JP5103789B2 - Negative electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP5103789B2
JP5103789B2 JP2006143832A JP2006143832A JP5103789B2 JP 5103789 B2 JP5103789 B2 JP 5103789B2 JP 2006143832 A JP2006143832 A JP 2006143832A JP 2006143832 A JP2006143832 A JP 2006143832A JP 5103789 B2 JP5103789 B2 JP 5103789B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143832A
Other languages
Japanese (ja)
Other versions
JP2007317415A (en
Inventor
禎之 岡崎
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006143832A priority Critical patent/JP5103789B2/en
Publication of JP2007317415A publication Critical patent/JP2007317415A/en
Application granted granted Critical
Publication of JP5103789B2 publication Critical patent/JP5103789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用負極およびそれを用いたリチウム二次電池に関する。   The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery using the same.

近年、モバイル機器の高性能化および多機能化に伴い、それらの電源である二次電池の高容量化が切望されている。この要求に応える二次電池としてリチウム二次電池がある。最近、ケイ素(Si)、ゲルマニウム(Ge)あるいはスズ(Sn)などを負極活物質として用いた高容量のリチウム二次電池用負極(以下、負極ともいう)の検討が盛んに行われている。しかし、これらの負極は充放電を繰り返すと、負極活物質の激しい膨張および収縮により粉砕して微細化し、集電性が低下したり、表面積の増大に起因して電解液の分解反応が促進され、サイクル特性の向上に結びつかなかった。そこで、気相法、液相法あるいは焼結法などにより集電体に負極活物質層を形成した負極も検討されている(例えば、特許文献1、特許文献2参照)。   2. Description of the Related Art In recent years, as mobile devices have higher performance and more functions, there is a strong demand for higher capacities of secondary batteries that are power sources thereof. There is a lithium secondary battery as a secondary battery that meets this requirement. Recently, studies have been actively made on high capacity negative electrodes for lithium secondary batteries (hereinafter also referred to as negative electrodes) using silicon (Si), germanium (Ge), tin (Sn) or the like as a negative electrode active material. However, when these negative electrodes are repeatedly charged and discharged, they are pulverized and refined by vigorous expansion and contraction of the negative electrode active material, resulting in a decrease in current collection or an accelerated decomposition reaction due to an increase in surface area. The cycle characteristics were not improved. Therefore, negative electrodes in which a negative electrode active material layer is formed on a current collector by a vapor phase method, a liquid phase method, a sintering method, or the like have been studied (see, for example, Patent Document 1 and Patent Document 2).

これらによれば、粒子状の負極活物質およびバインダーなどを含むスラリーを塗布した従来の塗布型負極に比べて微細化を抑制することができると共に、集電体と負極活物質層とを一体化することができるので、負極における電子伝導性が極めて良好となり、容量においてもサイクル寿命ににおいても高性能化が期待されている。また、従来は負極中に存在した導電材、バインダーおよび空隙などを低減または排除することもできるので、本質的に負極を高容量化することが可能となる。   According to these, the current collector and the negative electrode active material layer can be integrated as well as miniaturization can be suppressed as compared with a conventional coated negative electrode coated with a slurry containing a particulate negative electrode active material and a binder. Therefore, the electron conductivity in the negative electrode becomes extremely good, and high performance is expected in terms of capacity and cycle life. In addition, since it is possible to reduce or eliminate the conductive material, binder, voids, and the like that have conventionally existed in the negative electrode, it is possible to essentially increase the capacity of the negative electrode.

次に、電池を高容量化する手段としては、1枚当たりの電極面積を広くして、大電流での放電及び充電時の特性向上を図るため、帯状の正極と帯状の負極をセパレータを介して渦巻き状に捲回した捲回型電極群構造が用いられている(例えば特許文献3参照)。   Next, as a means for increasing the capacity of the battery, in order to increase the electrode area per sheet and improve the characteristics during discharging and charging with a large current, the strip-shaped positive electrode and the strip-shaped negative electrode are connected via a separator. A wound electrode group structure wound in a spiral shape is used (see, for example, Patent Document 3).

このような捲回型電池において、リチウムのデンドライトや活物質粒子の欠け落ちなどによる内部短絡がサイクル寿命を短くするという課題があった。   In such a wound battery, there has been a problem that an internal short circuit due to, for example, lithium dendrite or chipping of active material particles shortens the cycle life.

これらの課題を解決するため、負極とセパレータの間に絶縁層を設けて、充放電を繰り返した際に負極表面上に生じるデンドライトが、セパレータを貫通することによって発生する内部短絡を解消し、充放電サイクル寿命を改善する取り組みが行われている(例えば特許文献4参照)。   In order to solve these problems, an insulating layer is provided between the negative electrode and the separator, and the internal short circuit that occurs when the dendrite generated on the negative electrode surface penetrates the separator when charging and discharging are repeated eliminates the charge. Efforts have been made to improve the discharge cycle life (see, for example, Patent Document 4).

また、正極活物質層及び負極活物質層の少なくとも一方の端面を、絶縁性物質粒子集合体層でコーティングして、活物質端面からの欠け落ちを防止し、内部短絡を改善する取り組みも行われている(例えば特許文献5参照)。
特開平11−339777号公報 特開平11−135115号公報 特開平9−293537号公報 特開平6−168737号公報 国際公開第98/38688号パンフレット
Also, at least one end face of the positive electrode active material layer and the negative electrode active material layer is coated with an insulating material particle aggregate layer to prevent chipping from the end face of the active material and to improve internal short circuit. (For example, refer to Patent Document 5).
JP 11-339777 A Japanese Patent Laid-Open No. 11-135115 JP-A-9-293537 JP-A-6-168737 WO 98/38688 pamphlet

しかしながら、充放電時に活物質が膨張収縮を繰り返した際に、渦巻き状に捲回した負極最外周部および最内周部の負極活物質エッジがセパレータと擦れて、セパレータが破断し正極活物質もしくは正極集電体と負極活物質もしくは負極集電体が内部短絡していまいサイクル寿命が短くなるという課題があった。   However, when the active material repeatedly expands and contracts during charge and discharge, the negative electrode outermost peripheral portion wound in a spiral shape and the negative electrode active material edge of the innermost peripheral portion rub against the separator, and the separator breaks and the positive electrode active material or The positive electrode current collector and the negative electrode active material or the negative electrode current collector are internally short-circuited, resulting in a problem that the cycle life is shortened.

本発明はかかる問題点に鑑みてなされたもので、その目的は、負極活物質層の充放電に伴う膨張収縮によって捲回型極板の最外周部および最内周部で生じるセパレータの劣化、破断を緩和し、サイクル寿命を向上させることができる負極およびそれを用いた電池を提供することにある。   The present invention has been made in view of such problems, the purpose of which is the deterioration of the separator that occurs in the outermost peripheral portion and the innermost peripheral portion of the wound electrode plate due to expansion and contraction associated with charging and discharging of the negative electrode active material layer, An object of the present invention is to provide a negative electrode capable of alleviating breakage and improving cycle life and a battery using the negative electrode.

上記従来の課題を解決するために、本発明の負極は、
長尺の集電体と、集電体表面に形成された負極活物質層とを含む負極であって、
負極活物質層は、集電体表面に形成され、複数の柱状粒子からなる第1の負極活物質を含む第1の負極活物質層と、
第1の負極活物質層に隣接し、集電体の長手方向の終端部に向かって高さが低くなると共に、含有する酸素濃度が集電体の長手方向の終端部に向かって大きくなるように形成された第2の負極活物質を含む第2の負極活物質層と、
を含むことを特徴とする。
In order to solve the above conventional problems, the negative electrode of the present invention is
A negative electrode comprising a long current collector and a negative electrode active material layer formed on the surface of the current collector,
The negative electrode active material layer is formed on the current collector surface and includes a first negative electrode active material layer including a first negative electrode active material composed of a plurality of columnar particles;
Adjacent to the first negative electrode active material layer, the height decreases toward the terminal end in the longitudinal direction of the current collector, and the oxygen concentration contained increases toward the terminal end in the longitudinal direction of the current collector. A second negative electrode active material layer containing a second negative electrode active material formed on
It is characterized by including.

本構成によって、負極活物質の充放電に伴う膨張収縮によって捲回型極板の負極最外周部および最内周部で生じる負極活物質エッジとセパレータとの擦れによるセパレータの劣化、破断を緩和でき、正極活物質または正極集電体と負極活物質または負極集電体との内部短絡をなくして、サイクル寿命を改善できる。   With this configuration, deterioration and breakage of the separator due to rubbing between the negative electrode active material edge and the separator generated at the outermost and innermost negative electrodes of the wound electrode plate due to expansion and contraction accompanying charging and discharging of the negative electrode active material can be mitigated. The cycle life can be improved by eliminating an internal short circuit between the positive electrode active material or positive electrode current collector and the negative electrode active material or negative electrode current collector.

本発明の負極およびそれを用いた捲回型電池によれば、高容量の負極活物質を用い、かつ捲回型極板の負極最外周部および最内周部で、充放電時の負極活物質の膨張収縮時によりセパレータを擦って破断することを防止し、正極活物質または正極集電体と負極活物質または負極集電体との内部短絡をなくして、サイクル寿命を向上できる。これらにより、サイクル特性が優れた電池を得ることができる。   According to the negative electrode of the present invention and the wound battery using the negative electrode, the negative electrode active material at the time of charge and discharge is used in the negative electrode outermost periphery and innermost peripheral portion of the wound electrode plate using a high-capacity negative electrode active material. The separator is prevented from rubbing and breaking due to the expansion and contraction of the material, and an internal short circuit between the positive electrode active material or the positive electrode current collector and the negative electrode active material or the negative electrode current collector can be eliminated, thereby improving the cycle life. As a result, a battery having excellent cycle characteristics can be obtained.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における負極の概略断面図である。図1において、本発明の負極10は、長尺の負極集電体6と、負極集電体6の表面に形成され、複数の柱状粒子からなる第1の負極活物質8を含む第1の負極活物質層4と、第1の負極活物質層4に隣接し、負極集電体6の長手方向の終端部に向かって高さが低くなるように形成された第2の負極活物質9を含む第2の負極活物質層5と、を含む。第2の負極活物質9は、含有する酸素濃度が負極集電体6の長手方向の終端部に向かって大きくなるように形成されている。負極集電体6は、その表面に図1に示すような突起を有していることが好ましい。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of the negative electrode according to Embodiment 1 of the present invention. In FIG. 1, a negative electrode 10 of the present invention includes a long negative electrode current collector 6 and a first negative electrode active material 8 formed on the surface of the negative electrode current collector 6 and comprising a first negative electrode active material 8 made of a plurality of columnar particles. The negative electrode active material layer 4 and the second negative electrode active material 9 formed adjacent to the first negative electrode active material layer 4 and having a height that decreases toward the end of the negative electrode current collector 6 in the longitudinal direction. And a second negative electrode active material layer 5 containing. The second negative electrode active material 9 is formed so that the concentration of oxygen contained increases toward the end of the negative electrode current collector 6 in the longitudinal direction. The negative electrode current collector 6 preferably has protrusions as shown in FIG.

なお、図1は負極集電体6の長手方向と平行な面で切断した負極10の概略断面図であり、図1中の矢印の先端方向が長手方向の終端部側になる。また、図1中の長手方向の終端部側とは逆の終端部の方向にも、図1に示したのと同様に負極集電体6、第1の負極活物質層4および第2の負極活物質層5とが形成されているが、省略している。   1 is a schematic cross-sectional view of the negative electrode 10 cut along a plane parallel to the longitudinal direction of the negative electrode current collector 6, and the tip direction of the arrow in FIG. 1 is the end portion side in the longitudinal direction. Further, in the direction of the terminal portion opposite to the terminal portion side in the longitudinal direction in FIG. 1, the negative electrode current collector 6, the first negative electrode active material layer 4 and the second negative electrode current collector 6 are also shown in FIG. Although the negative electrode active material layer 5 is formed, it is omitted.

図2は、上述した本発明の負極10を用いた捲回型電池用の極板群外周部の概略断面図である。以下の各図において、図1と同じ構成要素には同じ符号を用いる。   FIG. 2 is a schematic cross-sectional view of the outer periphery of the electrode plate group for a wound battery using the negative electrode 10 of the present invention described above. In the following drawings, the same reference numerals are used for the same components as in FIG.

図2において、負極集電体6の表面に、第1の負極活物質層4と、それに隣接した第2の負極活物質層5とが形成されている。第2の負極活物質層5は、負極集電体6の長手方向の終端部に向かって高さが低くなるように形成されている。負極10は、セパレータ3を介して、正極集電体2上に形成された正極活物質1と対向している。   In FIG. 2, a first negative electrode active material layer 4 and a second negative electrode active material layer 5 adjacent thereto are formed on the surface of the negative electrode current collector 6. The second negative electrode active material layer 5 is formed so that its height decreases toward the end portion of the negative electrode current collector 6 in the longitudinal direction. The negative electrode 10 is opposed to the positive electrode active material 1 formed on the positive electrode current collector 2 via the separator 3.

なお、図2にでは極板群外周部のみを示しているが、最内周部分も同様に、第1の負極活物質層4および最内周の内側(負極集電体6の長手方向の終端部側)に向かって高さが低くなるように形成された第2の負極活物質9を含む第2の負極活物質層5が形成されている。   In FIG. 2, only the outer peripheral portion of the electrode plate group is shown. Similarly, the innermost peripheral portion also includes the first negative electrode active material layer 4 and the inner side of the innermost periphery (in the longitudinal direction of the negative electrode current collector 6). A second negative electrode active material layer 5 including a second negative electrode active material 9 formed so as to decrease in height toward the terminal end side) is formed.

次に、負極活物質について説明する。リチウムイオン電池で使用される負極活物質は、リチウムイオンを吸蔵・放出する際に体積の膨張・収縮をすることが知られている。特に、ケイ素酸化物中の酸素濃度と体積膨張率とは密接に関係している。例えば、負極活物質としてSiOαで表される化学組成であるケイ素酸化物を使用した場合、負極活物質が酸素を殆ど含まないとき(α≒0)には、充電により負極活物質は約400%の体積膨張が生じる。負極活物質中のケイ素原子に対する酸素原子の量が30%の場合には、すなわちα=0.3の場合には、充電により負極活物質は約350%の体積膨張が生じる。同様に、酸素原子の量が60%の場合には、すなわちα=0.6の場合には、約280%の体積膨張が生じ、酸素原子の量が100%の場合には、すなわちα=1.0の場合には、約200%の体積膨張が発生する。 Next, the negative electrode active material will be described. It is known that a negative electrode active material used in a lithium ion battery expands and contracts in volume when inserting and extracting lithium ions. In particular, the oxygen concentration in the silicon oxide and the volume expansion coefficient are closely related. For example, when silicon oxide having a chemical composition represented by SiO α is used as the negative electrode active material, when the negative electrode active material contains almost no oxygen (α≈0), the negative electrode active material is about 400 by charging. % Volume expansion occurs. When the amount of oxygen atoms relative to silicon atoms in the negative electrode active material is 30%, that is, when α = 0.3, the negative electrode active material undergoes a volume expansion of about 350% by charging. Similarly, when the amount of oxygen atoms is 60%, that is, when α = 0.6, volume expansion of about 280% occurs, and when the amount of oxygen atoms is 100%, that is, α = In the case of 1.0, volume expansion of about 200% occurs.

こうした体積膨張は、集電体上に形成された負極活物質を1つの膜として見た場合、膜内における負極活物質が占める体積の割合(以下、膜密度という)とも密接に関係している。膜面内方向の負極活物質の密度が緻密になると、等方膨張をする空間が膜面内方向に確保できず、その後は膜厚方向の膨張が主となり、上述した体積膨張率に達する。しかし、膜密度が低い場合には、負極活物質は等方的に膨張を発生するので、負極活物質の膜厚方向の膨張を小さくでき、捲回した極板群の最外周部および最内周部では、極板の伸び縮み量を抑えることができる。   Such volume expansion is closely related to the proportion of the volume occupied by the negative electrode active material in the film (hereinafter referred to as film density) when the negative electrode active material formed on the current collector is viewed as one film. . When the density of the negative electrode active material in the in-film direction becomes dense, a space for isotropic expansion cannot be secured in the in-film direction, and thereafter, expansion in the film thickness direction becomes the main and reaches the above-described volume expansion coefficient. However, since the negative electrode active material expands isotropically when the film density is low, the expansion in the film thickness direction of the negative electrode active material can be reduced, and the outermost peripheral portion and innermost portion of the wound electrode plate group can be reduced. In the peripheral portion, the amount of expansion and contraction of the electrode plate can be suppressed.

このような負極活物質の挙動で、捲回した極板群の最外周部では、極板群がある程度膨らむが、ケースで大きさが規制されているため、極板がケース内周に沿って伸びる。また、最内周部では、極板群が、さらに内周側に変形する。こうして充放電を繰り返す毎に、捲回した極板群の最外周部および最内周部では極板が伸び縮みを繰り返す。この時、セパレータと負極活物質とは収縮率が異なるため互いに擦れ、負極活物質の端角部エッジにより、セパレータが破れる、切れる、など破断が生じる。セパレータが破断することで、負極活物質または負極集電体と正極活物質または正極集電体が内部短絡するおそれが生じる。   With such behavior of the negative electrode active material, the electrode plate group swells to some extent at the outermost peripheral portion of the wound electrode plate group, but because the size is regulated by the case, the electrode plate moves along the inner periphery of the case. extend. Further, in the innermost peripheral portion, the electrode plate group is further deformed to the inner peripheral side. Thus, every time charging / discharging is repeated, the electrode plate repeatedly expands and contracts in the outermost and innermost peripheral portions of the wound electrode plate group. At this time, the separator and the negative electrode active material have different shrinkage rates, so that they rub against each other, and the edge of the negative electrode active material breaks, for example, the separator breaks or breaks. When the separator is broken, the negative electrode active material or the negative electrode current collector and the positive electrode active material or the positive electrode current collector may be internally short-circuited.

このような状況を避けるため、本発明では、負極集電体6の長手方向の終端部に向かって、すなわち、負極10を捲回極板にした時の最外周端部および最内周端部に向かって、高さが低くなり、かつ酸素濃度が高くなっていくように形成された第2の負極活物質9を含む第2の負極活物質層5を第1の活物質層4に隣接するように設けることにより、セパレータ3が負極活物質の端角部エッジによって擦れて破断することを抑制することが出来る。   In order to avoid such a situation, in the present invention, the outermost circumferential end and the innermost circumferential end of the negative electrode current collector 6 toward the end in the longitudinal direction, that is, when the negative electrode 10 is a wound electrode plate are used. The second negative electrode active material layer 5 including the second negative electrode active material 9 formed so as to decrease in height and increase in oxygen concentration is adjacent to the first active material layer 4. By providing so, it can suppress that the separator 3 is rubbed by the edge part edge of a negative electrode active material, and fracture | ruptures.

さらに、酸化ケイ素を用いた負極活物質を使用することで、捲回した極板群の最外周部および最内周部では、極板の伸び縮み量を抑えることができる。   Furthermore, by using a negative electrode active material using silicon oxide, the amount of expansion and contraction of the electrode plate can be suppressed at the outermost peripheral portion and the innermost peripheral portion of the wound electrode plate group.

負極活物質として酸化ケイ素を用いる場合、第1の負極活物質層に含まれる第1の負極活物質は、SiO(0≦x<1.2)で表される化学組成であり、第2の負極活物質層に含まれる第2の負極活物質は、SiO(1.0<y≦2.0)で表される化学組成であることが好ましい。xが1.2を超えると、容量を確保するための活物質の厚みが厚くなり、成膜後の負極集電体6が反るなどの課題が発生するので好ましくない。yの値は、1.0<y≦2.0であり、負極集電体6の長手方向の終端部に向かって大きくなり、徐々にyが2.0に近づく方向に変化するのが好ましい。第2の負極活物質9の、y=2.0の領域が広いほど、負極最外周端部に絶縁膜を設けることになり、極板内部の微紛による内部短絡を阻止できるので、より好ましい。 When silicon oxide is used as the negative electrode active material, the first negative electrode active material contained in the first negative electrode active material layer has a chemical composition represented by SiO x (0 ≦ x <1.2), and the second The second negative electrode active material contained in the negative electrode active material layer preferably has a chemical composition represented by SiO y (1.0 <y ≦ 2.0). When x exceeds 1.2, the thickness of the active material for securing the capacity increases, and problems such as warpage of the negative electrode current collector 6 after film formation occur, which is not preferable. The value of y is 1.0 <y ≦ 2.0, and it is preferable that the value of y increases toward the end of the negative electrode current collector 6 in the longitudinal direction, and y gradually changes toward 2.0. . The wider the region of y = 2.0 of the second negative electrode active material 9, the more preferable is that an insulating film is provided at the outermost peripheral edge of the negative electrode, and an internal short circuit due to fine particles inside the electrode plate can be prevented. .

また、図3に示すように、負極集電体6と第1の負極活物質層4および第2の負極活物質層5との間にさらに第3の負極活物質層7を含んでも良い。負極集電体6と第1の負極活物質層4および第2の負極活物質層5との間に第3の負極活物質層7を設けることにより、負極集電体6にかかる応力が緩和することができる。なお、第3の負極活物質層7は、負極集電体6を覆うように形成されていれば良い。換言すると、第3の負極活物質層7は、負極集電体6と第1の負極活物質4とが直接接することがないように、負極集電体6表面に連続的に形成されていれば良く、集電用リード部など必要に応じて負極集電体6が露出している箇所を設けても良い。負極集電体6の表面上に、ほぼ均一な厚さの負極活物質層7を形成する場合、真空蒸着法が適している。   Further, as shown in FIG. 3, a third negative electrode active material layer 7 may be further included between the negative electrode current collector 6 and the first negative electrode active material layer 4 and the second negative electrode active material layer 5. By providing the third negative electrode active material layer 7 between the negative electrode current collector 6 and the first negative electrode active material layer 4 and the second negative electrode active material layer 5, the stress applied to the negative electrode current collector 6 is relieved. can do. In addition, the 3rd negative electrode active material layer 7 should just be formed so that the negative electrode collector 6 may be covered. In other words, the third negative electrode active material layer 7 is formed continuously on the surface of the negative electrode current collector 6 so that the negative electrode current collector 6 and the first negative electrode active material 4 do not directly contact each other. A portion where the negative electrode current collector 6 is exposed may be provided as necessary, such as a current collecting lead portion. When the negative electrode active material layer 7 having a substantially uniform thickness is formed on the surface of the negative electrode current collector 6, a vacuum deposition method is suitable.

第3の負極活物質層7は、SiO(1.0<z<2.0)で表される化学組成であり、zは、電気伝導性を確保しつつ、極板膨張の抑制効果が現れる領域である。特に第1の負極活物質におけるxが0.3≦x≦0.7であり、zが1.0≦z≦1.6であることが、負極集電体6にかかる応力が緩和され、より望ましい。 The third negative electrode active material layer 7 has a chemical composition represented by SiO Z (1.0 <z <2.0), and z has an effect of suppressing electrode plate expansion while ensuring electrical conductivity. It is an area that appears. Particularly, in the first negative electrode active material, x is 0.3 ≦ x ≦ 0.7, and z is 1.0 ≦ z ≦ 1.6, the stress applied to the negative electrode current collector 6 is relieved, More desirable.

また、第3の負極活物質層7と第1の負極活物質層4との接合部において、x=zであることが好ましい。第3の負極活物質層7と第1の負極活物質層4との接合部でのケイ素酸化物の化学組成が一致していることは、接合部で界面が形成されないことを意味する。第3の負極活物質層7と第1の負極活物質層4との接合部でのケイ素酸化物の化学組成が一致している時には、第3の負極活物質層7の内部の化学組成をSiOz1とし、第1の負極活物質層4の内部の化学組成をSiOx1とし、接合部での化学組成をSiOとした場合、z1>v>x1であり、z1からx1まで組成が連続的に変化していることが好ましい。第3の負極活物質層7近傍の第1の負極活物質8の膨張をさらによく抑制することが出来るからである。その結果、負極活物質の膨張が抑制され、捲回した極板群の最外周部及び最内周部では、極板の伸び縮み量をさらに抑えることができる。一方、酸素濃度の高い第3の負極活物質層7よりも、第1の負極活物質層4は酸素濃度を低くする。これにより第1の負極活物質層4のリチウムイオンの吸蔵能力が高くなるため、高エネルギー密度を有する負極10を得ることが出来る。 Moreover, it is preferable that x = z at the junction between the third negative electrode active material layer 7 and the first negative electrode active material layer 4. The fact that the chemical composition of the silicon oxide at the joint between the third negative electrode active material layer 7 and the first negative electrode active material layer 4 is identical means that no interface is formed at the joint. When the chemical composition of the silicon oxide at the joint between the third negative electrode active material layer 7 and the first negative electrode active material layer 4 is the same, the chemical composition inside the third negative electrode active material layer 7 is changed. When SiO z1 , the chemical composition inside the first negative electrode active material layer 4 is SiO x1, and the chemical composition at the junction is SiO v , z1>v> x1 and the composition is continuous from z1 to x1. It is preferable that it changes. This is because the expansion of the first negative electrode active material 8 in the vicinity of the third negative electrode active material layer 7 can be further suppressed. As a result, expansion of the negative electrode active material is suppressed, and the amount of expansion and contraction of the electrode plate can be further suppressed at the outermost and innermost peripheral portions of the wound electrode plate group. On the other hand, the first negative electrode active material layer 4 has a lower oxygen concentration than the third negative electrode active material layer 7 having a higher oxygen concentration. As a result, the lithium ion storage capability of the first negative electrode active material layer 4 is increased, so that the negative electrode 10 having a high energy density can be obtained.

第3の負極活物質層7の厚みdは、導電性、エネルギー密度、および膨張率などの観点から、5nm≦d≦100nmであることが好ましく、特に5nm≦d≦50nmであることがより好ましい。第3の極活物質層7の厚みdが薄すぎると、膨張抑制の効果が十分に得られず、逆に厚すぎると、十分な電池エネルギーを得ることが出来ないおそれがある。   The thickness d of the third negative electrode active material layer 7 is preferably 5 nm ≦ d ≦ 100 nm, more preferably 5 nm ≦ d ≦ 50 nm, from the viewpoints of conductivity, energy density, and expansion coefficient. . If the thickness d of the third electrode active material layer 7 is too thin, the effect of suppressing expansion cannot be obtained sufficiently, and conversely, if it is too thick, sufficient battery energy may not be obtained.

また、図4に示すように、第1の負極活物質8の成長方向が、負極集電体6の法線方向D1に対して角θだけ傾斜した柱状粒子群から形成されており、第2の負極活物質9の成長方向が、ランダムである柱状粒子群から形成されていることが好ましい。第1の負極活物質層4は、斜めに成長した第1の負極活物質8から構成されており、その内部に空間を有する。第1の負極活物質8間の空間は、酸素雰囲気中での真空蒸着法を用いて負極10を作製する場合には、負極集電体6の表面粗さと、負極集電体6へのケイ素(Si)蒸気の入射角度により、制御することができる。負極集電体6の法線方向D1に対して傾斜した柱状粒子群から形成した第1の負極活物質8は、膜密度が低くでき、第1の負極活物質8は等方的に膨張を発生でき、負極活物質の膜厚方向の膨張を小さくでき、捲回した極板群の最外周部では、極板の伸び縮み量をさらに抑えることができる。   Further, as shown in FIG. 4, the growth direction of the first negative electrode active material 8 is formed of columnar particle groups inclined by an angle θ with respect to the normal direction D1 of the negative electrode current collector 6, and the second The negative electrode active material 9 is preferably formed of a columnar particle group in which the growth direction is random. The 1st negative electrode active material layer 4 is comprised from the 1st negative electrode active material 8 grown diagonally, and has a space in the inside. The space between the first negative electrode active material 8 is the surface roughness of the negative electrode current collector 6 and the silicon to the negative electrode current collector 6 when the negative electrode 10 is produced using a vacuum deposition method in an oxygen atmosphere. It can be controlled by the incident angle of (Si) vapor. The first negative electrode active material 8 formed from the columnar particle group inclined with respect to the normal direction D1 of the negative electrode current collector 6 can have a low film density, and the first negative electrode active material 8 expands isotropically. The expansion of the negative electrode active material in the film thickness direction can be reduced, and the amount of expansion and contraction of the electrode plate can be further suppressed at the outermost peripheral portion of the wound electrode plate group.

さらに、第2の負極活物質9がランダムに形成されていることで、第2の負極活物質層5は、極板内部の微紛が負極集電体6または第3の負極活物質層7に接触する内部短絡を阻止できるので、より好ましい。   Further, since the second negative electrode active material 9 is randomly formed, the second negative electrode active material layer 5 has fine particles inside the electrode plate, the negative electrode current collector 6 or the third negative electrode active material layer 7. It is more preferable because it can prevent an internal short circuit in contact with.

また、第1の負極活物質層4と第3の負極活物質層7とが接している面積(s1)は、負極集電体6と第3の負極活物質層7とが接している面積(s2)よりも小さい。また、活物質の被覆率(S=s1/s2)は、酸素雰囲気中での真空蒸着法を用いた場合、負極集電体6の表面粗さと、負極集電体6へのケイ素(Si)蒸気の入射角度により、おおむね30%から60%に制御できる。すなわち、複数の柱状の第1の負極活物質8からなる第1の負極活物質層4は、負極集電体6の法線方向D1に対して傾斜した粒子群から形成されている。被覆率Sの測定は、負極10の研磨断面を、SEM(ScanningElectoron Mocroscope、走査電子顕微鏡)観察して接触している部分を測定して求めることができる。   The area (s1) where the first negative electrode active material layer 4 and the third negative electrode active material layer 7 are in contact is the area where the negative electrode current collector 6 and the third negative electrode active material layer 7 are in contact. Smaller than (s2). The active material coverage (S = s1 / s2) is determined by the surface roughness of the negative electrode current collector 6 and the silicon (Si) on the negative electrode current collector 6 when vacuum deposition is performed in an oxygen atmosphere. Depending on the incident angle of the steam, it can be controlled from about 30% to 60%. That is, the first negative electrode active material layer 4 composed of a plurality of columnar first negative electrode active materials 8 is formed of a group of particles inclined with respect to the normal direction D 1 of the negative electrode current collector 6. The coverage S can be measured by observing the polished cross section of the negative electrode 10 by SEM (Scanning Electron Microscope, scanning electron microscope) and measuring the contacted portion.

ここで被覆率Sは、研磨断面をSEMで観察した時、長さ100μm当たりで、負極活物質層7表面の凹凸部の長さをAとし、負極活物質粒子8が負極活物質層7の凹凸部に接合している部分の長さをBとした時、B/Aを求め、400μm長の平均値で定義した。被覆率Sを30%から60%とした時、第1の負極活物質8間に空間を形成することができる。その結果、等方膨張をする空間が第1の負極活物質層4の膜面内方向に確保できるため、負極活物質の膨張が抑制され、捲回した極板群の最外周部では、極板の伸び縮み量をさらに抑えることができる。なお、長さAとして第3の負極活物質層7表面の凹凸部の長さの代わりに負極集電体6の表面の凹凸部の長さを適用し、長さBとして第1の負極活物質8が負極集電体6の凹凸部に接合している部分の長さを適用しても、第3の負極活物質層7が負極集電体6表面形状に沿うように形成されている場合には、実質的には問題ない。   Here, the coverage S is that when the polished cross section is observed with an SEM, the length of the uneven portion on the surface of the negative electrode active material layer 7 is A per 100 μm length, and the negative electrode active material particles 8 are formed of the negative electrode active material layer 7. When the length of the part joined to the concavo-convex part was defined as B, B / A was determined and defined as an average value of 400 μm length. When the coverage S is 30% to 60%, a space can be formed between the first negative electrode active materials 8. As a result, since a space for isotropic expansion can be secured in the in-plane direction of the first negative electrode active material layer 4, the expansion of the negative electrode active material is suppressed, and at the outermost peripheral portion of the wound electrode plate group, The amount of expansion and contraction of the plate can be further suppressed. In addition, the length of the concavo-convex portion on the surface of the negative electrode current collector 6 is applied as the length A instead of the length of the concavo-convex portion on the surface of the third negative electrode active material layer 7, and the first negative electrode active Even if the length of the portion where the material 8 is bonded to the uneven portion of the negative electrode current collector 6 is applied, the third negative electrode active material layer 7 is formed so as to follow the surface shape of the negative electrode current collector 6. In that case, there is virtually no problem.

負極集電体6には銅、ニッケルなどの箔を用いることが出来る。強度、電池としての体積効率、および取り扱いの容易性などの観点から、箔の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。箔の表面は平滑であってもよいが、第1から第3の負極活物質層7との付着強度を高めるために、算術平均粗さRaが0.3〜5.0μm程度の凹凸箔を用いることが好ましい。算術平均粗さRaは、日本工業規格(JISB 0601―1994)に定められており、例えば表面粗さ計等により測定することができる。箔の凹凸は負極活物質4を構成する柱状粒子8間に空隙を形成する効果を併せ持つ。負極集電体6と第3の負極活物質層7との付着力を確保するという観点から、Ra=0.3〜5.0μmが好ましい。   The negative electrode current collector 6 can be made of a foil such as copper or nickel. From the viewpoints of strength, volumetric efficiency as a battery, and ease of handling, the thickness of the foil is preferably 4 to 30 μm, more preferably 5 to 10 μm. Although the surface of the foil may be smooth, in order to increase the adhesion strength with the first to third negative electrode active material layers 7, an uneven foil having an arithmetic average roughness Ra of about 0.3 to 5.0 μm is used. It is preferable to use it. The arithmetic average roughness Ra is defined in Japanese Industrial Standard (JISB 0601-1994), and can be measured by, for example, a surface roughness meter. The unevenness of the foil also has the effect of forming voids between the columnar particles 8 constituting the negative electrode active material 4. From the viewpoint of securing the adhesive force between the negative electrode current collector 6 and the third negative electrode active material layer 7, Ra = 0.3 to 5.0 μm is preferable.

また、第1の負極活物質層4全体の厚みは特に制限がないが、電池のエネルギー密度、ハイレート特性、生産性などの点から0.5μm〜50μmが好ましく、特に5μm〜30μmであることがより好ましい。第1の負極活物質層4が薄すぎると十分な電池エネルギーを得ることが出来ず、また第1の負極活物質層4が厚すぎると成膜時にクラックが生じるおそれがある。   The thickness of the entire first negative electrode active material layer 4 is not particularly limited, but is preferably 0.5 μm to 50 μm, particularly 5 μm to 30 μm from the viewpoint of battery energy density, high rate characteristics, productivity, and the like. More preferred. If the first negative electrode active material layer 4 is too thin, sufficient battery energy cannot be obtained, and if the first negative electrode active material layer 4 is too thick, cracks may occur during film formation.

なお各領域における酸素濃度と膜厚の測定には様々な方法が可能であり、例えばX線光電子分光分析装置(XPS、ESCA)を用いることが出来る。負極集電体6と第1の負極活物質層4との界面に位置する負極活物質層7の酸素濃度測定を行うには、Arエッチングを行うことの他、測定すべき部位と同等の酸素濃度を表層に有する測定用の酸化ケイ素皮膜を、別途形成することも有効である。   Note that various methods can be used to measure the oxygen concentration and film thickness in each region. For example, an X-ray photoelectron spectrometer (XPS, ESCA) can be used. In order to measure the oxygen concentration of the negative electrode active material layer 7 located at the interface between the negative electrode current collector 6 and the first negative electrode active material layer 4, in addition to Ar etching, oxygen equivalent to the site to be measured It is also effective to separately form a silicon oxide film for measurement having a concentration on the surface layer.

次に図1に示す負極10を製造する方法の一例について、図5および図6を参照しながら説明する。   Next, an example of a method for manufacturing the negative electrode 10 shown in FIG. 1 will be described with reference to FIGS.

図5は、集電体上に第3の負極活物質層を形成する方法の一例を示す模式図である。図5において、真空槽101内は排気ポンプ113により排気されている。真空槽101中において、集電体基板100が一定速度で移動しながら蒸着できるように設置されている。Si材料106の入った蒸発源るつぼ105に、電子銃107から電子を照射して、Si材料を融解、蒸発させる。酸素流量制御装置112で酸素流量を制御し、酸素ノズル111から所定の酸素量を真空槽101内に導入する。所定の蒸着条件に至った時点で、シャッター104を開いて成膜を開始する。Siの蒸発量は、膜厚モニタ108で制御され、Si蒸気が酸素を含む雰囲気で供給され、固定マスク102の間である活物質形成領域109を通過したSi蒸気により集電体基板100に第3の負極活物質層7が形成される。第3の負極活物質層7の厚みは、活物質形成領域109の開口長と、Si蒸発量と、集電体基板100の移動速度で変えることができる。活物質形成領域109は、走行している集電体基板100に立てた法線に対して、角度0°の方向を含んでSi原子が入射し堆積するような配置である。こうして得られた第3の負極活物質層形成済み集電体基板120が得られる。   FIG. 5 is a schematic diagram illustrating an example of a method of forming a third negative electrode active material layer on a current collector. In FIG. 5, the inside of the vacuum chamber 101 is exhausted by an exhaust pump 113. In the vacuum chamber 101, the current collector substrate 100 is installed so that it can be deposited while moving at a constant speed. The evaporation source crucible 105 containing the Si material 106 is irradiated with electrons from the electron gun 107 to melt and evaporate the Si material. The oxygen flow rate control device 112 controls the oxygen flow rate, and a predetermined oxygen amount is introduced into the vacuum chamber 101 from the oxygen nozzle 111. When a predetermined vapor deposition condition is reached, the shutter 104 is opened and film formation is started. The evaporation amount of Si is controlled by the film thickness monitor 108, and Si collector is supplied to the current collector substrate 100 by the Si vapor supplied in an atmosphere containing oxygen and passing through the active material formation region 109 between the fixed masks 102. 3 negative electrode active material layer 7 is formed. The thickness of the third negative electrode active material layer 7 can be changed by the opening length of the active material formation region 109, the amount of Si evaporation, and the moving speed of the current collector substrate 100. The active material formation region 109 is arranged such that Si atoms are incident and deposited on the normal line standing on the traveling current collector substrate 100 including an angle of 0 °. Thus obtained current collector substrate 120 with the third negative electrode active material layer formed thereon is obtained.

図6は、負極を製造する方法の一例を示す模式図である。図6において、図5と同じ構成要素については同じ符号を用いる。図6において、真空槽101内は排気ポンプ113により排気されている。真空槽101中において、第3の負極活物質層7形成済み集電体120(以下、集電体120という)が、一定速度で移動しながら蒸着できるように設置されている。なお、集電体120を移動させる移動装置は省略してある。移動マスク103は、開口部を有し、集電体120の移動速度と同一の速度で移動できるように設置されている。移動マスク103には、エッジ用酸素ノズル114が設置されている。エッジ用酸素ノズル114は、移動マスク103は、エッジ用酸素流量制御装置115で酸素量を制御して、エッジ用酸素ノズル115から酸素を導入しながら移動する。エッジ用酸素ノズル114には、伸縮可能なフレキシブルSUS配管を使用することができる。   FIG. 6 is a schematic diagram illustrating an example of a method for producing a negative electrode. In FIG. 6, the same components as those in FIG. In FIG. 6, the inside of the vacuum chamber 101 is exhausted by an exhaust pump 113. In the vacuum chamber 101, the current collector 120 with the third negative electrode active material layer 7 formed (hereinafter referred to as the current collector 120) is installed so as to be deposited while moving at a constant speed. Note that a moving device for moving the current collector 120 is omitted. The moving mask 103 has an opening and is installed so as to move at the same speed as the moving speed of the current collector 120. The moving mask 103 is provided with an edge oxygen nozzle 114. The edge oxygen nozzle 114 moves while the moving mask 103 introduces oxygen from the edge oxygen nozzle 115 by controlling the amount of oxygen by the edge oxygen flow rate control device 115. The edge oxygen nozzle 114 may be a flexible SUS pipe that can be expanded and contracted.

蒸着材料106の入った蒸発るつぼ105に、電子銃107から電子を照射して、蒸着材料を融解、蒸発させる。酸素流量制御装置112で酸素流量を制御し、酸素ノズル111から所定の酸素量を真空槽101内に導入する。所定の蒸着条件に至った時点で、シャッター104を開いて成膜を開始する。蒸着材料の蒸発量は、膜厚モニタ108で制御され、蒸着材料蒸気が酸素を含む雰囲気で供給され、固定マスク102と移動マスク103の間である活物質形成領域109を通過した蒸着材料蒸気により、第3の負極活物質層7の表面に、第1の負極活物質8を複数含む第1の負極活物質層4が形成される。   The evaporation crucible 105 containing the vapor deposition material 106 is irradiated with electrons from the electron gun 107 to melt and evaporate the vapor deposition material. The oxygen flow rate control device 112 controls the oxygen flow rate, and a predetermined oxygen amount is introduced into the vacuum chamber 101 from the oxygen nozzle 111. When a predetermined vapor deposition condition is reached, the shutter 104 is opened and film formation is started. The evaporation amount of the vapor deposition material is controlled by the film thickness monitor 108, and the vapor deposition material vapor is supplied in an atmosphere containing oxygen, and the vapor deposition material vapor passes through the active material formation region 109 between the fixed mask 102 and the moving mask 103. The first negative electrode active material layer 4 including a plurality of first negative electrode active materials 8 is formed on the surface of the third negative electrode active material layer 7.

活物質形成領域109は、移動マスク103の移動とともに領域が変化するが、第2の負極活物質層形成領域110は、移動マスク103と集電体120の移動速度同一でありかつ、移動方向が同一のため、一定で形成することができる。第2の負極活物質層形成領域110の大きさは、移動マスク103と集電体120のスキマで変更することができる。蒸発るつぼ105から蒸発した蒸着材料のクラスターもしくは蒸着材料原子は、直接、集電体120に到達するが、移動マスク103の影になる部分では、蒸着材料のクラスターもしくは蒸着材料原子は直進性を失っている。そのため蒸着速度が非常に遅く、酸化されやすく、ランダムな形状の膜が徐々に薄く形成することができる。また、移動マスク103と集電体120のスキマが広いほど境目が不明確で活物質エッジがなだらかに形成でき、第2の負極活物質層5の領域を広く形成することができる。   In the active material formation region 109, the region changes with the movement of the movement mask 103. In the second negative electrode active material layer formation region 110, the movement speed of the movement mask 103 and the current collector 120 is the same, and the movement direction is the same. Since they are identical, they can be formed constant. The size of the second negative electrode active material layer forming region 110 can be changed by the gap between the moving mask 103 and the current collector 120. The evaporation material clusters or evaporation material atoms evaporated from the evaporation crucible 105 directly reach the current collector 120, but in the shadowed portion of the moving mask 103, the evaporation material clusters or evaporation material atoms lose their straightness. ing. Therefore, the deposition rate is very slow, the film is easily oxidized, and a randomly shaped film can be gradually formed thin. Further, the wider the gap between the moving mask 103 and the current collector 120, the clearer the boundary and the smoother the active material edge can be formed, so that the region of the second negative electrode active material layer 5 can be formed wider.

図4に示す負極10を製造する場合は、活物質形成領域109は、走行している集電体120に立てた法線に対して、角度θ(0°<θ<90°)の方向から蒸着材料原子が入射し堆積するような配置にする。これにより、負極集電体6の表面凹凸によって隙間のある柱状形状を有する第1の負極活物質8が、集電体120の法線方向D1に対して傾斜して形成することができる。   In the case of manufacturing the negative electrode 10 shown in FIG. 4, the active material formation region 109 is from the direction of an angle θ (0 ° <θ <90 °) with respect to the normal line standing on the traveling current collector 120. The arrangement is such that the vapor deposition material atoms are incident and deposited. Thereby, the first negative electrode active material 8 having a columnar shape with a gap due to the surface unevenness of the negative electrode current collector 6 can be formed to be inclined with respect to the normal direction D 1 of the current collector 120.

こうして負極10が得られる。なお、負極活物質4としてケイ素酸化物を形成する場合には、蒸着材料にケイ素(Si)を用いればよく、ケイ素(SiOにおいてx=0)を形成する場合は、酸素流量制御装置112からの酸素供給を停止させればよい。 In this way, the negative electrode 10 is obtained. In the case where silicon oxide is formed as the negative electrode active material 4, silicon (Si) may be used as the vapor deposition material. In the case where silicon (x = 0 in SiO x ) is formed, the oxygen flow rate control device 112 is used. The oxygen supply may be stopped.

また、図1に示す負極10を製造する場合は、図5に示した第3の負極活物質層を形成する工程を経なければよい。   In addition, in the case of manufacturing the negative electrode 10 illustrated in FIG. 1, the process of forming the third negative electrode active material layer illustrated in FIG. 5 may be omitted.

上述した方法で得られる第1の負極活物質層4および第1の負極活物質8の形成厚さおよび組成は、それぞれ活物質形成領域109の開口広さと通過時間、及び酸素ノズル111の酸素流量により制御できる。このとき集電体120は一定速度であるので、活物質形成領域109での蒸着材料原子の堆積速度は、一般に知られているcos則から見積もることができる。また固定マスク102の位置により、通過時間を適宜設定することが出来る。   The formation thickness and composition of the first negative electrode active material layer 4 and the first negative electrode active material 8 obtained by the above-described method are the opening width and passage time of the active material formation region 109, and the oxygen flow rate of the oxygen nozzle 111, respectively. Can be controlled. At this time, since the current collector 120 has a constant speed, the deposition speed of the vapor deposition material atoms in the active material forming region 109 can be estimated from a generally known cos rule. Further, the passage time can be appropriately set depending on the position of the fixed mask 102.

蒸発るつぼ105は、ケイ素(Si)を溶解する場合、カーボン製がよく用いられる。蒸着材料106のケイ素純度は、高いほど望ましい。一般的には、99.99%以上の純度のケイ素を使用する。蒸着材料106を過熱する方法は、誘導加熱法、抵抗加熱法、電子ビームの照射による加熱法などを用いることができる。   The evaporation crucible 105 is often made of carbon when silicon (Si) is dissolved. The higher the silicon purity of the vapor deposition material 106, the better. Generally, silicon having a purity of 99.99% or more is used. As a method for heating the vapor deposition material 106, an induction heating method, a resistance heating method, a heating method by irradiation with an electron beam, or the like can be used.

活物質形成領域109の酸素量は、酸素ノズル111から導入する酸素量、真空槽101の形状、排気ポンプ113の排気能力、蒸着材料106の蒸発速度、集電体120上への負極活物質4の成膜幅、その他製造条件によって適宜変更することが出来る。   The amount of oxygen in the active material formation region 109 includes the amount of oxygen introduced from the oxygen nozzle 111, the shape of the vacuum chamber 101, the exhaust capacity of the exhaust pump 113, the evaporation rate of the vapor deposition material 106, and the negative electrode active material 4 on the current collector 120. The film forming width and other manufacturing conditions can be changed as appropriate.

第1の負極活物質層4および第1の負極活物質8の形成方法は、本発明の負極10を得ることが出来るものであれば特に限定されないが、蒸着法、スパッタ法、またはCVD法などのドライプロセスを用いることが好ましい。特に蒸着法は生産性に富んだ方法であり、移動する集電体120上に第1の負極活物質層4および第1の負極活物質8を連続的かつ大量に形成する方法として適している。   Although the formation method of the 1st negative electrode active material layer 4 and the 1st negative electrode active material 8 will not be specifically limited if the negative electrode 10 of this invention can be obtained, a vapor deposition method, a sputtering method, or CVD method etc. It is preferable to use the dry process. In particular, the vapor deposition method is a highly productive method, and is suitable as a method for continuously and mass-forming the first negative electrode active material layer 4 and the first negative electrode active material 8 on the moving current collector 120. .

なお、上述した製造方法では、図6に示すように、第3の負極活物質層7形成済み集電体120を使用して、本発明の負極を得ているが、第3の負極活物質層7の形成は、同一の真空層内で実施しても良い。また、同一の装置内で連続で実施しても良い。この場合には、前述したx=yである負極、すなわち第3の負極活物質層7と第1の負極活物質4との接合部でのケイ素酸化物の化学組成が一致している負極を容易に得ることが出来る。   In the manufacturing method described above, as shown in FIG. 6, the negative electrode of the present invention is obtained by using the current collector 120 on which the third negative electrode active material layer 7 has been formed. The formation of the layer 7 may be carried out in the same vacuum layer. Moreover, you may implement continuously in the same apparatus. In this case, the negative electrode in which x = y described above, that is, the negative electrode in which the chemical composition of the silicon oxide at the junction between the third negative electrode active material layer 7 and the first negative electrode active material 4 is the same is used. It can be easily obtained.

こうした手法により得られた負極10は、LiCoO、LiNiO、LiMnなどといった一般的に使用される正極活物質を含む正極と、微多孔性フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどをエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類に溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解質と共に用いることで、リチウム二次電池が作製出来る。 The negative electrode 10 obtained by such a method includes a positive electrode containing a commonly used positive electrode active material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , a separator made of a microporous film, etc., and phosphorus hexafluoride A lithium secondary battery can be produced by using lithium acid or the like together with an electrolyte having lithium ion conductivity having a generally known composition in which cyclic carbonates such as ethylene carbonate and propylene carbonate are dissolved.

また、本発明の負極は、円筒型、扁平型、コイン型、角形等の様々な形状のリチウム二次電池に適用可能であり、捲回極板群を使用した電池であれば、電池の形状や封止形態は特に限定されない。   Further, the negative electrode of the present invention can be applied to lithium secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery as long as the battery uses a wound electrode plate group. The sealing form is not particularly limited.

本発明にかかる負極、およびそれを用いた電池は、高容量負極活物質を用い、充放電に伴う膨張収縮の影響で発生する、捲回極板の最外周部でのセパレータの破壊を抑制することができる負極、およびそれを用いた電池として有用である。   The negative electrode according to the present invention and a battery using the negative electrode use a high-capacity negative electrode active material, and suppress the destruction of the separator at the outermost peripheral portion of the wound electrode plate, which occurs due to the influence of expansion and contraction due to charge and discharge. It is useful as a negative electrode that can be used, and as a battery using the same.

本発明の実施の形態1における負極の概略断面図Schematic cross-sectional view of the negative electrode in Embodiment 1 of the present invention 本発明の実施の形態1における負極を用いた捲回型電池の概略断面図Schematic cross-sectional view of a wound battery using a negative electrode according to Embodiment 1 of the present invention 本発明の実施の形態1における別の負極の概略断面図Schematic cross-sectional view of another negative electrode in Embodiment 1 of the present invention 本発明の実施の形態1における別の負極の概略断面図Schematic cross-sectional view of another negative electrode in Embodiment 1 of the present invention 本発明の実施の形態1における集電体上に第3の負極活物質層を形成する方法の一例を示す模式図Schematic diagram showing an example of a method of forming a third negative electrode active material layer on the current collector in Embodiment 1 of the present invention 本発明の実施の形態1における負極を製造する方法の一例を示す模式図Schematic diagram showing an example of a method for producing a negative electrode in Embodiment 1 of the present invention

符号の説明Explanation of symbols

1 正極活物質
2 正極集電体
3 セパレータ
4 第1の負極活物質層
5 第2の負極活物質層
6 負極集電体
7 負極活物質層
8 第1の負極活物質
9 第2の負極活物質
10 負極
101 真空槽
102 固定マスク
103 移動マスク
104 シャッター
105 蒸発源るつぼ
106 蒸着材料
107 電子銃
108 膜厚モニタ
109 活物質形成領域
100 集電体基板
110 第2の負極活物質層形成領域
111 酸素ノズル
112 酸素流量制御装置
113 排気ポンプ
114 エッジ用酸素ノズル
115 エッジ用酸素流量制御装置
120 第3の負極活物質層形成済み集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode active material 2 Positive electrode collector 3 Separator 4 1st negative electrode active material layer 5 2nd negative electrode active material layer 6 Negative electrode current collector 7 Negative electrode active material layer 8 1st negative electrode active material 9 2nd negative electrode active Substance 10 Negative electrode 101 Vacuum chamber 102 Fixed mask 103 Moving mask 104 Shutter 105 Evaporation source crucible 106 Vapor deposition material 107 Electron gun 108 Film thickness monitor 109 Active material formation region 100 Current collector substrate 110 Second negative electrode active material layer formation region 111 Oxygen Nozzle 112 Oxygen flow control device 113 Exhaust pump 114 Oxygen nozzle for edge 115 Oxygen flow control device for edge 120 Current collector with a third negative electrode active material layer formed

Claims (6)

長尺の集電体と、前記集電体表面に形成された負極活物質層とを含むリチウム二次電池用負極であって、
前記負極活物質層は、前記集電体表面に形成され、複数の柱状粒子からなる第1の負極活物質を含む第1の負極活物質層と、
前記第1の負極活物質層に隣接し、前記集電体の長手方向の終端部に向かって高さが低くなると共に、含有する酸素濃度が前記集電体の長手方向の終端部に向かって大きくなるように形成された、珪素酸化物である第2の負極活物質を含む第2の負極活物質層と、
を含むリチウム二次電池用負極。
A negative electrode for a lithium secondary battery comprising a long current collector and a negative electrode active material layer formed on the surface of the current collector,
The negative electrode active material layer is formed on the current collector surface, and includes a first negative electrode active material layer including a first negative electrode active material composed of a plurality of columnar particles;
Adjacent to the first negative electrode active material layer, the height decreases toward the end of the current collector in the longitudinal direction, and the concentration of oxygen contained increases toward the end of the current collector in the longitudinal direction. A second negative electrode active material layer containing a second negative electrode active material made of silicon oxide and formed to be large;
A negative electrode for a lithium secondary battery.
前記第1の負極活物質層に含まれる第1の負極活物質は、SiOx(0≦x<1.2)で表される化学組成であり、
前記第2の負極活物質層に含まれる第2の負極活物質は、SiOy(1.0<y≦2.0)で表される化学組成であること、
を特徴とする請求項1に記載のリチウム二次電池用負極。
The first negative electrode active material included in the first negative electrode active material layer has a chemical composition represented by SiOx (0 ≦ x <1.2),
The second negative electrode active material contained in the second negative electrode active material layer has a chemical composition represented by SiOy (1.0 <y ≦ 2.0);
The negative electrode for a lithium secondary battery according to claim 1.
前記負極活物質層は、前記集電体と前記第1の負極活物質層および前記第2の負極活物質層との間にさらに第3の負極活物質層を含み、
前記第3の負極活物質層に含まれる第3の負極活物質は、SiOz(1.0<z<2.0)で表される化学組成であって、厚さが5nm以上100nm以下であること、
を特徴とする請求項1または請求項2に記載のリチウム二次電池用負極。
The negative electrode active material layer further includes a third negative electrode active material layer between the current collector and the first negative electrode active material layer and the second negative electrode active material layer,
The third negative electrode active material included in the third negative electrode active material layer has a chemical composition represented by SiOz (1.0 <z <2.0) and has a thickness of 5 nm to 100 nm. thing,
The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode is a lithium secondary battery.
前記第1の負極活物質層に含まれる第1の負極活物質は、前記集電体の法線方向に対して傾斜した柱状粒子で構成されており、
前記第2の負極活物質層に含まれる第2の負極活物質は、成長方向がランダムな柱状粒子で構成されていること、
を特徴とする請求項1から請求項3のいずれかに記載のリチウム二次電池用負極。
The first negative electrode active material contained in the first negative electrode active material layer is composed of columnar particles inclined with respect to the normal direction of the current collector,
The second negative electrode active material contained in the second negative electrode active material layer is composed of columnar particles having random growth directions;
The negative electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein:
前記第1の負極活物質層と第3の負極活物質層とが接している面積(s1)と前記第3の負極活物質層の面積(s2)との面積比(S=s1/s2)は、30%≦S≦60%を満たすこと、
を特徴とする請求項3記載のリチウム二次電池用負極。
Area ratio (S = s1 / s2) of the area (s1) where the first negative electrode active material layer and the third negative electrode active material layer are in contact with the area (s2) of the third negative electrode active material layer Satisfying 30% ≦ S ≦ 60%,
The negative electrode for a lithium secondary battery according to claim 3.
リチウムイオンを吸蔵・放出可能な正極と、
請求項1から5のいずれかに記載のリチウム二次電池用負極と、
前記正極と前記リチウム二次電池用負極との間に配置されたセパレータと、
リチウムイオン伝導性を有する電解質と、
を含むリチウムイオン二次電池。
A positive electrode capable of inserting and extracting lithium ions;
A negative electrode for a lithium secondary battery according to any one of claims 1 to 5,
A separator disposed between the positive electrode and the negative electrode for a lithium secondary battery;
An electrolyte having lithium ion conductivity;
Lithium ion secondary battery containing.
JP2006143832A 2006-05-24 2006-05-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP5103789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143832A JP5103789B2 (en) 2006-05-24 2006-05-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143832A JP5103789B2 (en) 2006-05-24 2006-05-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007317415A JP2007317415A (en) 2007-12-06
JP5103789B2 true JP5103789B2 (en) 2012-12-19

Family

ID=38851103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143832A Expired - Fee Related JP5103789B2 (en) 2006-05-24 2006-05-24 Negative electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5103789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272994B (en) * 2009-11-16 2015-04-22 松下电器产业株式会社 Primary lithium cell
CN115917782A (en) * 2020-06-25 2023-04-04 三洋电机株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754420B2 (en) * 2003-02-04 2006-03-15 三洋電機株式会社 Secondary battery electrode plate, method of manufacturing the same, and secondary battery using the electrode plate
JP4565811B2 (en) * 2003-03-31 2010-10-20 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3963466B2 (en) * 2003-05-22 2007-08-22 松下電器産業株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP3992708B2 (en) * 2003-10-31 2007-10-17 日立マクセル株式会社 Non-aqueous secondary battery electrode material, method for producing the same, and non-aqueous secondary battery using the same
JP4850405B2 (en) * 2003-11-27 2012-01-11 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
JP4045270B2 (en) * 2003-11-28 2008-02-13 松下電器産業株式会社 Energy device and manufacturing method thereof
JP4197491B2 (en) * 2003-12-26 2008-12-17 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2007317415A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
US9806331B2 (en) Microstructured electrode structures
JP4460642B2 (en) LITHIUM SECONDARY BATTERY NEGATIVE ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP5169156B2 (en) Electrodes for electrochemical devices
JP4288621B2 (en) Negative electrode, battery using the same, and method for manufacturing negative electrode
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2007046322A1 (en) Battery
JP2009104892A (en) Lithium secondary battery
JP4598150B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
WO2008023733A1 (en) Non-aqueous electrolyte secondary battery negative electrode, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2010177209A (en) Method of manufacturing negative electrode for lithium secondary battery
JP5103789B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP4899793B2 (en) Vacuum deposition equipment
JP2010049968A (en) Solid electrolyte secondary cell
JP2007128659A (en) Anode for lithium secondary battery, and lithium secondary battery using the same
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP5130737B2 (en) Nonaqueous electrolyte secondary battery
JP2009152189A (en) Manufacturing method of negative electrode for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008010419A (en) Manufacturing method of electrode for electrochemical element, and electrochemical element including it
JP5130738B2 (en) Nonaqueous electrolyte secondary battery
JP2008181835A (en) Negative electrode for lithium secondary battery
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees