JP2009123402A - Method of manufacturing negative electrode for lithium secondary battery - Google Patents

Method of manufacturing negative electrode for lithium secondary battery Download PDF

Info

Publication number
JP2009123402A
JP2009123402A JP2007293804A JP2007293804A JP2009123402A JP 2009123402 A JP2009123402 A JP 2009123402A JP 2007293804 A JP2007293804 A JP 2007293804A JP 2007293804 A JP2007293804 A JP 2007293804A JP 2009123402 A JP2009123402 A JP 2009123402A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
current collector
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007293804A
Other languages
Japanese (ja)
Inventor
Katsunobu Sayama
勝信 佐山
Masaki Hirase
征基 平瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007293804A priority Critical patent/JP2009123402A/en
Publication of JP2009123402A publication Critical patent/JP2009123402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To easily prevent the capacity of a lithium secondary battery from being reduced since a surface of a thin film of a negative electrode active material is oxidized when manufacturing a negative electrode for the lithium secondary battery in which the thin film of the negative electrode active material is formed on a negative electrode current collector. <P>SOLUTION: The method includes: a step of forming the thin film 1b of the negative electrode active material by discharging the negative electrode active material to store or release lithium into a gas phase under a reduced pressure, and supplying it on the lengthy sheet state negative electrode current collector 1a; and a step of winding up the negative electrode current collector in which the thin film of the negative electrode active material is formed. Before winding up the negative electrode current collector in which the thin film of the negative electrode active material is formed, the negative electrode current collector is cooled down to a temperature lower than room temperature, and an inert gas is adsorbed on a surface of the thin film of the negative electrode active material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池の負極に用いるリチウム二次電池用負極の製造方法に係り、特に、シート状になった負極集電体の上に負極活物質の薄膜が形成されたリチウム二次電池用負極の製造した場合において、このリチウム二次電池用負極を大気中に取り出した際に、負極活物質の薄膜の表面が酸化されるのを適切に防止して、リチウム二次電池の容量が低下するのを抑制するようにした点に特徴を有するものである。   The present invention relates to a method for producing a negative electrode for a lithium secondary battery used for a negative electrode of a lithium secondary battery, and in particular, a lithium secondary in which a thin film of a negative electrode active material is formed on a sheet-like negative electrode current collector. When a negative electrode for a battery is manufactured, when the negative electrode for a lithium secondary battery is taken out into the atmosphere, the surface of the thin film of the negative electrode active material is appropriately prevented from being oxidized, and the capacity of the lithium secondary battery is reduced. This is characterized in that it is possible to suppress the decrease in the thickness.

近年、高出力,高エネルギー密度の新型二次電池として、非水電解質を用い、リチウムの酸化,還元を利用した高起電力のリチウム二次電池が利用されるようになった。   In recent years, as a new secondary battery with high output and high energy density, a high electromotive force lithium secondary battery using a non-aqueous electrolyte and utilizing oxidation and reduction of lithium has come to be used.

ここで、このようなリチウム二次電池においては、用いる電極によって、充放電電圧、充放電サイクル特性及び保存特性などの様々な電池特性が大きく左右されることになる。   Here, in such a lithium secondary battery, various battery characteristics such as charge / discharge voltage, charge / discharge cycle characteristics, and storage characteristics are greatly influenced by the electrodes used.

そして、このようなリチウム二次電池における負極においては、従来、負極活物質としてリチウム金属が用いられていたが、充放電を繰り返して行った場合、負極上にリチウムがデンドライト状に析出して、内部短絡が発生するという問題があった。   And, in the negative electrode in such a lithium secondary battery, lithium metal has been conventionally used as the negative electrode active material, but when repeated charging and discharging, lithium is deposited in a dendrite shape on the negative electrode, There was a problem that an internal short circuit occurred.

このため、近年においては、負極として、シート状の負極集電体の上に充電時に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫等の負極活物質の薄膜を形成したものを用い、リチウムがデンドライト状の析出するのを抑制して、内部短絡が発生するのを防止するようにしたものが提案されている。   For this reason, in recent years, as the negative electrode, a sheet-shaped negative electrode current collector formed by forming a thin film of a negative electrode active material such as aluminum, silicon, and tin that is electrochemically alloyed with lithium during charging, Proposals have been made in which lithium is prevented from dendrite-like precipitation to prevent internal short-circuiting.

そして、このようにシート状の負極集電体の上に、リチウムと合金化するアルミニウム、シリコン、錫等の負極活物質の薄膜を形成するにあたり、従来においては、特許文献1に示されるように、CVD法やスパッタリング法等の薄膜形成方法によって、シート状の負極集電体の上に微結晶シリコン薄膜又は非晶質シリコン薄膜からなる負極活物質の薄膜を形成するようにしたものや、また特許文献2に示されるように、負極集電体の上に界面層をスパッタリングにより形成し、この界面層の上に負極活物質の層を蒸着法によって形成するようにしたものが提案されている。   In forming a thin film of a negative electrode active material such as aluminum, silicon, or tin alloyed with lithium on a sheet-like negative electrode current collector as described above, conventionally, as shown in Patent Document 1 A thin film of a negative electrode active material formed of a microcrystalline silicon thin film or an amorphous silicon thin film on a sheet-like negative electrode current collector by a thin film forming method such as a CVD method or a sputtering method; As disclosed in Patent Document 2, an interface layer is formed on a negative electrode current collector by sputtering, and a negative electrode active material layer is formed on the interface layer by a vapor deposition method. .

そして、このようにして負極集電体の上に負極活物質の薄膜が形成された負極を用いてリチウム二次電池を作製する場合、一般にこのように作製した負極を大気中に取り出してリチウム二次電池を作製するようにしていた。   When a lithium secondary battery is manufactured using a negative electrode in which a thin film of a negative electrode active material is formed on the negative electrode current collector in this way, the negative electrode thus prepared is generally taken out into the atmosphere and the lithium secondary battery is extracted. The next battery was made.

しかし、上記の負極を大気中に取り出した場合に、負極集電体の上に形成された負極活物質の表面が酸化されてしまい、このような負極を用いてリチウム二次電池を作製した場合、酸化された負極活物質を還元するためにリチウムが無駄に消費され、電池容量が低下する等の問題があった。   However, when the negative electrode is taken out into the atmosphere, the surface of the negative electrode active material formed on the negative electrode current collector is oxidized, and a lithium secondary battery is manufactured using such a negative electrode. In addition, since the oxidized negative electrode active material is reduced, lithium is unnecessarily consumed and the battery capacity is reduced.

このため、最近においては、特許文献3に示されるように、上記のように負極集電体の上に負極活物質の薄膜が形成された負極を不活性雰囲気や真空雰囲気になった第1予備室に導き、この予備室内に設けた密閉容器内に上記の負極を収容させ、このように負極を収容させた密閉容器を不活性雰囲気や真空雰囲気になった第2予備室に導き、この第2予備室において上記の密閉容器内から負極を取り出して、リチウム二次電池を作製する装置に導くようにしたものが提案されている。   For this reason, recently, as shown in Patent Document 3, the negative electrode in which the thin film of the negative electrode active material is formed on the negative electrode current collector as described above is used as the first preliminary in which an inert atmosphere or a vacuum atmosphere is used. The negative electrode is accommodated in a sealed container provided in the spare chamber, and the sealed container in which the negative electrode is accommodated in this manner is guided to a second preliminary chamber in an inert atmosphere or a vacuum atmosphere. A proposal has been made in which a negative electrode is taken out from the above-mentioned sealed container in two preliminary chambers and led to an apparatus for producing a lithium secondary battery.

しかし、この場合、第1及び第2予備室が必要になって装置が大型化すると共にコストも高くつき、さらにリチウム二次電池を製造までの工程が多くなって、生産性も悪くなるという問題があった。
国際公開WO01/29913号公報 特開2002−289181号公報 特開2003−7343号公報
However, in this case, the first and second spare chambers are required, which increases the size and cost of the device, and further increases the number of steps required to manufacture the lithium secondary battery, resulting in poor productivity. was there.
International Publication WO01 / 29913 JP 2002-289181 A JP 2003-7343 A

本発明は、リチウム二次電池の負極に用いるリチウム二次電池用負極として、シート状になった負極集電体の上に負極活物質の薄膜が形成されたリチウム二次電池用負極を製造する場合における上記のような様々な問題を解決することを課題とするものであり、このリチウム二次電池用負極を大気中に取り出した場合に、負極集電体の上に形成された負極活物質の薄膜の表面が酸化されるのを適切に防止して、リチウム二次電池の容量が低下するのを抑制することを課題とするものである。   The present invention produces a negative electrode for a lithium secondary battery in which a thin film of a negative electrode active material is formed on a sheet-like negative electrode current collector as a negative electrode for a lithium secondary battery used for a negative electrode of a lithium secondary battery. The negative electrode active material formed on the negative electrode current collector when the negative electrode for a lithium secondary battery is taken out into the atmosphere. It is an object of the present invention to appropriately prevent the surface of the thin film from being oxidized and to suppress the reduction in the capacity of the lithium secondary battery.

本発明におけるリチウム二次電池用負極の製造方法においては、上記のような課題を解決するため、リチウムを吸蔵・放出する負極活物質を減圧下において気相中に放出させて長尺シート状になった負極集電体上に供給して負極活物質の薄膜を形成する工程と、負極活物質の薄膜が形成された上記の負極集電体を巻き取る工程とを有し、負極活物質の薄膜が形成された負極集電体を巻き取る前に上記の負極集電体を室温よりも低い温度に冷却させると共に、上記の負極活物質の薄膜の表面に不活性ガスを吸着させるようにした。   In the method for producing a negative electrode for a lithium secondary battery according to the present invention, in order to solve the above problems, a negative electrode active material that occludes and releases lithium is released into the gas phase under reduced pressure to form a long sheet. A negative electrode active material formed on the negative electrode current collector, and a negative electrode active material thin film formed on the negative electrode current collector. Before winding the negative electrode current collector on which the thin film is formed, the negative electrode current collector is cooled to a temperature lower than room temperature, and an inert gas is adsorbed on the surface of the thin film of the negative electrode active material. .

本発明におけるリチウム二次電池用負極の製造方法のように、リチウムを吸蔵・放出する負極活物質を減圧下において気相中に放出させて長尺シート状になった負極集電体上に供給して負極活物質の薄膜を形成した後、負極活物質の薄膜が形成された上記の負極集電体を巻き取るにあたり、上記の負極集電体を室温よりも低い温度に冷却させると共に、上記の負極活物質の薄膜の表面に不活性ガスを吸着させると、このように巻き取った負極集電体を大気中に取り出した場合に、負極活物質の薄膜の表面に吸着された上記の不活性ガスによって大気中における酸素や水分が上記の負極活物質の薄膜の表面に接触するのが防止され、また上記のように冷却された状態で不活性ガスが吸着されているため、この不活性ガスが膨張し、酸素や水分が上記の負極活物質の薄膜の表面に接触するのが一層防止されるようになる。   As in the method for producing a negative electrode for a lithium secondary battery in the present invention, a negative electrode active material that occludes and releases lithium is released into a gas phase under reduced pressure and supplied onto a negative electrode current collector that is in the form of a long sheet. After forming the negative electrode active material thin film, when winding the negative electrode current collector formed with the negative electrode active material thin film, the negative electrode current collector is cooled to a temperature lower than room temperature, and the When the inert gas is adsorbed on the surface of the negative electrode active material thin film, when the negative electrode current collector wound up in this way is taken out into the atmosphere, the above-mentioned negative This inert gas prevents oxygen and moisture in the atmosphere from coming into contact with the surface of the negative electrode active material thin film, and the inert gas is adsorbed in the cooled state as described above. Gas expands, oxygen and moisture Contacting the negative electrode active surface of the thin film of the material of the serial is to be further prevented.

この結果、上記のようにしてリチウム二次電池用負極を製造すると、上記のように巻き取った負極集電体をそのまま大気中に取り出してリチウム二次電池を製造する装置に導くようにした場合においても、負極集電体の上に形成された負極活物質の薄膜の表面が酸化されるのが防止されて、リチウム二次電池の容量が低下するのが防止されるようになり、従来のように第1及び第2予備室等を設ける必要がなく、装置が大型化したり、コストが高くついたりすることもない。   As a result, when the negative electrode for a lithium secondary battery is manufactured as described above, the negative electrode current collector wound as described above is taken out into the atmosphere as it is and led to an apparatus for manufacturing a lithium secondary battery. However, the surface of the thin film of the negative electrode active material formed on the negative electrode current collector is prevented from being oxidized, and the capacity of the lithium secondary battery is prevented from being reduced. Thus, there is no need to provide the first and second spare chambers, and the apparatus does not increase in size or cost.

次に、本発明に係るリチウム二次電池用負極の製造方法の実施形態について具体的に説明する。なお、本発明におけるリチウム二次電池用負極の製造方法は、下記の実施形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, an embodiment of a method for producing a negative electrode for a lithium secondary battery according to the present invention will be specifically described. In addition, the manufacturing method of the negative electrode for lithium secondary batteries in this invention is not limited to what was shown to the following embodiment, In the range which does not change the summary, it can implement suitably.

本発明におけるリチウム二次電池用負極の製造方法は、上記のようにリチウムを吸蔵・放出する負極活物質を減圧下において気相中に放出させて長尺シート状になった負極集電体上に供給して負極活物質の薄膜を形成した後、負極活物質の薄膜が形成された上記の負極集電体を巻き取るにあたり、上記の負極集電体を室温よりも低い温度に冷却させると共に、上記の負極活物質の薄膜の表面に不活性ガスを吸着させるものである。   The method for producing a negative electrode for a lithium secondary battery according to the present invention comprises a negative electrode active material that occludes and releases lithium as described above on a negative electrode current collector formed into a long sheet by releasing it into the gas phase under reduced pressure. After the negative electrode active material thin film is formed, the negative electrode current collector formed with the negative electrode active material thin film is wound up, and the negative electrode current collector is cooled to a temperature lower than room temperature. The inert gas is adsorbed on the surface of the thin film of the negative electrode active material.

ここで、本発明におけるリチウム二次電池用負極の製造方法においては、負極活物質として、大気中における酸素や水分と接触して酸化されやすい材料を用いた場合に有効であり、リチウム二次電池の負極活物質として広く使われている炭素材料よりも酸化しやすい傾向にあるリチウムと合金化する材料を用いた場合に有効である。   Here, in the method for producing a negative electrode for a lithium secondary battery according to the present invention, the negative electrode active material is effective when a material which is easily oxidized by contact with oxygen or moisture in the atmosphere is used. This is effective when a material alloyed with lithium, which tends to oxidize more easily than a carbon material widely used as a negative electrode active material, is used.

そして、このようにリチウムと合金化する負極活物質としては、例えば、シリコン、ゲルマニウム、スズ、亜鉛、アルミニウム等を用いることができ、特に、上記のように薄膜を形成する点からは、シリコン又はゲルマニウムを主成分とする負極活物質を用いることが好ましく、さらに、高い充放電容量のリチウム二次電池を得る点からは、シリコンを主成分とする負極活物質を用いることがより好ましい。   As the negative electrode active material that is alloyed with lithium in this way, for example, silicon, germanium, tin, zinc, aluminum, or the like can be used. In particular, from the point of forming a thin film as described above, silicon or It is preferable to use a negative electrode active material containing germanium as a main component, and it is more preferable to use a negative electrode active material containing silicon as a main component from the viewpoint of obtaining a lithium secondary battery having a high charge / discharge capacity.

また、このリチウム二次電池用負極をリチウム二次電池に使用して充放電を行った場合に、負極活物質の薄膜が微粉化するのを防止する点からは、この負極活物質の薄膜が非晶質薄膜又は微結晶薄膜であることが好ましい。   In addition, when the negative electrode for a lithium secondary battery is used for a lithium secondary battery and charged / discharged, the thin film of the negative electrode active material is prevented from being finely powdered. It is preferably an amorphous thin film or a microcrystalline thin film.

このため、負極集電体上に形成する負極活物質の薄膜としては、非晶質シリコン薄膜、微結晶シリコン薄膜、非晶質ゲルマニウム薄膜、微結晶ゲルマニウム薄膜、非結晶シリコンゲルマニウム合金箔膜、微結晶シリコンゲルマニウム合金箔膜であることが好ましく、より好ましくは、非晶質シリコン薄膜又は微結晶シリコン薄膜である。なお、非晶質シリコン薄膜は、ラマン分光分析において、結晶領域に対応する520cm-1近傍のピークが実質的に検出されず、非晶質領域に対応する480cm-1近傍のピークが実質的に検出される薄膜であり、微結晶シリコン薄膜は、ラマン分光分析において、結晶領域に対応する520cm-1近傍のピークと、非晶質領域に対応する480cm-1近傍のピークの両方が実質的に検出される薄膜である。 Therefore, the negative electrode active material thin film formed on the negative electrode current collector includes an amorphous silicon thin film, a microcrystalline silicon thin film, an amorphous germanium thin film, a microcrystalline germanium thin film, an amorphous silicon germanium alloy foil film, a fine film It is preferably a crystalline silicon germanium alloy foil film, more preferably an amorphous silicon thin film or a microcrystalline silicon thin film. In the amorphous silicon thin film, a peak in the vicinity of 520 cm −1 corresponding to the crystalline region is not substantially detected in Raman spectroscopic analysis, and a peak in the vicinity of 480 cm −1 corresponding to the amorphous region is substantially not detected. In the Raman spectroscopic analysis, the microcrystalline silicon thin film substantially has both a peak near 520 cm −1 corresponding to the crystalline region and a peak near 480 cm −1 corresponding to the amorphous region. It is a thin film to be detected.

なお、上記の負極活物質が酸化されるのを防止するためには、この負極活物質の薄膜中に酸素濃度を低くすることが好ましい。しかし、製造上の点から、負極活物質の薄膜中に酸素が含まれることになるが、負極活物質の薄膜中における酸素濃度が7重量%程度以下であれば問題とはならない。なお、負極活物質の薄膜中における酸素濃度は、ICP発光分光分析(Inductively Coupled Plasma Spectrometry)によって求めることができる。   In order to prevent the negative electrode active material from being oxidized, it is preferable to reduce the oxygen concentration in the thin film of the negative electrode active material. However, from the viewpoint of production, oxygen is contained in the thin film of the negative electrode active material. However, there is no problem if the oxygen concentration in the thin film of the negative electrode active material is about 7% by weight or less. Note that the oxygen concentration in the thin film of the negative electrode active material can be obtained by ICP emission spectrometry (Inductively Coupled Plasma Spectrometry).

そして、上記の負極活物質を減圧下において気相中に放出させて負極集電体上に負極活物質の薄膜を形成するにあたっては、例えば、スパッタ法や蒸着法などのPVD(Physical Vapor Deposition)法、プラズマCVD法などのCVD(Chemical Vapor Deposition)法を用いることができ、成膜速度を高くする点からは、電子ビーム蒸着法などの蒸着法を用いることが好ましい。   When the negative electrode active material is discharged into the gas phase under reduced pressure to form a thin film of the negative electrode active material on the negative electrode current collector, for example, PVD (Physical Vapor Deposition) such as sputtering or vapor deposition is used. The CVD (Chemical Vapor Deposition) method such as the plasma CVD method can be used. From the viewpoint of increasing the film formation rate, it is preferable to use a vapor deposition method such as an electron beam evaporation method.

また、負極集電体に対する負極活物質の薄膜の接着強度を高める等の目的で、負極集電体上に負極活物質の薄膜を形成する前に、スパッタ法によって負極活物質の界面層を形成した後、その上に負極活物質の薄膜を形成することが好ましい。   Also, for the purpose of increasing the adhesion strength of the negative electrode active material thin film to the negative electrode current collector, the negative electrode active material interface layer is formed by sputtering before forming the negative electrode active material thin film on the negative electrode current collector. After that, it is preferable to form a thin film of the negative electrode active material thereon.

そして、このように負極活物質の薄膜が形成された負極集電体を巻き取る前において、上記の負極活物質の薄膜の表面に吸着させる不活性ガスとしては、ヘリウムガス、アルゴンガス等の希ガスや、窒素ガスなどを用いることができ、負極活物質の薄膜が酸化されるのを防止する点から希ガスを用いることが好ましく、コストの点からアルゴンガスを用いることがより好ましい。   As the inert gas adsorbed on the surface of the negative electrode active material thin film before winding the negative electrode current collector on which the thin film of the negative electrode active material is formed in this way, a rare gas such as helium gas or argon gas is used. A gas, nitrogen gas, or the like can be used, and a rare gas is preferably used from the viewpoint of preventing the thin film of the negative electrode active material from being oxidized, and argon gas is more preferably used from the viewpoint of cost.

また、上記のように負極活物質の薄膜が形成された負極集電体を巻き取る場合において、負極活物質の薄膜の表面に吸着された不活性ガスが巻き取られた負極集電体内に適切に保持されるようにする一方、負極集電体が傷ついたりするのを防止するため、負極活物質の薄膜が形成された負極集電体を巻き取る際の張力を、負極集電体の幅1cmあたり4〜40Nの範囲にすることが好ましい。   In addition, when winding the negative electrode current collector on which the negative electrode active material thin film is formed as described above, the negative electrode current collector in which the inert gas adsorbed on the surface of the negative electrode active material thin film is wound is appropriately used. In order to prevent the negative electrode current collector from being damaged, the tension at the time of winding the negative electrode current collector on which the thin film of the negative electrode active material is wound is set to the width of the negative electrode current collector. A range of 4 to 40 N per cm is preferable.

また、上記のように負極活物質の薄膜が形成された負極集電体を巻き取る場合において、上記の不活性ガスが負極活物質の薄膜の表面に十分に吸着されて、巻き取られた負極集電体内に十分に保持されるようにするためには、負極活物質の薄膜の表面に不活性ガスを吸着させて負極集電体を巻き取る際における雰囲気の圧力を3Pa以上にすることが好ましい。   In addition, when the negative electrode current collector on which the thin film of the negative electrode active material is formed as described above, the above-described inert gas is sufficiently adsorbed on the surface of the negative electrode active material thin film, and the wound negative electrode In order to sufficiently hold the current collector, the pressure of the atmosphere when winding the negative electrode current collector by adsorbing an inert gas on the surface of the thin film of the negative electrode active material should be 3 Pa or more. preferable.

また、上記のように負極活物質の薄膜の表面に不活性ガスを吸着させて巻き取った負極集電体を大気中に取り出した際に、不活性ガスが膨張して酸素や水分が負極活物質の薄膜の表面に接触するのを一層抑制するために、この負極集電体を巻き取る前に室温よりも低い温度に冷却させるにあたっては、負極集電体を室温よりも5℃以上低い温度に冷却させることが好ましい。但し、負極集電体を室温よりも15℃以上低い温度に冷却させた場合、この負極集電体を大気中に取り出した際に、負極集電体等に結露が生じるおそれがあるため、装置を乾燥空気の環境に設置させる他、この負極集電体を大気中に取り出す前に加熱させることが好ましい。   In addition, when the negative electrode current collector wound by adsorbing the inert gas on the surface of the negative electrode active material thin film as described above is taken out into the atmosphere, the inert gas expands and oxygen and moisture are In order to further suppress the contact with the surface of the thin film of the material, when the negative electrode current collector is cooled to a temperature lower than room temperature before winding, the temperature of the negative electrode current collector is lower by 5 ° C. or more than room temperature. It is preferable to cool it. However, when the negative electrode current collector is cooled to a temperature lower by 15 ° C. or more than room temperature, when this negative electrode current collector is taken out into the atmosphere, there is a possibility that dew condensation may occur on the negative electrode current collector, etc. It is preferable to heat the negative electrode current collector before taking it out into the atmosphere.

また、本発明において、負極活物質の薄膜を形成する上記の負極集電体としては、リチウムと合金化しない材料であって電気伝導度が高い材料で構成されたものであることが好ましく、また上記のように負極集電体を冷却させたり、加熱させたりすることが容易に行えるように、熱伝導率の高い金属で構成されたものを用いること好ましく、例えば、銅、銅を主材として含む合金、ニッケル、ステンレスなどを用いることができ、またこれらの材料の2種以上を積層したものであってもよい。そして、負極集電体における導電率はIACSの40%程度以上が好ましく、また熱伝導率は150W/m・K以上であることが好ましい。なお、通常の無酸素銅の0℃付近での熱伝導率は400W/m・K程度である。   In the present invention, the negative electrode current collector forming the thin film of the negative electrode active material is preferably a material that is not alloyed with lithium and has a high electrical conductivity, It is preferable to use a metal composed of a metal having high thermal conductivity so that the negative electrode current collector can be easily cooled or heated as described above. For example, copper or copper as a main material. An alloy, nickel, stainless steel, or the like can be used, or a laminate of two or more of these materials may be used. The conductivity of the negative electrode current collector is preferably about 40% or more of IACS, and the thermal conductivity is preferably 150 W / m · K or more. In addition, the thermal conductivity in the vicinity of 0 ° C. of normal oxygen-free copper is about 400 W / m · K.

ここで、上記の負極集電体としては、特に、電気伝導度、熱伝導度が高い銅箔又は銅合金箔を用いることが好ましい。なお、銅合金に添加される銅以外の元素としては、スズ、ジルコニウム、鉄、ニッケル、シリコン、亜鉛、クロム、マグネシウムから選択される1種又は2種以上のものを用いることができ、これらの元素の添加量は5重量%以下であることが好ましい。   Here, as the negative electrode current collector, it is particularly preferable to use a copper foil or a copper alloy foil having high electrical conductivity and high thermal conductivity. In addition, as an element other than copper added to the copper alloy, one or more elements selected from tin, zirconium, iron, nickel, silicon, zinc, chromium and magnesium can be used. The amount of element added is preferably 5% by weight or less.

また、上記の負極集電体においては、その表面積を大きくして負極活物質の薄膜に吸着される不活性ガスの量を増加させると共に、巻き取った負極集電体の隙間に不活性ガスが適切に取り込まれるようにするため、表面が粗面化処理されたものを用いることが好ましく、日本工業規格(JIS B 0601−1994)に定められる表面粗さRaが0.01〜1μmの範囲のものを用いることが好ましく、より好ましくは表面粗さRaが0.1〜1μmの範囲のものを用いるようにする。   In the above negative electrode current collector, the surface area is increased to increase the amount of the inert gas adsorbed on the negative electrode active material thin film, and the inert gas is introduced into the gap between the wound negative electrode current collector. In order to ensure proper incorporation, it is preferable to use a surface roughened surface, and the surface roughness Ra defined in Japanese Industrial Standard (JIS B 0601-1994) is in the range of 0.01 to 1 μm. It is preferable to use one having a surface roughness Ra in the range of 0.1 to 1 μm.

また、この負極集電体の厚みについては、厚くなると、相対的に負極活物質の量が減少して電池容量が低下する一方、薄くなりすぎると、上記のように巻き取る際に負極集電体は破断しやすくなり、また電気抵抗が高くなるため、負極集電体の厚みは5〜50μmの範囲であることが好ましい。   Further, regarding the thickness of the negative electrode current collector, when the thickness is increased, the amount of the negative electrode active material is relatively decreased and the battery capacity is reduced. On the other hand, when the thickness is too thin, the negative electrode current collector is wound up as described above. Since the body easily breaks and the electrical resistance increases, the thickness of the negative electrode current collector is preferably in the range of 5 to 50 μm.

次に、上記のようにしてリチウム二次電池用負極の製造する場合の具体的な製造装置を添付図面に基づいて説明する。   Next, a specific manufacturing apparatus for manufacturing a negative electrode for a lithium secondary battery as described above will be described with reference to the accompanying drawings.

この製造装置においては、図1に示すように、装置本体10内が真空状態で維持されるようにしており、装置本体10内に負極集電体1aを通すスリット11aが形成された隔壁11を設け、この装置本体10内を、長尺シート状の負極集電体1aを巻き取った供給ロール12をセットする集電体供給室10Aと、上記の負極集電体1aの片面に界面層を形成する第1界面層形成室10Bと、負極集電体1aの片面に形成された界面層の上に負極活物質層を形成する第1活物質層形成室10Cと、このように界面層の上に負極活物質層が形成された負極集電体1aの表裏を反転させて搬送するための案内室10Dと、表裏が反転されて界面層及び負極活物質層が形成されていない負極集電体1aの反対側の面に界面層を形成する第2界面層形成室10Eと、負極集電体1aの反対側の面に形成された界面層の上に負極活物質層を形成する第2活物質層形成室10Fと、上記のようにして両面に界面層及び負極活物質層が形成された負極集電体1aを巻き取りロール13に巻き取って外部に取り出すための取出し室10Gとに区画している。   In this manufacturing apparatus, as shown in FIG. 1, the inside of the apparatus body 10 is maintained in a vacuum state, and the partition wall 11 in which a slit 11a for passing the negative electrode current collector 1a is formed in the apparatus body 10 is provided. Provided in the apparatus main body 10 is a current collector supply chamber 10A for setting a supply roll 12 around which a long sheet-like negative electrode current collector 1a is wound, and an interface layer on one surface of the negative electrode current collector 1a. The first interface layer forming chamber 10B to be formed, the first active material layer forming chamber 10C for forming the negative electrode active material layer on the interface layer formed on one surface of the negative electrode current collector 1a, and thus the interface layer A guide chamber 10D for reversing and transporting the front and back of the negative electrode current collector 1a on which the negative electrode active material layer is formed, and a negative electrode current collector in which the front and back are reversed and the interface layer and the negative electrode active material layer are not formed Second interface layer type for forming an interface layer on the opposite surface of the body 1a A chamber 10E, a second active material layer forming chamber 10F for forming a negative electrode active material layer on the interface layer formed on the opposite surface of the negative electrode current collector 1a, and an interface layer and The negative electrode current collector 1a on which the negative electrode active material layer is formed is partitioned into a take-out chamber 10G for taking up the take-up roll 13 and taking it out.

また、上記の第1及び第2界面層形成室10B,10Eには、それぞれキャンロール14及びその両側の遮蔽板15を介して高周波マグネトロンスパッタ装置16を設け、上記の第1及び第2活物質層形成室10C,10Fには、それぞれキャンロール14及びその両側の遮蔽板15を介して電子ビーム蒸着装置17を設け、取出し室10Gには、負極集電体1aを巻き取る巻き取りロール13よりも上流側の位置に温度調整ロール18を設け、上記の各キャンロール14及び温度調整ロール18に温度調整用媒体を供給して温度を調整できるようにしている。   The first and second interface layer forming chambers 10B and 10E are each provided with a high-frequency magnetron sputtering device 16 via a can roll 14 and shielding plates 15 on both sides thereof, and the first and second active materials described above. The layer forming chambers 10C and 10F are each provided with an electron beam evaporation device 17 via a can roll 14 and shielding plates 15 on both sides thereof, and a take-up roll 13 for taking up the negative electrode current collector 1a is taken into the take-out chamber 10G. Also, a temperature adjusting roll 18 is provided at an upstream position, and a temperature adjusting medium is supplied to each of the can rolls 14 and the temperature adjusting roll 18 so that the temperature can be adjusted.

ここで、上記の製造装置を用いてリチウム二次電池用負極を製造するにあたっては、供給ロール12に巻き取った長尺シート状の負極集電体1aに所定の張力を作用させるようにして、この負極集電体1aを隔壁11に設けたスリット11aを通して、集電体供給室10Aから第1界面層形成室10B、第1活物質層形成室10C、案内室10D、第2界面層形成室10E、第2活物質層形成室10F、取出し室10Gの順に案内ロール19により案内するようにしている。   Here, in producing a negative electrode for a lithium secondary battery using the above production apparatus, a predetermined tension is applied to the long sheet-like negative electrode current collector 1a wound around the supply roll 12, The negative electrode current collector 1a is passed through a slit 11a provided in the partition wall 11, from the current collector supply chamber 10A to the first interface layer forming chamber 10B, the first active material layer forming chamber 10C, the guide chamber 10D, and the second interface layer forming chamber. 10E, the second active material layer forming chamber 10F, and the take-out chamber 10G are guided by the guide roll 19 in this order.

そして、上記の第1界面層形成室10Bにおいて、上記のキャンロール14の底部に導かれた負極集電体1aの片面に、高周波マグネトロンスパッタ装置16により界面層を形成した後、上記の第1活物質層形成室10Cにおいて、上記のキャンロール14の底部に導かれた負極集電体1aに形成された界面層の上に、電子ビーム蒸着装置17により負極活物質層を形成する。   Then, in the first interface layer forming chamber 10B, an interface layer is formed on one surface of the negative electrode current collector 1a guided to the bottom of the can roll 14 by the high-frequency magnetron sputtering apparatus 16, and then the first interface is formed. In the active material layer forming chamber 10 </ b> C, a negative electrode active material layer is formed by the electron beam vapor deposition device 17 on the interface layer formed on the negative electrode current collector 1 a led to the bottom of the can roll 14.

そして、このように片面に界面層と負極活物質層とが形成された負極集電体1aを上記の案内室10Dにおいて表裏を反転させ、上記の第2界面層形成室10Eにおいて、上記のキャンロール14の底部に導かれた負極集電体1aの反対側の面に、高周波マグネトロンスパッタ装置16により界面層を形成した後、上記の第2活物質層形成室10Fにおいて、上記のキャンロール14の底部に導かれた負極集電体1aに形成された界面層の上に、電子ビーム蒸着装置17により負極活物質層を形成する。   Then, the negative electrode current collector 1a having the interface layer and the negative electrode active material layer formed on one side in this manner is reversed in the guide chamber 10D, and the above-mentioned canister is formed in the second interface layer formation chamber 10E. An interfacial layer is formed on the opposite surface of the negative electrode current collector 1a led to the bottom of the roll 14 by the high frequency magnetron sputtering apparatus 16, and then the can roll 14 is formed in the second active material layer forming chamber 10F. A negative electrode active material layer is formed by an electron beam evaporation device 17 on the interface layer formed on the negative electrode current collector 1 a led to the bottom of the electrode.

次いで、このように両面に界面層と負極活物質層とが形成された負極集電体1aを上記の取出し室10G内に導き、この取出し室10Gにガス供給口20から不活性ガスを供給して、上記の負極活物質層の表面に不活性ガスを吸着させると共に、上記の温度調整ロール18に冷媒を供給して負極集電体1aを室温以下に冷却させた後、この負極集電体1aを適当な張力を作用させた状態で上記の巻き取りロール13に巻き取るようにする。   Next, the negative electrode current collector 1a having the interface layer and the negative electrode active material layer formed on both sides as described above is introduced into the extraction chamber 10G, and an inert gas is supplied to the extraction chamber 10G from the gas supply port 20. The negative electrode current collector is made to adsorb an inert gas on the surface of the negative electrode active material layer and supply a refrigerant to the temperature adjusting roll 18 to cool the negative electrode current collector 1a to room temperature or lower. The la is wound around the winding roll 13 with an appropriate tension applied.

また、このようにして負極集電体1aを巻き取りロール13に巻き取った後、この巻き取りロール13を外部に取り出すにあたっては、上記の温度調整ロール18に温媒を供給して、巻き取りロール13に巻き取った負極集電体1aをある程度加熱させた後、上記の取出し室10G内に乾燥空気を導入し、その後、この巻き取りロール13を外部に取り出すようにする。   In addition, after winding the negative electrode current collector 1a on the take-up roll 13 in this way, when taking out the take-up roll 13 to the outside, a heating medium is supplied to the temperature adjusting roll 18 and the take-up roll 13 is taken up. After the negative electrode current collector 1a wound around the roll 13 is heated to some extent, dry air is introduced into the take-out chamber 10G, and then the take-up roll 13 is taken out.

このようにすると、前記のように負極活物質の表面に吸着された不活性ガスが膨張し、この不活性ガスによって大気中における酸素や水分が上記の負極活物質の表面に接触するのが防止されるようになる。   In this way, the inert gas adsorbed on the surface of the negative electrode active material as described above expands, and this inert gas prevents oxygen and moisture in the atmosphere from contacting the surface of the negative electrode active material. Will come to be.

次に、上記の製造装置を用いて実施例のリチウム二次電池用負極を製造する場合と、比較例のリチウム二次電池用負極を製造する場合について具体的に説明する共に、このように製造した実施例のリチウム二次電池用負極と比較例のリチウム二次電池用負極とを比較し、実施例のリチウム二次電池用負極においては、負極活物質の酸化が抑制され、リチウム二次電池の充放電効率が向上することを明らかにする。   Next, the case where the negative electrode for a lithium secondary battery of the example is manufactured using the above manufacturing apparatus and the case where the negative electrode for a lithium secondary battery of the comparative example is manufactured will be specifically described, and manufactured in this way. The negative electrode for the lithium secondary battery of the example was compared with the negative electrode for the lithium secondary battery of the comparative example. In the negative electrode for the lithium secondary battery of the example, oxidation of the negative electrode active material was suppressed, and the lithium secondary battery It will be clarified that the charge and discharge efficiency of the is improved.

(実施例1)
実施例1においては、負極集電体として、Zr0.02重量%含有された圧延銅合金箔の両面に電解法によって銅を析出させ、表面粗さRaが0.5μm、幅が20cm、厚みが26μmになったものを用いた。なお、この負極集電体の引張強さは400N/mm2、導電率は97%IACS、熱伝導率は約370W/m・Kであった。
Example 1
In Example 1, copper was deposited on both surfaces of a rolled copper alloy foil containing 0.02% by weight of Zr as a negative electrode current collector by an electrolytic method, the surface roughness Ra was 0.5 μm, the width was 20 cm, and the thickness was What became 26 micrometers was used. The negative electrode current collector had a tensile strength of 400 N / mm 2 , an electric conductivity of 97% IACS, and a thermal conductivity of about 370 W / m · K.

そして、この負極集電体1aを上記のように供給ロール12に巻き取って集電体供給室10A内にセットすると共に、上記の装置本体10内を真空排気装置(図示せず)により排気し、上記の第1及び第2活物質層形成室10C,10Fの圧力が5×10-3Pa以下になるようにした。 Then, the negative electrode current collector 1a is wound around the supply roll 12 as described above and set in the current collector supply chamber 10A, and the inside of the apparatus main body 10 is exhausted by a vacuum exhaust device (not shown). The pressure in the first and second active material layer forming chambers 10C and 10F was set to 5 × 10 −3 Pa or less.

そして、上記の負極集電体1aを所定の張力を作用させた状態で0.2m/分の送り速度で送り、上記の第1界面層形成室10Bにおいて、この負極集電体1aの片面に、上記の高周波マグネトロンスパッタ装置16により界面層を形成した。   Then, the negative electrode current collector 1a is fed at a feed rate of 0.2 m / min in a state where a predetermined tension is applied, and in the first interface layer forming chamber 10B, the negative electrode current collector 1a is placed on one surface. The interface layer was formed by the high frequency magnetron sputtering apparatus 16 described above.

ここで、負極集電体1aの片面に界面層を形成するにあたっては、雰囲気ガスにアルゴンガスを、ターゲットに純度99.999%のシリコン単結晶を用い、下記の表1に示すスパッタリング条件でスパッタリングを行い、厚みが0.1μmになった界面層を形成した。なお、負極集電体1aを上記のキャンロール14に巻き掛けて高周波マグネトロンスパッタ装置16の位置に導く場合、この負極集電体1aに300Nの張力を作用させ、負極集電体1aの幅1cmあたり15Nの張力が作用するようにし、また上記のキャンロール14に冷媒を供給して、キャンロール14の表面の温度を20℃に制御し、界面層を形成した直後における負極集電体1aの表面温度が150℃以下になるようにした。   Here, in forming the interface layer on one side of the negative electrode current collector 1a, argon gas is used as the atmosphere gas, and a silicon single crystal having a purity of 99.999% is used as the target, and sputtering is performed under the sputtering conditions shown in Table 1 below. And an interface layer having a thickness of 0.1 μm was formed. When the negative electrode current collector 1a is wound around the can roll 14 and guided to the position of the high-frequency magnetron sputtering apparatus 16, a tension of 300 N is applied to the negative electrode current collector 1a, and the negative electrode current collector 1a has a width of 1 cm. The negative electrode current collector 1a immediately after the interface layer is formed by supplying a refrigerant to the can roll 14 and controlling the temperature of the surface of the can roll 14 to 20 ° C. The surface temperature was set to 150 ° C. or lower.

Figure 2009123402
Figure 2009123402

次いで、上記の第1活物質層形成室10Cにおいて、上記のように負極集電体1aの片面に形成された界面層の上に上記の電子ビーム蒸着装置17により負極活物質層を形成した。   Next, in the first active material layer forming chamber 10C, a negative electrode active material layer was formed by the electron beam evaporation apparatus 17 on the interface layer formed on one surface of the negative electrode current collector 1a as described above.

ここで、負極集電体1aに形成された界面層の上に負極活物質層を形成するにあたっては、蒸着材料として純度99.999%の小粒状のシリコンを用い、下記の表2に示す蒸着条件で蒸着を行い、厚みが5μmになった負極活物質層を形成した。なお、負極集電体1aを上記のキャンロール14に巻き掛けて電子ビーム蒸着装置17の位置に導く場合、この負極集電体1aに300Nの張力を作用させ、負極集電体1aの幅1cmあたり15Nの張力が作用するようにし、また上記のキャンロール14に冷媒を供給して、キャンロール14の表面の温度を20℃に制御し、負極活物質層を形成した直後における負極集電体1aの表面温度が150℃以下になるようにした。   Here, in forming the negative electrode active material layer on the interface layer formed on the negative electrode current collector 1 a, small granular silicon having a purity of 99.999% was used as the vapor deposition material, and the vapor deposition shown in Table 2 below. Vapor deposition was performed under the conditions to form a negative electrode active material layer having a thickness of 5 μm. When the negative electrode current collector 1a is wound around the can roll 14 and led to the position of the electron beam evaporation apparatus 17, a tension of 300 N is applied to the negative electrode current collector 1a, and the width of the negative electrode current collector 1a is 1 cm. The negative electrode current collector immediately after forming a negative electrode active material layer by allowing a tension of 15 N to act and supplying a refrigerant to the can roll 14 to control the temperature of the surface of the can roll 14 to 20 ° C. The surface temperature of 1a was made to be 150 ° C. or lower.

Figure 2009123402
Figure 2009123402

そして、このように負極集電体1aの片面に界面層と負極活物質層とを形成した後は、上記の案内室10Dにおいて負極集電体1aの表裏を反転させ、上記の第2界面層形成室10Eにおいて、上記の第1界面層形成室10Bの場合と同様にして、負極集電体1aの反対側の面に厚みが0.1μmになった界面層を形成し、次いで、上記の第2活物質層形成室10Fにおいて、上記の第1活物質層形成室10Cの場合と同様にして、負極集電体1aの反対側の面に形成された界面層の上に厚みが5μmになった負極活物質層を形成した。   And after forming the interface layer and the negative electrode active material layer on one surface of the negative electrode current collector 1a in this way, the front and back of the negative electrode current collector 1a are reversed in the guide chamber 10D, and the second interface layer is formed. In the forming chamber 10E, the interface layer having a thickness of 0.1 μm is formed on the opposite surface of the negative electrode current collector 1a in the same manner as in the case of the first interface layer forming chamber 10B. In the second active material layer forming chamber 10F, the thickness is 5 μm on the interface layer formed on the opposite surface of the negative electrode current collector 1a in the same manner as in the case of the first active material layer forming chamber 10C. A negative electrode active material layer was formed.

次いで、このように両面に界面層と負極活物質層とが形成された負極集電体1aを上記の取出し室10G内に導き、この取出し室10Gにガス供給口20から不活性ガスのアルゴンガスを10sccmの流量で供給し、上記の巻取りロール13付近の圧力を5Paにすると共に、上記の温度調整ロール18に冷媒を供給して温度調整ロール18の表面の温度を−25℃に制御し、この温度調整ロール18によって上記の負極集電体1aを冷却させ、このように冷却させた負極集電体1aを上記の巻き取りロール13に巻き取るようにした。なお、このように負極集電体1aを巻き取りロール13に巻き取る際に100Nの張力を作用させ、負極集電体1aの幅1cmあたり5Nの張力が作用するようにした。   Next, the negative electrode current collector 1a having the interface layer and the negative electrode active material layer formed on both sides in this way is introduced into the extraction chamber 10G, and an inert gas argon gas is introduced into the extraction chamber 10G from the gas supply port 20. Is supplied at a flow rate of 10 sccm, the pressure in the vicinity of the winding roll 13 is set to 5 Pa, and a refrigerant is supplied to the temperature adjusting roll 18 to control the temperature of the surface of the temperature adjusting roll 18 to −25 ° C. The negative electrode current collector 1 a was cooled by the temperature adjusting roll 18, and the negative electrode current collector 1 a thus cooled was wound on the take-up roll 13. In addition, when winding the negative electrode current collector 1a on the take-up roll 13, a tension of 100N was applied so that a tension of 5N was applied per 1 cm width of the negative electrode current collector 1a.

また、このようにして両面に界面層と負極活物質層とが形成された負極集電体1aを巻き取りロール13に巻き取った後、この巻き取りロール13を外部に取り出すにあたっては、上記の温度調整ロール18に温媒を供給して、温度調整ロール18の表面の温度を20℃にして、巻き取りロール13に巻き取った負極集電体1aをある程度加熱させると共に、この装置本体10内に乾燥空気を導入して、装置本体10内を大気圧にした後、上記の巻き取りロール13を外部に取り出すようにした。   In addition, after the negative electrode current collector 1a having the interface layer and the negative electrode active material layer formed on both sides in this manner is wound around the take-up roll 13, the take-up roll 13 is taken out to the outside. A heating medium is supplied to the temperature adjusting roll 18 so that the temperature of the surface of the temperature adjusting roll 18 is 20 ° C., and the negative electrode current collector 1 a wound around the winding roll 13 is heated to some extent. The dry air was introduced into the apparatus main body 10 to bring the inside of the apparatus main body 10 to atmospheric pressure, and then the winding roll 13 was taken out to the outside.

(比較例1)
比較例1においては、上記の取出し室10Gに不活性ガスのアルゴンガスを供給しないようにすると共に、上記の温度調整ロール18に冷媒を供給しないようにして、両面に界面層と負極活物質層とが形成された負極集電体1aを巻き取りロール13に巻き取るようにし、それ以外は、上記の実施例1の場合と同様にした。
(Comparative Example 1)
In Comparative Example 1, the inert gas argon gas is not supplied to the take-out chamber 10G, and the refrigerant is not supplied to the temperature adjusting roll 18, so that the interface layer and the negative electrode active material layer are formed on both sides. The negative electrode current collector 1a formed with and was wound around the take-up roll 13, and the others were the same as in Example 1 above.

(比較例2)
比較例2においては、上記の温度調整ロール18に冷媒を供給しないようにして、両面に界面層と負極活物質層とが形成された負極集電体1aを巻き取りロール13に巻き取るようにし、それ以外は、上記の実施例1の場合と同様にした。
(Comparative Example 2)
In Comparative Example 2, the refrigerant is not supplied to the temperature adjusting roll 18, and the negative electrode current collector 1 a having the interface layer and the negative electrode active material layer formed on both sides is wound around the winding roll 13. The others were the same as in the case of Example 1 above.

次に、上記のようにして巻き取りロール13と一緒に取り出した実施例1及び比較例1,2の各リチウム二次電池用負極をロール状態のままで、アルゴンガス100%の雰囲気のグローブボックスに移し、このグローブボックス内において、上記のリチウム二次電池用負極から1cm角サイズの分析用サンプルを切り出し、各リチウム二次電池用負極に形成された負極活物質について、ラマン発光分析及び酸素濃度分析を行った。   Next, the glove box in an atmosphere of 100% argon gas with the negative electrodes for lithium secondary batteries of Example 1 and Comparative Examples 1 and 2 taken out together with the take-up roll 13 as described above in the roll state. In this glove box, a 1 cm square sample for analysis was cut out from the negative electrode for a lithium secondary battery, and a Raman emission analysis and an oxygen concentration were performed on the negative electrode active material formed on each negative electrode for a lithium secondary battery. Analysis was carried out.

ラマン発光分析の結果、上記の各リチウム二次電池用負極に形成されたシリコンからなる負極活物質は、480cm-1近傍のピークが実質的に認められる一方、520cm-1近傍のピークが実質的に認められなかったため、非晶質シリコンであることが分かった。 Results of Raman emission analysis, the negative electrode active material composed of silicon formed on the negative electrode for the lithium secondary battery described above, while the peak of 480 cm -1 vicinity is observed substantially peak of 520 cm -1 vicinity substantially It was found that it was amorphous silicon.

また、負極活物質における酸素濃度は、ICP発光分光分析によって求められたSi量と、燃焼分析法によって求められた酸素量の比率から求めた。   The oxygen concentration in the negative electrode active material was determined from the ratio of the amount of Si determined by ICP emission spectroscopic analysis and the amount of oxygen determined by combustion analysis.

そして、負極活物質における酸素濃度については、上記のように各リチウム二次電池用負極を製造した初期と、上記の各リチウム二次電池用負極を大気中に1ヶ月放置した場合とにおいて測定し、その結果を下記の表3に示した。   The oxygen concentration in the negative electrode active material was measured at the initial stage when each negative electrode for a lithium secondary battery was produced as described above and when each negative electrode for a lithium secondary battery was left in the atmosphere for one month. The results are shown in Table 3 below.

Figure 2009123402
Figure 2009123402

この結果から明らかなように、実施例1に示すようにして製造したリチウム二次電池用負極においては、比較例1,2に示すようにして製造したリチウム二次電池用負極に比べて、製造した初期における負極活物質中の酸素濃度が大きく低減されており、負極活物質が酸化されるのが防止されることが分かった。なお、大気中に1ヶ月放置した場合においては、実施例1及び比較例1,2の負極活物質中における酸素濃度の差は少なくなっていた。   As is apparent from the results, the negative electrode for a lithium secondary battery manufactured as shown in Example 1 was manufactured in comparison with the negative electrode for a lithium secondary battery manufactured as shown in Comparative Examples 1 and 2. It was found that the oxygen concentration in the negative electrode active material at the initial stage was greatly reduced, and the negative electrode active material was prevented from being oxidized. In addition, when left in the atmosphere for one month, the difference in oxygen concentration in the negative electrode active materials of Example 1 and Comparative Examples 1 and 2 was small.

次に、上記のようにして製造した実施例1及び比較例1,2の各リチウム二次電池用負極及び上記のように実施例1及び比較例1,2の各リチウム二次電池用負極を大気中に1ヶ月放置した参考実施例1及び参考比較例1,2の各リチウム二次電池用負極を用いて、それぞれリチウム二次電池を製造し、各リチウム二次電池における充放電効率を比較した。   Next, the negative electrodes for lithium secondary batteries of Example 1 and Comparative Examples 1 and 2 manufactured as described above, and the negative electrodes for lithium secondary batteries of Example 1 and Comparative Examples 1 and 2 as described above, respectively. Lithium secondary batteries were manufactured using the negative electrodes for lithium secondary batteries of Reference Example 1 and Reference Comparative Examples 1 and 2 that were left in the atmosphere for 1 month, and the charge and discharge efficiencies of the lithium secondary batteries were compared. did.

ここで、各リチウム二次電池を製造するにあたっては、下記のようにして作製した正極及び非水電解液を用いるようにした。   Here, in manufacturing each lithium secondary battery, a positive electrode and a non-aqueous electrolyte prepared as described below were used.

[正極の作製]
Li2CO3とCoCO3とをLi:Coの原子比が1:1になるように秤量して乳鉢で混合し、この混合物を直径17mmの金型プレスを用いて加圧成形した後、空気中において800℃で24時間焼成して、LiCoO2からなる焼成体を得た。
[Production of positive electrode]
Li 2 CO 3 and CoCO 3 are weighed so that the atomic ratio of Li: Co is 1: 1 and mixed in a mortar. The mixture is pressure-molded using a mold press having a diameter of 17 mm, and then air It was fired at 800 ° C. for 24 hours to obtain a fired body made of LiCoO 2 .

次いで、この焼成体を乳鉢で平均粒子径が20μmになるまで粉砕して、正極活物質のLiCoO2粉末を得た。 Next, this fired body was pulverized with a mortar until the average particle size became 20 μm, to obtain a LiCoO 2 powder as a positive electrode active material.

そして、上記のようにして得た正極活物質のLiCoO2粉末を90重量部、導電剤の人工黒鉛粉末を5重量部の割合にして、結着剤のポリテトラフルオロエチレンを5重量部含む5重量%のN−メチルピロリドン水溶液に混合し、正極合剤のスラリーを得た。 Then, 90 parts by weight of the LiCoO 2 powder of the positive electrode active material obtained as described above, 5 parts by weight of the artificial graphite powder of the conductive agent, and 5 parts by weight of the polytetrafluoroethylene binder are included. The mixture was mixed with a weight% N-methylpyrrolidone aqueous solution to obtain a positive electrode mixture slurry.

そして、このスラリーをドクターブレード法によって、正極集電体である厚み20μmのアルミニウム箔上に塗布し、これを乾燥させて、正極集電体の片面に正極活物質層が形成された正極を作製した。   And this slurry is apply | coated on the 20 micrometer-thick aluminum foil which is a positive electrode collector by the doctor blade method, This is dried, The positive electrode by which the positive electrode active material layer was formed in the single side | surface of a positive electrode collector was produced. did.

[非水電解液の作製]
エチレンカーボネートとジエチルカーボネートとを1:1の体積比で混合させた混合溶媒に、LiPF6を1モル/リットルの濃度になるように溶解させて非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to a concentration of 1 mol / liter to prepare a non-aqueous electrolyte.

ここで、リチウム二次電池を作製するにあたっては、図2及び図3に示すように、負極集電体1aに両面に負極活物質層1bが形成された負極1において、負極集電体1aに負極集電タブ1cを取り付けると共に、上記の正極集電体2aの片面に正極活物質層2bが形成された正極2において、正極集電体2aに正極集電タブ2cを取り付けた。   Here, in manufacturing the lithium secondary battery, as shown in FIGS. 2 and 3, in the negative electrode 1 in which the negative electrode active material layer 1b is formed on both surfaces of the negative electrode current collector 1a, the negative electrode current collector 1a is formed. While attaching the negative electrode current collection tab 1c, the positive electrode current collection tab 2c was attached to the positive electrode current collector 2a in the positive electrode 2 in which the positive electrode active material layer 2b was formed on one surface of the positive electrode current collector 2a.

そして、アルミラミネートフィルムからなる外装体3の内部に、上記の負極1の両面に、厚さ35μmの多孔性ポリエチレンからなるセパレータ4を介して上記の正極2をそれぞれ正極活物質層2bが負極活物質層1bと対向するように配置させると共に、上記の非水電解液5を注液し、上記の負極集電タブ1cと正極集電タブ2cとを外部に延出させた状態で、上記の外装体3を封口させて、実施例1及び比較例1,2の各リチウム二次電池用負極、参考実施例1及び参考比較例1,2の各リチウム二次電池用負極を用いた各リチウム二次電池を作製した。   The positive electrode active material layer 2b and the positive electrode active material layer 2b are respectively connected to the inside of the outer package 3 made of an aluminum laminate film, on both sides of the negative electrode 1 with a separator 4 made of porous polyethylene having a thickness of 35 μm. In the state where the non-aqueous electrolyte 5 is injected and the negative electrode current collecting tab 1c and the positive electrode current collecting tab 2c are extended to the outside while being arranged so as to face the material layer 1b. Each lithium using the negative electrode for each lithium secondary battery of Example 1 and Comparative Examples 1 and 2, and each of the negative electrodes for lithium secondary batteries of Reference Example 1 and Reference Comparative Examples 1 and 2, with the outer package 3 sealed. A secondary battery was produced.

次に、上記のようにして作製した各リチウム二次電池を、それぞれ20℃の雰囲気中において、充電電流100mAで電池電圧が4.2Vになるまで充電させて、充電容量Q1を求めた後、放電電流100mAで電池電圧が2.75Vになるまで放電させて、放電容量Q2を求め、下記の式により、各リチウム二次電池における充放電効率(%)を求め、その結果を、下記の表4に示した。   Next, each of the lithium secondary batteries prepared as described above was charged in a 20 ° C. atmosphere at a charging current of 100 mA until the battery voltage reached 4.2 V, and the charge capacity Q1 was determined. The battery was discharged at a discharge current of 100 mA until the battery voltage reached 2.75 V, the discharge capacity Q2 was determined, the charge / discharge efficiency (%) in each lithium secondary battery was determined by the following formula, and the results are shown in the table below. This is shown in FIG.

充放電効率(%)=(Q2/Q1)×100 Charging / discharging efficiency (%) = (Q2 / Q1) × 100

Figure 2009123402
Figure 2009123402

この結果から明らかなように、実施例1のリチウム二次電池用負極を用いたリチウム二次電池は、比較例1,2の各リチウム二次電池用負極及び参考実施例1,参考比較例1,2の各リチウム二次電池用負極を用いた各リチウム二次電池に比べて、充放電効率が大きく向上していた。   As is apparent from the results, the lithium secondary battery using the negative electrode for lithium secondary battery of Example 1 was the negative electrode for each lithium secondary battery of Comparative Examples 1 and 2, and Reference Example 1 and Reference Comparative Example 1. Compared with each lithium secondary battery using the negative electrode for each lithium secondary battery of No. 1 and 2, charge / discharge efficiency was greatly improved.

また、上記の各リチウム二次電池における負極活物質中に含まれる酸素濃度と充放電効率(%)との関係を図4に示した。   Moreover, the relationship between the oxygen concentration contained in the negative electrode active material in each said lithium secondary battery and charging / discharging efficiency (%) was shown in FIG.

この結果、負極活物質中に含まれる酸素濃度を7重量%以下にすると、良好な電池の基準である充放電効率が85%以上のリチウム二次電池が得られることが分かった。   As a result, it was found that when the oxygen concentration contained in the negative electrode active material was 7% by weight or less, a lithium secondary battery having a charge / discharge efficiency of 85% or more, which is a good battery standard, was obtained.

本発明のリチウム二次電池用負極を製造する装置の一例を示した概略説明図である。It is the schematic explanatory drawing which showed an example of the apparatus which manufactures the negative electrode for lithium secondary batteries of this invention. 実施例、比較例、参考実施例及び参考比較例の各リチウム二次電池用負極を用いて作製したリチウム二次電池の概略平面図である。It is a schematic plan view of the lithium secondary battery produced using each negative electrode for lithium secondary batteries of an Example, a comparative example, a reference example, and a reference comparative example. 上記のリチウム二次電池の内部構造を示した断面説明図である。It is sectional explanatory drawing which showed the internal structure of said lithium secondary battery. 実施例、比較例、参考実施例及び参考比較例の各リチウム二次電池における負極活物質中に含まれる酸素濃度と充放電効率(%)との関係を示した図である。It is the figure which showed the relationship between the oxygen concentration contained in the negative electrode active material in each lithium secondary battery of an Example, a comparative example, a reference example, and a reference comparative example, and charging / discharging efficiency (%).

符号の説明Explanation of symbols

1 負極
1a 負極集電体
1b 負極活物質層
1c 負極集電タブ
2 正極
2a 正極集電体
2b 正極活物質層
2c 正極集電タブ
3 外装体
4 セパレータ
5 非水電解液
10 装置本体
10A 集電体供給室
10B 第1界面層形成室
10C 第1活物質層形成室
10D 案内室
10E 第2界面層形成室
10F 第2活物質層形成室
10G 取出し室
11 隔壁
11a スリット
12 供給ロール
13 巻き取りロール
14 キャンロール
15 遮蔽板
16 高周波マグネトロンスパッタ装置
17 電子ビーム蒸着装置
18 温度調整ロール
19 案内ロール
20 ガス供給口
DESCRIPTION OF SYMBOLS 1 Negative electrode 1a Negative electrode collector 1b Negative electrode active material layer 1c Negative electrode current collection tab 2 Positive electrode 2a Positive electrode current collector 2b Positive electrode active material layer 2c Positive electrode current collection tab 3 Exterior body 4 Separator 5 Nonaqueous electrolyte 10 Device main body 10A Current collection Body supply chamber 10B first interface layer forming chamber 10C first active material layer forming chamber 10D guide chamber 10E second interface layer forming chamber 10F second active material layer forming chamber 10G take-out chamber 11 partition 11a slit 12 supply roll 13 take-up roll 14 Can Roll 15 Shielding Plate 16 High Frequency Magnetron Sputtering Device 17 Electron Beam Deposition Device 18 Temperature Control Roll 19 Guide Roll 20 Gas Supply Port

Claims (8)

リチウムを吸蔵・放出する負極活物質を減圧下において気相中に放出させて長尺シート状になった負極集電体上に供給して負極活物質の薄膜を形成する工程と、負極活物質の薄膜が形成された上記の負極集電体を巻き取る工程とを有し、負極活物質の薄膜が形成された負極集電体を巻き取る前に上記の負極集電体を室温よりも低い温度に冷却させると共に、上記の負極活物質の薄膜の表面に不活性ガスを吸着させることを特徴とするリチウム二次電池用負極の製造方法。   A process of forming a thin film of a negative electrode active material by discharging a negative electrode active material that absorbs and releases lithium into a gas phase under reduced pressure and supplying the negative electrode active material onto a negative electrode current collector formed into a long sheet; And winding the negative electrode current collector on which the thin film is formed, and before winding the negative electrode current collector on which the thin film of the negative electrode active material is wound, the negative electrode current collector is lower than room temperature. A method for producing a negative electrode for a lithium secondary battery, wherein the negative electrode active material is cooled to a temperature and an inert gas is adsorbed on the surface of the thin film of the negative electrode active material. 請求項1に記載のリチウム二次電池用負極の製造方法において、上記の負極活物質がリチウムと合金化する材料であることを特徴とするリチウム二次電池用負極の製造方法。   2. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode active material is a material alloyed with lithium. 請求項2に記載のリチウム二次電池用負極の製造方法において、上記の負極活物質がシリコンであることを特徴とするリチウム二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium secondary battery according to claim 2, wherein the negative electrode active material is silicon. 請求項1〜請求項3の何れか1項に記載のリチウム二次電池用負極の製造方法において、上記の負極活物質の薄膜が非晶質又は微結晶の薄膜であることを特徴とするリチウム二次電池用負極の製造方法。   4. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein the thin film of the negative electrode active material is an amorphous or microcrystalline thin film. A method for producing a negative electrode for a secondary battery. 請求項1〜請求項4の何れか1項に記載のリチウム二次電池用負極の製造方法において、負極活物質の薄膜が形成された負極集電体を巻き取る際の張力が、負極集電体の幅1cmあたり4〜40Nの範囲であることを特徴とするリチウム二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the tension when winding the negative electrode current collector on which the thin film of the negative electrode active material is wound is negative electrode current collector. The manufacturing method of the negative electrode for lithium secondary batteries characterized by being in the range of 4-40N per cm width of a body. 請求項1〜請求項5の何れか1項に記載のリチウム二次電池用負極の製造方法において、負極活物質の薄膜の表面に不活性ガスを吸着させて負極集電体を巻き取る際における雰囲気の圧力が3Pa以上であることを特徴とするリチウム二次電池用負極の製造方法。     The method for producing a negative electrode for a lithium secondary battery according to any one of claims 1 to 5, wherein an inert gas is adsorbed on the surface of the thin film of the negative electrode active material to wind up the negative electrode current collector. A method for producing a negative electrode for a lithium secondary battery, wherein the atmospheric pressure is 3 Pa or more. 請求項1〜請求項6の何れか1項に記載のリチウム二次電池用負極の製造方法において、上記の負極集電体に、表面が粗面化処理された負極集電体を用いたことを特徴とするリチウム二次電池用負極の製造方法。   In the manufacturing method of the negative electrode for lithium secondary batteries of any one of Claims 1-6, the negative electrode electrical power collector by which the surface was roughened was used for said negative electrode electrical power collector. A method for producing a negative electrode for a lithium secondary battery. 請求項1〜請求項7の何れか1項に記載のリチウム二次電池用負極の製造方法において、負極活物質の薄膜が形成された負極集電体を巻き取った後、これを加熱させて酸素を含む環境に取り出すことを特徴とするリチウム二次電池用負極の製造方法。   In the manufacturing method of the negative electrode for lithium secondary batteries of any one of Claims 1-7, after winding up the negative electrode collector in which the thin film of the negative electrode active material was formed, this was made to heat. A method for producing a negative electrode for a lithium secondary battery, wherein the negative electrode is extracted in an environment containing oxygen.
JP2007293804A 2007-11-13 2007-11-13 Method of manufacturing negative electrode for lithium secondary battery Pending JP2009123402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293804A JP2009123402A (en) 2007-11-13 2007-11-13 Method of manufacturing negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293804A JP2009123402A (en) 2007-11-13 2007-11-13 Method of manufacturing negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2009123402A true JP2009123402A (en) 2009-06-04

Family

ID=40815367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293804A Pending JP2009123402A (en) 2007-11-13 2007-11-13 Method of manufacturing negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2009123402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001885A1 (en) * 2010-06-29 2012-01-05 パナソニック株式会社 Thin flexible battery
JP2014107237A (en) * 2012-11-29 2014-06-09 Meiko Electronics Co Ltd Electrode sheet drying device and electrode sheet drying method
WO2022118808A1 (en) * 2020-12-02 2022-06-09 Apb株式会社 Current collector supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819860A (en) * 1981-07-30 1983-02-05 Toshiba Corp Manufacture of positive electrode for organic solvent battery
JP2003007343A (en) * 2001-06-25 2003-01-10 Sanyo Electric Co Ltd Manufacturing method and manufacturing system for secondary lithium battery
JP2003308832A (en) * 2002-04-12 2003-10-31 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery
JP2007265878A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery, and lithium secondary battery
JP2007265874A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery, and lithium secondary battery
JP2008066109A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Manufacturing method of nonaqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819860A (en) * 1981-07-30 1983-02-05 Toshiba Corp Manufacture of positive electrode for organic solvent battery
JP2003007343A (en) * 2001-06-25 2003-01-10 Sanyo Electric Co Ltd Manufacturing method and manufacturing system for secondary lithium battery
JP2003308832A (en) * 2002-04-12 2003-10-31 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery
JP2007265878A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery, and lithium secondary battery
JP2007265874A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Method of manufacturing electrode for lithium secondary battery, and lithium secondary battery
JP2008066109A (en) * 2006-09-07 2008-03-21 Toyota Motor Corp Manufacturing method of nonaqueous secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001885A1 (en) * 2010-06-29 2012-01-05 パナソニック株式会社 Thin flexible battery
JP2014107237A (en) * 2012-11-29 2014-06-09 Meiko Electronics Co Ltd Electrode sheet drying device and electrode sheet drying method
WO2022118808A1 (en) * 2020-12-02 2022-06-09 Apb株式会社 Current collector supply device
JP2022088250A (en) * 2020-12-02 2022-06-14 Apb株式会社 Collector feeding device
JP7425716B2 (en) 2020-12-02 2024-01-31 Apb株式会社 Current collector supply device

Similar Documents

Publication Publication Date Title
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP4994634B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP5230946B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
CN111201634B (en) Lithium ion battery without olefin separator
JP3624174B2 (en) Metal oxide electrode, method for producing the same, and lithium secondary battery using the same
JP4850405B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4876531B2 (en) Negative electrode for lithium secondary battery and method for producing lithium secondary battery
KR20090109577A (en) Negative electrode for lithium secondary battery and method for producing the same, and lithium secondary battery comprising negative electrode for lithium secondary battery
WO2011080901A1 (en) Positive electrode for a nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using said positive electrode
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
CN112736277A (en) Solid electrolyte-lithium negative electrode complex, method for producing same, and all-solid-state lithium secondary battery
US20230170580A1 (en) Ultra-thin ceramic coating on separator for batteries
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP4368193B2 (en) Lithium precursor battery and method for producing lithium secondary battery
JP2003007288A (en) Manufacturing method of electrode for lithium secondary battery
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP4841152B2 (en) Method for producing negative electrode for lithium secondary battery and lithium secondary battery
JP4183395B2 (en) Method for producing electrode for lithium secondary battery
JP2009123402A (en) Method of manufacturing negative electrode for lithium secondary battery
JP2002170555A (en) Method for manufacturing electrode of lithium secondary battery
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP4183745B2 (en) Lithium battery electrode and method for producing lithium battery electrode
JP2005243371A (en) Positive electrode and rolling-type electrochemistry element using it
JP4911909B2 (en) Method for producing electrode for lithium secondary battery
JP2008124007A (en) Manufacturing method of nonaqueous electrolyte secondary battery, and negative electrode for the nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813