に示すように、本実施の形態1におけるリチウム二次電池用負極20の製造装置である蒸着装置13は、真空容器4、真空容器4に接続された配管14に設けられた主弁5、主弁5を通じて真空容器4内を減圧する高真空用ポンプ6と低真空用ポンプ7により構成されている。
(Embodiment 1)
<Production apparatus for negative electrode 20 for lithium secondary battery>
FIG. 1 is a schematic diagram of a vapor deposition device 13 that is a device for producing a negative electrode 20 for a lithium secondary battery according to Embodiment 1 of the present invention. As shown in FIG. 1, a vapor deposition apparatus 13 that is a manufacturing apparatus of a negative electrode 20 for a lithium secondary battery in Embodiment 1 includes a vacuum vessel 4 and a main valve 5 provided in a pipe 14 connected to the vacuum vessel 4. The high-vacuum pump 6 and the low-vacuum pump 7 are configured to depressurize the vacuum vessel 4 through the main valve 5.

高真空用ポンプ6は、到達真空度が10−4Pa以下であることが好ましく、さらには10−6Pa以下であることが好ましい。また、低真空用ポンプ7は、高真空用ポンプ6の背圧以下を保てるものであれば良い。 The high vacuum pump 6 preferably has an ultimate vacuum of 10 −4 Pa or less, and more preferably 10 −6 Pa or less. Further, the low vacuum pump 7 may be any as long as the back pressure of the high vacuum pump 6 can be maintained.

真空容器4の底部には、リチウムを蒸発させるためのリチウム蒸発源1、珪素を蒸発させるための珪素蒸発源2が、遮蔽板8を介して設けられている。遮蔽板8は、蒸発させたリチウムと珪素のクロストークを防止している。リチウム蒸発源1および珪素蒸発源2の斜め上方には、水晶振動式のリチウム蒸発速度計測用レートモニタ9および珪素蒸発速度計測用レートモニタ10がそれぞれ設置され、リチウム蒸発源1からのリチウム蒸発速度および珪素蒸発源2からの珪素の蒸発速度を検出している。   At the bottom of the vacuum vessel 4, a lithium evaporation source 1 for evaporating lithium and a silicon evaporation source 2 for evaporating silicon are provided via a shielding plate 8. The shielding plate 8 prevents cross talk between evaporated lithium and silicon. A crystal oscillation type lithium evaporation rate measurement rate monitor 9 and a silicon evaporation rate measurement rate monitor 10 are installed obliquely above the lithium evaporation source 1 and the silicon evaporation source 2, respectively. In addition, the evaporation rate of silicon from the silicon evaporation source 2 is detected.

真空容器4の上部には、集電体ホルダー12が設けられ、集電体3が設置されている。集電体ホルダー12の直下には、シャッター11を設け、安定化時間内の集電体3へのリチウムおよび珪素の付着を防止している。ここで、安定化時間とは、リチウム蒸発源1および珪素蒸発源2が、リチウムおよび珪素の蒸発速度を安定化させるために必要とする時間を示す。   A current collector holder 12 is provided on the top of the vacuum vessel 4, and the current collector 3 is installed. A shutter 11 is provided directly under the current collector holder 12 to prevent lithium and silicon from adhering to the current collector 3 within the stabilization time. Here, the stabilization time indicates the time required for the lithium evaporation source 1 and the silicon evaporation source 2 to stabilize the evaporation rate of lithium and silicon.

集電体ホルダー12は、鉛直方向に対して任意の角度で集電体3の設置面を変化させることができる。本実施の形態では、集電体3の蒸着面からの法線と、リチウム蒸発源1お
よび珪素蒸発源2の蒸発面間の中点と集電体3を結ぶ直線とが成す角度θを調節することができる(詳細な構成の説明は省略する)。
The current collector holder 12 can change the installation surface of the current collector 3 at an arbitrary angle with respect to the vertical direction. In the present embodiment, the angle θ formed by the normal line from the deposition surface of the current collector 3 and the straight line connecting the current collector 3 and the midpoint between the evaporation surfaces of the lithium evaporation source 1 and the silicon evaporation source 2 is adjusted. (A detailed description of the configuration is omitted).

なお、リチウム蒸発源1としては、リチウムを600℃程度まで安定的に加熱できるものであれば良く、例えば、カートリッジ式ヒータを備えたクヌーセンセルを使用することができる(詳細な構成の説明は省略する)。   The lithium evaporation source 1 may be any one that can stably heat lithium up to about 600 ° C., and for example, a Knudsen cell equipped with a cartridge-type heater can be used (detailed description of the configuration is omitted). To do).

珪素蒸発源2としては、珪素を安定的に加熱できるものであれば良く、例えば、電子ビーム銃加熱式の銅ルツボを用いることができる。銅ルツボには、珪素を溶解しても破壊しないように、水冷機能をもたせている。上記電子ビーム銃としては、加速電圧5〜10kV、照射電流0.3〜1A程度の出力があれば良く、例えば、日本電子株式会社製JEBG−303UA型電子銃を使用することができる(詳細な構成の説明は省略する)。   The silicon evaporation source 2 may be any material that can stably heat silicon. For example, an electron beam gun heating type copper crucible can be used. The copper crucible has a water-cooling function so that it does not break even if silicon is dissolved. The electron beam gun only needs to have an acceleration voltage of 5 to 10 kV and an output of an irradiation current of about 0.3 to 1 A. For example, a JEBG-303UA type electron gun manufactured by JEOL Ltd. can be used (detailed). The description of the configuration is omitted).

〈リチウム二次電池用負極20の製造方法および好ましい製造条件〉
図2は、本発明の実施の形態1におけるリチウム二次電池用負極20の概略断面図である。本実施の形態1におけるリチウム二次電池用負極20の製造方法および好ましい製造条件について、以下に説明する。
<The manufacturing method and preferable manufacturing conditions of the negative electrode 20 for lithium secondary batteries>
FIG. 2 is a schematic cross-sectional view of negative electrode 20 for a lithium secondary battery according to Embodiment 1 of the present invention. The manufacturing method and preferable manufacturing conditions of the negative electrode 20 for a lithium secondary battery in the first embodiment will be described below.

まず、表面に凹凸を設けて粗化された集電体3を、蒸着装置13の集電体ホルダー12に設置する。   First, the current collector 3 roughened by providing unevenness on the surface is placed in the current collector holder 12 of the vapor deposition apparatus 13.

本実施の形態1における集電体3の表面粗化は、集電体3と負極活物質粒の密着性向上、さらには形成される負極活物質粒が柱状に形成されるために必要である。集電体3の一例としては、厚み35μmの銅箔表面に凹凸を設け、表面粗さRzを十点平均粗さで10μmとしたもの(例えば、古河サーキットフォイル株式会社製)が好ましいが、表面粗さRzが十点平均粗さで5μm以上あれば良い。ここで、表面粗さRzとは、JIS B0601:1994において定義される十点平均粗さを示す。なお、集電体3の組成としては、主成分としての銅の他に、ジルコニウム、チタンなどのリチウムと反応しない元素や、酸素、セレン、テルル等の混入不可避元素が含まれていても問題はない。   The surface roughening of the current collector 3 in Embodiment 1 is necessary for improving the adhesion between the current collector 3 and the negative electrode active material particles, and for forming the formed negative electrode active material particles in a columnar shape. . As an example of the current collector 3, a copper foil surface having a thickness of 35 μm with irregularities and a surface roughness Rz of 10 μm with a 10-point average roughness (for example, manufactured by Furukawa Circuit Foil Co., Ltd.) is preferable. The roughness Rz should be 5 μm or more in terms of 10-point average roughness. Here, the surface roughness Rz indicates a ten-point average roughness defined in JIS B0601: 1994. It should be noted that the composition of the current collector 3 is problematic even if it contains elements that do not react with lithium such as zirconium and titanium, and inevitable elements such as oxygen, selenium, and tellurium in addition to copper as the main component. Absent.

集電体ホルダー12における集電体3の設置面の角度は、集電体3の表面に形成される柱状負極活物質粒21の形状を左右する。そのため、良好な形状の柱状負極活物質粒21を集電体3の表面に形成するには、リチウム蒸発源1および珪素蒸発源2と集電体3を結ぶ直線と、集電体3の蒸着面からの法線とが成す角度θが30°≦θ≦80°となるように、集電体3を集電体ホルダー12に設置することが好ましい。   The angle of the installation surface of the current collector 3 in the current collector holder 12 affects the shape of the columnar negative electrode active material particles 21 formed on the surface of the current collector 3. Therefore, in order to form the columnar negative electrode active material particles 21 having a good shape on the surface of the current collector 3, the lithium evaporation source 1 and the straight line connecting the silicon evaporation source 2 and the current collector 3 and the vapor deposition of the current collector 3 are performed. It is preferable to install the current collector 3 in the current collector holder 12 so that the angle θ formed with the normal from the surface is 30 ° ≦ θ ≦ 80 °.

柱状負極活物質粒21は、表面に予め形成された凹凸形状を有する集電体3と角度θによってマスク効果が生じ、リチウムおよび珪素の蒸気が集電体3表面の凸部分に優先的に蒸着することで形成される。表面の凹凸が小さい場合、あるいは角度θが小さい場合には、マスク効果が弱まり、負極活物質が柱状ではなく連続した層になりやすいため、放電時の負極活物質の収縮の際に、柱状負極活物質粒21自らが亀裂を生じ、容量を低下させる可能性がある。したがって、柱状負極活物質粒21が好ましい柱状形状を得るためには、集電体3表面の凹凸の程度として、例えば十点平均粗さでの表面粗さRzを5μm以上とし、角度θを30°以上にすると良い。ただし、角度θを大きくするほど、集電体3へのリチウムおよび珪素の付着率が低下するので、角度θは80°以下が好ましい。   The columnar negative electrode active material grains 21 have a mask effect caused by the angle θ with the current collector 3 having a concavo-convex shape formed on the surface in advance, and vapors of lithium and silicon are preferentially deposited on the convex portions on the surface of the current collector 3. It is formed by doing. When the surface unevenness is small or the angle θ is small, the mask effect is weakened, and the negative electrode active material tends to be a continuous layer rather than a columnar shape. Therefore, when the negative electrode active material shrinks during discharge, the columnar negative electrode There is a possibility that the active material grains 21 themselves crack and reduce the capacity. Therefore, in order to obtain a preferable columnar shape for the columnar negative electrode active material grains 21, as the degree of unevenness on the surface of the current collector 3, for example, the surface roughness Rz at 10-point average roughness is 5 μm or more, and the angle θ is 30. It should be more than °. However, since the adhesion rate of lithium and silicon to the current collector 3 decreases as the angle θ is increased, the angle θ is preferably 80 ° or less.

このように、柱状負極活物質粒21が集電体3の表面に斜めに形成されることで、柱状負極活物質粒21の周囲に膨張できる空隙を存在させることができる。したがって、電池充放電サイクルの繰り返しや高い充電電圧がかかる場合等、さらに膨張した場合にも、柱状負極活物質粒21同士の接触による集電体3の破壊を抑制することができる。   As described above, the columnar negative electrode active material particles 21 are formed obliquely on the surface of the current collector 3, so that voids that can expand around the columnar negative electrode active material particles 21 can exist. Therefore, even when the battery is further expanded, such as when the battery charge / discharge cycle is repeated or a high charge voltage is applied, the current collector 3 can be prevented from being broken due to contact between the columnar negative electrode active material particles 21.

次に、リチウムおよび珪素をそれぞれリチウム蒸発源1および珪素蒸発源2に挿入し、高真空用ポンプ6および低真空用ポンプ7を作動させて、真空容器4内を減圧する。その後、例えばアルゴンを真空容器4内に導入し、真空容器4内の圧力が1×10−4Paとなるように調整する。 Next, lithium and silicon are inserted into the lithium evaporation source 1 and the silicon evaporation source 2, respectively, and the high vacuum pump 6 and the low vacuum pump 7 are operated to depressurize the vacuum vessel 4. Thereafter, for example, argon is introduced into the vacuum vessel 4 and the pressure in the vacuum vessel 4 is adjusted to 1 × 10 −4 Pa.

そして、リチウム蒸発源1に対して交流電力を加えることで、リチウムを加熱して蒸発させる。また同時に、珪素蒸発源2に対して電子を照射し、珪素を加熱・熔融により蒸発させる。この時の、リチウム蒸発源1からのリチウム蒸発速度と珪素蒸発源2からの珪素蒸発速度を、それぞれリチウム蒸発速度計測用レートモニタ9および珪素蒸発速度計測用レートモニタ10を用いて管理する。   Then, by applying AC power to the lithium evaporation source 1, lithium is heated and evaporated. At the same time, the silicon evaporation source 2 is irradiated with electrons to evaporate silicon by heating and melting. At this time, the lithium evaporation rate from the lithium evaporation source 1 and the silicon evaporation rate from the silicon evaporation source 2 are managed using the rate monitor 9 for measuring the lithium evaporation rate and the rate monitor 10 for measuring the silicon evaporation rate, respectively.

リチウム蒸発速度計測用レートモニタ9および珪素蒸発速度計測用レートモニタ10でリチウムの蒸発速度と珪素の蒸発速度を計測し、リチウム蒸発源1からのリチウムの蒸発量および珪素蒸発源2からの珪素量が所定量になったことを確認すると、シャッター18が開放されて、集電体3表面への柱状負極活物質粒21の形成が行われる。   The lithium evaporation rate and the silicon evaporation rate are measured by the rate monitor 9 for measuring the lithium evaporation rate and the rate monitor 10 for measuring the silicon evaporation rate, and the amount of evaporation of lithium from the lithium evaporation source 1 and the amount of silicon from the silicon evaporation source 2 are measured. Is confirmed to be a predetermined amount, the shutter 18 is opened, and the columnar negative electrode active material grains 21 are formed on the surface of the current collector 3.

リチウム蒸発速度計測用レートモニタ9、珪素蒸発速度計測用レートモニタ10、集電体3にそれぞれ到達するリチウムの蒸発量、珪素の蒸発量は、それぞれの到達経路における残存ガスによって大きく変動を受けることから、真空容器4内のガス種とガス圧を一定に保つ必要がある。したがって、真空容器4に導入されるアルゴンは、10−4Pa〜1×10−2Paの範囲で一定に保たれることが好ましい。 The lithium evaporation rate measurement rate monitor 9, the silicon evaporation rate measurement rate monitor 10, the amount of lithium evaporation that reaches the current collector 3, and the amount of silicon evaporation are greatly affected by the residual gas in the respective arrival paths. Therefore, it is necessary to keep the gas type and gas pressure in the vacuum vessel 4 constant. Therefore, the argon introduced into the vacuum vessel 4 is preferably kept constant in the range of 10 −4 Pa to 1 × 10 −2 Pa.

本実施の形態1においては、集電体3表面に形成される柱状負極活物質粒21のリチウムと珪素の組成比Rを、「蒸着させるリチウムのモル数/蒸着させる珪素のモル数」、すなわち、「柱状負極活物質粒21におけるリチウムモル数/珪素モル数」と定義する。この組成比Rが3.3≦R≦4.4となるように、リチウム蒸発源1からのリチウム蒸発速度および珪素蒸発源2からの珪素蒸発速度を制御することが好ましい。   In the first embodiment, the composition ratio R of lithium and silicon in the columnar negative electrode active material grains 21 formed on the surface of the current collector 3 is expressed as “number of moles of lithium to be deposited / number of moles of silicon to be deposited”, that is, , “Number of moles of lithium in columnar negative electrode active material grains 21 / number of moles of silicon”. It is preferable to control the lithium evaporation rate from the lithium evaporation source 1 and the silicon evaporation rate from the silicon evaporation source 2 so that the composition ratio R becomes 3.3 ≦ R ≦ 4.4.

一般に、負極を用いてリチウム二次電池を形成する場合、一度、柱状負極活物質粒からリチウムイオンを放出して体積を収縮させてから、リチウム二次電池を形成する。その後、再度充電して、柱状負極活物質粒にリチウムイオンを吸蔵して体積を膨張させる。   In general, when a lithium secondary battery is formed using a negative electrode, the lithium secondary battery is formed after the lithium ions are once released from the columnar negative electrode active material particles to shrink the volume. Then, it charges again and occludes lithium ion to a columnar negative electrode active material particle, and expands a volume.

組成比Rを3.3未満として柱状負極活物質粒21を形成した場合、柱状負極活物質粒21は十分な膨張状態とならないために、リチウム二次電池の充電過程でさらに膨張する可能性がある。この場合、隣接する柱状負極活物質粒21同士が衝突や接触して、集電体3から破断すること等により、リチウム二次電池用負極20の容量が低下する。   When the columnar negative electrode active material particles 21 are formed with a composition ratio R of less than 3.3, the columnar negative electrode active material particles 21 are not in a sufficiently expanded state, and thus may further expand during the charging process of the lithium secondary battery. is there. In this case, the capacity | capacitance of the negative electrode 20 for lithium secondary batteries falls by the columnar negative electrode active material particle | grains 21 which collide or contact, and fracture | ruptures from the electrical power collector 3, etc. in this case.

しかしながら、組成比Rを3.3≦R≦4.4とした場合には、柱状負極活物質粒21はリチウムイオンを吸蔵してほぼ膨張した状態、すなわち、リチウム及び珪素を蒸着させることにより形成された柱状負極活物質粒21に近い形状(大きさ)に戻るだけである。したがって、柱状負極活物質粒21同士の衝突を緩和することができるため、柱状負極活物質粒21の破断が生じにくく、集電体3と柱状負極活物質粒21の十分な密着性の確保が可能な、充放電時にもサイクル特性に優れたリチウム二次電池用負極となる。   However, when the composition ratio R is 3.3 ≦ R ≦ 4.4, the columnar negative electrode active material particles 21 are formed by occlusion of lithium ions, that is, substantially expanded, that is, by vapor deposition of lithium and silicon. It just returns to the shape (size) close to the columnar negative electrode active material particles 21 made. Therefore, since the collision between the columnar negative electrode active material particles 21 can be alleviated, the columnar negative electrode active material particles 21 are not easily broken, and sufficient adhesion between the current collector 3 and the columnar negative electrode active material particles 21 is ensured. A negative electrode for a lithium secondary battery having excellent cycle characteristics even during charge and discharge is possible.

このように、柱状負極活物質粒21のリチウムと珪素の組成比Rを3.3≦R≦4.4とすることにより、充放電を繰り返し行っても、柱状負極活物質粒21の膨張を抑制することができ、良好なサイクル特性を維持することができる。   Thus, by setting the composition ratio R of lithium and silicon of the columnar negative electrode active material particles 21 to 3.3 ≦ R ≦ 4.4, the columnar negative electrode active material particles 21 expand even when charging and discharging are repeated. Therefore, good cycle characteristics can be maintained.

なお、集電体3の表面に形成される柱状負極活物質粒21の量は、目的とする電池容量
により設定すべきである。例えば、18650サイズの円筒型リチウム二次電池用の負極とする場合には、目的とする負極極板の容量が4〜6mAh/cm程度となるように、リチウム蒸発源1からのリチウム蒸発速度、珪素蒸発源2からの珪素蒸発速度、シャッター11の開閉時間等を調整して作製することが好ましい。
The amount of the columnar negative electrode active material particles 21 formed on the surface of the current collector 3 should be set according to the target battery capacity. For example, in the case of a negative electrode for a 18650 size cylindrical lithium secondary battery, the lithium evaporation rate from the lithium evaporation source 1 is set so that the target negative electrode plate has a capacity of about 4 to 6 mAh / cm 2. It is preferable to adjust the silicon evaporation rate from the silicon evaporation source 2, the opening / closing time of the shutter 11, and the like.

〈リチウム二次電池の構成〉
本実施の形態1のリチウム二次電池用負極20を用いたリチウム二次電池として、コイン型電池30を用いて説明する。
<Configuration of lithium secondary battery>
A coin-type battery 30 will be described as a lithium secondary battery using the negative electrode 20 for a lithium secondary battery of the first embodiment.

図3は、本発明の実施の形態1のリチウム二次電池用負極20を用いたコイン型電池30の構造を示す概略断面図である。コイン型電池30は、正極32と、負極20と、これらの間に介在するセパレータ33とからなる電極群を有し、ガスケット35により密閉されている。   FIG. 3 is a schematic cross-sectional view showing the structure of a coin-type battery 30 using the negative electrode 20 for a lithium secondary battery according to Embodiment 1 of the present invention. The coin-type battery 30 includes an electrode group including a positive electrode 32, a negative electrode 20, and a separator 33 interposed therebetween, and is sealed with a gasket 35.

正極32は、金属リチウムを用いて形成され、正極端子を兼ねた正極ケース31と電気的に接続されている。負極20は、本実施の形態1に示すリチウム二次電池用負極20であり、負極端子を兼ねた封口板36と電気的に接続されている。正極32と負極20には、リチウムイオン伝導性を有する電解質が含浸されている。   The positive electrode 32 is formed using metallic lithium and is electrically connected to a positive electrode case 31 that also serves as a positive electrode terminal. The negative electrode 20 is the negative electrode 20 for a lithium secondary battery shown in the first embodiment, and is electrically connected to a sealing plate 36 that also serves as a negative electrode terminal. The positive electrode 32 and the negative electrode 20 are impregnated with an electrolyte having lithium ion conductivity.

なお、負極20は、上記リチウム二次電池の形状によって用途を制限されることなく、コイン型の他に、ボタン、シート、シリンダー、扁平、角形等の何れであっても適用可能である。また、リチウム二次電池の正極、電解質、セパレータ等は、現行のリチウム二次電池に使われているものを用いることが可能であることは言うまでもない。   The negative electrode 20 is not limited by the shape of the lithium secondary battery, and can be applied to any one of buttons, sheets, cylinders, flats, squares, etc. in addition to the coin type. Needless to say, as the positive electrode, electrolyte, separator, and the like of the lithium secondary battery, those used in the current lithium secondary battery can be used.

次に、本発明の具体例について説明する。評価セルとして、リチウム二次電池用負極20を用いたコイン型電池30を作製した。   Next, specific examples of the present invention will be described. As an evaluation cell, a coin-type battery 30 using the negative electrode 20 for a lithium secondary battery was produced.

(実施例1)
芯材厚さ10μmの電解銅箔に凸凹を設けて、その凸凹間の最大高さを8μmとする集電体3を形成した。集電体3の蒸着面からの法線と、リチウム蒸発源1および珪素蒸発源2の蒸発面間の中点と集電体3を結ぶ直線の角度θが所定の角度を成すように、図1の蒸着装置13内に設置した。金属リチウム(純度99.9%)50gおよび珪素(純度99.9999%)100gを、それぞれリチウム蒸発源1および珪素蒸発源2に挿入し、真空容器4内を7×10−5Paまで減圧した。その後、マスフローコントローラを通じてアルゴンを真空容器4内に導入し、真空容器4内の圧力が1×10−4Paとなるように調整した。
Example 1
Concavities and convexities were provided on an electrolytic copper foil having a core material thickness of 10 μm, and current collector 3 having a maximum height between the irregularities of 8 μm was formed. The normal line from the vapor deposition surface of the current collector 3 and the angle θ of the straight line connecting the current collector 3 and the midpoint between the evaporation surfaces of the lithium evaporation source 1 and the silicon evaporation source 2 form a predetermined angle. 1 in the vapor deposition apparatus 13. Metal lithium (purity 99.9%) 50 g and silicon (purity 99.9999%) 100 g were inserted into the lithium evaporation source 1 and the silicon evaporation source 2, respectively, and the inside of the vacuum vessel 4 was decompressed to 7 × 10 −5 Pa. . Thereafter, argon was introduced into the vacuum vessel 4 through a mass flow controller, and the pressure in the vacuum vessel 4 was adjusted to 1 × 10 −4 Pa.

リチウム蒸発源1に対して80V、42Aの交流電力を加え、リチウムを加熱した。このとき、リチウムの温度は524℃とした。珪素蒸発源2に対して10kV、400mAの電子を照射して珪素を加熱・熔融させた。また、リチウムや珪素の蒸発速度が安定するまで約15分間放置した。   AC power of 80 V and 42 A was applied to the lithium evaporation source 1 to heat the lithium. At this time, the temperature of lithium was 524 ° C. The silicon evaporation source 2 was irradiated with electrons of 10 kV and 400 mA to heat and melt the silicon. Further, it was left for about 15 minutes until the evaporation rate of lithium or silicon was stabilized.

リチウム蒸発速度計測用レートモニタ9および珪素蒸発速度計測用レートモニタ10でリチウムの蒸発速度と珪素の蒸発速度を計測し、基板面となる集電体3に蒸着させるリチウムと珪素の組成比Rが4となることを確認してから、シャッター11を開放し、集電体3表面への柱状負極活物質粒21の形成を開始した。そして、6時間後にシャッター11を閉じて、柱状負極活物質粒21の形成を終了し、リチウム二次電池用負極20を作製した。   The lithium evaporation rate measurement rate monitor 9 and the silicon evaporation rate measurement rate monitor 10 measure the lithium evaporation rate and the silicon evaporation rate, and the composition ratio R of lithium and silicon deposited on the current collector 3 on the substrate surface is 4 was confirmed, the shutter 11 was opened, and the formation of the columnar negative electrode active material grains 21 on the surface of the current collector 3 was started. Then, after 6 hours, the shutter 11 was closed, the formation of the columnar negative electrode active material grains 21 was completed, and the negative electrode 20 for a lithium secondary battery was produced.

(実施例2)
集電体3に蒸着させるリチウムと珪素の組成比Rを3.3としたこと以外、実施例1と同様の条件で、集電体3の表面に柱状負極活物質粒21を形成し、リチウム二次電池用負極20を作製した。
(Example 2)
Columnar negative electrode active material grains 21 were formed on the surface of the current collector 3 under the same conditions as in Example 1 except that the composition ratio R of lithium and silicon deposited on the current collector 3 was 3.3, and the lithium A negative electrode 20 for a secondary battery was produced.

(比較例1)
集電体3に珪素のみを蒸着させたこと以外、実施例1と同様の条件で、集電体3の表面に柱状負極活物質粒21を形成し、リチウム二次電池用負極20を作製した。
(Comparative Example 1)
Columnar negative electrode active material particles 21 were formed on the surface of the current collector 3 under the same conditions as in Example 1 except that only silicon was vapor-deposited on the current collector 3 to produce a negative electrode 20 for a lithium secondary battery. .

(比較例2)
集電体3に蒸着させるリチウムと珪素の組成比Rを3としたこと以外、実施例1と同様の条件で、集電体3の表面に柱状負極活物質粒21を形成し、リチウム二次電池用負極20を作製した。
(Comparative Example 2)
Columnar negative electrode active material particles 21 were formed on the surface of the current collector 3 under the same conditions as in Example 1 except that the composition ratio R of lithium and silicon deposited on the current collector 3 was set to 3, and lithium secondary A negative electrode 20 for a battery was produced.

上記のように形成した各柱状負極活物質粒21に含まれるリチウムと珪素の組成比Rを、高周波誘導結合プラズマ発光分光分析法で計測して確認した。(表1)に、その計測結果を示す。   The composition ratio R of lithium and silicon contained in each columnar negative electrode active material grain 21 formed as described above was measured and confirmed by high frequency inductively coupled plasma emission spectroscopy. Table 1 shows the measurement results.

Figure 2009043523
Figure 2009043523

(特性の比較)
実施例1、実施例2、比較例1、比較例2で作製したリチウム二次電池用負極20を用いて、評価用のコイン型電池30をそれぞれ作製し、充放電サイクルの試験を行った。サイクル試験の条件としては、充電電流、放電電流ともに100μA、充電停止電圧1V、放電停止電圧0V、充電と放電の間の休止時間10分、計測環境温度20℃とした。サイクル試験における充電と放電の順序としては、評価セルの端子電圧が充電停止電圧になるまで充電を行ってから、端子電圧が1Vになるまでの放電と0Vになるまでの充電を交互に繰り返した。
(Characteristic comparison)
Using the negative electrode 20 for a lithium secondary battery produced in Example 1, Example 2, Comparative Example 1 and Comparative Example 2, an evaluation coin-type battery 30 was produced, and a charge / discharge cycle test was performed. The conditions of the cycle test were 100 μA for both the charging current and the discharging current, a charging stop voltage of 1 V, a discharge stopping voltage of 0 V, a rest time of 10 minutes between charging and discharging, and a measurement environment temperature of 20 ° C. As the order of charge and discharge in the cycle test, after the charge until the terminal voltage of the evaluation cell reaches the charge stop voltage, the discharge until the terminal voltage reaches 1V and the charge until the terminal voltage reaches 0V are alternately repeated. .

サイクル試験時における各コイン型電池30の容量維持率を測定し、特性を比較した。ここで、容量維持率とは、サイクル試験において観測される最大放電容量を基準容量として、各サイクルでの最大放電容量に対する実測放電容量の割合とする。   The capacity maintenance rate of each coin-type battery 30 during the cycle test was measured, and the characteristics were compared. Here, the capacity retention rate is the ratio of the measured discharge capacity to the maximum discharge capacity in each cycle, with the maximum discharge capacity observed in the cycle test as the reference capacity.

なお、実施例1、実施例2、比較例1、比較例2においては、リチウム二次電池用負極20をそれぞれほぼ直径11.3mmの円形に切り出して使用した。電解液としては、LiPF1モルを、30体積%のエチレンカーボネートと50体積%のメチルエチルカーボネートと20体積%のジエチルカーボネートとの混合溶媒1リットルに溶解させたものを用いた。 In Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the negative electrode 20 for a lithium secondary battery was cut into a circle having a diameter of approximately 11.3 mm. As the electrolytic solution, a solution obtained by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.

図4は、サイクル試験における各評価セルの充放電サイクル数と容量維持率の関係図である。図4に示すように、比較例1および比較例2の場合では、7サイクル目の容量維持率が70%以下に急激に低下しているのに対して、実施例1および実施例2の場合では、
7サイクル目までずっと90%以上を維持している。これは、柱状負極活物質粒21を珪素にリチウムを吸蔵させて形成することにより、柱状負極活物質粒21の最大膨張時の膨張率が抑制される、すなわち、隣接する柱状負極活物質粒21同士の衝突により柱状負極活物質粒21が破断して集電体3から脱落することが抑制される。その結果、柱状負極活物質粒21と集電体3の密着性が確保されたものと考えられる。
FIG. 4 is a relationship diagram between the number of charge / discharge cycles of each evaluation cell and the capacity maintenance rate in the cycle test. As shown in FIG. 4, in the case of Comparative Example 1 and Comparative Example 2, the capacity retention rate at the seventh cycle is rapidly decreased to 70% or less, whereas in the case of Example 1 and Example 2. Then
Maintains over 90% until the 7th cycle. This is because the columnar negative electrode active material particles 21 are formed by occluding lithium in silicon, whereby the expansion rate at the time of maximum expansion of the columnar negative electrode active material particles 21 is suppressed, that is, adjacent columnar negative electrode active material particles 21. It is suppressed that the columnar negative electrode active material particles 21 are broken and fall off from the current collector 3 due to the collision between each other. As a result, it is considered that the adhesion between the columnar negative electrode active material particles 21 and the current collector 3 was secured.

本発明は、リチウム二次電池のサイクル特性を向上させるリチウム二次電池用負極とその製造方法に有用である。   INDUSTRIAL APPLICATION This invention is useful for the negative electrode for lithium secondary batteries which improves the cycling characteristics of a lithium secondary battery, and its manufacturing method.

本発明の実施の形態1におけるリチウム二次電池用負極製造装置の概略図Schematic of negative electrode manufacturing apparatus for lithium secondary battery in Embodiment 1 of the present invention 本発明の実施の形態1におけるリチウム二次電池用負極の概略断面図Schematic sectional view of a negative electrode for a lithium secondary battery in Embodiment 1 of the present invention 本発明の実施の形態1のリチウム二次電池用負極を用いたコイン型電池の概略断面図Schematic sectional view of a coin-type battery using the negative electrode for a lithium secondary battery of Embodiment 1 of the present invention サイクル試験における各評価セルの充放電サイクル数と容量維持率の関係図Relationship diagram between the number of charge / discharge cycles and capacity maintenance rate of each evaluation cell in cycle test

符号の説明Explanation of symbols

1 リチウム蒸発源
2 珪素蒸発源
3 集電体
4 真空容器
5 主弁
6 高真空用ポンプ
7 低真空用ポンプ
8 遮蔽板
9 リチウム蒸発速度計測用レートモニタ
10 珪素蒸発速度計測用レートモニタ
11 シャッター
12 集電体ホルダー
13 蒸着装置
14 配管
20 負極
21 柱状負極活物質粒
30 コイン型電池
31 正極ケース
32 正極
33 セパレータ
35 ガスケット
36 封口板
DESCRIPTION OF SYMBOLS 1 Lithium evaporation source 2 Silicon evaporation source 3 Current collector 4 Vacuum container 5 Main valve 6 High vacuum pump 7 Low vacuum pump 8 Shield plate 9 Rate monitor for measuring lithium evaporation rate 10 Rate monitor for measuring silicon evaporation rate 11 Shutter 12 Current collector holder 13 Vapor deposition device 14 Piping 20 Negative electrode 21 Columnar negative electrode active material particle 30 Coin type battery 31 Positive electrode case 32 Positive electrode 33 Separator 35 Gasket 36 Sealing plate

Claims (3)

表面に凹凸が設けられて粗化された集電体の表面に、
リチウム二次電池負極用の活物質を、前記集電体の表面に斜めから蒸着させるリチウム二次電池用負極の製造方法であって、
前記活物質は、リチウムと珪素であり、前記リチウムと前記珪素を同時に前記集電体に蒸着させるリチウム二次電池用負極の製造方法。
On the surface of the current collector roughened with unevenness on the surface,
A method for producing a negative electrode for a lithium secondary battery, wherein an active material for a lithium secondary battery negative electrode is obliquely deposited on the surface of the current collector,
The said active material is lithium and silicon, The manufacturing method of the negative electrode for lithium secondary batteries which vapor-deposits the said lithium and the said silicon on the said collector simultaneously.
蒸着させる前記リチウムと前記珪素の組成比Rを、3.3≦R≦4.4とする、請求項1に記載のリチウム二次電池用負極の製造方法。
但し、Rは、蒸着させるリチウムのモル数/蒸着させる珪素のモル数を示す。
2. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein a composition ratio R of the lithium to be deposited and the silicon is 3.3 ≦ R ≦ 4.4.
Here, R represents the number of moles of lithium to be deposited / the number of moles of silicon to be deposited.
請求項1または請求項2に記載のリチウム二次電池用負極の製造方法により製造されるリチウム二次電池用負極。 The negative electrode for lithium secondary batteries manufactured by the manufacturing method of the negative electrode for lithium secondary batteries of Claim 1 or Claim 2.
JP2007206540A 2007-08-08 2007-08-08 Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery Pending JP2009043523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007206540A JP2009043523A (en) 2007-08-08 2007-08-08 Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007206540A JP2009043523A (en) 2007-08-08 2007-08-08 Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2009043523A true JP2009043523A (en) 2009-02-26

Family

ID=40444063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206540A Pending JP2009043523A (en) 2007-08-08 2007-08-08 Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2009043523A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152189A1 (en) * 2010-06-01 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
WO2013047432A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Lithium secondary battery
CN103563136A (en) * 2011-06-22 2014-02-05 丰田自动车工程及制造北美公司 Active material for rechargeable battery
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN110741494A (en) * 2017-06-20 2020-01-31 株式会社Lg化学 Lithium electrode and lithium secondary battery comprising same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152189A1 (en) * 2010-06-01 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and manufacturing method thereof
CN102906913A (en) * 2010-06-01 2013-01-30 株式会社半导体能源研究所 Energy storage device and manufacturing method thereof
CN103563136A (en) * 2011-06-22 2014-02-05 丰田自动车工程及制造北美公司 Active material for rechargeable battery
JP2014526114A (en) * 2011-06-22 2014-10-02 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Active material for rechargeable batteries
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2013047432A1 (en) * 2011-09-27 2013-04-04 三洋電機株式会社 Lithium secondary battery
JPWO2013047432A1 (en) * 2011-09-27 2015-03-26 三洋電機株式会社 Lithium secondary battery
CN110741494A (en) * 2017-06-20 2020-01-31 株式会社Lg化学 Lithium electrode and lithium secondary battery comprising same
EP3637508A4 (en) * 2017-06-20 2020-06-24 LG Chem, Ltd. Lithium electrode and lithium secondary battery including same
JP2020523751A (en) * 2017-06-20 2020-08-06 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
US11594719B2 (en) 2017-06-20 2023-02-28 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery including same
CN110741494B (en) * 2017-06-20 2023-11-21 株式会社Lg新能源 Lithium electrode and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
JP5043338B2 (en) Lithium secondary battery
JP4113910B2 (en) Negative electrode for lithium secondary battery and method for producing the same
KR101043157B1 (en) Negative electrode for lithium secondary battery and method for producing the same, and lithium secondary battery comprising negative electrode for lithium secondary battery
JP5230904B2 (en) Non-aqueous electrolyte secondary battery
JP5230946B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP4581029B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
JP4338506B2 (en) Lithium secondary battery and manufacturing method thereof
CN111201634A (en) Lithium ion battery without olefin separator
WO2007063765A1 (en) Negative active substance, and negative electrode and lithium ion secondary battery using the substance
JPWO2010016217A1 (en) Lithium secondary battery manufacturing method and lithium secondary battery
JP2006260944A (en) Anode for lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery
JP2019016516A (en) All-solid lithium ion secondary battery
JP2008098157A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2009043523A (en) Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery
JP2008117785A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP2019016517A (en) All-solid lithium ion secondary battery
JP2005085633A (en) Negative electrode and battery
JP4961846B2 (en) Method for producing electrode for lithium battery
WO2022259871A1 (en) Negative electrode for lithium-ion secondary battery, manufacturing method and manufacturing device therefor, and lithium-ion secondary battery
JP2011014279A (en) Positive electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2005243371A (en) Positive electrode and rolling-type electrochemistry element using it
JP2009123402A (en) Method of manufacturing negative electrode for lithium secondary battery
JP5238195B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery