JP2005135856A - Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery - Google Patents

Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery Download PDF

Info

Publication number
JP2005135856A
JP2005135856A JP2003373055A JP2003373055A JP2005135856A JP 2005135856 A JP2005135856 A JP 2005135856A JP 2003373055 A JP2003373055 A JP 2003373055A JP 2003373055 A JP2003373055 A JP 2003373055A JP 2005135856 A JP2005135856 A JP 2005135856A
Authority
JP
Japan
Prior art keywords
electrode
lithium secondary
secondary battery
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003373055A
Other languages
Japanese (ja)
Inventor
Yukihiro Miyamoto
幸博 宮元
Yoshinori Seki
義則 関
Hironobu Mizuno
裕宣 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003373055A priority Critical patent/JP2005135856A/en
Publication of JP2005135856A publication Critical patent/JP2005135856A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a lithium secondary battery which is unlikely to generate pulverization or fall-off from a current collector caused by swelling or contraction of an electrode activator accompanying repeated charging and discharging, and to provide a manufacturing method of the lithium secondary battery which uses this electrode, and which has superior charge/discharge cycle characteristics. <P>SOLUTION: For the electrode for the lithium secondary battery having the current collector on which a film of activator storing and releasing lithium is formed, and the manufacturing method of the same, the current collector having a elongation rate of 13% or higher is used. If the current collector having a large elongation rate of 13% or higher is used, by having the current collector expand and contract so as to sufficiently follow the swelling and contraction of the activator accompanying the storing and releasing of lithium at the repeated charge and discharge, the activator is restrained from pulverization and drop out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池用電極及びその製造方法と、このリチウム二次電池用電極を用いたリチウム二次電池に関するものである。   The present invention relates to an electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the electrode for a lithium secondary battery.

リチウム二次電池は、高電圧かつ小型で軽量であることから、携帯電話やノートパソコンなどの可搬型電子機器に最適な二次電池として普及しているが、更なる高容量化の期待は大きく、その要請に応えるべく開発が進められている。   Lithium secondary batteries are widely used as secondary batteries that are ideal for portable electronic devices such as mobile phones and laptop computers because of their high voltage, small size, and light weight. Development is underway to meet that demand.

かかるリチウム二次電池の高容量化を図るには、リチウムをより多く吸蔵・放出する電極活物質が必要となる。   In order to increase the capacity of such a lithium secondary battery, an electrode active material that absorbs and releases more lithium is required.

従来、負極活物質としては、理論放電容量が質量当たり372mAh/g,体積当たり850mAh/ccである黒鉛化炭素材が用いられてきたが、長年、改良研究がなされて実用化での放電容量の向上が限界に近づいたことから、これに代わる高い理論容量を持つ材料、例えばシリコン、錫などの材料が提案されている(特許文献1〜6)。   Conventionally, as the negative electrode active material, a graphitized carbon material having a theoretical discharge capacity of 372 mAh / g per mass and 850 mAh / cc per volume has been used. Since the improvement has approached the limit, materials having a high theoretical capacity, such as silicon and tin, have been proposed (Patent Documents 1 to 6).

このうち、シリコンは1000mAh/gを超える大きな放電容量を示すため有望であるが、シリコン活物質層は、充電・放電に伴う体積の膨張・収縮が著しいため、充放電を繰り返すとシリコンが微粉化したり、基板となる集電体から脱落しやすく、充放電サイクル特性が悪いという欠点があった。   Of these, silicon is promising because it exhibits a large discharge capacity exceeding 1000 mAh / g, but the silicon active material layer has a significant volume expansion / contraction caused by charging / discharging. In addition, there is a drawback in that it easily falls off the current collector as a substrate and the charge / discharge cycle characteristics are poor.

こうした中で、特許文献7においては、負極の集電体として、空孔を有するパンチング構造又はエキスパンド構造の金属体を用い、充放電の繰り返し時にリチウムと合金化するシリコンなどの活物質層の体積変化を集電体を変形させることで吸収し、集電体の破断を防ぎ、容量低下を押さえることが記載されている。
特開平7−29602 特開2000−12088 特開2000−12089 特開2003−36840 WO01/29912 特開2001―266851 特開平11−233116
Under these circumstances, in Patent Document 7, the volume of the active material layer such as silicon that is alloyed with lithium during repetition of charge and discharge using a punched or expanded structure metal body having pores as the current collector of the negative electrode It is described that the change is absorbed by deforming the current collector, the current collector is prevented from being broken, and the capacity reduction is suppressed.
JP-A-7-29602 JP2000-12088A JP 2000-12089 A JP 2003-36840 A WO01 / 29912 JP 2001-266851 A JP-A-11-233116

しかしながら、特許文献7の技術は、集電体を予め空孔を有する構造などに加工する必要があるため、特殊加工の手間と費用を要し、通常の平坦な集電体と比較して、コスト増となり不利である。   However, since the technique of Patent Document 7 needs to process the current collector into a structure having holes in advance, it requires labor and cost for special processing, compared with a normal flat current collector, This is disadvantageous because of increased costs.

従って、本発明の目的は、高電圧・高容量のリチウム二次電池の充放電サイクル特性の向上、即ち、繰り返し充放電を行った際の電極活物質の膨張・収縮に伴う微粉化や集電体からの脱落が生じにくいリチウム二次電池用電極及びその製造方法と、この電極を用いた、充放電サイクル特性に優れたリチウム二次電池を提供することにある。   Therefore, an object of the present invention is to improve the charge / discharge cycle characteristics of a high voltage / high capacity lithium secondary battery, that is, to pulverize or collect current due to the expansion / contraction of the electrode active material during repeated charge / discharge. An object of the present invention is to provide an electrode for a lithium secondary battery that is unlikely to fall off from the body, a method for producing the same, and a lithium secondary battery that uses this electrode and has excellent charge / discharge cycle characteristics.

本発明のリチウム二次電池用電極は、集電体上にリチウムを吸蔵及び放出する活物質薄膜を形成してなるリチウム二次電池用電極において、該集電体の伸び率が13%以上であることを特徴とする。   An electrode for a lithium secondary battery according to the present invention is an electrode for a lithium secondary battery in which an active material thin film that absorbs and releases lithium is formed on a current collector, and the elongation percentage of the current collector is 13% or more. It is characterized by being.

本発明のリチウム二次電池用電極の製造方法は、集電体上にリチウムを吸蔵及び放出する活物質薄膜を形成することによりリチウム二次電池用電極を製造する方法において、該集電体として伸び率が13%以上であるものを用いることを特徴とする。   The method for producing an electrode for a lithium secondary battery according to the present invention comprises the step of producing an electrode for a lithium secondary battery by forming an active material thin film that absorbs and releases lithium on the current collector. A material having an elongation of 13% or more is used.

即ち、発明者らは、集電体の変形量という、変形の程度に関する本質的な支配パラメータに着目し、鋭意検討した結果、特定の伸び率を持つ集電体を使用することにより、電極活物質の膨張・収縮に伴う微粉化や集電体からの脱落を抑えられることを見出し、本発明を完成させた。   In other words, the inventors focused on an essential control parameter relating to the degree of deformation, that is, the amount of deformation of the current collector, and as a result of intensive studies, the current activity of the electrode was improved by using a current collector having a specific elongation rate. The inventors have found that pulverization and dropout from a current collector accompanying expansion and contraction of a substance can be suppressed, and the present invention has been completed.

本発明により、繰り返し充放電を行った際の電極活物質の膨張・収縮に伴う微粉化や集電体からの脱落を抑制することができる理由の詳細は明らかではないが、伸び率13%以上という伸び率の大きい集電体を使用すると、リチウムの吸蔵及び放出に伴う活物質の膨張及び収縮に十分に追従するように集電体が伸び縮みすることで、活物質の微粉化、脱落が起きにくくなるものと考えられる。   Although the details of the reason why it is possible to suppress pulverization associated with expansion / contraction of the electrode active material and dropping from the current collector during repeated charge / discharge according to the present invention are not clear, the elongation is 13% or more. When a current collector with a large elongation rate is used, the current material expands and contracts sufficiently to follow the expansion and contraction of the active material accompanying the insertion and extraction of lithium, so that the active material is pulverized and dropped off. It seems to be difficult to get up.

なお、本発明において、伸び率とは、平板状試験片をその平板面内で長さ方向に、該試験片が破断するまでの大きさの力を加えた場合の長さの変化の割合であり、本発明において、集電体の伸び率は、以下のようにして測定される。   In the present invention, the term “elongation rate” refers to the rate of change in length when a flat test piece is applied in the length direction within the flat plate surface and a force of a magnitude until the test piece breaks. In the present invention, the elongation percentage of the current collector is measured as follows.

試験時に力が加わる部分の幅が12.5mm、長さ方向の平行部が30mm、長さを測定する標点間が25mmの試験片を作製し、引張試験機(インストロン社製万能試験機4505型)を用い、引張試験を行う。試験温度は室温であり、引張速度は0.5mm/min一定とする。伸び率は標点間25mmの変化量で求める。   A test piece having a width of 12.5 mm, a parallel portion in the length direction of 30 mm, and a distance between measuring points of 25 mm is prepared by a tensile tester (universal tester manufactured by Instron). 4505 type) and a tensile test is performed. The test temperature is room temperature, and the tensile speed is constant at 0.5 mm / min. The elongation rate is determined by the amount of change of 25 mm between the gauge points.

本発明において、集電体は、銅箔、好ましくは電解銅箔等の金属箔を、活物質薄膜の形成に先立ち予め熱処理することにより、例えば伸び率8〜12%の金属箔を伸び率13%以上に調整したものが好ましい。この熱処理は真空又は非酸化雰囲気下で、金属箔の伸び率を増加させる加熱温度範囲内で行うことが好ましい。また、活物質薄膜の形成に先立ち、集電体表面をエッチングすることが好ましい。   In the present invention, the current collector is a copper foil, preferably a metal foil such as an electrolytic copper foil, which is preheated prior to the formation of the active material thin film. What adjusted to% or more is preferable. This heat treatment is preferably performed in a vacuum or non-oxidizing atmosphere within a heating temperature range that increases the elongation of the metal foil. Further, it is preferable to etch the surface of the current collector prior to the formation of the active material thin film.

また、集電体の活物質薄膜形成前の平均表面粗さ(Ra)は0.05〜1.5μmであることが好ましい。   Moreover, it is preferable that the average surface roughness (Ra) before the active material thin film formation of a collector is 0.05-1.5 micrometers.

一方、活物質としては、IVB族元素(但し炭素を除く)を構成元素として含むもの、特に、シリコンの単体及び/又はその化合物を含むものが好ましく、活物質薄膜は、気相成膜法、特にスパッタリング法と真空蒸着法の組合せによって形成されることが好ましい。   On the other hand, as the active material, those containing a group IVB element (excluding carbon) as a constituent element, particularly those containing silicon alone and / or a compound thereof are preferable. In particular, it is preferably formed by a combination of sputtering and vacuum deposition.

本発明のリチウム二次電池は、正極、負極、及び電解質を備えたリチウム二次電池において、負極として、このような本発明のリチウム二次電池用電極、又は、本発明のリチウム二次電池用電極の製造方法により製造されたリチウム二次電池用電極を用いてなるものであり、充放電サイクル特性に優れる。   The lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode, a negative electrode, and an electrolyte. As the negative electrode, the electrode for the lithium secondary battery of the present invention or the lithium secondary battery of the present invention is used. It is formed by using an electrode for a lithium secondary battery manufactured by an electrode manufacturing method, and is excellent in charge / discharge cycle characteristics.

本発明のリチウム二次電池用電極を用いたリチウム二次電池であれば、繰り返し充放電を行った際の電極活物質の膨張・収縮に伴う微粉化や集電体からの脱落が生じにくくなり、リチウム二次電池の充放電サイクル特性が向上する。   If it is a lithium secondary battery using the electrode for lithium secondary battery of the present invention, it becomes difficult to cause pulverization or dropout from the current collector due to expansion / contraction of the electrode active material during repeated charge / discharge. The charge / discharge cycle characteristics of the lithium secondary battery are improved.

以下に本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Although embodiments of the present invention will be described below, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

<リチウム二次電池用電極及びその製造方法>
本発明の二次電池用電極は、集電体上にリチウムを吸蔵及び放出する活物質薄膜を形成してなるリチウム二次電池用電極において、該集電体の伸び率が13%以上であることを特徴とする。
<Electrode for lithium secondary battery and method for producing the same>
The electrode for a secondary battery of the present invention is an electrode for a lithium secondary battery in which an active material thin film that absorbs and releases lithium is formed on a current collector, and the elongation percentage of the current collector is 13% or more. It is characterized by that.

まず、本発明に用いられる集電体について説明する。
本発明で用いられる集電体は伸び率13%以上、好ましくは15%以上、特に好ましくは20%以上のものである。
First, the current collector used in the present invention will be described.
The current collector used in the present invention has an elongation of 13% or more, preferably 15% or more, particularly preferably 20% or more.

集電体の伸び率が13%未満では、充放電時の活物質膜の膨張、収縮に集電体が十分に追従せず、活物質膜が集電体から脱落しやすくなる。集電体の伸び率は、機械的強度が不足しない限り、大きくても問題はない。   If the elongation percentage of the current collector is less than 13%, the current collector does not sufficiently follow the expansion and contraction of the active material film during charge and discharge, and the active material film easily falls off the current collector. The elongation rate of the current collector can be large as long as the mechanical strength is not insufficient.

集電体の伸び率は、後述するように金属箔に熱処理を施し、熱処理の温度や時間を変えることで制御することができる。   The elongation rate of the current collector can be controlled by applying a heat treatment to the metal foil and changing the temperature and time of the heat treatment as will be described later.

集電体の材質としては、銅、ニッケル、ステンレス等が挙げられ、中でも薄膜に加工しやすく、安価な銅が好ましい。銅箔には、圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。   Examples of the material for the current collector include copper, nickel, and stainless steel. Among them, copper that is easy to process into a thin film and inexpensive is preferable. The copper foil includes a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method, both of which can be used as a current collector.

圧延法により作製した銅箔からなる集電体は、銅結晶が圧延方向に並んでいるため、負極を密に丸めても、鋭角に丸めても割れにくく、小型の円筒状電池に好適に用いることができる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られるものであるが、上記の圧延銅箔の表面に、電解法により銅を析出させていても良い。銅箔の片面又は両面には、粗面化処理や表面処理がなされていても良い。   A current collector made of a copper foil produced by a rolling method is suitable for use in a small cylindrical battery because the copper crystals are arranged in the rolling direction so that the negative electrode is hard to crack even if it is rounded sharply or rounded at an acute angle. be able to. For example, an electrolytic copper foil is prepared by immersing a metal drum in an electrolytic solution in which copper ions are dissolved, and flowing current while rotating the copper drum, thereby depositing copper on the surface of the drum and peeling it off. Although obtained, copper may be deposited on the surface of the rolled copper foil by an electrolytic method. One side or both sides of the copper foil may be subjected to roughening treatment or surface treatment.

電解銅箔は、圧延銅箔に比べて量産性に優れ、比較的製造コストも安価である利点を有する。また、電解法は薄型化が容易で、軽量化の点で有利な製法であり、集電体として用いるのに適している。   Electrolytic copper foil has the advantages of superior mass productivity and relatively low manufacturing costs compared to rolled copper foil. Further, the electrolytic method is easy to make thin and is advantageous in terms of weight reduction, and is suitable for use as a current collector.

銅箔よりなる集電体は薄い方が薄い負極を製造することができ、同じ収納容積の電池容器内により広い表面積の負極を詰めることができる点で好ましいが、過度に薄いと、強度が不足し、充放電中に亀裂が生ずる恐れがあることから、10〜70μm程度の厚さであることが好ましい。銅箔の両面に活物質薄膜を形成する場合は、銅箔は更に薄い方がよいが、充電・放電に伴う活物質の膨張・収縮による集電体の亀裂を回避する観点から、銅箔の更に好ましい厚さは8〜35μmである。   The thinner the current collector made of copper foil, the thinner the negative electrode can be produced, and it is preferable in that a negative electrode with a larger surface area can be packed in a battery container with the same storage volume, but if it is too thin, the strength is insufficient And since there exists a possibility that a crack may arise during charging / discharging, it is preferable that it is a thickness of about 10-70 micrometers. When forming the active material thin film on both sides of the copper foil, the copper foil should be thinner, but from the viewpoint of avoiding the cracking of the current collector due to expansion / contraction of the active material due to charging / discharging, A more preferred thickness is 8 to 35 μm.

なお、集電体として銅箔以外の金属箔を使用する場合には、それぞれの金属箔に応じて、好適な厚さのものを使用することができる。   In addition, when using metal foil other than copper foil as a collector, the thing of suitable thickness can be used according to each metal foil.

集電体には、更に次のような物性が望まれる。
JISB0601−1994に記載の方法で規定される集電体の活物質薄膜形成面の平均表面粗さ(Ra)は通常0.05μm以上、好ましくは0.1μm以上、特に好ましくは0.15μm以上であり、通常1.5μm以下、好ましくは1.3μm以下、特に好ましくは1.0μm以下である。
The following physical properties are desired for the current collector.
The average surface roughness (Ra) of the active material thin film forming surface of the current collector defined by the method described in JIS B0601-1994 is usually 0.05 μm or more, preferably 0.1 μm or more, particularly preferably 0.15 μm or more. In general, it is 1.5 μm or less, preferably 1.3 μm or less, particularly preferably 1.0 μm or less.

集電体の平均表面粗さ(Ra)を上記した下限と上限の間の範囲内とすることにより、良好な充放電サイクル特性を得ることができる。即ち、上記下限値以上とすることにより、活物質薄膜との界面の面積が大きくなり、活物質薄膜との密着性が向上する。また、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが好ましい。   By setting the average surface roughness (Ra) of the current collector within the range between the lower limit and the upper limit, good charge / discharge cycle characteristics can be obtained. That is, by setting it to the above lower limit or more, the area of the interface with the active material thin film is increased, and the adhesion with the active material thin film is improved. In addition, the upper limit value of the average surface roughness (Ra) is not particularly limited, but those having an average surface roughness (Ra) exceeding 1.5 μm are generally obtained as foil having a practical thickness as a battery. Since it is difficult, the thing of 1.5 micrometers or less is preferable.

集電体の引張強度は、通常100N/mm以上、好ましくは150N/mm以上、特に好ましくは200N/mm以上である。 The tensile strength of the current collector is usually 100 N / mm 2 or more, preferably 150 N / mm 2 or more, particularly preferably 200 N / mm 2 or more.

引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、伸び率と同様な装置、方法で測定される。引張強度が高いと、充電・放電に伴う活物質の膨張・収縮による集電体の亀裂を抑えることができる。   The tensile strength is obtained by dividing the maximum tensile force required until the test piece breaks by the cross-sectional area of the test piece. The tensile strength in the present invention is measured by the same apparatus and method as the elongation percentage. When the tensile strength is high, cracking of the current collector due to expansion / contraction of the active material accompanying charging / discharging can be suppressed.

集電体の0.2%耐力は、通常30N/mm以上、好ましくは50N/mm以上、特に好ましくは100N/mm以上である。 0.2% proof stress of the current collector, normally 30 N / mm 2 or more, preferably 50 N / mm 2 or more, particularly preferably 100 N / mm 2 or more.

0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形している事を意味している。本発明における0.2%耐力は、伸び率と同様な装置、方法で測定される。0.2%耐力が高いと、充電・放電に伴う活物質の膨張・収縮による集電体の塑性変形を抑えることができ、良好なサイクル特性を得ることができる。   The 0.2% proof stress is the magnitude of the load necessary to give a plastic (permanent) strain of 0.2%. It means that The 0.2% proof stress in the present invention is measured by the same apparatus and method as the elongation rate. When the 0.2% proof stress is high, plastic deformation of the current collector due to expansion / contraction of the active material accompanying charging / discharging can be suppressed, and good cycle characteristics can be obtained.

本発明のリチウム二次電池用電極は、このような集電体上に後述の方法を用いて活物質薄膜を形成させたものである。   The electrode for a lithium secondary battery of the present invention is obtained by forming an active material thin film on such a current collector using a method described later.

活物質薄膜材料としては、電池にしたときに高容量が得られるIVB族元素(但し炭素を除く)、特にシリコンの単体及び/又はその化合物が好ましい。IVB族元素は、非晶質や微結晶の状態になったものが好ましく用いられる。   As the active material thin film material, a group IVB element (excluding carbon), particularly silicon simple substance and / or a compound thereof, which can obtain a high capacity when formed into a battery is preferable. The group IVB element is preferably used in an amorphous or microcrystalline state.

活物質薄膜の厚さは、通常1〜50μmであり、好ましくは3〜10μmである。   The thickness of the active material thin film is usually 1 to 50 μm, preferably 3 to 10 μm.

以下に本発明のリチウム二次電池用電極の製造方法に従って、本発明のリチウム二次電池用電極及びその製造方法をより詳細に説明する。   The lithium secondary battery electrode of the present invention and the method for manufacturing the same will be described in more detail below according to the method for manufacturing a lithium secondary battery electrode of the present invention.

集電体としては、前述の銅箔の他、ニッケル、ステンレス等からなる金属箔を好ましく使用することができ、このような金属箔に熱処理を施して、前述したリチウム二次電池用電極用集電体として好適な伸び率を持つ集電体を得ることができる。この際、集電体の伸び率は、熱処理の温度や時間を変えることで制御することができる。中でも温度を変える方法が、制御が容易であり好ましい。   As the current collector, a metal foil made of nickel, stainless steel, or the like can be preferably used in addition to the copper foil described above, and heat treatment is performed on such a metal foil to obtain the above-described electrode collector for a lithium secondary battery. A current collector having an elongation percentage suitable as a current collector can be obtained. At this time, the elongation rate of the current collector can be controlled by changing the temperature and time of the heat treatment. Among them, the method of changing the temperature is preferable because it is easy to control.

一例を挙げると、無処理の場合に伸び率が8%の電解銅箔の集電体を、真空中に水素を3%添加したアルゴンの還元雰囲気下において、処理時間を10分間とし、300℃で処理したときには、伸び率が約20%となり、更に400℃で処理したときは伸び率は、約25%となる。   As an example, in the case of no treatment, an electrolytic copper foil current collector having an elongation of 8% was treated in a reducing atmosphere of argon with 3% hydrogen added in a vacuum, the treatment time was 10 minutes, and 300 ° C. When processed at a temperature of about 20%, the elongation is about 25% when processed at 400 ° C.

集電体の伸び率を、熱処理により調整する場合の、集電体材料の金属箔の熱処理前の伸び率としては、通常5%以上、好ましくは8%以上で、通常12%以下である。この熱処理前の金属箔の伸び率は、低すぎると、熱処理後に充放電時の活物質膜の膨張・収縮に十分に追従し得る集電体とすることができないおそれがある。一方、機械的強度が不足しない限り伸び率が大きくても問題はないが、通常得られるものは12%以下である。   When the elongation rate of the current collector is adjusted by heat treatment, the elongation rate before heat treatment of the metal foil of the current collector material is usually 5% or more, preferably 8% or more, and usually 12% or less. If the elongation percentage of the metal foil before the heat treatment is too low, there is a possibility that the current collector cannot sufficiently follow the expansion / contraction of the active material film during charge / discharge after the heat treatment. On the other hand, as long as the mechanical strength is not insufficient, there is no problem even if the elongation rate is large.

熱処理前後での伸び率変化の倍率としては、通常1.3倍以上、好ましくは1.5倍以上、特に好ましくは2倍以上である。この伸び率変化の倍率が低すぎると、充放電時の活物質膜の膨張・収縮に集電体が追従せず活物質膜が集電体から脱落しやすくなるおそれがある。   The magnification of the elongation change before and after the heat treatment is usually 1.3 times or more, preferably 1.5 times or more, particularly preferably 2 times or more. If the rate of elongation change is too low, the current collector may not follow the expansion / contraction of the active material film during charge / discharge, and the active material film may easily fall off the current collector.

熱処理の到達温度は、処理する集電体の材質や所望の伸び率変化の倍率によっても異なるが、通常150℃以上、好ましくは200℃以上、特に好ましくは250℃以上で、通常600℃以下、好ましくは500℃以下、特に好ましくは400℃以下である。この熱処理温度が低すぎると、所望の伸びが得られないという問題があり、高すぎると機械的強度が低下するおそれがある。また、熱処理時間は、熱処理温度や所望の伸び率変化の倍率によっても異なるが、通常5分から30分、好ましくは10分から20分である。熱処理時間が、短かすぎると、所望の伸びが得られないおそれがあり、長すぎると生産性が低下するおそれがある。   The ultimate temperature of the heat treatment varies depending on the material of the current collector to be treated and the desired rate of change in elongation, but is usually 150 ° C or higher, preferably 200 ° C or higher, particularly preferably 250 ° C or higher, usually 600 ° C or lower, Preferably it is 500 degrees C or less, Most preferably, it is 400 degrees C or less. If the heat treatment temperature is too low, there is a problem that desired elongation cannot be obtained, and if it is too high, the mechanical strength may be lowered. The heat treatment time is usually 5 minutes to 30 minutes, preferably 10 minutes to 20 minutes, although it varies depending on the heat treatment temperature and the desired rate of change in elongation. If the heat treatment time is too short, the desired elongation may not be obtained, and if it is too long, the productivity may decrease.

熱処理時の雰囲気としては、金属箔の表面酸化を防ぐ目的で、非酸化雰囲気ガス中、還元雰囲気ガス中、又は真空中などが好ましい。非酸化雰囲気のガスとしては、不活性なアルゴン、クリプトンなどが挙げられる。特にアルゴンは安価で一般的に使用される。還元雰囲気を得るために、2〜10%、特に3%の水素を含むアルゴンガス中又は真空中で処理することが好ましい。   The atmosphere during the heat treatment is preferably in a non-oxidizing atmosphere gas, in a reducing atmosphere gas, or in a vacuum for the purpose of preventing the surface oxidation of the metal foil. Examples of the non-oxidizing atmosphere gas include inert argon and krypton. In particular, argon is inexpensive and is generally used. In order to obtain a reducing atmosphere, it is preferable to perform the treatment in an argon gas containing 2 to 10%, particularly 3% hydrogen, or in a vacuum.

また、このような熱処理の後に、集電体表面の酸化膜の除去や有機物の汚染を取り除く目的でエッチング処理を行っても良い。エッチング処理は特に、後述のスパッタリング又は真空蒸着法による活物質薄膜の成膜に先立ち、その成膜系内で行うことが好ましい。   Further, after such a heat treatment, an etching treatment may be performed for the purpose of removing an oxide film on the surface of the current collector or removing organic contamination. In particular, the etching treatment is preferably performed in the film forming system prior to film formation of the active material thin film by sputtering or vacuum evaporation described later.

このようにして得られた集電体に活物質薄膜を堆積してリチウム二次電池用負極を製造する際、活物質薄膜の形成方法としては、気相成膜法、具体的には、スパッタリング法、真空蒸着法、CVD法などが挙げられる。また、スパッタリング法と真空蒸着法とを組合せて成膜しても良い。   When a negative electrode for a lithium secondary battery is manufactured by depositing an active material thin film on the current collector thus obtained, the active material thin film is formed by a vapor deposition method, specifically, sputtering. Method, vacuum deposition method, CVD method and the like. Alternatively, the sputtering method and the vacuum evaporation method may be combined to form a film.

以下に、活物質薄膜の形成方法について説明する。
(スパッタリング法)
スパッタリング法では、減圧下で、プラズマを利用して活物質材料よりなるターゲットから発せられた活物質材料を集電体に衝突、堆積させて薄膜を形成する。スパッタリング法によると、形成した活物質薄膜と集電体との界面状態が良好であり、集電体に対する薄膜の密着性も高い。
Below, the formation method of an active material thin film is demonstrated.
(Sputtering method)
In the sputtering method, a thin film is formed by colliding and depositing an active material emitted from a target made of an active material using plasma on a current collector under reduced pressure. According to the sputtering method, the interface state between the formed active material thin film and the current collector is good, and the adhesion of the thin film to the current collector is also high.

ターゲットに対するスパッタ電圧の印加方法としては、直流電圧、交流電圧のいずれも用いることができ、その際、集電体に実質的に負のバイアス電圧を印加して、プラズマからのイオンの衝突エネルギーを制御することも可能である。   As a method for applying the sputtering voltage to the target, either a DC voltage or an AC voltage can be used. At that time, a substantially negative bias voltage is applied to the current collector to reduce the collision energy of ions from the plasma. It is also possible to control.

薄膜形成を開始する前のチャンバー内の到達真空度は、不純物の混入を防ぐため、通常0.1Pa以下である。   The ultimate vacuum in the chamber before starting the thin film formation is usually 0.1 Pa or less in order to prevent impurities from being mixed.

スパッタリングガスとしては、シリコンなどのターゲット材料と反応しないガスが好ましく、Ne、Ar、Kr、Xe等の不活性ガスが用いられる。中でも、アルゴンガスが、スパッタリング効率などの点で好ましく用いられる。   As the sputtering gas, a gas that does not react with a target material such as silicon is preferable, and an inert gas such as Ne, Ar, Kr, or Xe is used. Among these, argon gas is preferably used in terms of sputtering efficiency.

スパッタリングターゲットは、薄膜材料であるIVB族元素(但し、炭素を除く)からなり、単結晶でも多結晶でもよい。ターゲット純度は、形成する薄膜の純度を上げるために、高いほど良く、通常99%以上のものが用いられる。   The sputtering target is made of a group IVB element (excluding carbon), which is a thin film material, and may be single crystal or polycrystalline. The target purity is preferably as high as possible in order to increase the purity of the thin film to be formed, and usually 99% or more is used.

スパッタリング法により薄膜を形成する際の集電体は、ヒーター等により温度を制御することもできる。   The temperature of the current collector for forming a thin film by sputtering can be controlled by a heater or the like.

スパッタリング法による活物質薄膜の形成における成膜速度は、通常0.01〜0.5μm/分である。   The film formation speed in forming the active material thin film by the sputtering method is usually 0.01 to 0.5 μm / min.

なお、薄膜形成前に、逆スパッタや、その他のプラズマ処理などの前処理により、集電体表面をエッチングすることができる。前処理は、銅箔表面の汚染物や酸化膜の除去、活物質薄膜の密着性の向上に有効である。   Note that the surface of the current collector can be etched by pre-treatment such as reverse sputtering or other plasma treatment before forming the thin film. The pretreatment is effective in removing contaminants and oxide films on the copper foil surface and improving the adhesion of the active material thin film.

(真空蒸着法)
真空蒸着法では、活物質となる材料を溶融・蒸発させて、基板上に堆積させる。一般にスパッタリング法に比べて高い成膜速度で薄膜を形成できる利点を有する方法である。真空蒸着法は、スパッタリング法に比べて、所定膜厚の活物質薄膜の形成時間の短縮を図る観点から製造コスト面で有利に活用することができ、その具体的な方法としては、抵抗加熱法、電子ビーム蒸着法などを挙げることができる。抵抗加熱法では蒸着ボートなど通電した加熱電流により、電子ビーム蒸着では電子ビームにより、それぞれ蒸着材料を加熱溶融し、蒸発させて成膜する。
(Vacuum deposition method)
In the vacuum evaporation method, a material to be an active material is melted and evaporated and deposited on a substrate. In general, it is a method having an advantage that a thin film can be formed at a higher film formation rate than the sputtering method. The vacuum deposition method can be advantageously used in terms of manufacturing cost from the viewpoint of shortening the formation time of the active material thin film having a predetermined thickness compared with the sputtering method. As a specific method, the resistance heating method is used. And electron beam evaporation. In the resistance heating method, the vapor deposition material is heated and melted and evaporated by an energized heating current such as a vapor deposition boat, and in electron beam vapor deposition by an electron beam.

薄膜形成を開始する前のチャンバー内の到達真空度は、不純物の混入を防ぐため、通常0.1Pa以下である。   The ultimate vacuum in the chamber before starting the thin film formation is usually 0.1 Pa or less in order to prevent impurities from being mixed.

薄膜材料であるIVB族元素(但し、炭素を除く)からなる蒸着材料の純度は、形成する薄膜の純度を上げるために、高いほど良く、通常99%以上のものが用いられる。   In order to increase the purity of the thin film to be formed, the higher the purity of the vapor deposition material made of a group IVB element (however, excluding carbon), which is a thin film material, the better, and usually 99% or more is used.

真空蒸着法による薄膜を形成する際の集電体は、ヒーター等により温度を制御することもできる。   The temperature of the current collector when forming a thin film by a vacuum deposition method can be controlled by a heater or the like.

真空蒸着法による活物質薄膜の形成における成膜速度は、通常0.1〜50μm/分である。   The film formation rate in forming the active material thin film by the vacuum deposition method is usually 0.1 to 50 μm / min.

スパッタリング法の場合と同様に、基板となる集電体上に活物質薄膜を堆積させる前に、イオンガンなどでイオン照射をすることで集電体表面にエッチング処理を施しても良い。このようなエッチング処理により、基板とシリコンなどの活物質薄膜との密着性を更に高めることができる。また、薄膜を形成する間に、集電体にイオンを衝突させることにより、集電体に対するシリコン薄膜の密着性を更に向上させることもできる。   Similarly to the case of the sputtering method, before the active material thin film is deposited on the current collector serving as the substrate, the surface of the current collector may be etched by ion irradiation with an ion gun or the like. By such etching treatment, the adhesion between the substrate and an active material thin film such as silicon can be further enhanced. Moreover, the adhesion of the silicon thin film to the current collector can be further improved by causing ions to collide with the current collector during the formation of the thin film.

(スパッタリング法と真空蒸着法の組合せ)
真空蒸着法の高い成膜速度の利点と、スパッタリング法の集電体への強い成膜密着性の利点を利用し、例えば、スパッタリング法により第1の薄膜層を形成し、その後真空蒸着法により高速に第2の薄膜層を形成することにより、集電体との密着性が良好になる界面領域を形成すると共に、高い成膜速度で活物質薄膜を形成することができる。このような成膜方法のハイブリッドな組合せ手法により、充放電容量が高く、かつ充放電サイクル特性に優れたリチウム二次電池用電極を効率的に製造することができる。
(Combination of sputtering and vacuum deposition)
Utilizing the advantage of the high deposition rate of the vacuum deposition method and the advantage of strong deposition adhesion to the current collector of the sputtering method, for example, the first thin film layer is formed by the sputtering method, and then the vacuum deposition method is used. By forming the second thin film layer at a high speed, it is possible to form an interface region where the adhesion to the current collector is good and to form an active material thin film at a high film formation rate. By such a hybrid combination method of film formation methods, an electrode for a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics can be efficiently produced.

スパッタリング法と真空蒸着法を組み合わせて活物質薄膜を形成することは、減圧雰囲気を保ちつつ連続的に行われることが好ましい。これは、大気に暴露することなく連続的に第1の薄膜層と第2の薄膜層とを形成することによって、不純物の混入を防止できるからである。例えば、同一の真空環境の中で、集電体を移動させながら、スパッタ及び蒸着を順次行うような薄膜形成装置を用いることが好ましい。   Forming the active material thin film by combining the sputtering method and the vacuum evaporation method is preferably performed continuously while maintaining a reduced pressure atmosphere. This is because contamination of impurities can be prevented by continuously forming the first thin film layer and the second thin film layer without being exposed to the atmosphere. For example, it is preferable to use a thin film forming apparatus that sequentially performs sputtering and vapor deposition while moving the current collector in the same vacuum environment.

本発明において、集電体の両面に活物質薄膜を形成する場合、集電体の一方の面に対する活物質薄膜層(上記第1の薄膜層と第2の薄膜層の組み合せであっても良い。)の形成と、集電体の他方の面に対する活物質薄膜層(上記第1の薄膜層と第2の薄膜層の組み合せであっても良い。)の形成とは、減圧雰囲気を保持したまま連続して行うことが好ましい。   In the present invention, when the active material thin film is formed on both sides of the current collector, the active material thin film layer on one side of the current collector (a combination of the first thin film layer and the second thin film layer may be used). .) And the formation of the active material thin film layer (which may be a combination of the first thin film layer and the second thin film layer) with respect to the other surface of the current collector maintained a reduced-pressure atmosphere. It is preferable to carry out continuously.

<リチウム二次電池>
次に本発明のリチウム二次電池について説明する。
上記本発明のリチウム二次電池用電極は、リチウム二次電池などの非水系二次電池の負極材料として極めて有用である。例えば、上記の方法に従って製造した電極を負極として使用し、通常使用されるリチウムイオン電池用の正極及びカーボネート系溶媒を主体とする有機電解液を組み合わせて構成した非水系二次電池は、サイクル特性が優れたものである。
<Lithium secondary battery>
Next, the lithium secondary battery of the present invention will be described.
The electrode for a lithium secondary battery of the present invention is extremely useful as a negative electrode material for a non-aqueous secondary battery such as a lithium secondary battery. For example, a non-aqueous secondary battery constructed by combining an electrode manufactured according to the above method as a negative electrode and combining a commonly used positive electrode for a lithium ion battery and an organic electrolyte mainly composed of a carbonate solvent has cycle characteristics. Is excellent.

このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。   There is no particular limitation on the selection of members necessary for the battery configuration such as the positive electrode and the electrolytic solution constituting such a non-aqueous secondary battery.

以下において、非水系二次電池を構成する部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。   Although the material of the member which comprises a non-aqueous secondary battery etc. is illustrated below, the material which can be used is not limited to these specific examples.

リチウム二次電池を構成する正極には、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵・放出可能な材料を使用することができる。具体的には、LiFeO2、LiCoO2、LiNiO2、LiMn24及びこれらの非定比化合物、MnO2、TiS2、FeS2、Nb34、Mo34、CoS2、V25、P25、CrO3、V33、TeO2、GeO2等の1種又は2種以上を用いることができる。正極の製造方法は特に制限されず、上記の電極の製造方法と同様の方法により製造することができる。 Examples of the positive electrode constituting the lithium secondary battery include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide; transition metal oxide materials such as manganese dioxide; A material that can occlude and release lithium, such as a carbonaceous material, can be used. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and their non-stoichiometric compounds, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 One or more of O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2 and the like can be used. The manufacturing method in particular of a positive electrode is not restrict | limited, It can manufacture by the method similar to the manufacturing method of said electrode.

正極集電体には、電解液中での陽極酸化によって表面に不動態皮膜を形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、IIIa、IVa、Va族(3B、4B、5B族)に属する金属及びこれらの合金を例示することができる。具体的には、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属の1種又は2種以上を含む合金などを例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特にAl及びその合金は軽量であるためエネルギー密度が高いため有利である。   For the positive electrode current collector, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution. Examples of the valve metal include metals belonging to IIIa, IVa, and Va groups (3B, 4B, and 5B groups) and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing one or more of these metals can be exemplified. Al, Ti, Ta and alloys containing these metals Can be preferably used. In particular, Al and its alloys are advantageous because of their light weight and high energy density.

非水系二次電池に使用する電解液としては、非水系溶媒に溶質(電解質)を溶解したものを用いることができる。溶質としては、アルカリ金属塩や4級アンモニウム塩などを用いることができる。具体的には、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(CF3CF2SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23からなる群から選択される1以上の化合物を用いるのが好ましい。 As an electrolytic solution used for a non-aqueous secondary battery, a solution obtained by dissolving a solute (electrolyte) in a non-aqueous solvent can be used. As the solute, an alkali metal salt, a quaternary ammonium salt, or the like can be used. Specifically, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F It is preferable to use one or more compounds selected from the group consisting of 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 .

非水系溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、γ−ブチロラクトンなどの環状エステル化合物;1,2−ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2−メチルテトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、1,3−ジオキソラン、テトラヒドロフラン等の環状エーテル;ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネートなどを用いることができる。   Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, cyclic ester compounds such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ether, 2-methyltetrahydrofuran , 1,2-dimethyltetrahydrofuran, 1,3-dioxolane, tetrahydrofuran and other cyclic ethers; diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate and other chain carbonates.

溶質及び溶媒はそれぞれ1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状カーボネートと鎖状カーボネートを含有するものが好ましい。   One kind of solute and solvent may be selected and used, or two or more kinds may be mixed and used. Among these, the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.

非水系二次電池に使用するセパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的に接触しないように分離するものであり、イオン透過性が高く、電気抵抗が低いものが好ましい。また、セパレータは電解液に対して安定で保液性が優れた材料の中から選択するのが好ましい。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布をセパレータとして用いて、上記電解液を含浸させることができる。   The material and shape of the separator used for the non-aqueous secondary battery are not particularly limited. The separator separates the positive electrode and the negative electrode so that they do not come into physical contact, and preferably has a high ion permeability and a low electric resistance. The separator is preferably selected from materials that are stable with respect to the electrolytic solution and have excellent liquid retention. Specifically, the electrolyte solution can be impregnated using a porous sheet or non-woven fabric made of a polyolefin such as polyethylene or polypropylene as a separator.

非水系電解液二次電池には、非水系電解液、負極、正極の他に、必要に応じて、外缶、セパレータ、ガスケット、封口板、セルケースなどを用いることができる。非水系電解液、負極及び正極を少なくとも有する非水系電解液二次電池を製造する方法は、特に限定されず、通常採用されている方法の中から適宜選択することができる。例えば、外缶上に負極を載せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を載せて、ガスケット、封口板と共にかしめて電池とすることができる。   In addition to the non-aqueous electrolyte solution, the negative electrode, and the positive electrode, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used for the non-aqueous electrolyte secondary battery as necessary. A method for producing a non-aqueous electrolyte secondary battery having at least a non-aqueous electrolyte, a negative electrode, and a positive electrode is not particularly limited, and can be appropriately selected from commonly employed methods. For example, a negative electrode can be placed on an outer can, an electrolytic solution and a separator can be provided thereon, and a positive electrode can be placed so as to face the negative electrode, and can be caulked together with a gasket and a sealing plate to form a battery.

本発明のリチウム二次電池の形状は特に制限されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等を採用することができる。   The shape of the lithium secondary battery of the present invention is not particularly limited, a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked Etc. can be adopted.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
集電体として、平均表面粗さ(Ra)が0.19μmで厚さが18μmの電解銅箔(伸び率7.8%)を、赤外線イメージ炉にて350℃で10分間、3%水素を含むアルゴンガス雰囲気中で熱処理して集電体として用いた。
Example 1
As a current collector, an electrolytic copper foil (elongation rate 7.8%) having an average surface roughness (Ra) of 0.19 μm and a thickness of 18 μm was charged with 3% hydrogen at 350 ° C. for 10 minutes in an infrared image furnace. It heat-processed in the argon gas atmosphere containing, and was used as a collector.

熱処理後の集電体の伸び率は24.0%、引張強度は217N/mm、0.2%耐力は128N/mmであった。 Elongation 24.0 percent of the current collector after the heat treatment, the tensile strength 217N / mm 2, 0.2% proof stress was 128N / mm 2.

この電解銅箔集電体上に、直流スパッタ方式の装置を用い、以下の成膜条件で、シリコンの活物質を約5μmの厚さの薄膜に形成した。電解銅箔は成膜装置の水冷された基板ホルダーに取り付け、そのチャンバーを予め2.7×10-4Paまで真空引きした。その後、高純度アルゴンガスをチャンバー内に90sccm流し、メインバルブの開度を調整して5.3Paの雰囲気とした。 On the electrolytic copper foil current collector, a silicon active material was formed into a thin film having a thickness of about 5 μm under the following film forming conditions using a direct current sputtering apparatus. The electrolytic copper foil was attached to a water-cooled substrate holder of the film forming apparatus, and the chamber was previously evacuated to 2.7 × 10 −4 Pa. Thereafter, 90 sccm of high purity argon gas was flowed into the chamber, and the opening of the main valve was adjusted to create an atmosphere of 5.3 Pa.

なお、薄膜形成前に、電解銅箔表面の酸化膜を除去する目的で、逆スパッタを行い基板表面をエッチングした。   Before the thin film was formed, the substrate surface was etched by reverse sputtering for the purpose of removing the oxide film on the surface of the electrolytic copper foil.

使用したシリコンターゲットは5インチ径で、投入した電力密度は4.76W/cmであった。堆積速度は約2nm/secであり、5μmのシリコン膜を形成するために約42分間を要した。 The silicon target used had a diameter of 5 inches, and the power density input was 4.76 W / cm 2 . The deposition rate was about 2 nm / sec, and it took about 42 minutes to form a 5 μm silicon film.

こうして得られたシリコン薄膜付きの集電体を負極とし、電池評価のために、直径10mmの円盤状に打抜き、電解液、セパレータと共に、対極とする金属リチウムを組み込んだ2016セルからなるハーフセルを組み立てた。電解液としてはLiPFを1モル/L含有するエチレンカーボネートとエチルメチルカーボネートの3:7(体積比)溶液を用いた。 The current collector with the silicon thin film thus obtained was used as a negative electrode, and for battery evaluation, a half cell consisting of 2016 cells incorporating metal lithium as a counter electrode was assembled together with an electrolyte and a separator by punching into a disk shape with a diameter of 10 mm. It was. As the electrolytic solution, a 3: 7 (volume ratio) solution of ethylene carbonate and ethyl methyl carbonate containing 1 mol / L of LiPF 6 was used.

充放電試験は以下の条件で行なった。
電極にリチウムをドープする充電は1.23mA/cmにて定電流充電を行い、10mVとなったところで電流量が0.123mA/cmとなるまで、10mVで定電圧充電を行なうCCCV充電で行なった。電極からリチウムを脱ドープする放電は1.23mA/cmの定電流で1200mVとなるまで放電するCC放電で行なった。
The charge / discharge test was performed under the following conditions.
Charging to dope the lithium electrode was treated with constant current charge at 1.23mA / cm 2, until the amount of current becomes 0.123mA / cm 2 upon reaching a 10mV, in CCCV charge of performing constant-voltage charging at 10mV I did it. The discharge for dedoping lithium from the electrode was performed by a CC discharge discharging to 1200 mV at a constant current of 1.23 mA / cm 2 .

この充放電サイクルを50回繰り返し、所定サイクル後の放電容量の低下により電池性能を評価することとし、結果を表1に示した。   This charge / discharge cycle was repeated 50 times, and the battery performance was evaluated by the decrease in discharge capacity after a predetermined cycle. The results are shown in Table 1.

実施例2
集電体として、平均表面粗さが0.32μmで厚さが10μmの電解銅箔(伸び率10.8%)を、実施例1と同様に熱処理した。
Example 2
As the current collector, an electrolytic copper foil (elongation rate 10.8%) having an average surface roughness of 0.32 μm and a thickness of 10 μm was heat-treated in the same manner as in Example 1.

熱処理後の集電体の伸び率は19.4%、引張強度は172N/mm、0.2%耐力は70N/mmであった。 Elongation 19.4% of the current collector after the heat treatment, the tensile strength 172N / mm 2, 0.2% proof stress was 70N / mm 2.

この電解銅箔集電体を用いて実施例1と同様に、シリコン活物質薄膜を形成し、同様に電池を作製し、同様な電池評価を行い、結果を表1に示した。   Using this electrolytic copper foil current collector, a silicon active material thin film was formed in the same manner as in Example 1, a battery was produced in the same manner, a similar battery evaluation was performed, and the results are shown in Table 1.

比較例1
集電体として、実施例1で用いたと同様な電解銅箔を熱処理せずにそのまま用いた。
Comparative Example 1
As the current collector, the same electrolytic copper foil as used in Example 1 was used as it was without heat treatment.

この熱処理しなかった電解銅箔集電体の伸び率は7.8%、引張強度は277N/mm、0.2%耐力は219N/mmであった。 The electrolytic copper foil current collector that was not heat-treated had an elongation of 7.8%, a tensile strength of 277 N / mm 2 , and a 0.2% proof stress of 219 N / mm 2 .

この電解銅箔集電体を用いて実施例1と同様に、シリコン活物質薄膜を形成し、同様に電池を作製し、同様な電池評価を行い、結果を表1に示した。   Using this electrolytic copper foil current collector, a silicon active material thin film was formed in the same manner as in Example 1, a battery was produced in the same manner, a similar battery evaluation was performed, and the results are shown in Table 1.

比較例2
集電体として実施例2で用いたと同様な電解銅箔を、熱処理せずにそのまま用いた。
Comparative Example 2
The same electrolytic copper foil as that used in Example 2 was used as a current collector without any heat treatment.

この熱処理しなかった電解銅箔集電体の伸び率は10.8%、引張強度は315N/mm、0.2%耐力は204N/mmであった。 The elongation percentage of the electrolytic copper foil current collector that was not heat-treated was 10.8%, the tensile strength was 315 N / mm 2 , and the 0.2% proof stress was 204 N / mm 2 .

この電解銅箔集電体を用いて実施例1と同様に、シリコン活物質薄膜を形成し、同様に電池を作製し、同様な電池評価を行い、結果を表1に示した。   Using this electrolytic copper foil current collector, a silicon active material thin film was formed in the same manner as in Example 1, a battery was produced in the same manner, a similar battery evaluation was performed, and the results are shown in Table 1.

Figure 2005135856
Figure 2005135856

表1より明らかなように、熱処理により伸び率を高めた集電体を用いた電極で作製した電池は、充放電サイクル特性が良好であるが、熱処理しない集電体を用いた電極で作製した電池は、早期に放電容量が低下し、充放電サイクル特性に劣る。   As is clear from Table 1, a battery made of an electrode using a current collector whose elongation was increased by heat treatment had good charge / discharge cycle characteristics, but was made of an electrode using a current collector that was not heat-treated. The battery has a low discharge capacity at an early stage and is inferior in charge / discharge cycle characteristics.

本発明のリチウム二次電池用電極によれば、電池サイクル特性が良好なリチウム二次電池を安定的に効率良く製造することが可能となる。   According to the electrode for a lithium secondary battery of the present invention, it is possible to stably and efficiently manufacture a lithium secondary battery having good battery cycle characteristics.

Claims (19)

集電体上にリチウムを吸蔵及び放出する活物質薄膜を形成してなるリチウム二次電池用電極において、該集電体の伸び率が13%以上であることを特徴とするリチウム二次電池用電極。   An electrode for a lithium secondary battery in which an active material thin film that absorbs and releases lithium is formed on a current collector, wherein the current collector has an elongation percentage of 13% or more. electrode. 前記集電体が、前記活物質薄膜を形成する前に予め熱処理されたものであることを特徴とする請求項1に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the current collector is heat-treated in advance before forming the active material thin film. 前記集電体が銅箔であることを特徴とする請求項1又は2に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the current collector is a copper foil. 前記集電体が電解銅箔であることを特徴とする請求項3に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 3, wherein the current collector is an electrolytic copper foil. 前記集電体の前記活物質薄膜形成面の平均表面粗さ(Ra)が0.05〜1.5μmであることを特徴とする請求項1ないし4のいずれか1項に記載のリチウム二次電池用電極。   5. The lithium secondary according to claim 1, wherein an average surface roughness (Ra) of the active material thin film forming surface of the current collector is 0.05 to 1.5 μm. Battery electrode. 前記活物質が、IVB族元素(但し炭素を除く)を構成元素として含むことを特徴とする請求項1ないし5のいずれか1項に記載のリチウム二次電池用電極。   6. The electrode for a lithium secondary battery according to claim 1, wherein the active material contains a group IVB element (except carbon) as a constituent element. 前記活物質が、シリコンの単体及び/又はその化合物を含むことを特徴とする請求項6に記載のリチウム二次電池用電極。   The lithium secondary battery electrode according to claim 6, wherein the active material contains silicon alone and / or a compound thereof. 前記活物質薄膜が、気相成膜法によって形成された薄膜であることを特徴とする請求項1ないし7のいずれか1項に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the active material thin film is a thin film formed by a vapor deposition method. 前記活物質薄膜が、スパッタリング法と真空蒸着法の組合せによって形成された薄膜であることを特徴とする請求項8に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 8, wherein the active material thin film is a thin film formed by a combination of a sputtering method and a vacuum deposition method. 集電体上にリチウムを吸蔵及び放出する活物質薄膜を形成することによりリチウム二次電池用電極を製造する方法において、該集電体として伸び率が13%以上であるものを用いることを特徴とするリチウム二次電池用電極の製造方法。   In a method for producing an electrode for a lithium secondary battery by forming an active material thin film that occludes and releases lithium on a current collector, the current collector has an elongation of 13% or more. A method for producing an electrode for a lithium secondary battery. 前記集電体が金属箔であり、該金属箔を活物質薄膜の形成に先立ち、予め熱処理することを特徴とする請求項10に記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to claim 10, wherein the current collector is a metal foil, and the metal foil is preheated prior to the formation of the active material thin film. 前記熱処理前の前記金属箔の伸び率が8〜12%であることを特徴とする請求項11に記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to claim 11, wherein the elongation percentage of the metal foil before the heat treatment is 8 to 12%. 前記熱処理を真空又は非酸化雰囲気下で、前記金属箔の伸び率を増加させる加熱温度範囲内で行うことを特徴とする請求項11又は12に記載のリチウム二次電池用電極の製造方法。   13. The method for manufacturing an electrode for a lithium secondary battery according to claim 11, wherein the heat treatment is performed in a heating temperature range in which the elongation percentage of the metal foil is increased in a vacuum or a non-oxidizing atmosphere. 前記活物質薄膜の形成に先立ち、前記集電体表面をエッチングすることを特徴とする請求項10ないし13のいずれか1項に記載のリチウム二次電池用電極の製造方法。   14. The method of manufacturing an electrode for a lithium secondary battery according to claim 10, wherein the surface of the current collector is etched prior to the formation of the active material thin film. 前記活物質薄膜を気相成膜法により形成することを特徴とする請求項10ないし14のいずれか1項に記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to claim 10, wherein the active material thin film is formed by a vapor deposition method. 前記活物質薄膜をスパッタリング法と真空蒸着法の組合せにより形成することを特徴とする請求項15に記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to claim 15, wherein the active material thin film is formed by a combination of a sputtering method and a vacuum deposition method. 前記活物質が、IVB族元素(但し炭素を除く)を構成元素として含むことを特徴とする請求項10ないし16のいずれか1項に記載のリチウム二次電池用電極の製造方法。   The method for producing an electrode for a lithium secondary battery according to any one of claims 10 to 16, wherein the active material contains a group IVB element (excluding carbon) as a constituent element. 正極、負極、及び電解質を備えたリチウム二次電池において、負極として、請求項1ないし9のいずれか1項に記載のリチウム二次電池用電極を用いてなるリチウム二次電池。   The lithium secondary battery provided with the positive electrode, the negative electrode, and the electrolyte, The lithium secondary battery which uses the electrode for lithium secondary batteries of any one of Claim 1 thru | or 9 as a negative electrode. 正極、負極、及び電解質を備えたリチウム二次電池において、負極として、請求項10ないし17のいずれか1項に記載のリチウム二次電池用電極の製造方法により製造されたリチウム二次電池用電極を用いてなるリチウム二次電池。   The lithium secondary battery provided with the positive electrode, the negative electrode, and the electrolyte, The electrode for lithium secondary batteries manufactured by the manufacturing method of the electrode for lithium secondary batteries of any one of Claim 10 thru | or 17 as a negative electrode Rechargeable lithium battery using
JP2003373055A 2003-10-31 2003-10-31 Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery Pending JP2005135856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373055A JP2005135856A (en) 2003-10-31 2003-10-31 Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373055A JP2005135856A (en) 2003-10-31 2003-10-31 Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005135856A true JP2005135856A (en) 2005-05-26

Family

ID=34649262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373055A Pending JP2005135856A (en) 2003-10-31 2003-10-31 Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005135856A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134761A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
JP2008004462A (en) * 2006-06-26 2008-01-10 Sony Corp Electrode collector, its manufacturing method, electrode for battery, its manufacturing method, and secondary battery
WO2008132987A1 (en) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
JP2009266699A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, battery-mounting equipment, manufacturing method of electrode foil for battery, and manufacturing method of positive electrode plate
JP2010114093A (en) * 2010-01-22 2010-05-20 Sony Corp Electrode collector and manufacturing method of the same, electrode for battery and manufacturing method of the same, and secondary battery
JP2011187195A (en) * 2010-03-05 2011-09-22 Hitachi Cable Ltd Method of manufacturing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
WO2012133564A1 (en) 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery anode collector and method for producing same
WO2014080890A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
US8932744B2 (en) 2007-05-23 2015-01-13 Sony Corporation Current collector, anode, and battery
CN105609710A (en) * 2014-11-19 2016-05-25 丰田自动车株式会社 Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN107075707A (en) * 2015-11-04 2017-08-18 古河电气工业株式会社 Electrolytic copper foil and the lithium rechargeable battery using the electrolytic copper foil
KR20170111290A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
JP2021506083A (en) * 2018-02-13 2021-02-18 エルジー・ケム・リミテッド A method for manufacturing a negative electrode current collector for a lithium metal battery, a secondary battery including the negative electrode current collector, and a negative electrode current collector for the lithium metal battery.
WO2021149489A1 (en) 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134761A (en) * 2004-11-08 2006-05-25 Sony Corp Secondary battery
KR101394431B1 (en) * 2006-06-26 2014-05-14 소니 가부시끼가이샤 Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US20080220338A1 (en) * 2006-06-26 2008-09-11 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
US9564640B2 (en) 2006-06-26 2017-02-07 Sony Corporation Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
JP4743020B2 (en) * 2006-06-26 2011-08-10 ソニー株式会社 Electrode current collector and manufacturing method thereof, battery electrode and manufacturing method thereof, and secondary battery
JP2008004462A (en) * 2006-06-26 2008-01-10 Sony Corp Electrode collector, its manufacturing method, electrode for battery, its manufacturing method, and secondary battery
TWI381071B (en) * 2007-04-20 2013-01-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil for lithium secondary battery and method for manufacturing the same
WO2008132987A1 (en) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
KR101108911B1 (en) 2007-04-20 2012-01-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
US8932744B2 (en) 2007-05-23 2015-01-13 Sony Corporation Current collector, anode, and battery
JP4655104B2 (en) * 2008-04-25 2011-03-23 トヨタ自動車株式会社 Battery electrode foil, positive electrode plate, battery, vehicle, battery-equipped device, battery electrode foil manufacturing method, and positive electrode plate manufacturing method
JP2009266699A (en) * 2008-04-25 2009-11-12 Toyota Motor Corp Electrode foil for battery, positive electrode plate, battery, vehicle, battery-mounting equipment, manufacturing method of electrode foil for battery, and manufacturing method of positive electrode plate
JP2010114093A (en) * 2010-01-22 2010-05-20 Sony Corp Electrode collector and manufacturing method of the same, electrode for battery and manufacturing method of the same, and secondary battery
JP2011187195A (en) * 2010-03-05 2011-09-22 Hitachi Cable Ltd Method of manufacturing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
JP2012212529A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil for secondary battery negative electrode collector and manufacturing method therefor
WO2012133564A1 (en) 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery anode collector and method for producing same
CN103460464A (en) * 2011-03-30 2013-12-18 Jx日矿日石金属株式会社 Electrolytic copper foil for secondary battery anode collector and method for producing same
JP6015769B2 (en) * 2012-11-22 2016-10-26 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2014080890A1 (en) * 2012-11-22 2014-05-30 日産自動車株式会社 Negative electrode for electrical device and electrical device provided with same
US9960411B2 (en) 2014-11-19 2018-05-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN105609710A (en) * 2014-11-19 2016-05-25 丰田自动车株式会社 Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN107075707A (en) * 2015-11-04 2017-08-18 古河电气工业株式会社 Electrolytic copper foil and the lithium rechargeable battery using the electrolytic copper foil
CN107075707B (en) * 2015-11-04 2020-04-10 古河电气工业株式会社 Electrolytic copper foil and lithium ion secondary battery using the same
KR20170111290A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
KR102130051B1 (en) * 2016-03-25 2020-07-03 주식회사 엘지화학 Preparation method of electrode for secondary battery, electrode for secondary battery prepared by the same and secondary battery comprising the electrode
JP2021506083A (en) * 2018-02-13 2021-02-18 エルジー・ケム・リミテッド A method for manufacturing a negative electrode current collector for a lithium metal battery, a secondary battery including the negative electrode current collector, and a negative electrode current collector for the lithium metal battery.
JP7086443B2 (en) 2018-02-13 2022-06-20 エルジー エナジー ソリューション リミテッド A method for manufacturing a negative electrode current collector for a lithium metal battery, a secondary battery including the negative electrode current collector, and a negative electrode current collector for the lithium metal battery.
WO2021149489A1 (en) 2020-01-23 2021-07-29 三洋電機株式会社 Secondary battery
CN114946053A (en) * 2020-01-23 2022-08-26 三洋电机株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
TWI521773B (en) Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material
JP5219339B2 (en) Lithium secondary battery
JP3787564B2 (en) Lithium metal anode for lithium batteries
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
KR100916436B1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP5151343B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5473576B2 (en) Silicon film and lithium secondary battery
JP7465219B2 (en) Diffusion barrier film for lithium stabilization
JP2007095568A (en) Lithium secondary battery and method of manufacturing same
JP2008192594A (en) Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP5177153B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP4831946B2 (en) Non-aqueous electrolyte battery
JP2005150038A (en) Lithium secondary battery
JP2005135856A (en) Electrode for lithium secondary battery, manufacturing method of the same, and the lithium secondary battery
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP2005085632A (en) Battery
US20200203714A1 (en) Deposition of lithium fluoride on surface of lithium metal and lithium secondary battery using the same
JP2005085633A (en) Negative electrode and battery
JP5304666B2 (en) Method for manufacturing battery electrode
JP2008235083A (en) Negative electrode for lithium secondary battery, and lithium secondary cell
JP2006260928A (en) Manufacturing method for electrode for lithium secondary battery and lithium secondary battery
JP2024507490A (en) Long cycle life, high capacity silicon anodes and methods of making and using the same
JP4179830B2 (en) Method for manufacturing lithium secondary battery
JP5094034B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery