WO2005008809A1 - Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2005008809A1
WO2005008809A1 PCT/JP2004/010453 JP2004010453W WO2005008809A1 WO 2005008809 A1 WO2005008809 A1 WO 2005008809A1 JP 2004010453 W JP2004010453 W JP 2004010453W WO 2005008809 A1 WO2005008809 A1 WO 2005008809A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
deposited film
electrolyte secondary
secondary battery
volume
Prior art date
Application number
PCT/JP2004/010453
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Nakamoto
Yasuhiko Bito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005511911A priority Critical patent/JPWO2005008809A1/en
Publication of WO2005008809A1 publication Critical patent/WO2005008809A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery comprising a deposited film, and more particularly, to a negative electrode having a high electric capacity and providing a non-aqueous electrolyte secondary battery having excellent high-rate discharge characteristics.
  • Non-aqueous electrolyte secondary batteries especially lithium secondary batteries using lithium metal or graphite powder as the negative electrode material, have higher electromotive force and higher energy density than alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries. Therefore, it is used as the main power source for mobile communication devices and portable electronic devices.
  • a negative electrode of a lithium secondary battery is manufactured by supporting an electrode material mixture containing at least a negative electrode active material and a binder on a current collector.
  • the theoretical capacity of the negative electrode active material is 3 7 2
  • alloys containing silicon or tin such as alloys represented by M-xSix (M is at least one selected from the group consisting of Ni, FeCo, and Mn, 50 ⁇ x)
  • M-xSix M is at least one selected from the group consisting of Ni, FeCo, and Mn, 50 ⁇ x
  • the electrode mixture disclosed in Japanese Patent Application Laid-Open No. H10-29494 also includes graphite as a conductive agent and polyvinylidene fluoride as a binder in addition to the alloy powder. This is because the occupied volume does not contribute to the capacity.
  • the thin-film electrodes described in Japanese Patent Application Laid-Open No. 2002-83594 and Japanese Patent Application Laid-Open No. 2003-72995 have a high capacity but a high efficiency. It has been found that the discharge characteristics are inadequate.
  • a thin-film electrode was manufactured according to the description in JP-A-2002-83594.
  • a test cell was fabricated using this thin film electrode, a counter electrode, and lithium metal as a reference electrode.
  • the battery was charged at a constant current of 0.5 mA at 25 ° C. until the potential of the thin-film electrode reached 0 V with respect to the reference electrode, and then discharged until the potential reached 2 V.
  • the thin-film electrode had a high capacity of 380 mAhZg.
  • the electrode area of the battery studied was 8 cm 2 on both sides, and the capacity was 25 mAh. Therefore, a current density of 0.2 mA / cm 2 corresponds to a current value of 1.6 mA, and the discharge time is about 15.5 hours. On the other hand, the current density of 2. O mAZ cm 2 corresponds to a current value of 16 mA, and the discharge time is about 1.5 hours.
  • batteries are often used at a current density equivalent to a discharge time of about 2 hours.
  • a battery using the above-described negative electrode is used under such conditions, there is a problem that the discharge capacity is reduced.
  • the reason why the high-rate discharge characteristics of a battery formed of a deposited film is insufficient is that silicon has a low electronic conductivity.
  • the resistivity of silicon is 2.4 since X 1 is 0 5 ⁇ ⁇ cm, the electronic conductivity of 4. 2 X 1 0- 6 SZ cm and low become. Since the above-mentioned thin film electrode is made of silicon, it is considered that the electron conductivity is low and the high-rate discharge characteristics are insufficient.
  • the thin-film electrode disclosed in Japanese Patent Application Laid-Open No. 2003-72995 does not have sufficiently high-rate discharge characteristics. Disclosure of the invention The present invention has been made in view of the above circumstances, and comprises a negative electrode for a non-aqueous electrolyte secondary battery having a high electric capacity, which is made of a deposited film having high electron conductivity, and a high capacity and high efficiency including the same. An object is to provide a non-aqueous electrolyte secondary battery having excellent discharge characteristics.
  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery capable of inserting and extracting lithium, wherein the negative electrode comprises a deposited film formed on a current collector, and the deposited film comprises Si alone. And a phase consisting of an alloy containing Si, wherein the alloy containing Si contains at least one element selected from the group consisting of a group 2A element and a transition metal element.
  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, wherein the content of the alloy containing Si in the deposited film is 5% by volume or more and 90% by volume or less.
  • the deposited film does not contain a binder. Therefore, it is distinguished from a mixture layer formed by applying a slurry in which a mixture comprising an active material and a binder is dispersed in a liquid component onto a current collector and drying the slurry.
  • Alloy containing the S i is preferably a T i S i 2.
  • the electron conductivity of the deposited film is preferably 1 SZcm or more.
  • the present invention also relates to a nonaqueous electrolyte secondary battery including a positive electrode capable of inserting and extracting lithium, the above negative electrode, and a nonaqueous electrolyte interposed between the positive electrode and the negative electrode.
  • the negative electrode which consists of a deposited film with a high electronic conductivity and has a high electric capacity is obtained. Further, by using such a negative electrode, a nonaqueous electrolyte secondary battery having high electric capacity and excellent high-rate discharge characteristics can be obtained.
  • FIG. 1 is a longitudinal sectional view of a cylindrical battery for evaluating characteristics of the negative electrode of the present invention. It is.
  • FIG. 2 is a view for explaining a method for preparing a sample for evaluating the electron conductivity of a deposited film constituting the negative electrode of the present invention.
  • FIG. 3 is a plan view of a sample for evaluating the electron conductivity of the deposited film constituting the negative electrode of the present invention.
  • Si 1 icides (INSPEC) by Karen Maex, and Marc van Rossum, The
  • resistivity that is described in the electronic conductivity of the alloy containing S i is high, on the order of about 1 0 4 SZc m.
  • the electronic conductivity of the T i S i 2 is l X 1 0 5 S / cm . Therefore, by mixing a phase composed of Si having a low electron conductivity and a phase composed of an alloy containing Si having a high electron conductivity in the deposited film as described above, It can be expected that the electron conductivity of the film will be higher than that of a deposited film.
  • the deposited film constituting the negative electrode for a non-aqueous electrolyte secondary battery of the present invention contains a phase composed of an alloy containing Si in addition to a phase composed of Si alone, the deposited film consists of only Si. It has much better electron conductivity than a deposited film made of a solid solution mainly composed of Si or a solid solution composed mainly of Si.
  • an alloy containing Si means an intermetallic compound, not a solid solution.
  • the phase composed of a simple substance of Si may be substantially a simple substance, and the phase composed of a simple substance of Si may be doped with impurities such as phosphorus, antimony, and boron.
  • the alloy containing S i comprises S i and at least one element selected from the group consisting of group 2A elements and transition metal elements.
  • 2 Group A elements include Mg, Ca, Sr and Ba.
  • the transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, ⁇ s, Ir, Pt and Au.
  • the content of the alloy containing Si in the deposited film is 5% by volume to 90% by volume.
  • the volume ratio of the phase composed of Si alone which has a high correlation with the discharge capacity, decreases, and the negative electrode capacity becomes insufficient. It becomes.
  • the content of the alloy containing Si is less than 5% by volume of the deposited film, the proportion of the phase having high electron conductivity is too small, and the proportion of the phase having low electron conductivity is too large. The degree drops rapidly. As a result, only batteries with high capacity but insufficient high-rate discharge characteristics can be obtained.
  • the content of Si in the alloy containing Si is preferably 33 to 67 atomic%.
  • the content of Si is smaller than the above, the diffusion of Si from the phase consisting of Si alone into the phase consisting of the alloy containing Si proceeds, and the discharge capacity tends to decrease.
  • the content of Si is higher than the above, the electronic conductivity of the phase composed of the alloy containing Si decreases, and the Electronic conductivity tends to be low.
  • Alloys containing Si include Ti Si 2 , VS i 2 , M ni, Si 19 ,
  • T i S i 2 It is preferable to use the T i S i 2. This is because Ti Si 2 has the highest electron conductivity among alloys containing Si, and can provide a battery having the highest high-rate discharge characteristics.
  • the electron conductivity of the deposited film is preferably 1 S / cm or more, more preferably 300 S / cm or more. If the electron conductivity of the deposited film is less than 1 S / cm, only batteries with insufficient high-rate discharge characteristics can be obtained.
  • any method can be employed without particular limitation as long as a method capable of obtaining a thin film can be employed. Examples include, but are not limited to, vacuum deposition, chemical vapor deposition (CVD), sputtering, thermal spraying, and plating.
  • a method for mixing a phase composed of Si alone and an alloy phase containing Si in the deposited film is not particularly limited, and examples thereof include the following.
  • a raw material gas containing a predetermined element is mixed with the raw material gas of Si, and the obtained mixed gas is decomposed, and the decomposition product is formed on the current collector from the decomposition product.
  • a deposited film is formed.
  • a target of Si and a target of a predetermined element are arranged at predetermined positions, and a deposited film is formed on the current collector by sputtering.
  • the vacuum evaporation method a source of Si and a source of a predetermined element are arranged at predetermined positions, and a deposition film is formed on the current collector by evaporation.
  • the temperature of the current collector at the time of forming the deposited film should be set to 600 ° C or less. It is preferable to control the temperature to 200 ° C. (: up to 600 ° C.) From the same viewpoint, the formed deposited film is reduced to 600 ° C. or less, and more preferably to 200 ° C. to 600 ° C.
  • the heat treatment may be performed at 0 ° C.
  • the heating time at that time is preferably 0.5 to 3 hours, and the atmosphere of the heat treatment is an inert gas atmosphere made of Ar gas or the like.
  • the current collector temperature or the heating temperature exceeds 600 ° C., the temperature is too high, so that the current collector component diffuses into the deposited film, and the non-reactive metal which does not react with lithium.
  • the capacity of the compound tends to decrease due to the formation of the compound, and excessive diffusion reduces the current collector portion, lowers the mechanical strength of the electrode itself, and makes the electrode more susceptible to breakage.
  • a current collector made of copper, nickel, stainless steel, titanium, or the like can be used.
  • the current collector is preferably electrochemically stable at the negative electrode potential, thin and durable, and preferably has a thickness of 8 to 35 / m.
  • the shape of the current collector is not particularly limited.
  • the surface of the current collector may not be smooth but may have irregularities.
  • the total thickness of the deposited films on both surfaces is preferably 10% or more and 60% or less of the thickness of the current collector. If the total thickness is less than 10% of the thickness of the current collector, the capacity of the negative electrode becomes insufficient, and the battery capacity tends to decrease. On the other hand, if the total thickness exceeds 60% of the thickness of the current collector, the current collector may be damaged when the deposited film expands, and it is difficult to obtain good cycle life characteristics. . When the total thickness is not more than 40% of the thickness of the current collector, the current collector is less likely to be deformed when the deposited film expands, and further excellent cycle life characteristics can be obtained. Is more preferable in that
  • the crystalline state of the phase composed of Si alone is amorphous or microcrystalline. preferable. Although the reason is not clear, better cycle life characteristics can be obtained if the crystalline state of the phase composed of Si alone is amorphous or microcrystalline.
  • the non-aqueous solvent of the non-aqueous electrolyte used when producing the non-aqueous electrolyte secondary battery using the above-mentioned negative electrode is not particularly limited, but ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • a mixed solvent of a cyclic carbonate such as dimethyl carbonate, a methyl carbonate, a methyl carbonate, and a chain force carbonate such as getyl carbonate is preferred.
  • Non-aqueous solvents include ether solvents such as 1,2-dimethoxyethane and 1,2-jetoxene, cyclic carboxylate esters such as ⁇ -butyrolactone and avalerolactone, sulfolane, and methyl acetate. A chain ester or the like can also be used.
  • L i C (C 2 F 5 S O2) 3, L i A s F 6, L i C 1 ⁇ 4, L i 2 B 10 C , and the like L i 2 B 12 C 1.
  • non-aqueous electrolyte an inorganic solid electrolyte, an organic solid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte in which an electrolyte is held in a polymer material, and the like can be used.
  • the positive electrode to be combined with the above-mentioned negative electrode is not particularly limited.
  • the positive electrode active material Li Co 2 , Li Ni 0 2 , Li M n 2 4, Li M n 2, and Li Co 2 0.5N i o. 5 0 2, are preferably used those containing L i n i 0.7C o 0.2M n ( lithium-containing transition metal oxides such as uC.
  • Example 1
  • Electrodeposited copper foil (31 li thick, manufactured by Furukawa Circuit Oil Co., Ltd.) was used as the current collector. Massive S i (Pure Chemical Co., Ltd., purity 9 9.9 9 9%) and bulk T i S i 2 (Pure Chemical Co., Ltd., purity 9 9.9 9 9%) and a. 2 Co-evaporation was performed simultaneously by the original evaporation method to form a deposited film.
  • the bulk T i S i 2 - accelerating voltage of 8 k V evaporated with an electron beam conditions of current 2 5 0 m A
  • the massive Si was evaporated with an electron beam with an accelerating voltage of 18 kV and a current of 150 mA.
  • the thickness is about
  • a thin film of 5 m was deposited to obtain a negative electrode A1.
  • the conditions were appropriately controlled so that the composition of the deposited film was TiSi3.
  • the deposited film contains a phase composed of Si alone and a phase composed of an alloy containing Si (T i Si 2 ).
  • the content of the alloy containing Si in the film is as follows. , 11% by volume.
  • NMP N-methyl-2-pyrrolidone
  • FIG. 1 is a longitudinal sectional view of the assembled nonaqueous electrolyte secondary battery.
  • This battery was assembled as follows.
  • the positive electrode 1 and the negative electrode 2 were stacked with Separation Layer 3 interposed therebetween, and spirally wound to produce an electrode body.
  • the positive electrode lead 4 and the negative electrode lead 5 were connected to the positive electrode and the negative electrode in advance.
  • An upper insulating ring 9a and a lower insulating ring 9b were arranged above and below the electrode body, and were housed inside a stainless steel battery case 7.
  • the positive electrode lead 4 was connected to the sealing plate 6, and the negative electrode lead 5 was connected to the bottom of the battery case 7. Thereafter, a non-aqueous electrolyte was injected into the battery case 7.
  • the opening of the battery case 7 is closed with a sealing plate 6 provided with a safety valve via an insulating packing 8, and the sealing process is performed to form a cylindrical hermetic type having a diameter of 18 mm and a height of 65 mm.
  • the rechargeable battery A1 was assembled.
  • the assembly of the nonaqueous electrolyte secondary battery was performed in an atmosphere of dry air whose dew point was adjusted to 150 ° C or less.
  • Example 2 The deposited film obtained in Example 1 was deposited in an inert gas (Ar) atmosphere.
  • Example 3 When depositing thin films on both sides of electrolytic copper foil (made by Furukawa Circuit Oil Co., Ltd., thickness 31 m), except that the electrolytic copper foil was heated to 300 ° C. Using the same deposition conditions, a negative electrode A3 having a deposited film with a thickness of about 5 xm was obtained.
  • composition of the deposited film such that T i S i 3, were appropriately controlled conditions of vacuum deposition.
  • the qualitative and quantitative analysis of the phases contained in the obtained deposited film was performed by the methods described below.
  • a phase composed of (T i Si 2 ) was contained, and the content of the alloy containing Si in the film was 65% by volume.
  • a non-aqueous electrolyte secondary battery A3 was produced in the same manner as in Example 1, except that the negative electrode A3 was used. Comparative Example 1
  • Example 2 The same electrodeposited copper foil used in Example 1 was applied on both sides of the same electrodeposited copper foil as used in Example 1 by two-pole RF sputtering using Si Yuichi Get (manufactured by Kojundo Chemical Co., Ltd., purity: 99.99.99%). Then, an Si thin film having a thickness of about 5 was deposited to obtain a negative electrode X1.
  • Ar was used as the sputtering gas, and the above sputtering was performed under the conditions of high-frequency power of 200 W, vacuum degree of 0.1 lT rr, Ar flow rate of 150 sccm, and substrate temperature of room temperature.
  • Example 2 a non-aqueous electrolyte secondary battery X1 was produced in the same manner as in Example 1, except that the negative electrode X1 was used. Comparative Example 2
  • a mixed gas of H 2 and S i H 4 (S i H 4 content: 10%, A mixed gas of hydrogen, Ltd., a purity 9 9.9 9 9 9%), H 2 and PH 3
  • Example 3 a nonaqueous electrolyte secondary battery X2 was produced in the same manner as in Example 1 except that the negative electrode X2 was used. Comparative Example 3
  • Electrodeposited copper foil (thickness 14 / im) was used for the current collector.
  • Graphite powder and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 5, and the resulting mixture was dispersed in dehydrated NMP to prepare a slurry. This slurry was applied on both sides of an electrolytic copper foil, dried, and then rolled to obtain a negative electrode X3.
  • a non-aqueous electrolyte secondary battery X3 was produced in the same manner as in Example 1 except that the negative electrode X3 was used.
  • the electron conductivity of each deposited film was measured by the four probe method.
  • a 5 cm ⁇ 5 cm electrolytic copper foil 10 having a 1 cm ⁇ 1 cm hole in the center was superimposed on a 5 cm ⁇ 5 cm electrolytic copper foil 11.
  • a 5 m-thick thin film was prepared under the same conditions as those described for the preparation of the negative electrode.
  • the electrodeposited copper foil 11 having no hole was cut into a size of lcmx2cm including a region 12 where a thin film was formed.
  • the current terminal and the voltage terminal were brought into contact with the region 12 where the thin film was formed and the copper foil region 13 where the thin film did not exist, respectively.
  • the distance between the current and voltage terminals was fixed at 5 mm, and the distance between the voltage terminals was fixed at 5 mm.
  • Each battery was charged to 4.2 V with a current of 0.6 A at a charge / discharge temperature of 20 ° C, and then discharged to 2.5 V with a current of 0.4 A to reduce the discharge capacity C 1 I did.
  • the ratio P () of the discharge capacity C2 to the discharge capacity C1 was calculated based on the following equation, and the high-rate discharge characteristics of each battery were evaluated. A battery with a higher P value has a higher high-rate discharge characteristic. If the value of P is 85% or more, it can be said that good high-rate discharge characteristics are obtained.
  • Table 1 shows the configurations of Examples 1 to 3 and Comparative Examples 1 to 3 and the results of each test.
  • the batteries A1 to A3 of the examples of the present invention have higher capacities than the battery X3 of the comparative example including the negative electrode made of the graphite mixture.
  • Batteries A1 to A3 also have superior high-rate discharge characteristics as compared with batteries X1 and X2 of Comparative Examples each having a negative electrode composed of a Si single phase or a P-doped Si phase.
  • batteries A2 and A3 in which the content of the alloy containing Si in the deposited film is particularly large, are superior to the battery A1, in which the content is small, in the high-rate discharge characteristics.
  • the heat treatment of the deposited film reduced the Si. It can be seen that the content of the contained alloy increases. This is because, in a deposited film that is not subjected to heat treatment, the proportion of Ti dissolved in the crystal structure of Si, that is, the proportion of solid solution of Si and Ti becomes large, and the intermetallic compound Ti S It is considered that the content of i 2 is reduced. Also, in the deposited film formed on the electrolytic copper foil heated to 300 ° C, the ratio of the solid solution of Si and Ti decreased, and the content of the alloy containing Si was 65% by volume. This was almost equivalent to the case where the heat treatment of the deposited film was performed.
  • T i S i is the electron conductivity of four. 2, but X 1 0- 6 SZ cm and lower, T i S i 2 electron conductivity of the deposited film containing about 1 1% by volume, 7. 5 X 1 0 2 SZ cm (Example 1), and the electron conductivity is dramatically improved.
  • Electronic conductivity of the T i S i 2 is 1 X 1 0 5 S / cm . This indicates that the inclusion of an alloy with high electron conductivity in the deposited film can provide a dramatic improvement in electron conductivity even when the volume ratio of the alloy is relatively small.
  • the electronic conductivity of the deposited film containing about 69% by volume and 65% by volume of T i Si 2 was 3.5 ⁇ 10 3 S / cm (Example 2) and
  • N i S, C u 3 S i, Y 3 S is, Z r S, N b S, Mo S i 2, P d S i, L a S i 2, H f S i 2, T a S i 2 , also WS i 2, P t S i except for using M g 2 S i, in the same manner as in example 1, to prepare a deposited film.
  • the massive Si, the massive Co Si 2 and the massive Ni Si 2 were evaporated by three electron beams, respectively.
  • Negative electrode A4A20 was obtained by performing a heat treatment for 1 hour in a vacuum at an optimum heating temperature in a range of 600 ° C.
  • the qualitative and quantitative analysis of the phases contained in the deposited film was performed by the above-mentioned method, and it was confirmed that two or more types of phases were present.
  • the deposited film contained a phase composed of Si alone and a phase composed of an alloy containing Si as shown in Table 2.
  • the content of the alloy containing Si in the deposited film was as shown in Table 2.
  • the non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the negative electrodes A4 to A20 were used. Secondary batteries A4 to A20 were produced. The same evaluation as above was performed. Table 2 shows the results. Table 2 Discharge Discharge
  • the batteries A4 to A20 of the examples of the present invention have higher capacities than the battery X3 of Comparative Example 3 including a negative electrode made of a mixture containing graphite. Batteries A4 to A20 have higher discharge rates than batteries X1 and X2 of Comparative Examples 1 and 2 each having a negative electrode composed of a Si single phase or a P-doped Si phase. Excellent characteristics.
  • Example 3 Except that the content of the alloy containing Si was controlled to 3% by volume and 95% by volume as shown in Table 3 by changing the composition of the deposited film, the negative electrode X was produced in the same manner as in Example 2. 4 and X5 were made. Next, nonaqueous electrolyte secondary batteries X4 and X5 were produced in the same manner as in Example 1, except that negative electrodes X4 and X5 were used. The same evaluation as above was performed. Table 3 shows the results. Table 3
  • the batteries A 21 to A 24 of the examples of the present invention have higher capacities than the battery X 3 of Comparative Example 3 including a negative electrode made of a mixture containing graphite.
  • 21 to A24 have excellent high-rate discharge characteristics compared to the batteries X1 and X2 of Comparative Examples 1 and 2 each having a negative electrode composed of a Si single phase or a P-doped Si phase. I have. From Table 2 and 3, high-rate discharge characteristics is most excellent when alloy containing S i is T i S i 2. This is considered to have the highest electron conductivity T i S i 2.
  • Battery X4 which contained 3% by volume of the alloy containing Si, had a high capacity, but the high-rate discharge characteristics were insufficient at 75.1%. This is because the volume fraction of T i Si 2 having high electron conductivity is small, and the volume fraction of Si having low electron conductivity is too large, so that the electron conductivity of the thin film is low.
  • Battery X5 which contains 95% by volume of an alloy containing Si, has an excellent high-rate discharge characteristic of 96.0%, but has an insufficient capacity C1 of 125 mAh. I got it. This is probably because the volume ratio of Si, which greatly correlates with the discharge capacity, became too small.
  • Example 6
  • a negative electrode was prepared by sputtering in the following manner.
  • Example 1 was performed under the same conditions as in Comparative Example 1 by two-electrode simultaneous RF sputtering using TiSi 2 (manufactured by Kojundo Chemical Co., Ltd., purity 99.9999%) as an overnight getter. Approximately 5 m thick on both sides of the same electrolytic copper foil used in
  • a thin film having a composition of TiSi3 was deposited. Next, the heat treatment of the deposited film was performed at 300 ° C. in a vacuum for 3 hours to obtain a negative electrode B1.
  • the qualitative and quantitative analysis of the phase contained in the deposited film of the negative electrode B1 was performed by the above-described method. As a result, it was observed that the Ti Si 2 phase and the Si phase were present. The content of T i Si 2 ) was 68% by volume.
  • Thin films were deposited on both sides of the electrolytic copper foil under the same conditions as above except that Co Si 2 and Mg Si 2 were used, respectively.
  • the composition of the deposited film to be the N i S i 3, C o S i 3 and M g S i, respectively, to control the conditions of the sputtering evening ring.
  • the heat treatment of the obtained deposited films was performed at 250 ° C., 300 ° C., and 200 ° C. for 3 hours in a vacuum, so that the negative electrodes B 2, B 3 and B Got four.
  • nonaqueous electrolyte secondary batteries B1 to B4 were produced in the same manner as in Example 1, except that the negative electrodes B1 to B4 were used.
  • Example 7
  • a negative electrode was manufactured by the CVD method in the following manner.
  • Example 2 Using S i H 4 , T i H 4, and PH 3 each diluted with H 2 as a source gas, the same electrodeposited copper foil as used in Example 1 was formed on both surfaces by the CVD method. A P-doped Si thin film having a thickness of about 5 xm was deposited to form a negative electrode B5.
  • a mixed gas of H 2 and S i H 4 (S i H 4 content 1 0%, Nippon oxygen Corp., purity 9 9.9 9 9 9%) and, H 2 and T i mixed gas of H 4
  • T i S i 2 phase and S i-phase are present, T i S i 2 phases was 68% by volume.
  • a non-aqueous electrolyte secondary battery B5 was produced in the same manner as in Example 1, except that the negative electrode B5 was used.
  • the batteries B1 to B5 of the examples of the present invention have higher capacities than the battery X3 using graphite as a negative electrode, which is a comparative example.
  • Batteries Bl to B5 also have superior high-rate discharge characteristics compared to comparative batteries X1 and X2, each of which has a negative electrode composed of a single Si phase or a P-doped Si phase. ing.
  • the batteries B1 and B5 of the examples of the present invention have very good high-rate discharge characteristics. This is because, as in Example 2 described above, the electronic conductivity of the TiSi 2 phase contained in the deposited film was lower than that of the alloy phase containing Si contained in the other negative electrodes B2 to B4. This is probably because the electron conductivity of the entire deposited film improved.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention is composed of a deposited film having a high electron conductivity and has a high electric capacity, and thus has a high electric capacity and a high rate discharge characteristic. It gives the battery.
  • INDUSTRIAL APPLICABILITY The present invention is applicable to all forms of non-aqueous electrolyte secondary batteries, and has, for example, a cylindrical, coin, square, flat or other shape, and a wound or stacked electrode. It is applicable to batteries having a body structure.
  • INDUSTRIAL APPLICABILITY The nonaqueous electrolyte secondary battery of the present invention is useful as a main power supply for mobile communication devices, portable electronic devices, and the like.

Abstract

A negative electrode for nonaqueous electrolyte secondary batteries is disclosed which is capable of absorbing/desorbing lithium. The negative electrode is composed of a deposited film formed on a collector, and the deposited film contains a phase composed of Si as a simple substance and a phase composed of an alloy containing Si. The Si-containing alloy is an alloy of Si and at least one element selected from the group consisting of group IIA elements and transition metal elements, and the content of the Si-containing alloy in the deposited film is not less than 5 volume% but not more than 90 volume%.

Description

明 細 書 非水電解質二次電池用負極および非水電解質二次電池 技術分野  Description Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
本発明は、 堆積膜からなる非水電解質二次電池用負極に関し、 より詳 しくは、 高い電気容量を有し、 高率放電特性に優れた非水電解質二次電 池を与える負極に関する。 背景技術  The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery comprising a deposited film, and more particularly, to a negative electrode having a high electric capacity and providing a non-aqueous electrolyte secondary battery having excellent high-rate discharge characteristics. Background art
非水電解質二次電池、 なかでもリチウム金属や黒鉛粉末を負極材料と するリチウム二次電池は、 ニッケル · カドミウム蓄電池、 ニッケル ·水 素蓄電池等のアルカリ蓄電池に比べて、 高起電力、 高エネルギー密度で あることから、 移動体通信機器、 携帯電子機器などの主電源として用い られている。  Non-aqueous electrolyte secondary batteries, especially lithium secondary batteries using lithium metal or graphite powder as the negative electrode material, have higher electromotive force and higher energy density than alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries. Therefore, it is used as the main power source for mobile communication devices and portable electronic devices.
リチウム二次電池の負極は、 一般に、 少なくとも負極活物質と結着剤 を含む電極合剤 (electrode material mixture) を集電体に担持させる ことにより作製される。 負極活物質としては、 理論容量 3 7 2  In general, a negative electrode of a lithium secondary battery is manufactured by supporting an electrode material mixture containing at least a negative electrode active material and a binder on a current collector. The theoretical capacity of the negative electrode active material is 3 7 2
mAh/gを有する黒鉛粉末、 黒鉛粉末に比べて遙に大きい理論容量を 有するゲイ素 (理論容量 : 4 1 9 9mAhZg) 、 スズ (理論容量: 9 9 3 mAh/g) などが検討されている。 Graphite powder with mAh / g, gayenium (theoretical capacity: 199 mAhZg), and tin (theoretical capacity: 993 mAh / g), which have a much larger theoretical capacity than graphite powder, are being studied. .
また、 ケィ素やスズを含む合金、 例えば M -xS i x (Mは、 N i、 F e C oおよび M nよりなる群から選ばれる少なくとも 1種、 5 0≤ x) で 表される合金の検討も行われている (特開平 1 0— 2 9 4 1 1 2号公 報) 。 しかし、 いずれの活物質を用いる場合にも、 結着剤等を含む合剤 (material mixture) から負極を作製する限り、 高エネルギー密度化の 要請に応えるには限界がある。 特開平 1 0— 2 9 4 1 1 2号公報の電極 合剤も、 合金粉末の他に、 導電剤となる黒鉛や結着剤となるポリフッ化 ビニリデンを含んでいるが、 これらが電極内に占める体積は容量に寄与 しないからである。 In addition, alloys containing silicon or tin, such as alloys represented by M-xSix (M is at least one selected from the group consisting of Ni, FeCo, and Mn, 50≤x) A study is also underway (Japanese Patent Application Laid-Open No. 10-29411). However, regardless of which active material is used, as long as the negative electrode is made from a material mixture containing a binder, etc. There are limits to meeting demands. The electrode mixture disclosed in Japanese Patent Application Laid-Open No. H10-29494 also includes graphite as a conductive agent and polyvinylidene fluoride as a binder in addition to the alloy powder. This is because the occupied volume does not contribute to the capacity.
一方、 理論容量の大きな活物質を原料に用いて、 蒸着などの手法によ り堆積膜を作製し、 これを負極として用いる検討がなされている。 堆積 膜からなる電極は、 結着剤や導電剤を含まないことから、 極めて高容量 が得られる。 しかしながら、 従来の合剤層と堆積膜とでは、 電極組成、 活物質の形態、 製造法等が全く異なっている。 従って、 従来の合剤  On the other hand, studies have been made to use an active material having a large theoretical capacity as a raw material to form a deposited film by a method such as vapor deposition, and to use this as a negative electrode. An electrode composed of a deposited film does not contain a binder or a conductive agent, so that an extremely high capacity can be obtained. However, the electrode composition, the form of the active material, the manufacturing method, and the like are completely different between the conventional mixture layer and the deposited film. Therefore, the conventional mixture
(material mixture) からなる電極の分野では優れた特性を有する材料 であっても、 これを堆積膜とすることでどのような電極が得られるかは 未知の領域であり、 詳細な検討もしくは改良を要する。 現在のところ、 非晶質シリコン薄膜電極および微結晶シリコン薄膜電極をはじめとする シリコンを主体とする薄膜電極 (特開 2 0 0 2— 8 3 5 94号公報、 特 開 2 0 0 3— 7 2 9 5号公報) などが検討されている。  In the field of electrodes consisting of (material mixture), even if the material has excellent characteristics, it is not known what kind of electrode can be obtained by using this as a deposited film. It costs. At present, silicon-based thin-film electrodes such as amorphous silicon thin-film electrodes and microcrystalline silicon thin-film electrodes (Japanese Unexamined Patent Publication No. 2002-83594, Japanese Patent Publication No. Publication No. 295).
発明者らが検討した結果、 特開 2 0 0 2— 8 3 5 94号公報および特 開 2 0 0 3— 7 2 9 5号公報に記載の薄膜電極は、 高容量ではあるが、 高率放電特性が不十分であることが見出されている。  As a result of studies by the inventors, the thin-film electrodes described in Japanese Patent Application Laid-Open No. 2002-83594 and Japanese Patent Application Laid-Open No. 2003-72995 have a high capacity but a high efficiency. It has been found that the discharge characteristics are inadequate.
具体的には、 特開 2 0 0 2— 8 3 5 94号公報の記載に従って薄膜電 極を作製した。 この薄膜電極と、 対極と、 参照極としての金属リチウム とを用いて試験セルを作製した。 2 5 °Cで 0. 5mAの定電流で、 参照 極に対して薄膜電極の電位が 0 Vに達するまで充電し、 次いで、 2 Vに 達するまで放電した。 その結果、 薄膜電極は、 3 8 0 0 mAhZgと高 容量であることが確認された。  Specifically, a thin-film electrode was manufactured according to the description in JP-A-2002-83594. A test cell was fabricated using this thin film electrode, a counter electrode, and lithium metal as a reference electrode. The battery was charged at a constant current of 0.5 mA at 25 ° C. until the potential of the thin-film electrode reached 0 V with respect to the reference electrode, and then discharged until the potential reached 2 V. As a result, it was confirmed that the thin-film electrode had a high capacity of 380 mAhZg.
しかし、 特開 2 0 0 2— 8 3 5 9 4号公報の実施例 Aの記載に従って 実際に電池を組み立て、 電流密度 0. 2mAZc m2で放電したときの放 電容量に対する、 電流密度 2. O mAZc m2で放電したときの放電容量 の比率 (高率放電特性) は、 5 0 %程度であり、 十分な高率放電特性を 得ることができなかった。 However, actually assembled battery as described in JP 2 0 0 2 8 3 5 9 4 No. of Example A, releasing when discharged at a current density of 0. 2mAZc m 2 For capacitance, the ratio of the discharge capacity when discharged at a current density of 2. O mAZc m 2 (high-rate discharge characteristic) is about 50%, it was not possible to obtain sufficient high rate discharge characteristics.
検討を行った電池の電極面積は、 両面を合わせると 8 c m2であり、 容 量は 2 5mAhである。 従って、 電流密度 0. 2mA/c m2は、 1. 6 mAの電流値に相当し、 放電時間は約 1 5. 5時間となる。 一方、 電流 密度 2. O mAZ c m2は、 1 6 m Aの電流値に相当し、 放電時間は約 1. 5時間となる。 The electrode area of the battery studied was 8 cm 2 on both sides, and the capacity was 25 mAh. Therefore, a current density of 0.2 mA / cm 2 corresponds to a current value of 1.6 mA, and the discharge time is about 15.5 hours. On the other hand, the current density of 2. O mAZ cm 2 corresponds to a current value of 16 mA, and the discharge time is about 1.5 hours.
移動体通信機器、 携帯電子機器などでは、 約 2時間の放電時間に相当 する電流密度で電池が使用されることが多い。 しかし、 上記の負極を用 いた電池をそのような条件で使用すると、 放電容量が少なくなるという 問題が生じる。  In mobile communication devices and portable electronic devices, batteries are often used at a current density equivalent to a discharge time of about 2 hours. However, when a battery using the above-described negative electrode is used under such conditions, there is a problem that the discharge capacity is reduced.
このように、 堆積膜からなる電池において高率放電特性が不十分とな る理由として、 シリコンの電子伝導度が低い点が挙げられる。 半導体ハ ンドブック第 2版 (オーム社) によると、 シリコンの抵抗率は 2. 4 X 1 05Ω · c mであるから、 その電子伝導度は 4. 2 X 1 0— 6SZ c mと 低い値になる。 上記の薄膜電極は、 シリコンからなるため、 電子伝導度 が低く、 高率放電特性は不十分になると考えられる。 As described above, the reason why the high-rate discharge characteristics of a battery formed of a deposited film is insufficient is that silicon has a low electronic conductivity. According to the semiconductor Handbook 2nd Edition (Ohm-sha), the resistivity of silicon is 2.4 since X 1 is 0 5 Ω · cm, the electronic conductivity of 4. 2 X 1 0- 6 SZ cm and low become. Since the above-mentioned thin film electrode is made of silicon, it is considered that the electron conductivity is low and the high-rate discharge characteristics are insufficient.
また、 特開 2 0 0 3— 7 2 9 5号公報が開示するシリコンを主体とす る薄膜においては、 金属元素とシリコンとが固溶体を形成している。 固 溶体は、 シリコン固有の物性が反映されやすいことから、 電子伝導度は シリコン固有の値に近くなるものと考えられる。 従って、 特開 2 0 0 3 - 7 2 9 5号公報の薄膜電極も、 十分な高率放電特性を有するものでは ないと考えられる。 発明の開示 本発明は、 以上の事情に鑑みてなされたものであり、 電子伝導度の高 い堆積膜からなり、 高い電気容量を有する非水電解質二次電池用負極、 およびそれを含む高容量で高率放電特性に優れた非水電解質二次電池を 提供することを目的とする。 Further, in a thin film mainly composed of silicon disclosed in Japanese Patent Application Laid-Open No. 2003-72995, a metal element and silicon form a solid solution. Since the solid solution tends to reflect the intrinsic properties of silicon, the electronic conductivity is considered to be close to the intrinsic value of silicon. Therefore, it is considered that the thin-film electrode disclosed in Japanese Patent Application Laid-Open No. 2003-72995 does not have sufficiently high-rate discharge characteristics. Disclosure of the invention The present invention has been made in view of the above circumstances, and comprises a negative electrode for a non-aqueous electrolyte secondary battery having a high electric capacity, which is made of a deposited film having high electron conductivity, and a high capacity and high efficiency including the same. An object is to provide a non-aqueous electrolyte secondary battery having excellent discharge characteristics.
本発明は、 リチウムの吸蔵 ·放出が可能な非水電解質二次電池用負極 であって、 前記負極は、 集電体上に形成された堆積膜からなり、 前記堆 積膜は、 S i単体からなる相と、 S i を含む合金からなる相とを含み、 前記 S i を含む合金は、 S i と、 2 A族元素および遷移金属元素よりな る群から選ばれた少なくとも一種の元素との合金であり、 前記 S i を含 む合金の前記堆積膜中における含有量が、 5体積%以上 9 0体積%以下 である非水電解質二次電池用負極に関する。  The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery capable of inserting and extracting lithium, wherein the negative electrode comprises a deposited film formed on a current collector, and the deposited film comprises Si alone. And a phase consisting of an alloy containing Si, wherein the alloy containing Si contains at least one element selected from the group consisting of a group 2A element and a transition metal element. The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, wherein the content of the alloy containing Si in the deposited film is 5% by volume or more and 90% by volume or less.
なお、 堆積膜は結着剤を含まない。 従って、 活物質および結着剤から なる合剤を液状成分に分散させたスラリーを集電体上に塗工し、 乾燥し て形成される合剤層とは区別される。  The deposited film does not contain a binder. Therefore, it is distinguished from a mixture layer formed by applying a slurry in which a mixture comprising an active material and a binder is dispersed in a liquid component onto a current collector and drying the slurry.
前記 S i を含む合金は、 T i S i 2であることが好ましい。 Alloy containing the S i is preferably a T i S i 2.
前記堆積膜の電子伝導度は 1 S Z c m以上であることが好ましい。 本発明は、 また、 リチウムの吸蔵 ·放出が可能な正極、 上記負極、 お よび前記正極と負極との間に介在する非水電解質を備えた非水電解質二 次電池に関する。  The electron conductivity of the deposited film is preferably 1 SZcm or more. The present invention also relates to a nonaqueous electrolyte secondary battery including a positive electrode capable of inserting and extracting lithium, the above negative electrode, and a nonaqueous electrolyte interposed between the positive electrode and the negative electrode.
本発明によれば、 電子伝導度の高い堆積膜からなり、 高い電気容量を 有する負極が得られる。 また、 このような負極を用いることにより、 高 い電気容量を有し、 高率放電特性に優れた非水電解質二次電池を得るこ とができる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to this invention, the negative electrode which consists of a deposited film with a high electronic conductivity and has a high electric capacity is obtained. Further, by using such a negative electrode, a nonaqueous electrolyte secondary battery having high electric capacity and excellent high-rate discharge characteristics can be obtained. Brief Description of Drawings
図 1は、 本発明の負極の特性を評価するための円筒型電池の縦断面図 である。 FIG. 1 is a longitudinal sectional view of a cylindrical battery for evaluating characteristics of the negative electrode of the present invention. It is.
図 2は、 本発明の負極を構成する堆積膜の電子伝導度を評価するため の試料の作製方法を説明する図である。  FIG. 2 is a view for explaining a method for preparing a sample for evaluating the electron conductivity of a deposited film constituting the negative electrode of the present invention.
図 3は、 本発明の負極を構成する堆積膜の電子伝導度を評価するため の試料の平面図である。 発明を実施するための最良の形態  FIG. 3 is a plan view of a sample for evaluating the electron conductivity of the deposited film constituting the negative electrode of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
半導体ハンドブック第 2版 (オーム社) によれば、 S i単体の抵抗率 は 2. 4 X 1 05Ω · c mであるから、 その電子伝導度は低く、 According to the semiconductor Handbook 2nd Edition (Ohm-sha), because the resistivity of the S i alone 2. a 4 X 1 0 5 Ω · cm , the electronic conductivity is low,
4. 2 X 1 0— 6SZc mとなる。 一方、 PROPERTIES of Metal 4. a 2 X 1 0- 6 SZc m. Meanwhile, PROPERTIES of Metal
Si 1 icides (INSPEC) (Karen Maex, and Marc van Rossum著、 The Si 1 icides (INSPEC) by Karen Maex, and Marc van Rossum, The
Institution of Electrical Engineers, 1 9 9 5年) に記載されている 抵抗率によれば、 S i を含む合金の電子伝導度は高く、 約 1 04SZc m のオーダーである。 例えば T i S i 2の電子伝導度は l X 1 05S/ c m である。 従って、 堆積膜中に、 上記のように電子伝導度の低い S i単体 からなる相と、 電子伝導度の高い S i を含む合金からなる相とを混在さ せることにより、 S i単体のみからなる堆積膜に比べて、 膜の電子伝導 度の向上が期待できる。 According to Institution of Electrical Engineers, 1 9 9 5 years) resistivity that is described in the electronic conductivity of the alloy containing S i is high, on the order of about 1 0 4 SZc m. For example the electronic conductivity of the T i S i 2 is l X 1 0 5 S / cm . Therefore, by mixing a phase composed of Si having a low electron conductivity and a phase composed of an alloy containing Si having a high electron conductivity in the deposited film as described above, It can be expected that the electron conductivity of the film will be higher than that of a deposited film.
事実、 本発明の非水電解質二次電池用負極を構成する堆積膜は、 S i 単体からなる相に加えて、 S i を含む合金からなる相を含んでいること から、 S i単体のみからなる堆積膜もしくは S i を主体とする固溶体か らなる堆積膜に比べて、 飛躍的に良好な電子伝導度を有する。 なお、 S i を含む合金とは、 金属間化合物を意味し、 固溶体を意味するもので はない。 S i単体からなる相は、 実質的に単体であればよく、 S i単体 からなる相には、 リン、 アンチモン、 ボロンなどの不純物がド一プされ ていてもよい。 ここで、 S i を含む合金は、 S i と、 2 A族元素および遷移金属元素 よりなる群から選ばれた少なくとも一種の元素からなる。 2 A族元素と しては、 Mg、 C a、 S rおよび B aが挙げられる。 また、 遷移金属元 素としては、 S c、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 C u、 Y、 Z r、 N b、 Mo、 T c、 R u、 R h、 P d、 A g、 L a、 C e、 P r、 N d、 Pm、 Sm、 E u、 Gd、 T b、 D y、 H o、 E r、 Tm、 Y b、 L u、 H f 、 T a、 W、 R e、 〇 s、 I r、 P tおよび A uが挙 げられる。 In fact, since the deposited film constituting the negative electrode for a non-aqueous electrolyte secondary battery of the present invention contains a phase composed of an alloy containing Si in addition to a phase composed of Si alone, the deposited film consists of only Si. It has much better electron conductivity than a deposited film made of a solid solution mainly composed of Si or a solid solution composed mainly of Si. Note that an alloy containing Si means an intermetallic compound, not a solid solution. The phase composed of a simple substance of Si may be substantially a simple substance, and the phase composed of a simple substance of Si may be doped with impurities such as phosphorus, antimony, and boron. Here, the alloy containing S i comprises S i and at least one element selected from the group consisting of group 2A elements and transition metal elements. 2 Group A elements include Mg, Ca, Sr and Ba. The transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, 〇s, Ir, Pt and Au.
上記元素の中では、 特に、 T i、 V、 Mn、 C o、 N i、 C u、 Y、 Z r、 N b、 M o、 P d、 L a、 H f 、 T a、 W、 P tおよび M ょり なる群から選ばれた少なくとも一種を用いることが好ましい。 このよう な合金は、 特に電子伝導度の高い堆積膜を形成することができ、 高率放 電特性に特に優れた電池を与えるからである。  Among the above elements, in particular, Ti, V, Mn, Co, Ni, Cu, Y, Zr, Nb, Mo, Pd, La, Hf, Ta, W, P It is preferable to use at least one selected from the group consisting of t and M. This is because such an alloy can form a deposited film having particularly high electron conductivity, and gives a battery with particularly excellent high-rate discharge characteristics.
S i を含む合金の堆積膜中における含有量は、 5体積%以上 9 0体積 %以下である。 S i を含む合金の含有量が堆積膜の 9 0体積%ょり大き くなると、 放電容量との相関性の大きい S i単体からなる相の体積割合 が少なくなり、 負極容量が不十分なものとなる。 一方、 S i を含む合金 の含有量が堆積膜の 5体積%未満では、 電子伝導度の高い相の割合が小 さく、 電子伝導度の低い相の割合が大きくなり過ぎ、 堆積膜の電子伝導 度は急激に低くなる。 その結果、 高容量ではあるが、 高率放電特性の不 十分な電池しか得られない。  The content of the alloy containing Si in the deposited film is 5% by volume to 90% by volume. When the content of the alloy containing Si increases by 90% by volume of the deposited film, the volume ratio of the phase composed of Si alone, which has a high correlation with the discharge capacity, decreases, and the negative electrode capacity becomes insufficient. It becomes. On the other hand, when the content of the alloy containing Si is less than 5% by volume of the deposited film, the proportion of the phase having high electron conductivity is too small, and the proportion of the phase having low electron conductivity is too large. The degree drops rapidly. As a result, only batteries with high capacity but insufficient high-rate discharge characteristics can be obtained.
S i を含む合金中における S iの含有量は、 3 3〜 6 7原子%である ことが好ましい。 S i の含有量が上記よりも小さくなると、 S i単体か らなる相から、 S i を含む合金からなる相への S i の拡散が進み、 放電 容量が小さくなる傾向がある。 一方、 S i の含有量が上記よりも大きく なると、 S i を含む合金からなる相の電子伝導度が低くなり、 堆積膜の 電子伝導度が低くなる傾向がある。 The content of Si in the alloy containing Si is preferably 33 to 67 atomic%. When the content of Si is smaller than the above, the diffusion of Si from the phase consisting of Si alone into the phase consisting of the alloy containing Si proceeds, and the discharge capacity tends to decrease. On the other hand, when the content of Si is higher than the above, the electronic conductivity of the phase composed of the alloy containing Si decreases, and the Electronic conductivity tends to be low.
S i を含む合金としては、 T i S i 2、 V S i 2、 M n i , S i 19, Alloys containing Si include Ti Si 2 , VS i 2 , M ni, Si 19 ,
C o S Ϊ 2 , N i S i 2、 C u 3S i、 Y3S "、 Z r S "、 N b S 、 Mo S 、 P d S i、 L a S "、 H f S i 2、 T a S i 2、 WS i 2、 P t S i、 M g 2 S iなどが挙げられる。 これらの中では、 特に C o S Ϊ 2, N i S i 2 , C u 3 S i, Y 3 S ", Z r S", N b S, Mo S, P d S i, La S ", H f S i 2 , T a S i 2 , WS i 2 , P t S i, and M g 2 S i.
T i S i 2を用いることが好ましい。 T i S i 2は、 S i を含む合金の中 では最も高い電子伝導度を有しており、 高率放電特性に最も優れた電池 を与え得るからである。 It is preferable to use the T i S i 2. This is because Ti Si 2 has the highest electron conductivity among alloys containing Si, and can provide a battery having the highest high-rate discharge characteristics.
堆積膜の電子伝導度は 1 S / c m以上、 さらには 3 0 0 S / c m以上 であることが好ましい。 堆積膜の電子伝導度が 1 S/ c m未満では、 高 率放電特性の不十分な電池しか得られないからである。  The electron conductivity of the deposited film is preferably 1 S / cm or more, more preferably 300 S / cm or more. If the electron conductivity of the deposited film is less than 1 S / cm, only batteries with insufficient high-rate discharge characteristics can be obtained.
堆積膜を作製する方法としては、 薄膜を得ることのできる方法であれ ば、 特に限定なく採用することができる。 例えば、 真空蒸着法、 化学的 気相成長法 (CVD法) 、 スパッタ法、 溶射法、 メツキ法などが挙げら れるが、 これらに限定されない。  As a method for producing a deposited film, any method can be employed without particular limitation as long as a method capable of obtaining a thin film can be employed. Examples include, but are not limited to, vacuum deposition, chemical vapor deposition (CVD), sputtering, thermal spraying, and plating.
堆積膜中に、 S i単体からなる相と、 S i を含む合金相とを混在させ る方法としては、 特に限定はないが、 例えば以下が挙げられる。 例えば. C VD法を採用する場合には、 S iの原料ガス中に、 所定の元素を含む 原料ガスを混合し、 得られた混合ガスを分解して、 集電体上に分解生成 物からなる堆積膜を形成する。 また、 スパッタリングを採用する場合に は、 S iのターゲッ トと所定の元素のターゲッ トとを所定位置に配置し て、 スパッタリングにより、 集電体上に堆積膜を形成する。 また、 真空 蒸着法の場合には、 S i のソースと所定の元素のソースとを所定位置に 配置して、 蒸着により、 集電体上に堆積膜を形成する。  A method for mixing a phase composed of Si alone and an alloy phase containing Si in the deposited film is not particularly limited, and examples thereof include the following. For example, when the CVD method is adopted, a raw material gas containing a predetermined element is mixed with the raw material gas of Si, and the obtained mixed gas is decomposed, and the decomposition product is formed on the current collector from the decomposition product. A deposited film is formed. In the case of employing sputtering, a target of Si and a target of a predetermined element are arranged at predetermined positions, and a deposited film is formed on the current collector by sputtering. In the case of the vacuum evaporation method, a source of Si and a source of a predetermined element are arranged at predetermined positions, and a deposition film is formed on the current collector by evaporation.
堆積膜中における S i を含む合金からなる相の含有量を大きくする観 点からは、 堆積膜を形成する際の集電体の温度を、 6 0 0 °C以下、 さら には 2 0 0 ° (:〜 6 0 0 °Cに制御することが好ましい。 また、 同様の観点 から、 形成された堆積膜を、 6 0 0 以下、 さらには 2 0 0 °C〜 6 0 0 °Cで加熱処理してもよい。 その際の加熱時間は、 0 . 5〜 3時間である ことが好ましく、 加熱処理の雰囲気は、 A rガスなどからなる不活性ガ ス雰囲気であることが好ましい。 なお、 集電体温度や加熱温度が 6 0 0 °Cを超えると、 温度が高すぎるため、 集電体成分が堆積膜中へ拡散し、 リチウムと反応しない非反応性の金属間化合物を形成するため、 容量が 減少する傾向がある。 さらに、 過度の拡散によって、 集電体部分が減少 し、 電極自体の機械的強度が低下して、 電極が破損しやすくなる。 From the viewpoint of increasing the content of the phase composed of the alloy containing Si in the deposited film, the temperature of the current collector at the time of forming the deposited film should be set to 600 ° C or less. It is preferable to control the temperature to 200 ° C. (: up to 600 ° C.) From the same viewpoint, the formed deposited film is reduced to 600 ° C. or less, and more preferably to 200 ° C. to 600 ° C. The heat treatment may be performed at 0 ° C. The heating time at that time is preferably 0.5 to 3 hours, and the atmosphere of the heat treatment is an inert gas atmosphere made of Ar gas or the like. If the current collector temperature or the heating temperature exceeds 600 ° C., the temperature is too high, so that the current collector component diffuses into the deposited film, and the non-reactive metal which does not react with lithium. The capacity of the compound tends to decrease due to the formation of the compound, and excessive diffusion reduces the current collector portion, lowers the mechanical strength of the electrode itself, and makes the electrode more susceptible to breakage.
本発明においては、 例えば、 銅、 ニッケル、 ステンレス鋼、 チタンな どからなる集電体を用いることができる。 集電体は、 負極電位において 電気化学的に安定であり、 薄く、 かつ、 丈夫であることが好ましく、 厚 さは 8〜 3 5 / mであることが好ましい。 集電体の形状は特に限定され ない。 例えば、 集電体の表面は平滑ではなく、 凹凸を有してもよい。 集 電体としては、 特に電解銅箔などの金属箔を用いることが好ましく、 そ の表面は粗面化されていてもよい。  In the present invention, for example, a current collector made of copper, nickel, stainless steel, titanium, or the like can be used. The current collector is preferably electrochemically stable at the negative electrode potential, thin and durable, and preferably has a thickness of 8 to 35 / m. The shape of the current collector is not particularly limited. For example, the surface of the current collector may not be smooth but may have irregularities. As the current collector, it is particularly preferable to use a metal foil such as an electrolytic copper foil, and the surface thereof may be roughened.
集電体の両面に堆積膜を形成する場合、 両面の堆積膜の合計厚さは、 集電体の厚さの 1 0 %以上 6 0 %以下であることが好ましい。 前記合計 厚さが集電体の厚さの 1 0 %未満では、 負極容量が不十分となり、 電池 容量が減少する傾向がある。 一方、 前記合計厚さが集電体の厚さの 6 0 %を超えると、 堆積膜が膨張するときに、 集電体を損傷する可能性があ り、 良好なサイクル寿命特性を得にくくなる。 なお、 前記合計厚さは、 集電体の厚さの 4 0 %以下であることが、 堆積膜が膨張するときに集電 体の変形が起こりにく く、 さらに良好なサイクル寿命特性が得られる点 で、 さらに好ましい。  When the deposited films are formed on both surfaces of the current collector, the total thickness of the deposited films on both surfaces is preferably 10% or more and 60% or less of the thickness of the current collector. If the total thickness is less than 10% of the thickness of the current collector, the capacity of the negative electrode becomes insufficient, and the battery capacity tends to decrease. On the other hand, if the total thickness exceeds 60% of the thickness of the current collector, the current collector may be damaged when the deposited film expands, and it is difficult to obtain good cycle life characteristics. . When the total thickness is not more than 40% of the thickness of the current collector, the current collector is less likely to be deformed when the deposited film expands, and further excellent cycle life characteristics can be obtained. Is more preferable in that
S i単体からなる相の結晶状態は、 非晶質もしくは微結晶である方が 好ましい。 理由は明らかではないが、 S i単体からなる相の結晶状態が 非晶質もしくは微結晶であると、 より良好なサイクル寿命特性が得られ るからである。 The crystalline state of the phase composed of Si alone is amorphous or microcrystalline. preferable. Although the reason is not clear, better cycle life characteristics can be obtained if the crystalline state of the phase composed of Si alone is amorphous or microcrystalline.
上記負極を用いて非水電解質二次電池を作製する際に用いる非水電解 質の非水溶媒としては、 特に限定されないが、 エチレンカーボネート、 プロピレンカーボネ一卜、 ブチレンカーボネー卜、 ビニレンカーボネー トなどの環状カーボネートと、 ジメチルカーボネート、 メチルェチルカ ーボネート、 ジェチルカ一ボネ一トなどの鎖状力一ボネ一トとの混合溶 媒が好ましい。 また、 非水溶媒には、 1, 2—ジメトキシェタン、 1, 2—ジェトキシェ夕ンなどのエーテル系溶媒、 τーブチロラク トン、 ァ ーバレロラク トン等の環状カルボン酸エステル、 スルホラン、 酢酸メ チル等の鎖状エステル等を用いることもできる。  The non-aqueous solvent of the non-aqueous electrolyte used when producing the non-aqueous electrolyte secondary battery using the above-mentioned negative electrode is not particularly limited, but ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like. A mixed solvent of a cyclic carbonate such as dimethyl carbonate, a methyl carbonate, a methyl carbonate, and a chain force carbonate such as getyl carbonate is preferred. Non-aqueous solvents include ether solvents such as 1,2-dimethoxyethane and 1,2-jetoxene, cyclic carboxylate esters such as τ-butyrolactone and avalerolactone, sulfolane, and methyl acetate. A chain ester or the like can also be used.
非水溶媒に溶解させる溶質としては、 L i P F6、 L i B F4The solute dissolved in the non-aqueous solvent, L i PF 6, L i BF 4,
L i C F3S 03、 L i N (C F3S 02) L i N (C2F5S 02) 2L i CF 3 S 0 3 , L i N (CF 3 S 0 2 ) L i N (C 2 F 5 S 0 2 ) 2 ,
L i N ( C F sS 02) ( C 4F 9S 02) 、 L i C ( C F 3S O2) 3L i N (CF sS 0 2 ) (C 4 F 9 S 0 2 ), L i C (CF 3 S O2) 3 ,
L i C (C2F5S O2) 3、 L i A s F6、 L i C 1 〇4、 L i 2B 10C 、 L i 2B 12C 1 などが挙げられる。 L i C (C 2 F 5 S O2) 3, L i A s F 6, L i C 1 〇 4, L i 2 B 10 C , and the like L i 2 B 12 C 1.
また、 非水電解質には、 無機固体電解質、 有機固体電解質、 固体ポリ マー電解質、 ポリマー材料に電解液を保持させたゲルポリマ一電解質な どを用いることもできる。  Further, as the non-aqueous electrolyte, an inorganic solid electrolyte, an organic solid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte in which an electrolyte is held in a polymer material, and the like can be used.
上記負極と組み合わせる正極としては、 特に限定されないが、 正極活 物質として L i C o〇2、 L i N i 02、 L i M n2〇4、 L i M n〇2、 L i C o 0.5N i o.502、 L i N i 0.7C o 0.2M n (uC などのリチウム含有遷移 金属酸化物を含むものが好ましく用いられる。 The positive electrode to be combined with the above-mentioned negative electrode is not particularly limited. However, as the positive electrode active material, Li Co 2 , Li Ni 0 2 , Li M n 2 4, Li M n 2, and Li Co 2 0.5N i o. 5 0 2, are preferably used those containing L i n i 0.7C o 0.2M n ( lithium-containing transition metal oxides such as uC.
以下に、 本発明を実施例に基づいて具体的に説明する。 ただし、 本発 明はこれらの実施例に限定されるものではない。 実施例 1 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to these examples. Example 1
(ィ) 負極の作製  (A) Preparation of negative electrode
集電体には電解銅箔 (古河サーキッ トフオイル (株) 製、 厚さ 3 1 li ) を用いた。 塊状 S i (高純度化学 (株) 製、 純度 9 9. 9 9 9 %) と塊状 T i S i 2 (高純度化学 (株) 製、 純度 9 9. 9 9 9 %) とを. 2元蒸着法によって同時に蒸発させて、 堆積膜を成膜した。 Electrodeposited copper foil (31 li thick, manufactured by Furukawa Circuit Oil Co., Ltd.) was used as the current collector. Massive S i (Pure Chemical Co., Ltd., purity 9 9.9 9 9%) and bulk T i S i 2 (Pure Chemical Co., Ltd., purity 9 9.9 9 9%) and a. 2 Co-evaporation was performed simultaneously by the original evaporation method to form a deposited film.
具体的には、 約 0. 0 0 0 0 3 T o r rの真空中で、 塊状 T i S i 2を - 8 k Vの加速電圧、 電流 2 5 0 m Aの条件の電子ビームで蒸発させ、 それと同時に、 塊状 S i を一 8 k Vの加速電圧、 電流 1 5 0 mAの電子 ビームで蒸発させた。 そして、 室温の電解銅箔の両面上に、 厚さ約 Specifically, about 0. 0 0 0 0 3 T in vacuum orr, the bulk T i S i 2 - accelerating voltage of 8 k V, evaporated with an electron beam conditions of current 2 5 0 m A, At the same time, the massive Si was evaporated with an electron beam with an accelerating voltage of 18 kV and a current of 150 mA. And on both sides of the room temperature electrolytic copper foil, the thickness is about
5 mの薄膜を堆積させ、 負極 A 1 とした。 このとき、 堆積膜の組成が、 T i S i 3となるように、 条件を適宜制御した。 A thin film of 5 m was deposited to obtain a negative electrode A1. At this time, the conditions were appropriately controlled so that the composition of the deposited film was TiSi3.
得られた堆積膜に含まれる相の定性および定量を後述の方法で行った ところ、 2種以上の相の存在が確認できた。 また、 堆積膜中には S i単 体からなる相と、 S i を含む合金 (T i S i 2) からなる相が含まれてお り、 膜中における S i を含む合金の含有量は、 1 1体積%であった。 When the qualitative and quantitative determinations of the phases contained in the obtained deposited film were performed by the methods described below, the presence of two or more phases was confirmed. The deposited film contains a phase composed of Si alone and a phase composed of an alloy containing Si (T i Si 2 ). The content of the alloy containing Si in the film is as follows. , 11% by volume.
(口) 正極の作製  (Mouth) Preparation of positive electrode
正極活物質としてのコバルト酸リチウム (L i C o〇2) 粉末 8 5重量 部と、 導電剤としての炭素粉末 1 0重量部と、 結着剤としての P V d F 5重量部とを混合し、 得られた合剤を、 脱水 N—メチル— 2 _ピロリ ド ン (NMP) に分散させて、 スラリーを調製した。 このスラリーを正極 集電体としてのアルミニウム箔に塗布し、 乾燥し、 圧延して、 正極を作 製した。 Lithium cobaltate (L i C O_〇 2) powder 8 5 parts by weight of the positive electrode active material, a carbon powder 1 0 part by weight as a conductive agent, and a PV d F 5 parts by weight of a binder were mixed The resulting mixture was dispersed in dehydrated N-methyl-2-pyrrolidone (NMP) to prepare a slurry. This slurry was applied to an aluminum foil as a positive electrode current collector, dried, and rolled to produce a positive electrode.
(八) 非水電解液の調製  (8) Preparation of non-aqueous electrolyte
エチレンカーボネートとェチルメチルカーボネートとの体積比 1 : 1 の混合溶媒に、 L i P F 6を濃度 1モルノリッ トルで溶解して非水電解液 を調製した。 Volume ratio of ethylene carbonate to ethyl methyl carbonate 1: 1 In a mixed solvent, and the L i PF 6 was prepared a non-aqueous electrolyte solution at a concentration 1 Morunori' Torr.
(八) 非水電解質二次電池の組立  (8) Assembly of non-aqueous electrolyte secondary battery
図 1は、 組み立てた非水電解質二次電池の縦断面図である。 この電池 は、 以下の要領で組み立てた。 正極 1 と負極 2とを、 セパレー夕 3を間 に配して重ね、 渦巻き状に巻回して、 電極体を作製した。 正極および負 極には、 予め正極リード 4および負極リード 5を接続しておいた。 電極 体の上下に上部絶縁リング 9 aおよび下部絶縁リング 9 bを配して、 ス テンレス鋼製の電池ケース 7の内部に収納した。 正極リ一ド 4は封口板 6に、 負極リード 5は電池ケース 7の底部に、 それぞれ接続した。 その 後、 電池ケース 7内に非水電解液を注液した。 次に、 電池ケース 7の開 口を、 絶縁パッキング 8を介して、 安全弁を備える封口板 6により閉蓋 し、 封口処理して、 直径 1 8 mm、 高さ 6 5 m mの円筒形の密閉型リチ ゥム二次電池 A 1を組み立てた。 なお、 非水電解質二次電池の組立は、 露点が一 5 0 °C以下に調節された乾燥空気の雰囲気下で行った。 実施例 2  FIG. 1 is a longitudinal sectional view of the assembled nonaqueous electrolyte secondary battery. This battery was assembled as follows. The positive electrode 1 and the negative electrode 2 were stacked with Separation Layer 3 interposed therebetween, and spirally wound to produce an electrode body. The positive electrode lead 4 and the negative electrode lead 5 were connected to the positive electrode and the negative electrode in advance. An upper insulating ring 9a and a lower insulating ring 9b were arranged above and below the electrode body, and were housed inside a stainless steel battery case 7. The positive electrode lead 4 was connected to the sealing plate 6, and the negative electrode lead 5 was connected to the bottom of the battery case 7. Thereafter, a non-aqueous electrolyte was injected into the battery case 7. Next, the opening of the battery case 7 is closed with a sealing plate 6 provided with a safety valve via an insulating packing 8, and the sealing process is performed to form a cylindrical hermetic type having a diameter of 18 mm and a height of 65 mm. The rechargeable battery A1 was assembled. The assembly of the nonaqueous electrolyte secondary battery was performed in an atmosphere of dry air whose dew point was adjusted to 150 ° C or less. Example 2
実施例 1で得られた堆積膜を、 不活性ガス (A r ) 雰囲気中で、  The deposited film obtained in Example 1 was deposited in an inert gas (Ar) atmosphere.
3 0 0 °Cで 1時間熱処理し、 負極 A 2とした。 熱処理後の堆積膜に含ま れる相の定性および定量を後述の方法で行ったところ、 堆積膜中には S i単体からなる相と、 S i を含む合金 (T i S i 2 ) からなる相が含ま れており、 膜中における S i を含む合金の含有量は 6 9体積%であった。 次に、 負極 A 2を用いたこと以外、 実施例 1 と同様にして、 非水電解質 二次電池 A 2を作製した。 実施例 3 ' 電解銅箔 (古河サーキッ トフオイル (株) 製、 厚さ 3 1 m) の両面 上に薄膜を堆積させる際に、 その電解銅箔を 3 0 0 °Cに加熱したこと以 外、 実施例 1 と同様の蒸着条件を用いて、 厚さ約 5 x mの堆積膜を有す る負極 A 3を得た。 Heat treatment was performed at 300 ° C. for 1 hour to obtain a negative electrode A2. The qualitative and quantitative analysis of the phases contained in the deposited film after the heat treatment was carried out by the methods described below. The deposited film contained a phase consisting of Si alone and a phase consisting of an alloy containing Si (T i Si 2 ). Was contained, and the content of the alloy containing Si in the film was 69% by volume. Next, a non-aqueous electrolyte secondary battery A2 was produced in the same manner as in Example 1, except that the negative electrode A2 was used. Example 3 ' When depositing thin films on both sides of electrolytic copper foil (made by Furukawa Circuit Oil Co., Ltd., thickness 31 m), except that the electrolytic copper foil was heated to 300 ° C. Using the same deposition conditions, a negative electrode A3 having a deposited film with a thickness of about 5 xm was obtained.
このとき、 堆積膜の組成が、 T i S i 3となるように、 真空蒸着の条件 を適宜制御した。 得られた堆積膜に含まれる相の定性および定量を後述 の方法で行ったところ、 S i単体からなる相と、 S i を含む合金 In this case, the composition of the deposited film, such that T i S i 3, were appropriately controlled conditions of vacuum deposition. The qualitative and quantitative analysis of the phases contained in the obtained deposited film was performed by the methods described below.
(T i S i 2) からなる相が含まれており、 膜中における S i を含む合金 の含有量は 6 5体積%であった。 次に、 負極 A 3を用いたこと以外、 実 施例 1 と同様にして、 非水電解質二次電池 A 3を作製した。 比較例 1 A phase composed of (T i Si 2 ) was contained, and the content of the alloy containing Si in the film was 65% by volume. Next, a non-aqueous electrolyte secondary battery A3 was produced in the same manner as in Example 1, except that the negative electrode A3 was used. Comparative Example 1
S i 夕一ゲッ ト (高純度化学 (株) 製、 純度 9 9. 9 9 9 9 %) を用 いる 2極 R Fスパッタリングにより、 実施例 1で用いたのと同じ電解銅 箔の両面上に、 厚さ約 5 の S i薄膜を堆積させ、 負極 X 1 とした。 ここでは、 スパッ夕ガスとして A rを用い、 高周波電力 2 0 0 W、 真空 度 0. l T o r r 、 A r流量 1 5 0 s c c m、 基板温度室温の条件下で 上記スパッタリングを行った。  The same electrodeposited copper foil used in Example 1 was applied on both sides of the same electrodeposited copper foil as used in Example 1 by two-pole RF sputtering using Si Yuichi Get (manufactured by Kojundo Chemical Co., Ltd., purity: 99.99.99%). Then, an Si thin film having a thickness of about 5 was deposited to obtain a negative electrode X1. Here, Ar was used as the sputtering gas, and the above sputtering was performed under the conditions of high-frequency power of 200 W, vacuum degree of 0.1 lT rr, Ar flow rate of 150 sccm, and substrate temperature of room temperature.
次に、 負極 X 1を用いたこと以外、 実施例 1 と同様にして、 非水電解 質二次電池 X 1を作製した。 比較例 2  Next, a non-aqueous electrolyte secondary battery X1 was produced in the same manner as in Example 1, except that the negative electrode X1 was used. Comparative Example 2
原料ガスとして、 それぞれ H2で希釈された S i H 4と P H3とを用いて. C VD法により、 実施例 1で用いたのと同じ電解銅箔の両面上に、 厚さ 約 5 mの Pをドープした S i薄膜を堆積させ、 負極 X 2とした。 Using S i H 4 and PH 3 each diluted with H 2 as the source gas. By C VD method, on both sides of the same electrolytic copper foil as used in Example 1, a thickness of about 5 m A P-doped Si thin film was deposited to form a negative electrode X2.
ここでは、 H2と S i H4との混合ガス (S i H4含有量 1 0 %、 日本酸 素 (株) 製、 純度 9 9. 9 9 9 9 %) と、 H2と P H3との混合ガスHere, a mixed gas of H 2 and S i H 4 (S i H 4 content: 10%, A mixed gas of hydrogen, Ltd., a purity 9 9.9 9 9 9%), H 2 and PH 3
(PH3含有量 1 0 %、 日本酸素 (株) 製、 純度 9 9. 9 9 9 9 %) とを それぞれ l O O s c c mおよび 2 s c c mの流量で供給し、 2 T o r r の圧力下で C VD法を行い、 ヒータで 2 0 0 °Cに加熱された電解銅箔の 両面上に薄膜を堆積させた。 (PH 3 content: 10%, manufactured by Nippon Sanso Co., Ltd., purity: 99.99.99%) at a flow rate of lOOsccm and 2sccm, respectively, and CVD under a pressure of 2 Torr. A thin film was deposited on both sides of the electrolytic copper foil heated to 200 ° C. by a heater.
次に、 負極 X 2を用いたこと以外、 実施例 1 と同様にして、 非水電解 質二次電池 X 2を作製した。 比較例 3  Next, a nonaqueous electrolyte secondary battery X2 was produced in the same manner as in Example 1 except that the negative electrode X2 was used. Comparative Example 3
集電体には電解銅箔 (厚さ 1 4 /im) を用いた。 黒鉛粉末と、 結着剤 となるポリフッ化ビニリデン (P V d F) とを、 重量比 9 5 : 5で混合 し、 得られた合剤を、 脱水 NMPに分散させて、 スラリーを調製した。 このスラリーを電解銅箔の両面上に塗布し、 乾燥した後、 圧延して、 負 極 X 3を得た。 次に、 負極 X 3を用いたこと以外、 実施例 1 と同様にし て、 非水電解質二次電池 X 3を作製した。  Electrodeposited copper foil (thickness 14 / im) was used for the current collector. Graphite powder and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 5, and the resulting mixture was dispersed in dehydrated NMP to prepare a slurry. This slurry was applied on both sides of an electrolytic copper foil, dried, and then rolled to obtain a negative electrode X3. Next, a non-aqueous electrolyte secondary battery X3 was produced in the same manner as in Example 1 except that the negative electrode X3 was used.
[評価] [Evaluation]
〔 a〕 堆積膜の相の定性  [A] Qualitative properties of deposited film phase
各堆積膜に含まれる相の定性には、 広角 X線回折法を用いた。 波長 1. 5 4 0 5オングストロームの C u Kひ線を線源とする広角 X線回折 装置 (理学電機 (株) 製、 商品コード 「R I NT— 2 5 0 0」 ) を用い て、 回折角 2 0 = 1 0 ° 〜 8 0 ° の範囲における回折パターンを測定し、 相の定性を行った。  Wide-angle X-ray diffraction was used to qualify the phases contained in each deposited film. Diffraction angle using a wide-angle X-ray diffractometer (product code "RINT-2500", manufactured by Rigaku Denki Co., Ltd.) using a Cu K line at a wavelength of 1.5405 angstroms as a source. The diffraction pattern in the range of 20 = 10 ° to 80 ° was measured to determine the phase.
〔b〕 S i を含む合金からなる相の含有量 (体積%)  [B] Content of phase composed of alloy containing Si (volume%)
各堆積膜の断面 (S) の E PMA分析から、 S i を含む合金からなる 相を確認し、 確認された相の断面 ( s ) の、 断面 (S) の全体に対する 面積割合を算出し、 その値を体積%とした。 From the PMA analysis of the cross section (S) of each deposited film, the phase composed of the alloy containing Si was confirmed, and the cross section (s) of the confirmed phase was compared with the entire cross section (S). The area ratio was calculated, and the value was defined as volume%.
〔c〕 堆積膜の電子伝導度  [C] Electronic conductivity of deposited film
各堆積膜の電子伝導度は、 四探針法により測定した。  The electron conductivity of each deposited film was measured by the four probe method.
図 2に示すように、 5 c mx 5 c mの電解銅箔 1 1上に、 中心部に 1 c m X 1 c mの穴を有する 5 c m X 5 c mの電解銅箔 1 0を重ねた。 その上に、 負極の作製で示した条件と同条件で厚さ 5 mの薄膜を作製 した。  As shown in FIG. 2, a 5 cm × 5 cm electrolytic copper foil 10 having a 1 cm × 1 cm hole in the center was superimposed on a 5 cm × 5 cm electrolytic copper foil 11. On top of this, a 5 m-thick thin film was prepared under the same conditions as those described for the preparation of the negative electrode.
次に、 穴が開いていない方の電解銅箔 1 1を、 図 3に示すように、 薄 膜が形成された領域 1 2を含む l c mx 2 c mの大きさに切り出した。 薄膜が形成された領域 1 2と、 薄膜の存在しない銅箔領域 1 3とに、 そ れぞれ電流端子と電圧端子を接触させた。 なお、 電流端子と電圧端子と の間の距離は 5 mm、 電圧端子間の距離は 5 mmで固定した。  Next, as shown in FIG. 3, the electrodeposited copper foil 11 having no hole was cut into a size of lcmx2cm including a region 12 where a thin film was formed. The current terminal and the voltage terminal were brought into contact with the region 12 where the thin film was formed and the copper foil region 13 where the thin film did not exist, respectively. The distance between the current and voltage terminals was fixed at 5 mm, and the distance between the voltage terminals was fixed at 5 mm.
〔d〕 電池の高率放電特性  [D] High-rate discharge characteristics of batteries
各電池を、 充放電温度 2 0 °Cで、 0. 6 Aの電流で 4. 2 Vまで充電 した後、 0. 4 Aの電流で 2. 5 Vまで放電して、 放電容量 C 1を め た。  Each battery was charged to 4.2 V with a current of 0.6 A at a charge / discharge temperature of 20 ° C, and then discharged to 2.5 V with a current of 0.4 A to reduce the discharge capacity C 1 I did.
次いで、 0. 6 Aの電流で 4. 2 Vまで充電した後、 4 Aの電流で 2. 5 Vまで放電して、 放電容量 C 2を求めた。  Next, after charging to 4.2 V with a current of 0.6 A, the battery was discharged to 2.5 V with a current of 4 A, and a discharge capacity C 2 was obtained.
放電容量 C 1に対する放電容量 C 2の比率 P ( ) を下式に基づき算 出して、 各電池の高率放電特性を評価した。 Pの値が大きい電池ほど、 高率放電特性が良い電池である。 Pの値が 8 5 %以上であれば、 良好な 高率放電特性であると言える。  The ratio P () of the discharge capacity C2 to the discharge capacity C1 was calculated based on the following equation, and the high-rate discharge characteristics of each battery were evaluated. A battery with a higher P value has a higher high-rate discharge characteristic. If the value of P is 85% or more, it can be said that good high-rate discharge characteristics are obtained.
P (%) = (C 2 ZC 1 ) X 1 0 0  P (%) = (C 2 ZC 1) X 1 0 0
実施例 1〜 3および比較例 1〜 3の構成ならびに各試験の結果を表 1 に示す。 表 1 Table 1 shows the configurations of Examples 1 to 3 and Comparative Examples 1 to 3 and the results of each test. table 1
Figure imgf000017_0001
Figure imgf000017_0001
* Pド—フ。 S i  * P dough. S i
表 1において、 本発明の実施例の電池 A 1〜A 3は、 黒鉛合剤からな る負極を具備する比較例の電池 X 3に比べて高容量である。 また、 電池 A 1〜A 3は、 S i単体相や Pをドープした S i相からなる負極を具備 する比較例の電池 X 1および X 2に比べて、 高率放電特性が優れている。 また、 堆積膜における S i を含む合金の含有量が特に多い電池 A 2およ び A 3では、 その含有量の少ない電池 A 1に比べて、 高率放電特性が優 れている。 In Table 1, the batteries A1 to A3 of the examples of the present invention have higher capacities than the battery X3 of the comparative example including the negative electrode made of the graphite mixture. Batteries A1 to A3 also have superior high-rate discharge characteristics as compared with batteries X1 and X2 of Comparative Examples each having a negative electrode composed of a Si single phase or a P-doped Si phase. Also, batteries A2 and A3, in which the content of the alloy containing Si in the deposited film is particularly large, are superior to the battery A1, in which the content is small, in the high-rate discharge characteristics.
堆積膜における S iを含む合金の含有量は、 負極 A 1および A 2で、 それぞれ 1 1体積%および 6 9体積%であることから、 堆積膜の加熱処 理を行った方が S i を含む合金の含有量が大きくなることがわかる。 こ れは、 加熱処理を行わない堆積膜では、 S iの結晶構造に溶解した状態 の T i の割合、 すなわち S i と T iの固溶体の割合が大きくなり、 金属 間化合物である T i S i 2の含有量が少なくなるためと考えられる。 また. 3 0 0 °Cに加熱された電解銅箔上に形成された堆積膜においても、 S i と T i の固溶体の割合は減少し、 S i を含む合金の含有量は 6 5体積% であり、 堆積膜の加熱処理を行った場合とほぼ同等であった。 Since the content of the alloy containing Si in the deposited film was 11% by volume and 69% by volume in the negative electrodes A1 and A2, respectively, the heat treatment of the deposited film reduced the Si. It can be seen that the content of the contained alloy increases. This is because, in a deposited film that is not subjected to heat treatment, the proportion of Ti dissolved in the crystal structure of Si, that is, the proportion of solid solution of Si and Ti becomes large, and the intermetallic compound Ti S It is considered that the content of i 2 is reduced. Also, in the deposited film formed on the electrolytic copper foil heated to 300 ° C, the ratio of the solid solution of Si and Ti decreased, and the content of the alloy containing Si was 65% by volume. This was almost equivalent to the case where the heat treatment of the deposited film was performed.
S i の電子伝導度は 4 . 2 X 1 0— 6 S Z c mと低いが、 T i S i 2を約 1 1体積%含む堆積膜の電子伝導度は、 7 . 5 X 1 0 2 S Z c m (実施例 1 ) であり、 電子伝導度は飛躍的に向上している。 T i S i 2の電子伝導 度は 1 X 1 05S/c mである。 このことから、 電子伝導度の高い合金を 堆積膜に含有させることにより、 合金の体積割合が比較的小さい場合で あっても、 飛躍的な電子伝導度の向上が得られることがわかる。 また、 T i S i 2を約 6 9体積%および 6 5体積%含む堆積膜の電子伝導度は、 それぞれ 3. 5 X 1 03 S / c m (実施例 2 ) および S i is the electron conductivity of four. 2, but X 1 0- 6 SZ cm and lower, T i S i 2 electron conductivity of the deposited film containing about 1 1% by volume, 7. 5 X 1 0 2 SZ cm (Example 1), and the electron conductivity is dramatically improved. Electronic conductivity of the T i S i 2 is 1 X 1 0 5 S / cm . This indicates that the inclusion of an alloy with high electron conductivity in the deposited film can provide a dramatic improvement in electron conductivity even when the volume ratio of the alloy is relatively small. The electronic conductivity of the deposited film containing about 69% by volume and 65% by volume of T i Si 2 was 3.5 × 10 3 S / cm (Example 2) and
3. 3 X 1 03S/ c m (実施例 3 ) であることから、 電子伝導度の高い 合金の含有量が大きい方が、 より電子伝導度が向上することがわかる。 また、 堆積膜における電子伝導度の高い合金の含有量が大きいほど、 高 率放電特性に優れた電池が得られることがわかる。 3. It is 3 X 1 0 3 S / cm ( Example 3), towards the content of high electron conductivity alloy is large, it can be seen that the more electron conductivity is improved. It can also be seen that the higher the content of the alloy having high electron conductivity in the deposited film, the more excellent the battery with high rate discharge characteristics can be obtained.
堆積膜が S i単体のみからなる負極 X 1では、 堆積膜の電子伝導度が 8 X 1 0— 5S/c mと低いことから、 電池 X 1の高率放電特性は In the negative electrode X 1 deposited film composed only of S i alone, since the electronic conductivity of the deposited film 8 X 1 0- 5 S / cm and less, high rate discharge characteristics of the battery X 1 is
34. 1 %と不十分であった。 一方、 堆積膜が Pをドープした S iのみ からなる負極 X 2では、 堆積膜の電子伝導度が 5 X 1 0— ] SZc mであ り、 比較例 1に比べて高くなつた。 しかし、 本発明の実施例に比べれば かなり低く、 高率放電特性は 7 0. 9 %と不十分であった。 実施例 4 34.1% was insufficient. On the other hand, in the negative electrode X2 in which the deposited film was composed of only Si doped with P, the electron conductivity of the deposited film was 5 × 10— ] SZcm, which was higher than that in Comparative Example 1. However, it was considerably lower than the example of the present invention, and the high-rate discharge characteristic was insufficient at 70.9%. Example 4
本実施例では、 S i を含む合金の種類について検討した。  In this example, the type of alloy containing Si was examined.
塊状 T i S i 2の代わりに、 V S i 2、 Mn S i 2、 C o S i 2Instead of the massive T i S i 2, VS i 2, Mn S i 2, C o S i 2,
N i S 、 C u 3S i、 Y 3 S i s, Z r S 、 N b S 、 Mo S i 2、 P d S i、 L a S i 2、 H f S i 2、 T a S i 2、 WS i 2、 P t S i また は M g 2S i を用いたこと以外は、 実施例 1 と同様の方法により、 堆積膜 を作製した。 ただし、 負極 A 2 0においては塊状 S i、 塊状 C o S i 2お よび塊状 N i S i 2を、 それぞれ 3つの電子ビームで蒸発させた。 N i S, C u 3 S i, Y 3 S is, Z r S, N b S, Mo S i 2, P d S i, L a S i 2, H f S i 2, T a S i 2 , also WS i 2, P t S i except for using M g 2 S i, in the same manner as in example 1, to prepare a deposited film. However, in the negative electrode A 20, the massive Si, the massive Co Si 2 and the massive Ni Si 2 were evaporated by three electron beams, respectively.
このとき、 表 2に示す堆積膜の組成が得られるように、 真空蒸着の条 件を適宜制御した。 また、 真空蒸着後の堆積膜に対し、 2 0 0 °C〜At this time, vacuum deposition was performed so that the composition of the deposited film shown in Table 2 was obtained. The matter was appropriately controlled. In addition, the temperature of the deposited film after vacuum
6 0 0 °Cの範囲において、 それぞれ最適な加熱温度で、 真空中で 1時間 の加熱処理を行って、 負極 A 4 A 2 0を得た。 Negative electrode A4A20 was obtained by performing a heat treatment for 1 hour in a vacuum at an optimum heating temperature in a range of 600 ° C.
なお、 6 0 0 °Cを超える温度による加熱処理も試みたが、 集電体であ る C uが過度に堆積膜中に拡散してしまい、 負極の少なくとも一部に崩 壌が見られた。  Heat treatment at a temperature exceeding 600 ° C was also attempted, but Cu, a current collector, was excessively diffused into the deposited film, and at least a part of the negative electrode was broken. .
堆積膜に含まれる相の定性および定量を前述の方法で行ったところ、 2種以上の相の存在が確認できた。 また、 堆積膜中には S i単体からな る相と、 表 2に示すような S iを含む合金からなる相が含まれていた。 堆積膜中における S i を含む合金の含有量は、 表 2に示す通りであった < 次に、 負極 A 4〜A 2 0を用いたこと以外、 実施例 1と同様にして、 非水電解質二次電池 A 4〜A 2 0を作製した。 また、 上記と同様の評価 を行った。 結果を表 2に示す。 表 2 放電 放電  The qualitative and quantitative analysis of the phases contained in the deposited film was performed by the above-mentioned method, and it was confirmed that two or more types of phases were present. The deposited film contained a phase composed of Si alone and a phase composed of an alloy containing Si as shown in Table 2. The content of the alloy containing Si in the deposited film was as shown in Table 2. <Next, the non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the negative electrodes A4 to A20 were used. Secondary batteries A4 to A20 were produced. The same evaluation as above was performed. Table 2 shows the results. Table 2 Discharge Discharge
処理 合金の 電子  Processing alloy electrons
負極 堆積膜 容量 容量 比率 P 相 '皿'ス 含有量 伝導度  Negative electrode deposited film Capacity Capacity ratio P phase 'Dish' content Content Conductivity
電池 組成 (°c) C1 C2 (¾)  Battery composition (° c) C1 C2 (¾)
(体積 ¾) (S/cm)  (Volume ¾) (S / cm)
(mAh) (mAh)  (mAh) (mAh)
A4 VSi3 Si+ VSi2 400 64.1 8.9X102 2776 2600 93.7A4 VSi 3 Si + VSi 2 400 64.1 8.9X10 2 2776 2600 93.7
A5 MnSi3 Si+Hn„Si19 300 56.7 9.0X102 2777 2605 93.8A5 MnSi 3 Si + Hn „Si 19 300 56.7 9.0X10 2 2777 2605 93.8
A6 CoSi3 Si+ Co i2 300 65.9■ 2.0X103 2785 2617 94.0A6 CoSi 3 Si + Co i 2 300 65.9 ■ 2.0X10 3 2785 2617 94.0
A7 NiSi3 Si+ NiSi2 250 66.2 8.9X102 2776 2602 93.7A7 NiSi 3 Si + NiSi 2 250 66.2 8.9X10 2 2776 2602 93.7
A8 CuSi Si+CUjSi 250 54.0 5.7X102 2771 2599 93.8A8 CuSi Si + CUjSi 250 54.0 5.7X10 2 2771 2599 93.8
A9 YSi3 Si+Y3Si5 300 . 65.2 6.0X102 2768 2600 93.9A9 YSi 3 Si + Y 3 Si 5 300 .65.2 6.0X10 2 2768 2600 93.9
A10 ZrSi3 Si+ZrSi2 400 71.4 8.6X102 2775 2600 93.7A10 ZrSi 3 Si + ZrSi 2 400 71.4 8.6X10 2 2775 2600 93.7
All NbSi3 Si+NbSi2 500 68.6 1.4X103 2779 2611 94.0All NbSi 3 Si + NbSi 2 500 68.6 1.4X10 3 2779 2611 94.0
A12 MoSi, Si+HoSij 550 66.8 2.5X103 2783 2620 94.1A12 MoSi, Si + HoSij 550 66.8 2.5X10 3 2783 2620 94.1
A13 PdSi2 Si+PdSi 450 59.3 1.0X103 2774 2601 93.8A13 PdSi 2 Si + PdSi 450 59.3 1.0X10 3 2774 2601 93.8
A14 LaSij Si+LaSi2 300 76.4 9.0X102 2771 2601 93.9A14 LaSij Si + LaSi 2 300 76.4 9.0X10 2 2771 2601 93.9
A15 HfSi3 Si+HfSi2 350 71.0 4.3X102 2766 2593 93.7A15 HfSi 3 Si + HfSi 2 350 71.0 4.3X10 2 2766 2593 93.7
A16 TaSi, Si+TaSi,, 450 68.4 1.5X103 2780 2608 93.8A16 TaSi, Si + TaSi ,, 450 68.4 1.5X10 3 2780 2608 93.8
A17 Si3 Si+WSi2 600 66.8 2.5X103 2782 2621 94.2A17 Si 3 Si + WSi 2 600 66.8 2.5X10 3 2782 2621 94.2
A18 PtSi2 Si+PtSi 400 59.6 1.1X103 2778 2607 93.8A18 PtSi 2 Si + PtSi 400 59.6 1.1X10 3 2778 2607 93.8
A19 gSi Si+Mg2Si 200 76.1 1.1X103 2778 2606 93.8A19 gSi Si + Mg 2 Si 200 76.1 1.1X10 3 2778 2606 93.8
AZ0 Coo.sNi。.sSi3 Si+CoSi2+NiSi2 300 66.1 1.6X103 2780 2605 93.7 表 2において、 本発明の実施例の電池 A 4〜A 2 0は、 黒鉛を含む合 剤からなる負極を具備する比較例 3の電池 X 3に比べて高容量である。 また、 電池 A 4〜A 2 0は、 S i単体相や Pをドープした S i相からな る負極を具備する比較例 1 、 2の電池 X 1および X 2に比べて、 高率放 電特性が優れている。 堆積膜中に含まれる S i を含む合金の電子伝導度 はいずれも高く、 堆積膜の電子伝導度の向上に寄与しており、 結果とし て高率放電特性に優れた電池を与えたものと考えられる。 また、 S i を 含む合金が T i S i 2のときに高率放電特性が最も優れている。 実施例 5 AZ0 Co o.sNi. . S Si 3 Si + CoSi 2 + NiSi 2 300 66.1 1.6X10 3 2780 2605 93.7 In Table 2, the batteries A4 to A20 of the examples of the present invention have higher capacities than the battery X3 of Comparative Example 3 including a negative electrode made of a mixture containing graphite. Batteries A4 to A20 have higher discharge rates than batteries X1 and X2 of Comparative Examples 1 and 2 each having a negative electrode composed of a Si single phase or a P-doped Si phase. Excellent characteristics. All of the alloys containing Si contained in the deposited film have high electron conductivity, which contributes to the improvement of the electron conductivity of the deposited film.As a result, it is possible to obtain a battery with excellent high rate discharge characteristics. Conceivable. When the alloy containing Si is TiSi 2 , the high-rate discharge characteristics are the most excellent. Example 5
本実施例では、 堆積膜中の S i を含む合金の含有量について検討した - 堆積膜の組成を変化させることにより、 S i を含む合金の含有量を表 3のように、 5体積%、 1 0体積%、 7 5体積%および 9 0体積%に制 御したこと以外は、 実施例 2と同様の方法により負極 A 2 1〜A 2 4を 作製した。 次に、 負極 A 2 1 〜A 2 4を用いたこと以外、 実施例 1 と同 様にして、 非水電解質二次電池 A 2 1 〜A 2 4を作製した。 また、 上記 と同様の評価を行った。 結果を表 3に示す。 比較例 4  In this example, the content of the alloy containing Si in the deposited film was examined.-By changing the composition of the deposited film, the content of the alloy containing Si was changed to 5% by volume, as shown in Table 3. Negative electrodes A21 to A24 were produced in the same manner as in Example 2, except that the volume was controlled to 10% by volume, 75% by volume and 90% by volume. Next, non-aqueous electrolyte secondary batteries A 21 to A 24 were produced in the same manner as in Example 1 except that negative electrodes A 21 to A 24 were used. The same evaluation as above was performed. Table 3 shows the results. Comparative Example 4
堆積膜の組成を変化させることにより、 S i を含む合金の含有量を表 3のように、 3体積%および 9 5体積%に制御したこと以外は、 実施例 2と同様の方法により負極 X 4および X 5を作製した。 次に、 負極 X 4 および X 5を用いたこと以外、 実施例 1 と同様にして、 非水電解質二次 電池 X 4および X 5を作製した。 また、 上記と同様の評価を行った。 結 果を表 3に示す。 表 3 Except that the content of the alloy containing Si was controlled to 3% by volume and 95% by volume as shown in Table 3 by changing the composition of the deposited film, the negative electrode X was produced in the same manner as in Example 2. 4 and X5 were made. Next, nonaqueous electrolyte secondary batteries X4 and X5 were produced in the same manner as in Example 1, except that negative electrodes X4 and X5 were used. The same evaluation as above was performed. Table 3 shows the results. Table 3
Figure imgf000021_0001
表 3において、 本発明の実施例の電池 A 2 1〜 A 2 4は、 黒鉛を含む 合剤からなる負極を具備する比較例 3の電池 X 3に比べて高容量である, また、 電池 A 2 1〜A 24は、 S i単体相や Pをド一プした S i相から なる負極を具備する比較例 1、 2の電池 X 1および X 2に比べて、 高率 放電特性が優れている。 また、 表 2および 3より、 S i を含む合金が T i S i 2のときに高率放電特性が最も優れている。 これは、 T i S i 2 が最も高い電子伝導度を有するためと考えられる。
Figure imgf000021_0001
In Table 3, the batteries A 21 to A 24 of the examples of the present invention have higher capacities than the battery X 3 of Comparative Example 3 including a negative electrode made of a mixture containing graphite. 21 to A24 have excellent high-rate discharge characteristics compared to the batteries X1 and X2 of Comparative Examples 1 and 2 each having a negative electrode composed of a Si single phase or a P-doped Si phase. I have. From Table 2 and 3, high-rate discharge characteristics is most excellent when alloy containing S i is T i S i 2. This is considered to have the highest electron conductivity T i S i 2.
S i を含む合金の含有量が 3体積%の電池 X 4では、 高容量ではある が、 高率放電特性は 7 5. 1 %と不十分であった。 これは、 高い電子伝 導度を有する T i S i 2の体積割合が少なく、 低い電子伝導度を有する S i単体の体積割合が大き過ぎることから、 薄膜の電子伝導度が Battery X4, which contained 3% by volume of the alloy containing Si, had a high capacity, but the high-rate discharge characteristics were insufficient at 75.1%. This is because the volume fraction of T i Si 2 having high electron conductivity is small, and the volume fraction of Si having low electron conductivity is too large, so that the electron conductivity of the thin film is low.
0. 5 5 S/c mと低くなつたためと考えられる。 一方、 S i を含む合 金の含有量が 5体積%の電池 A 2 1では、 薄膜の電子伝導度が 1. 0 5 S/c mながらも、 電池 X 4に比較して高率放電特性が飛躍的に向上し ている。 この結果は、 電子伝導度が少なくとも 1 S/ c m以上を満たす 本発明の負極を用いることにより、 必要な高率放電特性が得られること を示している。  This is probably due to the low value of 0.55 S / cm. On the other hand, battery A21, which contains 5% by volume of alloy containing Si, has a high-rate discharge characteristic compared to battery X4, although the electronic conductivity of the thin film is 1.05 S / cm. It has improved dramatically. The results show that the use of the negative electrode of the present invention, which satisfies at least 1 S / cm or more of the electron conductivity, can provide the required high-rate discharge characteristics.
S i を含む合金の含有量が 9 5体積%の電池 X 5では、 高率放電特性 は 9 6. 0 %と優れているが、 容量 C 1が 1 2 5 0mAhと不十分であ つた。 これは、 放電容量と大きく相関する S iの体積割合が小さくなり 過ぎたためと考えられる。 実施例 6 Battery X5, which contains 95% by volume of an alloy containing Si, has an excellent high-rate discharge characteristic of 96.0%, but has an insufficient capacity C1 of 125 mAh. I got it. This is probably because the volume ratio of Si, which greatly correlates with the discharge capacity, became too small. Example 6
ここでは、 以下の要領でスパッタリングにより負極を作製した。  Here, a negative electrode was prepared by sputtering in the following manner.
S i (高純度化学 (株) 製、 純度 9 9 . 9 9 9 9 % ) および  S i (manufactured by Kojundo Chemical Co., Ltd., purity 99.99.99%) and
T i S i 2 (高純度化学 (株) 製、 純度 9 9 . 9 9 9 9 % ) を夕一ゲッ ト に用いる 2極同時 R Fスパッタリングにより、 比較例 1と同じ条件下で、 実施例 1で用いたのと同じ電解銅箔の両面上に、 厚さ約 5 mの Example 1 was performed under the same conditions as in Comparative Example 1 by two-electrode simultaneous RF sputtering using TiSi 2 (manufactured by Kojundo Chemical Co., Ltd., purity 99.9999%) as an overnight getter. Approximately 5 m thick on both sides of the same electrolytic copper foil used in
T i S i 3の組成をもつ薄膜を堆積させた。 次いで、 この堆積膜の加熱処 理を、 3 0 0 °Cで真空中で 3時間行うことにより、 負極 B 1を得た。 A thin film having a composition of TiSi3 was deposited. Next, the heat treatment of the deposited film was performed at 300 ° C. in a vacuum for 3 hours to obtain a negative electrode B1.
負極 B 1の堆積膜中に含まれる相の定性および定量を前述の方法で行 つたところ、 T i S i 2相と S i相が存在していることが観察され、 S i を含む合金 (T i S i 2 ) の含有量は 6 8体積%であった。 The qualitative and quantitative analysis of the phase contained in the deposited film of the negative electrode B1 was performed by the above-described method. As a result, it was observed that the Ti Si 2 phase and the Si phase were present. The content of T i Si 2 ) was 68% by volume.
さらに、 ターゲッ トである T i S i 2の代わりに、 N i S i 2Further, instead of the T i S i 2 a target, N i S i 2,
C o S i 2および M g S i 2をそれぞれ用いたこと以外、 上記と同様の条 件で、 電解銅箔の両面上に薄膜を堆積させた。 ここでは、 堆積膜の組成 がそれぞれ N i S i 3、 C o S i 3および M g S i となるように、 スパッ 夕リングの条件を制御した。 Thin films were deposited on both sides of the electrolytic copper foil under the same conditions as above except that Co Si 2 and Mg Si 2 were used, respectively. Here, the composition of the deposited film to be the N i S i 3, C o S i 3 and M g S i, respectively, to control the conditions of the sputtering evening ring.
次いで、 得られた堆積膜の加熱処理を、 それぞれを 2 5 0 °C、 3 0 0 °Cおよび 2 0 0 °Cで真空中で 3時間行うことにより、 負極 B 2 、 B 3お よび B 4を得た。  Next, the heat treatment of the obtained deposited films was performed at 250 ° C., 300 ° C., and 200 ° C. for 3 hours in a vacuum, so that the negative electrodes B 2, B 3 and B Got four.
負極 B 2 、 B 3および B 4の堆積膜中に含まれる相の定性および定量 を後述の方法で行ったところ、 負極 B 2の堆積膜中には N i S i 2相と S i相が存在し、 負極 B 3の堆積膜中には C o S i 2相と S i相が存在し. 負極 B 4の堆積膜中には M g 2 S iネ目と S i相が存在していることが観察 され、 それぞれの堆積膜中の S i を含む合金の含有量は、 6 3体積%、 6 5体積%および 7 1体積%であった。 Qualitative and quantitative of the negative electrode B 2, B 3 and B 4 of the deposited film phase contained in Operation was performed by the method described below, during the deposition film of the negative electrode B 2 N i S i 2 phase and S i phase there was, during the deposition film of the negative electrode B 3 exists C o S i 2 phase and S i phase. during deposition film of the negative electrode B 4 exist M g 2 S i ne th and S i phase Observe that The content of the alloy containing Si in each of the deposited films was 63% by volume, 65% by volume, and 71% by volume.
次に、 負極 B 1〜B 4を用いたこと以外、 実施例 1と同様にして、 非 水電解質二次電池 B 1〜B 4を作製した。 実施例 7  Next, nonaqueous electrolyte secondary batteries B1 to B4 were produced in the same manner as in Example 1, except that the negative electrodes B1 to B4 were used. Example 7
ここでは、 以下の要領で CVD法により負極を作製した。  Here, a negative electrode was manufactured by the CVD method in the following manner.
原料ガスとして、 それぞれ H 2で希釈された S i H4と T i H4と PH3 とを用いて、 CVD法により、 実施例 1で用いたのと同じ電解銅箔の両 面上に、 厚さ約 5 xmの Pをド一プした S i薄膜を堆積させ、 負極 B 5 とした。 Using S i H 4 , T i H 4, and PH 3 each diluted with H 2 as a source gas, the same electrodeposited copper foil as used in Example 1 was formed on both surfaces by the CVD method. A P-doped Si thin film having a thickness of about 5 xm was deposited to form a negative electrode B5.
ここでは、 H2と S i H4との混合ガス ( S i H4含有量 1 0 %、 日本酸 素 (株) 製、 純度 9 9. 9 9 9 9 %) と、 H2と T i H4との混合ガス Here, a mixed gas of H 2 and S i H 4 (S i H 4 content 1 0%, Nippon oxygen Corp., purity 9 9.9 9 9 9%) and, H 2 and T i mixed gas of H 4
(T i H4含有量 1 0 %、 日本酸素 (株) 製、 純度 9 ·9. 9 9 9 9 %) と. Η2と ΡΗ3との混合ガス (ΡΗ3含有量 1 0 %、 日本酸素 (株) 製、 純度 9 9. 9 9 9 9 %) とを、 それぞれ 3 0 0 s c c m、 l O O s c c mお よび 5 s c c mの流量で供給し、 3 T o r rの圧力下で C V D法を行い、 ヒータで 3 0 0 °Cに加熱された電解銅箔の両面上に T i S i 3の組成を有 する薄膜を堆積させた。 (T i H 4 content 1 0%, Nippon Sanso Corp., purity 9-9.9 9 9 9%) and. Eta 2 and a mixed gas of ΡΗ 3 (ΡΗ 3 content 1 0%, Nippon Oxygen Co., Ltd., purity 99.99.99%) were supplied at a flow rate of 300 sccm, 100 sccm and 5 sccm, respectively, and the CVD method was performed under a pressure of 3 Torr. A thin film having a composition of TiSi 3 was deposited on both sides of the electrolytic copper foil heated to 300 ° C. by a heater.
負極 B 5の堆積膜中に含まれる相の定性および定量を前述の方法で行 つたところ、 堆積膜中には、 T i S i 2相と S i相が存在し、 T i S i 2 相の含有率は 6 8体積%であった。 Where a qualitative and quantitative determination of phase contained in the deposited film of the negative electrode B 5 rows one by the method described above, during the deposition film, T i S i 2 phase and S i-phase is present, T i S i 2 phases Was 68% by volume.
次に、 負極 B 5を用いたこと以外、 実施例 1 と同様にして、 非水電解 質二次電池 B 5を作製した。  Next, a non-aqueous electrolyte secondary battery B5 was produced in the same manner as in Example 1, except that the negative electrode B5 was used.
実施例 6、 7で作製した負極および電池について、 上記と同様の評価 を行った。 結果を表 4に示す。 表 4 The same evaluation as above was performed on the negative electrodes and the batteries prepared in Examples 6 and 7. Table 4 shows the results. Table 4
Figure imgf000024_0001
表 4において、 本発明の実施例の電池 B 1 〜 B 5は、 比較例である黒 鉛を負極に用いた電池 X 3に比べて高容量である。 また、 電池 B l 〜 B 5は、 S i単体相や Pをド一プした S i相からなる負極を具備する比 較例の電池 X 1および X 2に比べて、 高率放電特性が優れている。 なか でも本発明の実施例の電池 B 1および B 5は、 非常に良好な高率放電特 性を有している。 この要因としては、 上述の実施例 2と同様に、 堆積膜 に含まれる T i S i 2相の電子伝導度が、 他の負極 B 2 〜 B 4に含まれる S i を含む合金相に比較して高く、 堆積膜全体の電子伝導度が向上した ためと考えられる。 産業上の利用可能性
Figure imgf000024_0001
In Table 4, the batteries B1 to B5 of the examples of the present invention have higher capacities than the battery X3 using graphite as a negative electrode, which is a comparative example. Batteries Bl to B5 also have superior high-rate discharge characteristics compared to comparative batteries X1 and X2, each of which has a negative electrode composed of a single Si phase or a P-doped Si phase. ing. Among them, the batteries B1 and B5 of the examples of the present invention have very good high-rate discharge characteristics. This is because, as in Example 2 described above, the electronic conductivity of the TiSi 2 phase contained in the deposited film was lower than that of the alloy phase containing Si contained in the other negative electrodes B2 to B4. This is probably because the electron conductivity of the entire deposited film improved. Industrial applicability
本発明の非水電解質二次電池用負極は、 電子伝導度の高い堆積膜から なり、 高い電気容量を有することから、 高い電気容量を有し、 高率放電 特性に優れた非水電解質二次電池を与えるものである。 本発明は、 全て の形態の非水電解質二次電池に適用可能であり、 例えば、 円筒形、 コィ ン型、 角型、 偏平型などの形状を有し、 捲回型、 積層型などの電極体構 造を有する電池に適用可能である。 本発明の非水電解質二次電池は、 移 動体通信機器、 携帯電子機器などの主電源として有用である。  The negative electrode for a non-aqueous electrolyte secondary battery of the present invention is composed of a deposited film having a high electron conductivity and has a high electric capacity, and thus has a high electric capacity and a high rate discharge characteristic. It gives the battery. INDUSTRIAL APPLICABILITY The present invention is applicable to all forms of non-aqueous electrolyte secondary batteries, and has, for example, a cylindrical, coin, square, flat or other shape, and a wound or stacked electrode. It is applicable to batteries having a body structure. INDUSTRIAL APPLICABILITY The nonaqueous electrolyte secondary battery of the present invention is useful as a main power supply for mobile communication devices, portable electronic devices, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . リチウムの吸蔵 ·放出が可能な非水電解質二次電池用負極であって、 前記負極は、 集電体上に形成された堆積膜からなり、 1. A negative electrode for a non-aqueous electrolyte secondary battery capable of inserting and extracting lithium, wherein the negative electrode comprises a deposited film formed on a current collector,
前記堆積膜は、 S i単体からなる相と、 S i を含む合金からなる相と を含み、  The deposited film includes a phase composed of Si alone and a phase composed of an alloy containing Si.
前記 S i を含む合金は、 S i と、 2 A族元素および遷移金属元素より なる群から選ばれた少なくとも一種の元素との合金であり、  The alloy containing S i is an alloy of S i and at least one element selected from the group consisting of group 2A elements and transition metal elements,
前記 S i を含む合金の前記堆積膜中における含有量が、 5体積%以上 9 0体積%以下である非水電解質二次電池用負極。 -  A negative electrode for a non-aqueous electrolyte secondary battery, wherein the content of the Si-containing alloy in the deposited film is 5% by volume to 90% by volume. -
2 . 前記 S i を含む合金が、 T i S i 2である請求の範囲第 1項記載の非 水電解質二次電池用負極。 2. The S i alloy containing the, T i S i 2 a is claims for a non-aqueous electrolyte secondary battery negative electrode of claim 1 wherein.
3 . 前記堆積膜の電子伝導度が 1 S / c m以上である請求の範囲第 1項 記載の非水電解質二次電池用負極。 3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electron conductivity of the deposited film is 1 S / cm or more.
4 . リチウムの吸蔵 ·放出が可能な正極、 請求の範囲第 1項記載の負極、 および前記正極と負極との間に介在する非水電解質を備えた非水電解質 二次電池。 4. A non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium, the negative electrode according to claim 1, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode.
PCT/JP2004/010453 2003-07-23 2004-07-15 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery WO2005008809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511911A JPWO2005008809A1 (en) 2003-07-23 2004-07-15 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-278225 2003-07-23
JP2003278225 2003-07-23

Publications (1)

Publication Number Publication Date
WO2005008809A1 true WO2005008809A1 (en) 2005-01-27

Family

ID=34074701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010453 WO2005008809A1 (en) 2003-07-23 2004-07-15 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JPWO2005008809A1 (en)
WO (1) WO2005008809A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
JP2007087940A (en) * 2005-08-26 2007-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2007335086A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium battery
JP2008135368A (en) * 2006-11-01 2008-06-12 Sony Corp Anode for secondary battery, its manufacturing method and secondary battery
JP2009289680A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and manufacturing method of negative electrode for lithium ion secondary battery
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
US7858232B2 (en) * 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243946A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2001256974A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, alloy therefor and manufacturing method thereof
JP2001291514A (en) * 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2001325958A (en) * 2000-03-07 2001-11-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2002050353A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery and its negative electrode plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243946A (en) * 2000-02-29 2001-09-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2001325958A (en) * 2000-03-07 2001-11-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2001256974A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, alloy therefor and manufacturing method thereof
JP2001291514A (en) * 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2001297757A (en) * 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP2002050353A (en) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolyte secondary battery and its negative electrode plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858232B2 (en) * 2004-11-15 2010-12-28 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7955735B2 (en) * 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
US8888870B2 (en) 2005-08-02 2014-11-18 Panasonic Corporation Lithium secondary battery
JP2007087940A (en) * 2005-08-26 2007-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2007335086A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for lithium battery
JP2008135368A (en) * 2006-11-01 2008-06-12 Sony Corp Anode for secondary battery, its manufacturing method and secondary battery
JP2009289680A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and manufacturing method of negative electrode for lithium ion secondary battery
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery

Also Published As

Publication number Publication date
JPWO2005008809A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
CN100570929C (en) The battery of anode and this anode of employing
US6824922B2 (en) Thin film for anode of lithium secondary battery and manufacturing method thereof
JP3733066B2 (en) Electrode for lithium secondary battery and lithium secondary battery
US7993773B2 (en) Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) Electrochemical apparatus with barrier layer protected substrate
US7160646B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4442235B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
US6828063B2 (en) Anode thin film for lithium secondary battery
JP3733065B2 (en) Lithium battery electrode and lithium secondary battery
JP5230904B2 (en) Non-aqueous electrolyte secondary battery
JP4088957B2 (en) Lithium secondary battery
US20020187399A1 (en) Thin lithium film battery
US20090104536A1 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
AU3931500A (en) Thin lithium film battery
JP2003077529A (en) Lithium battery and lithium secondary battery
JP2001266851A (en) Manufacturing method of electrode for lithium secondary battery
WO2005076389A2 (en) Self-contained, alloy type, thin film anodes for lithium-ion batteries
JP2002373644A (en) Electrode for lithium secondary battery, and manufacturing method therefor
EP1271675A2 (en) Method of manufacturing electrode for lithium secondary cell
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
WO2005008809A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2005085632A (en) Battery
JP3991966B2 (en) Negative electrode and battery
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
JP5238195B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511911

Country of ref document: JP

122 Ep: pct application non-entry in european phase