JP2007128659A - Anode for lithium secondary battery, and lithium secondary battery using the same - Google Patents

Anode for lithium secondary battery, and lithium secondary battery using the same Download PDF

Info

Publication number
JP2007128659A
JP2007128659A JP2005317915A JP2005317915A JP2007128659A JP 2007128659 A JP2007128659 A JP 2007128659A JP 2005317915 A JP2005317915 A JP 2005317915A JP 2005317915 A JP2005317915 A JP 2005317915A JP 2007128659 A JP2007128659 A JP 2007128659A
Authority
JP
Japan
Prior art keywords
current collector
region
active material
negative electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317915A
Other languages
Japanese (ja)
Inventor
Hiroko Ogawa
裕子 小川
Kazuyoshi Honda
和義 本田
Yoshiyuki Okazaki
禎之 岡崎
Satoshi Shibuya
聡 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005317915A priority Critical patent/JP2007128659A/en
Publication of JP2007128659A publication Critical patent/JP2007128659A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain breakdown of activator caused by compression force between activator particles generated at swelling due to absorption of lithium ions, especially to restrain breakdown of neighboring area of an interface between a current collector and the activator layer that is liable to be influenced by the expansion and contraction accompanied by charging and discharging, and the activator located at neighborhood of the surface thereof, where a space for expansion is less and is liable to generate breakdown of particles, by using the activator of high capacity. <P>SOLUTION: An anode 20 includes a current collector 1 and a current collector layer 2 and the current collector layer 2 held on the current collector 1. The activator layer 2 contains a compound, containing silicon and oxygen or a compound containing tin or oxygen, and particles 21 grown in an oblique direction of arc-shape so that current collector 1 side becomes convex with respect to the direction of the normal line direction of the current collector 1. The angle formed by the growth direction of the particle and the normal line direction of the current collector is not smaller than 20° and not larger than 90°. The density of oxygen at a first region 2a on the current collector side of the particle and that at a third region 2c on the surface side of the activator layer are higher than that at a second region located in between the first region and the third region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用負極およびこれを用いたリチウム二次電池に関し、特にケイ素と酸素とを含む化合物、またはスズと酸素とを含む化合物を活物質として含むリチウム二次電池用負極に関する。   TECHNICAL FIELD The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery using the same, and more particularly to a negative electrode for a lithium secondary battery containing, as an active material, a compound containing silicon and oxygen or a compound containing tin and oxygen. .

近年、パーソナルコンピュータ、携帯電話などのポータブル機器の開発に伴い、その電源としての電池の需要が増大している。上記のような用途に用いられる電池には高エネルギー密度と優れたサイクル特性が要望される。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has increased. A battery used for the above applications is required to have a high energy density and excellent cycle characteristics.

この要求に対し、正極、負極それぞれにおいて新たに高容量の活物質が開発されており、負極活物質においては高い容量が得られるケイ素またはスズを含む合金や酸化物を用いることによる解決が図られようとしている。その際に問題となるのは負極の変形であり、充放電時にリチウムイオンが挿入、脱離することで活物質が大きく膨張、収縮するため負極が大きく歪み、うねりが生じる。そのため、負極とセパレータとの間に空間が生じ、充放電反応が不均一化し、充放電サイクル特性が低下することが懸念されていた。   In response to this requirement, high-capacity active materials have been newly developed for each of the positive electrode and the negative electrode, and a solution can be achieved by using an alloy or oxide containing silicon or tin that can provide a high capacity in the negative electrode active material. I am trying to do. At that time, the problem is deformation of the negative electrode. When lithium ions are inserted and desorbed during charge and discharge, the active material is greatly expanded and contracted, so that the negative electrode is greatly distorted and undulated. For this reason, there is a concern that a space is generated between the negative electrode and the separator, the charge / discharge reaction becomes non-uniform, and the charge / discharge cycle characteristics deteriorate.

この問題を解決するために、ケイ素またはスズの単体、酸化物あるいは合金を活物質とした薄膜状の活物質が柱状に分離され、さらに薄膜の厚み方向において集電体の表面の凹凸の谷部に向かうにつれて幅が広くなる空隙を形成することで集電体の変形を抑えることが提案されている(例えば特許文献1参照)。
特開2002−313319号公報
In order to solve this problem, an active material in the form of a thin film using silicon or tin as a single substance, an oxide or an alloy as an active material is separated into a columnar shape, and an uneven valley on the surface of the current collector in the thickness direction of the thin film It has been proposed to suppress the deformation of the current collector by forming a gap that becomes wider as it goes to (see, for example, Patent Document 1).
JP 2002-313319 A

しかしながら、前記従来の負極の構成では、充電時の膨張を吸収する空間が形成されているので、初期充放電における変形に対して効果があるものの、充放電サイクルを重ねると、この構成でも膨張に起因する課題は未だ十分に解決されない。   However, since the space for absorbing expansion during charging is formed in the conventional negative electrode configuration, it is effective against deformation during initial charging / discharging, but this configuration also expands when repeated charging / discharging cycles. The resulting issues are not yet fully resolved.

また、リチウム二次電池は大量生産が要望されており、簡易な製造プロセスが不可欠である。そのため、蒸着法、スパッタ法、またはCVD法などの薄膜プロセスを用い、集電体を移動させながら集電体上に活物質層を含む薄膜を連続形成するキャンロール方式が通常用いられる。   In addition, mass production of lithium secondary batteries is required, and a simple manufacturing process is indispensable. Therefore, a can roll method is generally used in which a thin film including an active material layer is continuously formed on a current collector while moving the current collector using a thin film process such as an evaporation method, a sputtering method, or a CVD method.

しかしながら、キャンロール方式では、活物質を構成する柱状粒子が膜厚方向の粒子成長に伴い膜面方向にも徐々に成長する形状となる。このため柱状粒子の頭部、即ち活物質層表面側に向かって太くなるという現象が生じる。その結果として、表面付近では、柱状粒子は隣接する柱状粒子に接近することになる。このため、柱状粒子の膨張が大きいと、隣接する柱状粒子間相互の圧縮力に因って、活物質を構成する粒子に割れなどを生じるという課題を有していた。   However, in the can roll method, the columnar particles constituting the active material have a shape that gradually grows in the film surface direction as the particles grow in the film thickness direction. For this reason, the phenomenon that the head of the columnar particles becomes thicker toward the active material layer surface side occurs. As a result, the columnar particles approach the adjacent columnar particles near the surface. For this reason, when the expansion of the columnar particles is large, there is a problem that the particles constituting the active material are cracked due to the mutual compressive force between the adjacent columnar particles.

本発明は、前記従来の課題を解決するもので、充放電サイクル特性が優れたリチウム二次電池用負極(以下、負極ともいう)およびこれを用いたリチウム二次電池(以下、電池ともいう)を提供することを目的とする。   The present invention solves the above-described conventional problems, and has a negative electrode for a lithium secondary battery (hereinafter also referred to as a negative electrode) having excellent charge / discharge cycle characteristics, and a lithium secondary battery (hereinafter also referred to as a battery) using the same. The purpose is to provide.

上記従来の課題を解決するために、本発明の負極は、
集電体と、その集電体に担持された活物質層と、を含む負極であって、
活物質層は、ケイ素と酸素とを含む化合物、またはスズと酸素とをを含む化合物を含み、
活物質層は、集電体の法線方向に対して集電体側が凸となるように斜め方向に弓状に成長した粒子を含み、
粒子の成長方向と集電体の法線方向とのなす角θ1が、20°以上90°未満であり、
弓状に成長した粒子の集電体側の第1領域における第1酸素濃度と、活物質層の表面側の第3領域における第3酸素濃度とは、第1領域と第3領域の間の第2領域における第2酸素濃度に比べて高いこと、を特徴とする。
In order to solve the above conventional problems, the negative electrode of the present invention is
A negative electrode comprising a current collector and an active material layer carried on the current collector,
The active material layer includes a compound containing silicon and oxygen, or a compound containing tin and oxygen,
The active material layer includes particles grown in an arch shape in an oblique direction so that the current collector side is convex with respect to the normal direction of the current collector,
The angle θ1 formed by the growth direction of the particles and the normal direction of the current collector is 20 ° or more and less than 90 °,
The first oxygen concentration in the first region on the current collector side of the particles grown in an arc shape and the third oxygen concentration in the third region on the surface side of the active material layer are the first between the first region and the third region. It is characterized by being higher than the second oxygen concentration in the two regions.

本構成を有する負極は、リチウムイオンの吸蔵による膨張時に生じる活物質粒子間の圧縮力を軽減することが可能なるので、充放電サイクル特性を向上させることが可能となる。   Since the negative electrode having this configuration can reduce the compressive force between the active material particles generated during expansion due to occlusion of lithium ions, the charge / discharge cycle characteristics can be improved.

また、本発明の電池は、
リチウムイオンを吸蔵および放出可能な正極と、
本発明の負極と、
正極と負極との間に配置されたセパレータと、
リチウムイオン伝導性を有する電解質と、を含むことを特徴とする。
The battery of the present invention is
A positive electrode capable of inserting and extracting lithium ions;
A negative electrode of the present invention;
A separator disposed between the positive electrode and the negative electrode;
And an electrolyte having lithium ion conductivity.

本構成の電池は、本発明の負極を有するので、高容量で充放電サイクル特性の優れた電池とすることが出来る。   Since the battery of this structure has the negative electrode of the present invention, it can be a battery with high capacity and excellent charge / discharge cycle characteristics.

本発明の負極およびそれを用いた電池によれば、高容量活物質を用い、かつリチウムイオンの吸蔵による活物質膨張時の活物質粒子間の圧縮力による破壊、特に充放電に伴う膨張収縮の影響を受けやすい集電体と活物質層の界面近傍、および膨張空間が少なく粒子破壊の生じやすい活物質層表面近傍部分の活物質層の破壊を抑制することができる。また、活物質層を弓状の活物質粒子の集合体とすることにより、セパレータ面の法線方向に発生する圧縮力による活物質層構成粒子の破壊を抑制することが出来る。これらの効果により、サイクル特性が優れた電池を得ることができる。   According to the negative electrode of the present invention and a battery using the negative electrode, the high capacity active material is used, and the active material expands due to the insertion of lithium ions. It is possible to suppress the breakage of the active material layer in the vicinity of the interface between the current collector and the active material layer, which is easily affected, and in the vicinity of the active material layer surface where the expansion space is small and particle breakage easily occurs. Further, by making the active material layer an aggregate of bow-shaped active material particles, it is possible to suppress the breakage of the active material layer constituting particles due to the compressive force generated in the normal direction of the separator surface. With these effects, a battery having excellent cycle characteristics can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における負極の断面を示す模式図である。図1において、負極20は、集電体1上に担持された活物質層2を含む。活物質層2は、ケイ素と酸素とを含む化合物、またはスズと酸素とを含む化合物を含む。また、活物質層2は、図1に示すように、集電体1の法線方向Dに対して集電体1側が凸となるように斜め方向に弓状に成長した複数の活物質粒子21(以下、粒子21ともいう)を含む。このような斜め方向に弓状に成長した粒子21を含む活物質層2は、表面に凹凸を持つ集電体1を用い、キャンロール方式により活物質層2を形成した場合、製造条件により粒子21間に形成される隙間の割合などといった細部は異なるが、得ることができる。キャンロール方式により活物質層2を形成する方法については、後述する。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a cross-section of the negative electrode according to Embodiment 1 of the present invention. In FIG. 1, the negative electrode 20 includes an active material layer 2 supported on a current collector 1. The active material layer 2 includes a compound containing silicon and oxygen, or a compound containing tin and oxygen. Further, as shown in FIG. 1, the active material layer 2 includes a plurality of active material particles grown in a bow shape in an oblique direction so that the current collector 1 side is convex with respect to the normal direction D of the current collector 1. 21 (hereinafter also referred to as particle 21). The active material layer 2 including the particles 21 grown in an oblique shape in such an oblique direction uses the current collector 1 having irregularities on the surface, and when the active material layer 2 is formed by a can roll method, Details such as the ratio of gaps formed between the two 21 are different, but can be obtained. A method for forming the active material layer 2 by the can roll method will be described later.

また、活物質層2中の酸素濃度と活物質層2の体積膨張率とは密接に関係している。例えば、活物質層2がケイ素酸化物であって、酸素を殆ど含まないときには、充電により粒子21は400%の体積膨張が生じる。活物質層2中のケイ素原子に対する酸素原子の量が30%の場合には350%の体積膨張が生じ、酸素原子の量が60%の場合には280%の体積膨張が生じ、酸素原子の量が100%の場合には200%の体積膨張が発生する。   Further, the oxygen concentration in the active material layer 2 and the volume expansion coefficient of the active material layer 2 are closely related. For example, when the active material layer 2 is a silicon oxide and contains almost no oxygen, the particles 21 undergo a volume expansion of 400% by charging. When the amount of oxygen atoms relative to silicon atoms in active material layer 2 is 30%, volume expansion of 350% occurs, and when the amount of oxygen atoms is 60%, volume expansion of 280% occurs. When the amount is 100%, a volume expansion of 200% occurs.

こうした体積膨張は、活物質層2を1つの膜として見た場合、膜内における粒子21が占める体積の割合(以下、膜密度という)とも密接に関係している。膜密度が低い場合には、粒子21は等方的に発生するが、膜面内方向の粒子21の密度が緻密になると、等方膨張をする空間が膜面内方向に確保できず、その後は膜厚方向の膨張が主となり、上述した体積膨張率に達する。従って、活物質粒子21の組成が均一であった場合、集電体1と活物質層2との界面近傍では、実質的な膨張が生じることのない集電体1上で粒子21の膨張が発生するため、集電体1や粒子21の破壊が生じやすい。また、粒子21間の隙間が少なくなりやすい活物質層2の表面付近では、活物質層2の面内方向への等方膨張が阻害されるため膜厚方向の膨張がおきる。その際には活物質層2の面内方向では極めて大きな応力が発生していることが容易に推察できる。   Such volume expansion is closely related to the volume ratio of the particles 21 in the film (hereinafter referred to as film density) when the active material layer 2 is viewed as one film. When the film density is low, the particles 21 are generated isotropically. However, when the density of the particles 21 in the in-plane direction becomes dense, a space for isotropic expansion cannot be secured in the in-plane direction. Is mainly expanded in the film thickness direction and reaches the above-described volume expansion coefficient. Therefore, when the composition of the active material particles 21 is uniform, the expansion of the particles 21 on the current collector 1 where no substantial expansion occurs near the interface between the current collector 1 and the active material layer 2. Therefore, the current collector 1 and the particles 21 are easily destroyed. Further, in the vicinity of the surface of the active material layer 2 where the gaps between the particles 21 tend to be reduced, the isotropic expansion in the in-plane direction of the active material layer 2 is hindered, so that expansion in the film thickness direction occurs. In that case, it can be easily guessed that an extremely large stress is generated in the in-plane direction of the active material layer 2.

このような状況を避けるため、本発明では活物質層2中の活物質粒子21を、酸素の割合が異なる第1から第3の領域に分けている。これらの領域のうち、集電体1側の第1領域2aにおける第1酸素濃度と、活物質層2の表面側の第3領域2cにおける第3酸素濃度とは、それらの間の第2領域2bにおける第2酸素濃度と比べて高くする。   In order to avoid such a situation, in the present invention, the active material particles 21 in the active material layer 2 are divided into first to third regions having different oxygen ratios. Among these regions, the first oxygen concentration in the first region 2a on the current collector 1 side and the third oxygen concentration in the third region 2c on the surface side of the active material layer 2 are the second region between them. Higher than the second oxygen concentration in 2b.

集電体1と活物質層2の界面近傍に酸素濃度の高い第1領域2aを設けることにより、集電体1と活物質層2との膨張率の差が小さくなり、集電体1近傍の粒子21の膨張を抑制することが出来る。その結果、充放電サイクルを重ねても、集電体1と活物質層2との界面付近での粒子21の脱離や微粉化は起きにくくなる。また、隣接する粒子21間相互の圧縮力が強くなる活物質層2の表面側にも、酸素濃度が高い第3領域2cを設ける。これにより粒子21の膨張収縮の割合が小さくなり、膨張空間が少ない活物質層2の表面近傍部分においても粒子21の破壊を抑制することができる。一方、酸素濃度の高い第1領域2aおよび第3領域2cの間に位置する第2領域2bは酸素濃度を低くする。これによりリチウムイオンの吸蔵能力が高くなるため、高エネルギー密度を有する負極20を得ることが出来る。   By providing the first region 2 a having a high oxygen concentration in the vicinity of the interface between the current collector 1 and the active material layer 2, the difference in expansion coefficient between the current collector 1 and the active material layer 2 is reduced, and the vicinity of the current collector 1. The expansion of the particles 21 can be suppressed. As a result, even if charge / discharge cycles are repeated, the detachment and pulverization of the particles 21 near the interface between the current collector 1 and the active material layer 2 are less likely to occur. Further, the third region 2c having a high oxygen concentration is also provided on the surface side of the active material layer 2 where the compressive force between the adjacent particles 21 becomes strong. Thereby, the rate of expansion and contraction of the particles 21 is reduced, and the breakage of the particles 21 can be suppressed even in the vicinity of the surface of the active material layer 2 having a small expansion space. On the other hand, the second region 2b located between the first region 2a and the third region 2c having a high oxygen concentration lowers the oxygen concentration. Thereby, the occlusion ability of lithium ions is increased, so that the negative electrode 20 having a high energy density can be obtained.

上述した第1領域2a、第2領域2b、および第3領域2cにおいて、第1領域2aは、下記一般式(1)で表される化学組成であり、第2領域2bは、下記一般式(2)で表される化学組成であり、第3領域2cは、下記一般式(3)で表される化学組成であることが好ましい。   In the first region 2a, the second region 2b, and the third region 2c described above, the first region 2a has a chemical composition represented by the following general formula (1), and the second region 2b has the following general formula ( 2), and the third region 2c preferably has a chemical composition represented by the following general formula (3).

MOx・・・(1)
MOx・・・(2)
MOx・・・(3)
(式中、MはSiとSnとのいずれかであり、x、xおよびxは、0.1≦x≦2.0、0≦x≦1.0、0.1≦x≦2.0、x>x、x>xを満たす。)
酸素の少ない第2領域2bは、SiまたはSnの単体でもよいが、膨張収縮により発生する第1領域2aおよび第3領域2cとの界面での膨張率の差を少なくするという観点から、第2領域2bも酸化物層であることがより望ましい。
MOx 1 (1)
MOx 2 (2)
MOx 3 (3)
(In the formula, M is one of Si and Sn, and x 1 , x 2 and x 3 are 0.1 ≦ x 1 ≦ 2.0, 0 ≦ x 2 ≦ 1.0, 0.1 ≦ x 3 ≦ 2.0, x 1 > x 2 , x 3 > x 2 are satisfied.)
The second region 2b with less oxygen may be a simple substance of Si or Sn, but from the viewpoint of reducing the difference in expansion coefficient at the interface between the first region 2a and the third region 2c generated by expansion and contraction. The region 2b is more preferably an oxide layer.

また第1領域2aから第3領域2cのそれぞれを独立に、分離して形成してもよいが、連続的に形成するほうが、界面での膨張率の差が連続的に変化するため、各領域間のストレスを軽減できるので望ましい。特に第1領域2aの酸素濃度が20%から100%であり、第2領域2bの酸素濃度が0%から80%であり、第3領域2cの酸素濃度が20%から100%で、かつ第1領域2aおよび第3領域2cの酸素濃度が第2領域2bよりも高いことが、本発明の目的を達成すために、より望ましい。   In addition, each of the first region 2a to the third region 2c may be formed separately and separately. However, since the difference in expansion coefficient at the interface continuously changes when the regions are continuously formed, each region It is desirable because it can reduce stress during In particular, the oxygen concentration of the first region 2a is 20% to 100%, the oxygen concentration of the second region 2b is 0% to 80%, the oxygen concentration of the third region 2c is 20% to 100%, and In order to achieve the object of the present invention, it is more desirable that the oxygen concentration in the first region 2a and the third region 2c is higher than that in the second region 2b.

なお各領域における酸素濃度の測定には様々な方法が可能であり、例えばXMA(X線マイクロアナライザー)を用いることが出来る。酸素濃度がより薄い部分である第2領域2bの酸素濃度測定を行うには、照射範囲を絞ることの他、測定すべき部位と同等の酸素濃度を表層に有する測定用の活物質層を、別途形成することも有効である。   Various methods can be used to measure the oxygen concentration in each region, and for example, XMA (X-ray microanalyzer) can be used. In order to perform the oxygen concentration measurement of the second region 2b, which is a portion having a lower oxygen concentration, in addition to narrowing the irradiation range, an active material layer for measurement having an oxygen concentration equivalent to that of the portion to be measured on the surface layer, It is also effective to form it separately.

酸素濃度の高い第1領域2a、および第3領域2cの厚みは、導電性、エネルギー密度、および膨張率などの観点から、活物質層2全体の厚みのそれぞれ1%〜30%、および5%〜80%であることが好ましく、特にそれぞれ3%〜20%、および10%〜60%であることがより好ましい。酸素濃度が高い第1領域2a、および第3領域2cの厚みが薄すぎると、本発明の膨張抑制の効果が十分に得られず、逆に厚すぎると、十分な電池エネルギーを得ることが出来ない。   The thicknesses of the first region 2a and the third region 2c having a high oxygen concentration are 1% to 30% and 5%, respectively, of the total thickness of the active material layer 2 from the viewpoints of conductivity, energy density, and expansion coefficient. It is preferably ˜80%, more preferably 3% to 20% and 10% to 60%, respectively. If the thickness of the first region 2a and the third region 2c where the oxygen concentration is high is too thin, the effect of suppressing the expansion of the present invention cannot be obtained sufficiently. Conversely, if the thickness is too thick, sufficient battery energy can be obtained. Absent.

活物質層2全体の厚みは特に制限がないが、電池のエネルギー密度、ハイレート特性、生産性などの点から0.5μm〜100μmが好ましく、特に1μm〜60μmであることがより好ましい。活物質層2が薄すぎると十分な電池エネルギーを得ることが出来ず、また活物質層2が厚すぎると成膜時にクラックが生じるおそれがある。   The total thickness of the active material layer 2 is not particularly limited, but is preferably 0.5 μm to 100 μm, more preferably 1 μm to 60 μm, from the viewpoint of battery energy density, high rate characteristics, productivity, and the like. If the active material layer 2 is too thin, sufficient battery energy cannot be obtained, and if the active material layer 2 is too thick, cracks may occur during film formation.

図2は、活物質層2を構成する粒子21の傾きを説明するための模式図である。粒子21は、集電体1の法線方向Dに対し、集電体1側が凸となるように斜め方向に弓なりに成長している。粒子21の成長方向D1は、法線方向Dに対し角θ1を有している。粒子21の成長方向D1は、粒子21と集電体1とが接する点において粒子21が成長する方向である。成長方向D1は、角θ1が最大となる方向で負極20を切断して観察することができる。成長方向D1は、粒子21と集電体1とが接する面の中点と、粒子21の断面を粒子21の高さの1/2となる集電体1に平行な仮想的な線A−A’で切断した時の粒子21の幅の中点とを結ぶ方向として定義できる。ここで、角θ1は20°以上90°未満である。なお、粒子21の線A−A’よりも表面側の成長方向D2と集電体1の法線方向Dとがなす角θ2は、集電体1側が凸となるように斜め方向に弓なりに成長しているのでθ1>θ2を満たす。また、角θ2は、10°以上70°以下であることが好ましい。   FIG. 2 is a schematic diagram for explaining the inclination of the particles 21 constituting the active material layer 2. The particles 21 grow in a bow shape in an oblique direction so that the current collector 1 side is convex with respect to the normal direction D of the current collector 1. The growth direction D1 of the particles 21 has an angle θ1 with respect to the normal direction D. The growth direction D1 of the particle 21 is a direction in which the particle 21 grows at a point where the particle 21 and the current collector 1 are in contact with each other. The growth direction D1 can be observed by cutting the negative electrode 20 in a direction in which the angle θ1 is maximum. The growth direction D1 is an imaginary line A− parallel to the current collector 1 where the particle 21 and the current collector 1 are in contact with each other and the cross section of the particle 21 is ½ the height of the particle 21. It can be defined as the direction connecting the midpoint of the width of the particle 21 when cut at A ′. Here, the angle θ1 is not less than 20 ° and less than 90 °. Note that the angle θ2 formed by the growth direction D2 on the surface side of the particle 21 along the line AA ′ and the normal direction D of the current collector 1 is bowed in an oblique direction so that the current collector 1 side is convex. Since it is growing, it satisfies θ1> θ2. Further, the angle θ2 is preferably 10 ° or more and 70 ° or less.

このときの活物質層2中の空間割合(以下、隙間比率という)は、角θ1が大きいほど大きくなる。集電体1の表面の凹凸の大きさにもよるが、例えば集電体1の表面の平均粗さRaが1.5μmから2.5μmで、角θ1が10°のときには、隙間比率5%程度となる。同様に、角θ1が20°のときには隙間比率は10%程度、角θ1が30°のときには隙間比率は20%程度、角θ1が60°のときに隙間比率は50%程度、角θ1が80°のときに隙間比率は70%程度である。粒子21の成長方向は、活物質層2の膜厚方向で変化している為、活物質層2全体での隙間比率は上に述べた隙間比率を粒子21の成長方向に応じて膜厚方向で積算平均した値となる。   At this time, the space ratio in the active material layer 2 (hereinafter referred to as a gap ratio) increases as the angle θ1 increases. Depending on the size of the irregularities on the surface of the current collector 1, for example, when the average roughness Ra of the surface of the current collector 1 is 1.5 μm to 2.5 μm and the angle θ1 is 10 °, the gap ratio is 5%. It will be about. Similarly, when the angle θ1 is 20 °, the gap ratio is about 10%, when the angle θ1 is 30 °, the gap ratio is about 20%, and when the angle θ1 is 60 °, the gap ratio is about 50% and the angle θ1 is 80. When the angle is °, the gap ratio is about 70%. Since the growth direction of the particles 21 changes in the film thickness direction of the active material layer 2, the gap ratio in the active material layer 2 as a whole depends on the gap ratio described above according to the growth direction of the particles 21. The integrated average value is obtained at.

本実施の形態1での活物質粒子21の好ましい構造は、粒子21が集電体1の法線方向Dから20°以上90°未満の角度で成長し、活物質粒子の厚みが、1μmから30μmで、隙間比率は10%から70%である。   The preferable structure of the active material particles 21 in the first embodiment is that the particles 21 grow at an angle of 20 ° or more and less than 90 ° from the normal direction D of the current collector 1, and the thickness of the active material particles is from 1 μm. At 30 μm, the gap ratio is 10% to 70%.

なお隙間比率は、以下のようにして求められる。まず基材である銅箔全面に一様に隙間無く活物質の薄膜を形成したサンプル1と、活物質粒子の成長方向を調整することにより隙間を形成したサンプル2と、サンプル1および2作製時の基材とした銅箔とを同じ大きさに切断し、それぞれの質量を測定する。この時二つのサンプル1および2の厚みを同一条件とする。次にサンプル1の質量から銅箔の質量を差し引き、活物質質量を算出する。同様にサンプル2についても同様に銅箔の質量を差し引き、それぞれのサンプルの活物質質量を算出する。最後に銅箔全面に形成した活物質の質量に対する、活物質粒子の質量の比率から活物質の比率を計算し、100%と活物質比率の差を隙間比率とする。   The gap ratio is obtained as follows. First, sample 1 in which a thin film of an active material is uniformly formed on the entire surface of a copper foil as a base material, sample 2 in which a gap is formed by adjusting the growth direction of the active material particles, and when samples 1 and 2 are produced The copper foil used as the base material is cut into the same size, and the respective masses are measured. At this time, the thicknesses of the two samples 1 and 2 are set to the same condition. Next, the mass of the copper foil is subtracted from the mass of Sample 1 to calculate the active material mass. Similarly, for sample 2, the mass of the copper foil is similarly subtracted, and the active material mass of each sample is calculated. Finally, the ratio of the active material is calculated from the ratio of the mass of the active material particles to the mass of the active material formed on the entire surface of the copper foil, and the difference between 100% and the active material ratio is defined as the gap ratio.

上記のように、酸素濃度の高い第1領域2a、および第3領域2cの厚みは活物質層全体の厚みのそれぞれ1%〜30%および5%〜80%であるが、各領域の厚さは活物質粒子21の成長方向により形成される隙間の形状と、必要とされるLi吸蔵量から見積もった活物質量から適宜決められる。このように活物質粒子の成長方向、膜厚、隙間、厚み方向の酸素濃度をコントロールして成膜することによって、膨張ストレスに関する課題は解消されると考えられる。   As described above, the thicknesses of the first region 2a and the third region 2c having a high oxygen concentration are 1% to 30% and 5% to 80% of the total thickness of the active material layer, respectively. Is appropriately determined from the shape of the gap formed by the growth direction of the active material particles 21 and the amount of active material estimated from the required amount of Li storage. Thus, it is considered that the problem relating to the expansion stress is solved by controlling the growth direction, the film thickness, the gap, and the oxygen concentration in the thickness direction of the active material particles.

次に図1に示す負極20を製造する方法の一例について述べる。図3は本実施の形態1の負極20を製造するための方法の一例を示す模式図である。図3において、真空槽3内は排気ポンプ13により排気されている。真空槽3中において、巻き出しロール10から薄膜の基材である集電体1が搬送ローラ11を介して送られ、キャンロール5に沿って走行する。その間に蒸発源4よりケイ素またはスズからなる活物質蒸気が酸素を含む雰囲気で供給され、マスク6の開口部を通過した活物質蒸気により集電体1の表面に活物質粒子21を複数含む活物質層2が形成される。こうして得られた極板は巻き取りロール12に巻き取られる。   Next, an example of a method for manufacturing the negative electrode 20 shown in FIG. 1 will be described. FIG. 3 is a schematic diagram showing an example of a method for manufacturing the negative electrode 20 of the first embodiment. In FIG. 3, the inside of the vacuum chamber 3 is exhausted by an exhaust pump 13. In the vacuum chamber 3, the current collector 1, which is a thin film base material, is sent from the unwinding roll 10 through the transport roller 11 and travels along the can roll 5. In the meantime, an active material vapor made of silicon or tin is supplied from the evaporation source 4 in an atmosphere containing oxygen, and an active material vapor that has passed through the opening of the mask 6 and has an active material particle 21 that includes a plurality of active material particles 21 on the surface of the current collector 1. A material layer 2 is formed. The electrode plate thus obtained is wound up on a winding roll 12.

粒子21の成長方向は、成膜時の活物質蒸気の入射方向により強く支配される。例えば入射方向と集電体の法線方向Dとのなす角(以下、入射角という)が30°のときには、粒子21の成長方向D1と法線方向Dとのなす角θ1は16°程度、入射角が50°のときに角θ1は30°程度、入射角が80°のときに角θ1は60°程度である。入射角と角θ1との関係は、一般に知られているタンジェント則から見積もることができる。   The growth direction of the particles 21 is strongly controlled by the incident direction of the active material vapor at the time of film formation. For example, when the angle formed between the incident direction and the normal direction D of the current collector (hereinafter referred to as the incident angle) is 30 °, the angle θ1 formed between the growth direction D1 of the particles 21 and the normal direction D is about 16 °. When the incident angle is 50 °, the angle θ1 is about 30 °, and when the incident angle is 80 °, the angle θ1 is about 60 °. The relationship between the incident angle and the angle θ1 can be estimated from a generally known tangent law.

蒸発源4には活物質材料であるケイ素またはスズを内部に保持した坩堝などが用いられる。ケイ素またはスズの純度は高いほど望ましい。蒸発源4を過熱する方法は、抵抗加熱法や電子ビームの照射による加熱法を用いることができる。   For the evaporation source 4, a crucible or the like in which silicon or tin as an active material is held is used. The higher the purity of silicon or tin, the better. As a method of heating the evaporation source 4, a resistance heating method or a heating method by electron beam irradiation can be used.

第1領域2aから第3領域2cを有する負極20を作製するために、第1酸素ノズル7から酸素ガスを導入すると同時に、第2酸素ノズル8および第3酸素ノズル9から酸素ガスを導入する。第1酸素ノズル7は活物質蒸気全体に酸素が行き渡るように設置する。また第2酸素ノズル8は、集電体1上に粒子が形成され始める際に酸素が供給できるように、マスク6の開口部付近に設置する。第3酸素ノズル9は、集電体1上に形成されつつある粒子21に酸素が供給できるように、マスク6の開口部付近に設置する。   In order to produce the negative electrode 20 having the first region 2 a to the third region 2 c, oxygen gas is introduced from the second oxygen nozzle 8 and the third oxygen nozzle 9 simultaneously with introduction of oxygen gas from the first oxygen nozzle 7. The 1st oxygen nozzle 7 is installed so that oxygen may spread over the whole active material vapor | steam. The second oxygen nozzle 8 is installed in the vicinity of the opening of the mask 6 so that oxygen can be supplied when particles start to form on the current collector 1. The third oxygen nozzle 9 is installed near the opening of the mask 6 so that oxygen can be supplied to the particles 21 being formed on the current collector 1.

上記の構成により、活物質2の形成初期(第1領域2a)および活物質層2の形成終期(第3領域2c)において酸素濃度を高くすることができるため、図1に示す負極20が形成される。それぞれの領域の酸素量は、各酸素ノズルから導入する酸素量、真空槽3の形状、排気ポンプ13の排気能力、活物質材料(ケイ素またはスズ)の蒸発速度、集電体1上への活物質層2の成膜幅、その他製造条件によって適宜変更することが出来る。その一例としては、真空槽の容積は0.4mであり、排気速度2.2m/sの油拡散ポンプで真空排気を行い、第1から第3の酸素ノズルへのガス導入量は、25℃1気圧換算でおおむね0.0005m/s〜0.005m/sとすればよい。 With the above configuration, the oxygen concentration can be increased at the initial stage of formation of the active material 2 (first region 2a) and at the end of formation of the active material layer 2 (third region 2c), so that the negative electrode 20 shown in FIG. Is done. The amount of oxygen in each region includes the amount of oxygen introduced from each oxygen nozzle, the shape of the vacuum chamber 3, the exhaust capacity of the exhaust pump 13, the evaporation rate of the active material (silicon or tin), and the activity on the current collector 1. The film formation width of the material layer 2 and other manufacturing conditions can be changed as appropriate. As an example, the volume of the vacuum tank is 0.4 m 3 , the vacuum diffusion is performed by an oil diffusion pump with an exhaust speed of 2.2 m 3 / s, and the amount of gas introduced into the first to third oxygen nozzles is generally at the exchange 25 ° C. 1 atm may be set to 0.0005m 3 /s~0.005m 3 / s.

活物質層2の形成方法は、本発明の負極20を得ることが出来るものであれば特に限定されないが、蒸着法、スパッタ法、またはCVD法などのドライプロセスを用いることが好ましい。特に蒸着法は生産性に富んだ方法であり、移動する集電体1上に活物質層2を連続的かつ大量に形成する方法として適している。   The method for forming the active material layer 2 is not particularly limited as long as the negative electrode 20 of the present invention can be obtained, but it is preferable to use a dry process such as a vapor deposition method, a sputtering method, or a CVD method. In particular, the vapor deposition method is a highly productive method, and is suitable as a method for forming the active material layer 2 continuously and in large quantities on the moving current collector 1.

集電体1には銅、ニッケルなどの箔を用いることが出来る。強度、電池としての体積効率、および取り扱いの容易性などの観点から、箔の厚みは4〜30μmが好ましく、より好ましくは5〜10μmである。箔の表面は平滑であってもよいが、活物質層との付着強度を高めるために、算術平均粗さRaが0.1〜4μm程度の凹凸箔を用いることが好ましい。算術平均粗さRaは、日本工業規格(JISB 0601―1994)に定められており、例えば表面粗さ計等により測定することができる。箔の凹凸は活物質層2を構成する粒子21間に空隙を形成する効果を併せ持つ。付着力の点からRa=0.4〜2.5である。   The current collector 1 can be made of a foil such as copper or nickel. From the viewpoints of strength, volumetric efficiency as a battery, and ease of handling, the thickness of the foil is preferably 4 to 30 μm, more preferably 5 to 10 μm. Although the surface of the foil may be smooth, it is preferable to use a concavo-convex foil having an arithmetic average roughness Ra of about 0.1 to 4 μm in order to increase the adhesion strength with the active material layer. The arithmetic average roughness Ra is defined in Japanese Industrial Standard (JISB 0601-1994), and can be measured by, for example, a surface roughness meter. The unevenness of the foil also has the effect of forming voids between the particles 21 constituting the active material layer 2. From the point of adhesion, Ra = 0.4 to 2.5.

こうした手法により得られた負極20は、LiCoO、LiNiO、LiMnなどといった一般的に使用される正極活物質を含む正極板と、微多孔性フィルムなどからなるセパレータと、6フッ化リン酸リチウムなどをエチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類に溶解した、一般に知られている組成のリチウムイオン伝導性を有する電解質と共に用いることで、リチウム二次電池が作製出来る。 The negative electrode 20 obtained by such a technique includes a positive electrode plate containing a commonly used positive electrode active material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , a separator made of a microporous film, and hexafluoride. A lithium secondary battery can be produced by using lithium phosphate or the like together with an electrolyte having lithium ion conductivity having a generally known composition in which cyclic carbonates such as ethylene carbonate and propylene carbonate are dissolved.

また、本発明の負極は、円筒型、扁平型、コイン型、角形等の様々な形状のリチウム二次電池に適用可能であり、電池の形状や封止形態は特に限定されない。ラミネート型リチウム二次電池に適用する場合について、図面を参照しながら説明する。   The negative electrode of the present invention can be applied to lithium secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape and sealing form of the battery are not particularly limited. A case of applying to a laminated lithium secondary battery will be described with reference to the drawings.

図4は、本発明のラミネート型リチウム二次電池の概略断面図である。図4において、ラミネートセルケース19内には、本発明の負極20と、正極集電体16とその上に形成されたリチウムイオンを吸蔵放出可能な正極活物質17とを含む正極31と、負極20と正極31との間に配置されたセパレータ18と、リチウムイオン伝導性を有する電解質(図示せず)とが配置されており、密封されている。負極20には集電用の負極リード(図示せず)が接続され、正極31には集電用の正極リード(図示せず)が接続され、それぞれラミネートセルケース19外へ導出されている。なお、ラミネートセルケース19は、例えば、アルミ箔の両面をPETやポリオレフィン樹脂で挟んだ構造のラミネートフィルムを熱溶着することで作成できる。   FIG. 4 is a schematic cross-sectional view of the laminated lithium secondary battery of the present invention. In FIG. 4, a laminated cell case 19 includes a negative electrode 20 of the present invention, a positive electrode 31 including a positive electrode current collector 16 and a positive electrode active material 17 capable of absorbing and releasing lithium ions formed thereon, and a negative electrode A separator 18 disposed between 20 and the positive electrode 31 and an electrolyte (not shown) having lithium ion conductivity are disposed and hermetically sealed. A negative electrode lead (not shown) for current collection is connected to the negative electrode 20, and a positive electrode lead (not shown) for current collection is connected to the positive electrode 31, and each is led out of the laminate cell case 19. The laminate cell case 19 can be produced by, for example, thermally welding a laminate film having a structure in which both surfaces of an aluminum foil are sandwiched between PET and polyolefin resin.

また、本発明の負極を捲回型リチウム二次電池に適用する場合について、図面を参照しながら説明する。   The case where the negative electrode of the present invention is applied to a wound lithium secondary battery will be described with reference to the drawings.

図5は、本発明の捲回型リチウム二次電池の概略断面図である。図5において、帯状の正極31と本発明の帯状の負極20とは、それらの間に配置された、両極板よりも幅広な帯状のセパレータとともに捲回され、極板群32を形成している。正極31にはアルミニウムなどからなる正極リード34が接続され、その一端は周縁にポリプロピレンなどからなる絶縁パッキン40が配された封口板39に接続されている。負極20には銅などからなる負極リード35が接続され、その一端は極板群32を収容する電池缶38に接続されている。極板群32の上下には、それぞれ上部絶縁リング36および下部絶縁リング37が配されている。極板群32には、前述したリチウムイオン伝導性を有する電解質(図示せず)が含浸されている。電池缶38の開口は、封口板39で塞がれている。なお、負極20として、図1に示すような集電体1の片面にのみ活物質層2を有する負極と、集電体1の両面に活物質層2を有する負極とが適用可能である。対応する正極についても同様である。   FIG. 5 is a schematic cross-sectional view of a wound lithium secondary battery of the present invention. In FIG. 5, the strip-shaped positive electrode 31 and the strip-shaped negative electrode 20 of the present invention are wound together with a strip-shaped separator that is disposed between them and wider than both plates to form a plate group 32. . A positive electrode lead 34 made of aluminum or the like is connected to the positive electrode 31, and one end thereof is connected to a sealing plate 39 in which an insulating packing 40 made of polypropylene or the like is arranged on the periphery. A negative electrode lead 35 made of copper or the like is connected to the negative electrode 20, and one end thereof is connected to a battery can 38 that houses the electrode plate group 32. An upper insulating ring 36 and a lower insulating ring 37 are arranged above and below the electrode plate group 32, respectively. The electrode plate group 32 is impregnated with the above-described electrolyte (not shown) having lithium ion conductivity. The opening of the battery can 38 is closed with a sealing plate 39. As the negative electrode 20, a negative electrode having the active material layer 2 only on one side of the current collector 1 as shown in FIG. 1 and a negative electrode having the active material layer 2 on both sides of the current collector 1 can be applied. The same applies to the corresponding positive electrode.

本発明にかかる負極、およびそれを用いた電池は、高容量活物質を用い、かつリチウムイオンの吸蔵による活物質の膨張時の活物質粒子間の圧縮力による破壊、特に充放電に伴う膨張収縮の影響を受けやすい集電体と活物質層の界面近傍、および膨張空間が少なく粒子破壊の生じやすい活物質層表面近傍部分の活物質層の破壊を抑制することができるので、負極、およびそれを用いた電池として有用である。   The negative electrode according to the present invention, and a battery using the negative electrode, use a high-capacity active material, and breakage due to compressive force between active material particles during expansion of the active material due to occlusion of lithium ions, particularly expansion / contraction due to charge / discharge Since the active material layer in the vicinity of the interface between the current collector and the active material layer, which is susceptible to the influence of the active material layer, and the active material layer near the surface of the active material layer where there is little expansion space and particle breakage can be suppressed, the negative electrode, and It is useful as a battery using

本発明の実施の形態1における負極の断面を示す模式図Schematic diagram showing a cross section of the negative electrode according to Embodiment 1 of the present invention. 本発明の実施の形態1における粒子の傾きを説明するための模式図Schematic diagram for explaining the inclination of particles in Embodiment 1 of the present invention 本実施の形態1の負極を製造するための方法の一例を示す模式図The schematic diagram which shows an example of the method for manufacturing the negative electrode of this Embodiment 1. 本実施の形態1におけるラミネート電池の概略断面図Schematic cross-sectional view of laminated battery in the first embodiment 本実施の形態1における捲回型電池の概略断面図Schematic cross-sectional view of a wound battery according to the first embodiment

符号の説明Explanation of symbols

1 集電体
2 活物質層
2a 第1領域
2b 第2領域
2c 第3領域
3 真空槽
4 蒸発源
5 キャンロール
6 マスク
7 第1酸素ノズル
8 第2酸素ノズル
9 第3酸素ノズル
10 巻き出しロール
11 搬送ローラ
12 巻き取りロール
13 排気ポンプ
16 正極集電体
17 正極活物質
18、33 セパレータ
19 ラミネートセルケース
20 負極
21 活物質粒子
31 正極
32 極板群
34 正極リード
35 負極リード
36 上部絶縁リング
37 下部絶縁リング
38 電池缶
39 封口板
40 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Current collector 2 Active material layer 2a 1st area | region 2b 2nd area | region 2c 3rd area | region 3 Vacuum tank 4 Evaporation source 5 Can roll 6 Mask 7 1st oxygen nozzle 8 2nd oxygen nozzle 9 3rd oxygen nozzle 10 Unwinding roll DESCRIPTION OF SYMBOLS 11 Conveyance roller 12 Winding roll 13 Exhaust pump 16 Positive electrode collector 17 Positive electrode active material 18, 33 Separator 19 Laminate cell case 20 Negative electrode 21 Active material particle 31 Positive electrode 32 Electrode plate group 34 Positive electrode lead 35 Negative electrode lead 36 Upper insulating ring 37 Lower insulation ring 38 Battery can 39 Sealing plate 40 Insulation packing

Claims (4)

集電体と、前記集電体に担持された活物質層と、を含むリチウム二次電池用負極であって、
前記活物質層は、ケイ素と酸素とを含む化合物、またはスズと酸素とをを含む化合物を含み、
前記活物質層は、前記集電体の法線方向に対して集電体側が凸となるように斜め方向に弓状に成長した粒子を含み、
前記粒子の成長方向と前記集電体の法線方向とのなす角θ1が、20°以上90°未満であり、
前記弓状に成長した粒子の前記集電体側の第1領域における第1酸素濃度と、前記活物質層の表面側の第3領域における第3酸素濃度とは、前記第1領域と前記第3領域の間の第2領域における第2酸素濃度に比べて高いこと、
を特徴とするリチウム二次電池用負極。
A negative electrode for a lithium secondary battery, comprising: a current collector; and an active material layer carried on the current collector,
The active material layer includes a compound containing silicon and oxygen, or a compound containing tin and oxygen,
The active material layer includes particles grown in an arcuate shape in an oblique direction so that the current collector side is convex with respect to the normal direction of the current collector,
An angle θ1 formed by the growth direction of the particles and the normal direction of the current collector is 20 ° or more and less than 90 °,
The first oxygen concentration in the first region on the current collector side of the particles grown in an arc shape and the third oxygen concentration in the third region on the surface side of the active material layer are the first region and the third oxygen concentration. Higher than the second oxygen concentration in the second region between the regions,
A negative electrode for a lithium secondary battery.
前記第1領域は、下記一般式(1)で表される化学組成であり、
前記第2領域は、下記一般式(2)で表される化学組成であり、
前記第3領域は、下記一般式(3)で表される化学組成であること、
を特徴とする請求項1に記載のリチウム二次電池用負極。
MOx・・・(1)
MOx・・・(2)
MOx・・・(3)
(式中、MはSiとSnとのいずれかであり、x、xおよびxは、0.1≦x≦2.0、0≦x≦1.0、0.1≦x≦2.0、x>x、x>xを満たす。)
The first region has a chemical composition represented by the following general formula (1):
The second region has a chemical composition represented by the following general formula (2):
The third region has a chemical composition represented by the following general formula (3).
The negative electrode for a lithium secondary battery according to claim 1.
MOx 1 (1)
MOx 2 (2)
MOx 3 (3)
(In the formula, M is one of Si and Sn, and x 1 , x 2 and x 3 are 0.1 ≦ x 1 ≦ 2.0, 0 ≦ x 2 ≦ 1.0, 0.1 ≦ x 3 ≦ 2.0, x 1 > x 2 , x 3 > x 2 are satisfied.)
前記第2領域の膜密度が、前記第3領域の膜密度よりも疎であること、
を特徴とする請求項1に記載のリチウム二次電池用負極。
The film density of the second region is sparser than the film density of the third region;
The negative electrode for a lithium secondary battery according to claim 1.
リチウムイオンを吸蔵および放出可能な正極と、
請求項1〜3のいずれかに記載のリチウム二次電池用負極と、
前記正極と前記リチウム二次電池用負極との間に配置されたセパレータと、
リチウムイオン伝導性を有する電解質と、
を含むリチウム二次電池。
A positive electrode capable of inserting and extracting lithium ions;
A negative electrode for a lithium secondary battery according to any one of claims 1 to 3,
A separator disposed between the positive electrode and the negative electrode for a lithium secondary battery;
An electrolyte having lithium ion conductivity;
Including lithium secondary battery.
JP2005317915A 2005-11-01 2005-11-01 Anode for lithium secondary battery, and lithium secondary battery using the same Pending JP2007128659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317915A JP2007128659A (en) 2005-11-01 2005-11-01 Anode for lithium secondary battery, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317915A JP2007128659A (en) 2005-11-01 2005-11-01 Anode for lithium secondary battery, and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2007128659A true JP2007128659A (en) 2007-05-24

Family

ID=38151154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317915A Pending JP2007128659A (en) 2005-11-01 2005-11-01 Anode for lithium secondary battery, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2007128659A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072430A1 (en) * 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2008192594A (en) * 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
WO2008111306A1 (en) 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2009134917A (en) * 2007-11-29 2009-06-18 Panasonic Corp Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same
US20110014519A1 (en) * 2008-02-08 2011-01-20 Sadayuki Okazaki Method for forming deposited film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072430A1 (en) * 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
JP2008171798A (en) * 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
US7947396B2 (en) * 2006-12-13 2011-05-24 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
JP2008192594A (en) * 2007-01-11 2008-08-21 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
WO2008111306A1 (en) 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
JP2009134917A (en) * 2007-11-29 2009-06-18 Panasonic Corp Electrode plate for nonaqueous secondary batteries, and nonaqueous secondary battery using the same
US20110014519A1 (en) * 2008-02-08 2011-01-20 Sadayuki Okazaki Method for forming deposited film

Similar Documents

Publication Publication Date Title
JP7311169B2 (en) Structurally controlled deposition of silicon on nanowires
JP4038233B2 (en) Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery equipped with non-aqueous electrolyte secondary battery electrode
JP4113910B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4460642B2 (en) LITHIUM SECONDARY BATTERY NEGATIVE ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP4036889B2 (en) battery
JP2007194076A (en) Lithium secondary battery
JP4598150B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP2008117785A (en) Negative electrode for lithium secondary battery and its manufacturing method
WO2008050586A1 (en) Negative electrode for lithium secondary battery and lithium secondary battery containing the same
JP2011023131A (en) Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2007128659A (en) Anode for lithium secondary battery, and lithium secondary battery using the same
JP5095132B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP4929763B2 (en) Lithium secondary battery
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
KR101284025B1 (en) Anode Materials for Secondary Batteries and Method Producing the Same
JP2007207663A (en) Method of manufacturing negative electrode of lithium-ion secondary battery, and lithium-ion secondary battery including negative electrode obtained using its method
JP2008124003A (en) Negative electrode for lithium secondary battery, and lithium secondary battery including it
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP5045085B2 (en) Negative electrode for lithium secondary battery
JP2008181835A (en) Negative electrode for lithium secondary battery
JP2011187395A (en) Negative plate for nonaqueous electrolyte secondary battery, manufacturing method of negative plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009037895A (en) Negative electrode plate for lithium secondary battery, and lithium secondary battery using the same
JP5034236B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2013012392A (en) Negative electrode plate and manufacturing method thereof
JP2011154786A (en) Apparatus for manufacturing electrode plate of electrochemical device