JP2011023131A - Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same - Google Patents

Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2011023131A
JP2011023131A JP2009164756A JP2009164756A JP2011023131A JP 2011023131 A JP2011023131 A JP 2011023131A JP 2009164756 A JP2009164756 A JP 2009164756A JP 2009164756 A JP2009164756 A JP 2009164756A JP 2011023131 A JP2011023131 A JP 2011023131A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
electrode plate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009164756A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
隆司 島田
Daisuke Suetsugu
大輔 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009164756A priority Critical patent/JP2011023131A/en
Publication of JP2011023131A publication Critical patent/JP2011023131A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode plate for a nonaqueous secondary battery and a nonaqueous secondary battery using the same, with a mass ratio of an anode active material and lithium at an inner winding side of the anode plate in an electrode group of the nonaqueous secondary battery made smaller than that of the anode active material and lithium at an outer winding side, without fear of buckling of the electrode group, and excellent in charge and discharge characteristics. <P>SOLUTION: In the anode plate 3 forming as an anode active material columnar particles 2a, 2b including a compound containing silicon and oxygen, or a compound containing tin and oxygen or the like, on a surface or a rear face of an anode collector 1 such as a copper foil having a number of protrusions 1a, 1b formed on the surface in an oblique direction and put under lithium filling treatment, a mass ratio of the anode active material of the columnar particle 2a at an inner winding side at spiral winding together with a cathode plate through a porous insulating layer and the lithium is to be smaller than that of the anode active material of the columnar particle 2b at an outer winding side and the lithium. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系二次電池用負極板およびこれを用いたリチウム二次電池に関し、特にケイ素と酸素とを含む化合物、またはスズと酸素とを含む化合物を活物質として含む非水系二次電池用負極板に関する。   TECHNICAL FIELD The present invention relates to a negative electrode plate for a non-aqueous secondary battery and a lithium secondary battery using the same, and in particular, a non-aqueous secondary battery containing a compound containing silicon and oxygen or a compound containing tin and oxygen as active materials. The present invention relates to a negative electrode plate.

近年、パーソナルコンピュータ、携帯電話などのポータブル機器の開発に伴い、その電源としての電池の需要が増大している。上記のような用途に用いられる電池には高エネルギー密度と優れたサイクル特性が要求される。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has increased. A battery used for the above applications is required to have a high energy density and excellent cycle characteristics.

この要求に対し、正極板、負極板それぞれにおいて新たに高容量の活物質が開発されており、負極活物質においては高い容量が得られるケイ素またはスズを含む合金や酸化物を用いることによる解決が図られようとしている。しかし、ケイ素やスズ、あるいはこれらの酸化物および窒化物は不可逆容量が大きく、また、負極活物質の膨張収縮が大きいという課題を有している。つまり初回充電時に正極板から放出されたリチウムイオンの一部が負極板に吸蔵されたままになる割合が大きいため、これらの負極板材料の理論容量と比較して電池容量が小さくなる。また、充放電時にリチウムイオンが挿入、離脱することで負極活物質が大きく膨張、収縮するため負極板が大きく歪み、この応力によって、電極群の電極板が挫屈を起こす場合がある。   In response to this requirement, a new high capacity active material has been developed for each of the positive electrode plate and the negative electrode plate, and the negative electrode active material can be solved by using an alloy or oxide containing silicon or tin that can provide a high capacity. It is about to be planned. However, silicon and tin, or their oxides and nitrides have a large irreversible capacity, and have a problem that the negative electrode active material has a large expansion and contraction. That is, since a large proportion of the lithium ions released from the positive electrode plate during the initial charge remains occluded in the negative electrode plate, the battery capacity becomes smaller than the theoretical capacity of these negative electrode plate materials. In addition, the insertion and removal of lithium ions during charging and discharging greatly expands and contracts the negative electrode active material, so that the negative electrode plate is greatly distorted, and this stress may cause the electrode plate of the electrode group to buckle.

そこで、不可逆容量の課題を解決するために、予め不可逆容量相当のリチウムを負極板に吸蔵させ、しかる後に電池を組み立てて充放電を始めるという手法が提案されている。すなわち、図7に示すように負極集電体51上にケイ素、スズ、およびケイ素−チタン系合金からなる群より選択される少なくとも1種を含む負極活物質を含む負極活物質層52を備え、初回充電時に正極板から放出されたリチウムイオンが高い確率で負極板から回収できるようになり電池容量が増加するようにこの負極活物質層52の表面を覆うように金属リチウム層53を蒸着またはスパッタにより形成することが提案されている(例えば、特許文献1参照)。   Therefore, in order to solve the problem of irreversible capacity, a technique has been proposed in which lithium corresponding to the irreversible capacity is occluded in advance in the negative electrode plate, and then the battery is assembled and charge / discharge is started. That is, as shown in FIG. 7, the negative electrode active material layer 52 including a negative electrode active material including at least one selected from the group consisting of silicon, tin, and a silicon-titanium alloy is provided on the negative electrode current collector 51, A lithium metal layer 53 is deposited or sputtered so as to cover the surface of the negative electrode active material layer 52 so that lithium ions released from the positive electrode plate at the first charge can be recovered from the negative electrode plate with a high probability and the battery capacity is increased. It is proposed to form by (for example, refer patent document 1).

また、電極群の電極板の挫屈を抑制するために、電極群の内部に空間を設けるという手法が提案されている。すなわち、図8に示すように負極集電体61上に担持された負極活物質層62の所定の領域Aに不可逆容量を超える電気量のリチウム63を付与することにより領域A以外の領域に空間を設ける方法が提案されている(例えば、特許文献2参照)。   In order to suppress the buckling of the electrode plates of the electrode group, a method of providing a space inside the electrode group has been proposed. That is, as shown in FIG. 8, a space in a region other than the region A is obtained by applying lithium 63 having an electric quantity exceeding the irreversible capacity to a predetermined region A of the negative electrode active material layer 62 supported on the negative electrode current collector 61. There has been proposed a method of providing (see, for example, Patent Document 2).

特開2005−063805号公報Japanese Patent Laying-Open No. 2005-063805 特開2007−328932号公報JP 2007-328932 A

しかしながら、上述した特許文献1に示される従来技術では不可逆容量は低減できるが充放電時の負極板の変形によって電極群の電極板が挫屈するという課題が生じる。また、上述した特許文献2に示される従来技術で電極群の内部に空間を設けた場合、電極群の電極板の挫屈に対して効果はあるものの、負極板を作製する工程で2つの領域に別々の条件でリチウムを付与する必要があるために負極板の作製が複雑化するという課題が生じる。   However, although the irreversible capacity can be reduced in the prior art disclosed in Patent Document 1 described above, there arises a problem that the electrode plates of the electrode group are bent due to deformation of the negative electrode plate during charging and discharging. Further, when a space is provided inside the electrode group in the conventional technique shown in Patent Document 2 described above, although there is an effect on the buckling of the electrode plate of the electrode group, there are two regions in the process of manufacturing the negative electrode plate Therefore, there is a problem that the production of the negative electrode plate becomes complicated because it is necessary to apply lithium under different conditions.

本発明は上記従来の課題を鑑みてなされたもので、非水系二次電池の負極活物質にリチウムを担持させたときに生じる負極活物質の膨張量に関して電極群における負極板の巻内側となる側の負極活物質の膨張量を巻外側となる側の負極活物質の膨張量より少なくなる構成とし、電極群の電極板の挫屈がなく容易な作製方法で非水系二次電池用負極板およびこれを用いた非水系二次電池を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and becomes an inside of the negative electrode plate in the electrode group with respect to the expansion amount of the negative electrode active material generated when lithium is supported on the negative electrode active material of the non-aqueous secondary battery. The negative electrode plate for a non-aqueous secondary battery has a configuration in which the amount of expansion of the negative electrode active material on the side is smaller than the amount of expansion of the negative electrode active material on the outer side, and the electrode plate of the electrode group does not buckle and is easily manufactured Another object is to provide a non-aqueous secondary battery using the same.

上記のような目的を達成するために本発明の非水系二次電池用負極板は、金属箔からなる負極集電体の両面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた非水系二次電池用負極板であって、負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側となる側の負極活物質の膨張量を巻外側となる側の負極活物質の膨張量より少なくなるように構成したことを特徴とするものである。   In order to achieve the above object, the negative electrode plate for a non-aqueous secondary battery of the present invention is composed of a compound containing silicon and oxygen or a compound containing tin and oxygen on both sides of a negative electrode current collector made of a metal foil. A negative electrode plate for a non-aqueous secondary battery in which lithium is supported on the negative electrode active material, and when the negative electrode plate is spirally wound together with the positive electrode plate via the porous insulating layer It is characterized in that the amount of expansion of the negative electrode active material on the inner side is smaller than the amount of expansion of the negative electrode active material on the outer side.

本発明の非水系二次電池用負極板によると、負極活物質にリチウムを担持させたときに生じる負極活物質の膨張量に関して負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側となる側の負極活物質の膨張量を巻外側となる側の負極活物質の膨張量より少なくしたことにより、負極板が一定の方向に均一に応力を受ける。そのため負極板が不均一な応力を受けたときに生じる負極板の波打ちを抑制することが可能となる。また負極板の製造工程のリチウム補填時もしくは電池の充電時に、より大きな圧縮応力を受ける巻内側の負極活物質にかかる応力を緩和することが可能となり、電極群の電極板の挫屈によるサイクル劣化を抑制することが可能となる。   According to the negative electrode plate for a non-aqueous secondary battery of the present invention, the negative electrode plate is spirally wound together with the positive electrode plate through the porous insulating layer with respect to the expansion amount of the negative electrode active material generated when lithium is supported on the negative electrode active material. When the amount of expansion of the negative electrode active material on the inner side when turned is smaller than the amount of expansion of the negative electrode active material on the outer side, the negative electrode plate is uniformly stressed in a certain direction. Therefore, it is possible to suppress the undulation of the negative electrode plate that occurs when the negative electrode plate receives uneven stress. In addition, it is possible to relieve the stress applied to the negative electrode active material on the inner side of the winding, which is subject to a greater compressive stress, during lithium supplementation in the manufacturing process of the negative electrode plate or when charging the battery, and cycle deterioration due to buckling of the electrode plate of the electrode group Can be suppressed.

本発明の一実施例における非水系二次電池用負極板の断面を示す模式図The schematic diagram which shows the cross section of the negative electrode plate for non-aqueous secondary batteries in one Example of this invention. 本発明の一実施例における非水系二次電池用負極板を製造するための方法の一例を示す模式図The schematic diagram which shows an example of the method for manufacturing the negative electrode plate for non-aqueous secondary batteries in one Example of this invention. 本発明の一実施例における非水系二次電池用負極板の断面を示す模式図The schematic diagram which shows the cross section of the negative electrode plate for non-aqueous secondary batteries in one Example of this invention. 本発明の一実施例における非水系二次電池の電極群の要部の断面を示す模式図The schematic diagram which shows the cross section of the principal part of the electrode group of the non-aqueous secondary battery in one Example of this invention. 本発明の一実施例における非水系二次電池の断面を示す模式図The schematic diagram which shows the cross section of the non-aqueous secondary battery in one Example of this invention. (a)本発明における凸状にカールした負極板のカール状態を評価する方法を示す模式図、(b)凹状にカールした負極板のカール状態を評価する方法を示す模式図、(c)波打ち状にカールした負極板のカール状態を評価する方法を示す模式図(A) Schematic diagram showing a method for evaluating the curled state of the negatively curled negative electrode plate in the present invention, (b) Schematic diagram showing a method for evaluating the curled state of the negatively curled negative electrode plate, (c) Wave Schematic showing the method of evaluating the curl state of the negative electrode plate curled 従来例における非水系二次電池用負極板を示す模式図Schematic diagram showing a negative electrode plate for a non-aqueous secondary battery in a conventional example 従来例における他の非水系二次電池用負極板の断面を示す模式図Schematic diagram showing a cross section of another negative electrode plate for a non-aqueous secondary battery in a conventional example

本発明の第1の発明においては、金属箔からなる負極集電体の両面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた非水系二次電池用負極板であって、負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側の負極活物質の膨張量を巻外側となる側の負極活物質の膨張量より少なくなるように構成したことにより、負極板が一定の方向に均一に応力を受け負極板の波打ちを抑制することが可能となる。   In the first aspect of the present invention, a negative electrode active material consisting of a compound containing silicon and oxygen or a compound containing tin and oxygen on both sides of a negative electrode current collector made of metal foil, and lithium supported on the negative electrode active material A negative electrode plate for a non-aqueous secondary battery, wherein the amount of expansion of the negative electrode active material on the inner side when the negative electrode plate is spirally wound together with the positive electrode plate through the porous insulating layer becomes the outer side of the winding Since the negative electrode active material is configured so as to be smaller than the expansion amount of the negative electrode active material on the side, the negative electrode plate can be uniformly stressed in a certain direction and the undulation of the negative electrode plate can be suppressed.

本発明の第2の発明においては、金属箔からなる負極集電体の両面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた非水系二次電池用負極板であって、負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側となる側の負極活物質とリチウムの質量比を
巻外側となる側の負極活物質とリチウムの質量比より少なくなるように構成したことにより、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくなり、負極板の波打ちを抑制することが可能となる。
In the second aspect of the present invention, a negative electrode active material consisting of a compound containing silicon and oxygen or a compound containing tin and oxygen on both sides of a negative electrode current collector made of metal foil, and lithium supported on the negative electrode active material A negative electrode plate for a non-aqueous secondary battery, wherein the negative electrode active material and lithium mass ratio on the inner side when the negative electrode plate is spirally wound together with the positive electrode plate through the porous insulating layer Is configured such that the amount of expansion of the negative electrode active material on the inner side of the winding becomes smaller than the amount of expansion of the negative electrode active material on the outer side of the negative electrode. It is possible to suppress the corrugation of the plate.

本発明の第3の発明においては、巻内側となる側の負極活物質とリチウムの質量比を巻外側となる側の負極活物質とリチウムの質量比より5%から10%少なくなるように構成したことにより、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくなり、負極板の波打ちを抑制することができ、かつカール量を小さくすることが可能となる。   In the third aspect of the present invention, the mass ratio between the negative electrode active material on the inner side and lithium is 5% to 10% less than the mass ratio between the negative electrode active material on the outer side and lithium. As a result, the amount of expansion of the negative electrode active material on the inner side of the winding becomes smaller than the amount of expansion of the negative electrode active material on the outer side of the winding, so that the undulation of the negative electrode plate can be suppressed and the curling amount can be reduced. .

本発明の第4の発明においては、巻内側と巻外側となる側の負極活物質の量を同じとし、巻内側の負極活物質に担持させたリチウムの量を巻外側の負極活物質に担持させたリチウムの量より少なくなるように構成したことにより、巻内側と巻外側の負極活物質層を同じ条件で生成をすることが可能となり、負極活物質層の生成を容易とすることが可能となる。   In the fourth aspect of the present invention, the amount of the negative electrode active material on the inner side and the outer side is the same, and the amount of lithium supported on the negative electrode active material on the inner side is supported on the negative electrode active material on the outer side. By configuring to be less than the amount of lithium applied, it is possible to generate the negative electrode active material layer on the inner side and the outer side on the same condition, and the generation of the negative electrode active material layer can be facilitated It becomes.

本発明の第5の発明においては、巻内側となる側の負極活物質の量を巻外側となる側の負極活物質の量より少なくなるように構成したことにより、巻内側の負極活物質の体積と膨張量が巻外側の負極活物質の体積と膨張量よりも小さくなり、巻内側の負極活物質での応力緩和の効果がより大きくなることによって効果的に負極板の波打ちを抑制することが可能となる。   In the fifth aspect of the present invention, since the amount of the negative electrode active material on the inner side becomes smaller than the amount of the negative electrode active material on the outer side, The volume and expansion amount are smaller than the volume and expansion amount of the negative electrode active material on the outer side of the winding, and the stress relaxation effect on the negative electrode active material on the inner side of the winding is increased, thereby effectively suppressing the undulation of the negative electrode plate. Is possible.

本発明の第6の発明においては、巻内側となる側の負極活物質層の厚みを巻外側となる側の負極活物質層の厚みより薄くなるように構成したことにより、巻内側の負極活物質の厚みと膨張量が巻外側の負極活物質の厚みと膨張量よりも小さくなり、巻内側の負極活物質での応力緩和の効果がより大きくなることによって効果的に負極板の波打ちを抑制することが可能となる。   In the sixth aspect of the present invention, the negative electrode active material layer on the inner side is made thinner than the negative electrode active material layer on the outer side. The thickness and expansion amount of the material is smaller than the thickness and expansion amount of the negative electrode active material on the outer side of the winding, and the stress relaxation effect on the negative electrode active material on the inner side of the winding is increased, thereby effectively suppressing the undulation of the negative electrode plate. It becomes possible to do.

本発明の第7の発明においては、集電体の両表面に正極活物質層を形成した正極板と、集電体の両表面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた負極板とを多孔質絶縁層を介して渦巻状に巻回して構成した電極群を非水電解液とともに電池ケースに封入してなる非水系二次電池において、負極板として本発明の第1から第6のいずれかの負極板を用いることにより、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくなりリチウム補填時もしくは充電時により大きな圧縮応力を受ける巻内側の負極活物質にかかる応力を緩和することが可能となり、電極群を構成した際に電極板の巻内側と巻外側の曲率の差に起因した応力差を緩和することができるため、電極板の破断または挫屈を抑制することができ、より安全性の高い非水系二次電池を提供することが可能となる。   In the seventh invention of the present invention, a positive electrode plate having a positive electrode active material layer formed on both surfaces of the current collector, and a compound containing silicon and oxygen or a compound containing tin and oxygen on both surfaces of the current collector An electrode group comprising a negative electrode active material and a negative electrode plate carrying lithium on the negative electrode active material wound in a spiral shape through a porous insulating layer is enclosed in a battery case together with a non-aqueous electrolyte. In the non-aqueous secondary battery, by using any one of the first to sixth negative electrode plates of the present invention as the negative electrode plate, the amount of expansion of the negative electrode active material on the inner side of the winding is larger than the amount of expansion of the negative electrode active material on the outer side of the winding. It becomes possible to relieve the stress applied to the negative electrode active material on the inner side of the winding which is smaller and receives a larger compressive stress during lithium supplementation or charging, and the difference in curvature between the inner side and the outer side of the electrode plate when the electrode group is configured. Relieve stress difference caused by Since it is bets, it is possible to suppress breaking or buckling of the electrode plate, it is possible to provide a more secure non-aqueous secondary battery.

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態における非水系二次電池用負極板3(以下、負極板3と称す)の断面図である。同図において本発明の負極板3は、表面に一定の間隔で多数の突起1a,1bを形成した銅箔などの負極集電体1の表面に負極活物質として、ケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物等を含む柱状粒子2a,2bが斜め方向に形成された後、リチウム補填処理されて形成されている。この際に、負極板3が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側となる側の柱状粒子2aの負極活物質とリチウムの質量比を、巻外側となる側の柱状粒子2bの負極活物質とリチウムの質量比より少なくなるようにすることにより、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくなり、負極板の波打ちを抑制することが可能となる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a negative electrode plate 3 for a non-aqueous secondary battery (hereinafter referred to as negative electrode plate 3) according to an embodiment of the present invention. In the figure, a negative electrode plate 3 according to the present invention is a compound containing silicon and oxygen as a negative electrode active material on the surface of a negative electrode current collector 1 such as a copper foil having a large number of protrusions 1a and 1b formed on the surface at a predetermined interval. Alternatively, the columnar particles 2a and 2b containing a compound containing tin and oxygen are formed in an oblique direction and then lithium-filled. At this time, when the negative electrode plate 3 is spirally wound together with the positive electrode plate through the porous insulating layer, the mass ratio between the negative electrode active material and lithium of the columnar particles 2a on the inner side is set as By making the mass ratio of the negative electrode active material and lithium of the columnar particle 2b on the side to be smaller, the expansion amount of the negative electrode active material on the inner side becomes smaller than the expansion amount of the negative electrode active material on the outer side, and the negative electrode plate Can be suppressed.

まず、突起1a,1bを設けた負極集電体1の表面に負極活物質の柱状粒子2a,2bを製造する方法の一例について述べる。図2は本発明の一実施の形態における負極板3を製造するための方法の一例を示す模式図である。同図において真空槽103内は排気ポンプ113により排気されている。真空槽103中において巻き出しロール110から基材である突起1a,1bを設けた負極集電体1が搬送ローラ111を介して送り出され、キャンロール105に沿って走行する。その間に蒸発源104よりケイ素またはスズからなる負極活物質の蒸気が酸素を含む雰囲気で供給され、マスク106の開口部を通過した負極活物質の蒸気により突起1a,1bを設けた負極集電体1の表面に負極活物質の柱状粒子2a,2bが形成される。こうして得られた負極板3は巻き取りロール112に巻き取られる。   First, an example of a method for producing the columnar particles 2a and 2b of the negative electrode active material on the surface of the negative electrode current collector 1 provided with the protrusions 1a and 1b will be described. FIG. 2 is a schematic view showing an example of a method for producing the negative electrode plate 3 in one embodiment of the present invention. In the figure, the inside of the vacuum chamber 103 is exhausted by an exhaust pump 113. In the vacuum chamber 103, the negative electrode current collector 1 provided with the protrusions 1 a and 1 b as the base material is sent out from the unwinding roll 110 through the transport roller 111 and travels along the can roll 105. In the meantime, the negative electrode active material vapor made of silicon or tin is supplied from the evaporation source 104 in an atmosphere containing oxygen, and the negative electrode current collector provided with the protrusions 1 a and 1 b by the negative electrode active material vapor that has passed through the opening of the mask 106. Columnar particles 2a and 2b of the negative electrode active material are formed on the surface of 1. The negative electrode plate 3 thus obtained is wound up on a winding roll 112.

このときの酸素を含む雰囲気は、酸素ガスボンベからオリフィスバルブやマスフローコントローラーを経由させて、一定量の酸素ガスを酸素ノズル107から吹き込むことによりつくることができる。蒸発源104には負極活物質の材料であるケイ素またはスズを内部に保持した坩堝などが用いられる。ケイ素またはスズの純度は高いほど望ましい。蒸発源104を過熱する方法は、抵抗加熱法や電子ビームの照射による加熱法を用いることができる。また、柱状粒子2a,2bの厚みを調整するには、例えば蒸発源104の加熱量を一定とすることで負極活物質の材料の蒸発速度を一定とし、突起1a,1bを設けた負極集電体1の走行速度を調整することで可能である。また、突起1a,1bを設けた負極集電体1の走行速度を一定として、蒸発源104の加熱量を調整してもよい。   The atmosphere containing oxygen at this time can be created by blowing a certain amount of oxygen gas from the oxygen nozzle 107 through an orifice gas valve or a mass flow controller from an oxygen gas cylinder. For the evaporation source 104, a crucible or the like holding silicon or tin, which is a material of the negative electrode active material, is used. The higher the purity of silicon or tin, the better. As a method of heating the evaporation source 104, a resistance heating method or a heating method by irradiation with an electron beam can be used. Further, in order to adjust the thickness of the columnar particles 2a and 2b, for example, by making the heating amount of the evaporation source 104 constant, the evaporation rate of the material of the negative electrode active material is made constant, and the negative electrode current collector provided with the protrusions 1a and 1b This is possible by adjusting the traveling speed of the body 1. Further, the heating amount of the evaporation source 104 may be adjusted with the traveling speed of the negative electrode current collector 1 provided with the protrusions 1a and 1b being constant.

さらに、負極活物質の柱状粒子2a,2bに酸素を含有させて形成するには、酸素ノズル107は負極活物質の蒸気全体に酸素が行き渡るように設置し、酸素ノズル107より酸素ガスを導入する。また、負極活物質の柱状粒子2a,2bの形成方法は、本発明の負極板3を得ることができるものであれば特に限定されないが、蒸着法、スパッタ法、またはCVD法などのドライプロセスを用いることが好ましい。特に蒸着法は生産性に優れた方法であり、移動する突起1a,1bを設けた負極集電体1上に負極活物質の柱状粒子2a,2bを連続的かつ多量に形成する方法として好ましい。   Furthermore, in order to form the negative electrode active material columnar particles 2a and 2b by containing oxygen, the oxygen nozzle 107 is installed so that oxygen is distributed throughout the vapor of the negative electrode active material, and oxygen gas is introduced from the oxygen nozzle 107. . The method for forming the columnar particles 2a and 2b of the negative electrode active material is not particularly limited as long as the negative electrode plate 3 of the present invention can be obtained, but a dry process such as a vapor deposition method, a sputtering method, or a CVD method is used. It is preferable to use it. In particular, the vapor deposition method is a method with excellent productivity, and is preferable as a method for continuously and abundantly forming the columnar particles 2a and 2b of the negative electrode active material on the negative electrode current collector 1 provided with the moving protrusions 1a and 1b.

上述のようにして突起1aを設けた負極集電体1の表面に負極活物質の柱状粒子2aを形成した後に裏返して装置へセットし、突起1bを設けた負極集電体1の表面に負極活物質の柱状粒子2bを形成した後、真空蒸着装置を用いて所定量のリチウムを両面に蒸着した後に規定の幅および長さにスリット加工して長尺帯状の負極板3が得られる。   After forming the columnar particles 2a of the negative electrode active material on the surface of the negative electrode current collector 1 provided with the protrusions 1a as described above, it is turned over and set in the apparatus, and the negative electrode current collector 1 provided with the protrusions 1b has a negative electrode on the surface thereof. After the columnar particles 2b of the active material are formed, a predetermined amount of lithium is vapor-deposited on both sides using a vacuum vapor deposition apparatus, and then slitted to a prescribed width and length to obtain a long strip negative electrode plate 3.

ここまで負極板3について巻内側の負極活物質の膨張量を巻外側の負極活物質の膨張量よりも小さくする方法として、巻内側と巻外側の負極活物質とリチウムの質量比を変える方法を説明したが、図3のように巻内側と巻外側の負極活物質とリチウムの質量比を同じとしても、巻内側となる側の柱状粒子2aの厚みを巻外側となる側の柱状粒子2b厚みより薄くすることでも、巻内側の負極活物質の膨張量を巻外側の負極活物質の膨張量よりも小さくすることが可能である。   So far, as a method of making the expansion amount of the negative electrode active material on the inner side of the negative electrode plate 3 smaller than the expansion amount of the negative electrode active material on the outer side of the winding, a method of changing the mass ratio between the negative electrode active material on the inner side and the outer side of the winding and lithium. As described above, even if the mass ratio between the negative electrode active material on the inner side and the outer side and lithium is the same as shown in FIG. 3, the thickness of the columnar particles 2a on the inner side becomes the thickness of the columnar particles 2b on the outer side. It is also possible to make the amount of expansion of the negative electrode active material on the inner side of the winding smaller than the amount of expansion of the negative electrode active material on the outer side of the winding even by making it thinner.

以下、上述した負極板3を使用した本発明の非水系二次電池27について説明する。図5に非水系二次電池27の一例としての円筒形のリチウム二次電池を縦に切断した断面図により示す。図5の円筒形のリチウム二次電池においては、複合リチウム酸化物を正極活物質とする正極板6とリチウムを保持しうる材料を負極活物質とする負極板3とを多孔質絶縁体層としてのセパレータ7を介して渦巻状に巻回して電極群10が作製される。   Hereinafter, the non-aqueous secondary battery 27 of the present invention using the above-described negative electrode plate 3 will be described. FIG. 5 is a longitudinal sectional view of a cylindrical lithium secondary battery as an example of the non-aqueous secondary battery 27. In the cylindrical lithium secondary battery of FIG. 5, a positive electrode plate 6 using a composite lithium oxide as a positive electrode active material and a negative electrode plate 3 using a material capable of holding lithium as a negative electrode active material are used as a porous insulator layer. The electrode group 10 is produced by spirally winding the separator 7.

図4は巻回後の電極群10の要部を示す断面図である。同図において本発明の非水系二次電池用の電極群10は、正極合剤塗料を正極集電体4の上に塗布し正極集電体4の上に正極合剤層5a,5bを形成した正極板6と、負極活物質の材料を負極集電体1の上に酸
素を含む雰囲気で真空蒸着し負極集電体1の上に負極活物質の柱状粒子2a,2bを形成しリチウム補填処理を施した負極板3との間にセパレータ7を介在させ、負極活物質の柱状粒子2aを巻内側に,負極活物質の柱状粒子2bを巻外側にして渦巻状に巻回して構成し、巻内側の負極活物質とリチウムの質量比が巻外側の負極活物質とリチウムの質量比より少なくなるようにし、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくする。そのため、リチウム補填時もしくは充電時により大きな圧縮応力を受ける巻内側の負極活物質にかかる応力を緩和することが可能となり、電極群10を構成した際に電極板の巻内側と巻外側の曲率の差に起因した応力差を緩和することができ、電極板の破断または挫屈を抑制することができるため、安全性の高い非水系二次電池を提供することが可能である。
FIG. 4 is a cross-sectional view showing the main part of the electrode group 10 after winding. In the figure, an electrode group 10 for a non-aqueous secondary battery according to the present invention is formed by applying a positive electrode mixture paint on a positive electrode current collector 4 to form positive electrode mixture layers 5 a and 5 b on the positive electrode current collector 4. The positive electrode plate 6 and the negative electrode active material are vacuum-deposited on the negative electrode current collector 1 in an atmosphere containing oxygen to form columnar particles 2a and 2b of the negative electrode active material on the negative electrode current collector 1 to supplement lithium. The separator 7 is interposed between the treated negative electrode plate 3 and the negative electrode active material columnar particles 2a are wound inside, and the negative electrode active material columnar particles 2b are wound outside to form a spiral, The mass ratio of the negative electrode active material and lithium inside the winding is less than the mass ratio of the negative electrode active material and lithium outside the winding, and the amount of expansion of the negative electrode active material inside the winding is larger than the amount of expansion of the negative electrode active material outside the winding Make it smaller. Therefore, it is possible to relieve the stress applied to the negative electrode active material on the inner side that receives a larger compressive stress during lithium supplementation or charging, and the curvature of the inner side and the outer side of the electrode plate when the electrode group 10 is formed. Since the stress difference due to the difference can be alleviated and the electrode plate can be prevented from being broken or buckled, a highly safe non-aqueous secondary battery can be provided.

次いで、電極群10が有底円筒形の電池ケース21の内部に絶縁板22により電池ケース21とは絶縁されて収容される一方で、電極群10の下部より導出した負極リード23が電池ケース21の底部に接続されるとともに、電極群10の上部より導出した正極リード24が封口板25に接続される。さらに、電池ケース21は所定量の非水溶媒からなる電解液(図示せず)が注液された後、開口部に封口ガスケット26を周縁に取り付けた封口板25を挿入し、電池ケース21の開口部を内方向に折り曲げてかしめ封口される。ここで正極板6において、正極集電体4の表面または裏面に正極合剤層5a,5bを形成するには、正極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、アルミニウム箔などの正極集電体4への塗布に最適な粘度に調整しながら混練を行って正極合剤塗料を作製する。ここで、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Next, the electrode group 10 is housed inside the bottomed cylindrical battery case 21 while being insulated from the battery case 21 by the insulating plate 22, while the negative electrode lead 23 led out from the lower part of the electrode group 10 is the battery case 21. The positive electrode lead 24 led out from the upper part of the electrode group 10 is connected to the sealing plate 25. Further, after a predetermined amount of an electrolyte solution (not shown) made of a nonaqueous solvent is injected into the battery case 21, a sealing plate 25 with a sealing gasket 26 attached to the periphery is inserted into the opening, and the battery case 21 The opening is folded inward and caulked and sealed. Here, in the positive electrode plate 6, in order to form the positive electrode mixture layers 5a and 5b on the front surface or the back surface of the positive electrode current collector 4, the positive electrode active material, the conductive material, and the binder are put in an appropriate dispersion medium. A positive electrode mixture paint is prepared by mixing and dispersing with a disperser such as a Lee mixer, and kneading while adjusting the viscosity to be optimal for application to the positive electrode current collector 4 such as an aluminum foil. Here, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。このときの結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination. As the binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder.

上述のようにして作製した正極合剤塗料を例えばアルミニウム箔からなる正極集電体4の上にダイコータを用いて塗布した後に乾燥し、所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリット加工して長尺帯状の正極板6が得られる。ここで、セパレータ7は、非水系二次電池の使用範囲に耐えうる組成であればよいが、特にポリエチレン、ポリプロピレン等のオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが好ましい。セパレータ7の厚みは10〜25μmとするのが良い。また、セパレータ7の代わりとして負極板3または正極板6の表面にセラミック粒子を含有した多孔質絶縁層を形成した構成としてもよい。   The positive electrode mixture paint prepared as described above is applied onto the positive electrode current collector 4 made of, for example, an aluminum foil using a die coater, dried, pressed to a predetermined thickness, and then a specified width. Then, a long belt-like positive electrode plate 6 is obtained by slit processing to a length. Here, the separator 7 may have any composition that can withstand the use range of the non-aqueous secondary battery, but it is preferable to use a microporous film of an olefin resin such as polyethylene or polypropylene, in particular, in a single or composite manner. . The thickness of the separator 7 is preferably 10 to 25 μm. Moreover, it is good also as a structure which formed the porous insulating layer containing the ceramic particle on the surface of the negative electrode plate 3 or the positive electrode plate 6 instead of the separator 7. FIG.

このときの電解液は、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正極板6または負極板3の上に良好な皮膜を形成させるため、および過充電時の安定性を確保するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)、並びにその変性体を用いるのが好ましい。また、上記では負極活物質の形状を柱状粒子として説明したが、本
発明の効果は負極活物質の形状によらない。そのため、例えば負極活物質の形状が積層状や網目状の場合でも本発明の効果を得ることができる。以下、具体的な実施例について、さらに詳しく説明する。
In the electrolytic solution at this time, various lithium compounds such as LiPF 6 and LiBF 4 can be used as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. In addition, in order to form a good film on the positive electrode plate 6 or the negative electrode plate 3 and to ensure stability during overcharge, vinylene carbonate (VC) and cyclohexylbenzene (CHB), and modified products thereof are used. Is preferred. Moreover, although the shape of the negative electrode active material was described as columnar particles in the above, the effect of the present invention does not depend on the shape of the negative electrode active material. Therefore, for example, the effect of the present invention can be obtained even when the shape of the negative electrode active material is a laminate or a network. Hereinafter, specific examples will be described in more detail.

本発明の実施例1について図面を参照しながら説明する。図1に示すように、突起1a,1bを設けた負極集電体1として表面粗さRa=0.8で突起1a,1bを含む厚み10μmの銅箔を巻き取ったロールを、突起1a側の表面に負極活物質の柱状粒子2aが形成される向きで図2に示す真空蒸着装置にセットし、真空槽103内を排気ポンプ113により排気した。その後真空槽103中において、巻き出しロール110から突起1aを設けた負極集電体1が搬送ローラ111を介して送られ、キャンロール105に沿って一定の速度で走行させた。ケイ素を投入した坩堝を蒸発源104として電子ビームを用いて加熱し、同時に酸素ノズル107より酸素を導入した。負極活物質の蒸気が酸素を含む雰囲気で供給され、マスク106の開口部を通過した負極活物質の蒸気により突起1aを設けた負極集電体1の表面に厚みが10μmで目付け量が16g/mの負極活物質の柱状粒子2aが形成された。こうして得られた負極板3は巻き取りロール112に巻き取った。次に、真空槽103を大気圧に戻し、負極集電体1の突起1b側の表面に負極活物質の柱状粒子2bが形成される向きでセットして、上記柱状粒子2aを形成した方法と同じ方法で柱状粒子2bを形成した。形成した柱状粒子2bは柱状粒子2aと同じで厚みが10μm、目付け量が16g/mであった。 Embodiment 1 of the present invention will be described with reference to the drawings. As shown in FIG. 1, a negative electrode current collector 1 provided with protrusions 1a and 1b is formed by rolling a roll of 10 μm thick copper foil including protrusions 1a and 1b with surface roughness Ra = 0.8. 2 was set in the vacuum vapor deposition apparatus shown in FIG. 2 in such a direction that the columnar particles 2 a of the negative electrode active material were formed on the surface, and the inside of the vacuum chamber 103 was exhausted by the exhaust pump 113. Thereafter, in the vacuum chamber 103, the negative electrode current collector 1 provided with the protrusions 1 a from the unwinding roll 110 was sent through the transport roller 111 and was run along the can roll 105 at a constant speed. The crucible charged with silicon was heated as an evaporation source 104 using an electron beam, and at the same time, oxygen was introduced from an oxygen nozzle 107. The negative electrode active material vapor was supplied in an atmosphere containing oxygen, and the negative electrode current collector 1 provided with the protrusions 1a by the vapor of the negative electrode active material that passed through the opening of the mask 106 had a thickness of 10 μm and a basis weight of 16 g / Columnar particles 2a of m 2 negative electrode active material were formed. The negative electrode plate 3 thus obtained was wound up on a winding roll 112. Next, the vacuum chamber 103 is returned to the atmospheric pressure, the negative electrode active material is set in the direction in which the columnar particles 2b of the negative electrode active material are formed on the surface of the negative electrode current collector 1 and the columnar particles 2a are formed. Columnar particles 2b were formed by the same method. The formed columnar particles 2b were the same as the columnar particles 2a and had a thickness of 10 μm and a basis weight of 16 g / m 2 .

こうして得られた負極板3を、蒸着源104にリチウムを投入した別の真空蒸着装置に柱状粒子2aにリチウムが補填される向きでセットし、負極板3を走行させながら抵抗加熱を用いて蒸着源を加熱して、柱状粒子2aにリチウム蒸気によってリチウムを補填した。このとき、柱状粒子2aに補填したリチウムと負極活物質の質量比が19.0%となるように負極板3の走行速度を設定した。次に、この真空蒸着装置を大気圧に戻し、柱状粒子2bにリチウムが補填される向きにセットし直して柱状粒子2bに補填したリチウムと負極活物質の質量比が20.0%となるように負極板3の走行速度を設定し、その他は柱状粒子2aのときと同条件で柱状粒子2bにリチウムを補填した。   The negative electrode plate 3 obtained in this way is set in another vacuum vapor deposition apparatus in which lithium is introduced into the vapor deposition source 104 in a direction in which the columnar particles 2a are supplemented with lithium, and vapor deposition is performed using resistance heating while the negative electrode plate 3 is running. The source was heated to supplement the columnar particles 2a with lithium by lithium vapor. At this time, the traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 19.0%. Next, this vacuum vapor deposition apparatus is returned to atmospheric pressure, and is reset so that lithium is filled in the columnar particles 2b, so that the mass ratio of lithium and the negative electrode active material filled in the columnar particles 2b becomes 20.0%. The traveling speed of the negative electrode plate 3 was set to the other, and lithium was supplemented to the columnar particles 2b under the same conditions as those for the columnar particles 2a.

柱状粒子2aに補填したリチウムと負極活物質の質量比が18.6%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を実施例2とした。   The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 18.6%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. Example 2 was adopted.

柱状粒子2aに補填したリチウムと負極活物質の質量比が18.2%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を実施例3とした。   The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 18.2%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. Example 3 was adopted.

柱状粒子2aに補填したリチウムと負極活物質の質量比が18.0%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を実施例4とした。   The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 18.0%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. Example 4 was adopted.

(比較例1)
柱状粒子2aに補填したリチウムと負極活物質の質量比が20.0%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を比較例1とした。
(Comparative Example 1)
The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 20.0%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. It was set as Comparative Example 1.

(比較例2)
柱状粒子2aに補填したリチウムと負極活物質の質量比が19.6%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を比較例2とした。
(Comparative Example 2)
The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 19.6%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. It was set as Comparative Example 2.

(比較例3)
柱状粒子2aに補填したリチウムと負極活物質の質量比が17.8%となるように負極板3の走行速度を設定し、その他の条件は実施例1と同様にして作製した負極板3を比較例3とした。
(Comparative Example 3)
The traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 17.8%, and other conditions were the same as for the negative electrode plate 3 produced in the same manner as in Example 1. It was set as Comparative Example 3.

次いで、実施例1〜4、比較例1〜3の負極板3を非水系二次電池27の規定されている幅にスリット加工して長さ1mの非水系二次電池用負極板3をそれぞれ10枚作製し、以下の内容で評価を行った。   Next, the negative electrode plates 3 of Examples 1 to 4 and Comparative Examples 1 to 3 were slit to the width defined by the non-aqueous secondary battery 27 to form a negative electrode plate 3 for a non-aqueous secondary battery having a length of 1 m, respectively. Ten sheets were produced and evaluated according to the following contents.

まず、図6に示すように負極板を定盤41上に設置し、波打ちの有無の観察と、カール量hを測定した。例えば、凸状にカールした負極板31の場合には図6(a)のようにしてカール量hを測定した。同様に、凹状にカールした負極板32の場合には図6(b)、波打ち状にカールした負極板33の場合には図6(c)のようにしてカール量hを測定した。それぞれ10枚について負極板3の波打ちの発生率と、カール量hの平均値を(表1)に示す。   First, as shown in FIG. 6, a negative electrode plate was placed on the surface plate 41, and the presence or absence of undulation was observed and the curl amount h was measured. For example, in the case of the negative electrode plate 31 curled in a convex shape, the curl amount h was measured as shown in FIG. Similarly, in the case of the negatively curled negative electrode plate 32, the curl amount h was measured as shown in FIG. 6B, and in the case of the corrugated negative electrode plate 33 as shown in FIG. 6C. The occurrence rate of the negative electrode plate 3 and the average value of the curl amount h are shown in Table 1 for 10 sheets each.

Figure 2011023131
Figure 2011023131

(表1)に示すように、巻内側と巻外側での負極活物質とリチウムの質量比差(B−A)/Bが大きいほど波打ちの発生率が減少し、(B−A)/Bが5%以上で波打ちが抑制され発生率が0%となった。これは、波打ちの要因が負極板3の巻内側と巻外側に形成された負極活物質層の膨張量の差によるものであるためであり、さらに負極活物質とリチウムの質量比が大きくなるほど、負極活物質の膨張量が大きくなるためである。また、巻内側と巻外側での負極活物質とリチウムの質量比差(B−A)/Bが5%未満では、負極板3の巻内側と巻外側の負極活物質とリチウムの質量比が面内でばらつきを生じているために、局所的に巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも大きくなり、波打ちが生じることがある。   As shown in (Table 1), as the mass ratio difference (BA) / B between the negative electrode active material and lithium on the inner side and the outer side becomes larger, the occurrence rate of undulation decreases, and (B-A) / B Was 5% or more, the undulation was suppressed and the incidence was 0%. This is because the cause of the undulation is due to the difference in the expansion amount of the negative electrode active material layer formed on the inner side and the outer side of the negative electrode plate 3, and as the mass ratio of the negative electrode active material and lithium increases, This is because the amount of expansion of the negative electrode active material increases. Further, when the mass ratio difference (B−A) / B between the negative electrode active material and lithium on the inner side and the outer side is less than 5%, the mass ratio between the negative electrode active material on the inner side and the outer side of the negative electrode plate 3 and lithium is Due to the variation in the plane, the amount of expansion of the negative electrode active material on the inner side of the winding locally becomes larger than the amount of expansion of the negative electrode active material on the outer side of the winding, which may cause undulation.

これに対して、巻内側と巻外側での負極活物質とリチウムの質量比差(B−A)/Bが5%以上では、負極板3の巻内側における負極活物質の膨張量が常に巻外側における負極活物質の膨張量よりも小さくなるために、変形方向が一定とすることができるため、波打ちのない負極板3とすることができたと考えられる。また、巻内側と巻外側での負極活物
質とリチウムの質量比差(B−A)/Bが0%から5%の範囲では(B−A)/Bの増加に伴ってカール量hが減少した。これは、前述の波打ちの減少に伴ってカール量hが減少したことによるものである。
On the other hand, when the mass ratio difference (BA) / B between the negative electrode active material and lithium on the inner side and the outer side is 5% or more, the expansion amount of the negative electrode active material on the inner side of the negative electrode plate 3 is always wound. Since it is smaller than the expansion amount of the negative electrode active material on the outer side, the deformation direction can be made constant. Further, when the mass ratio difference (BA) / B between the negative electrode active material and lithium on the inner side and the outer side of the winding is in the range of 0% to 5%, the curl amount h increases with an increase in (BA) / B. Diminished. This is because the curl amount h decreases with the decrease in the waviness described above.

これに対して、(B−A)/Bが5%から10%の範囲では(B−A)/Bの増加に伴ってカール量hが増加した。これは、巻内側と巻外側での負極活物質の膨張量の差が大きくなることによるものである。また、(B−A)/Bが11%となると、カール量が大きくなるために負極板3をセパレータ7を介して正極板とともに渦巻状に巻回するときの作業性が悪くなる。このことから、巻内側と巻外側での負極活物質とリチウムの質量比差(B−A)/Bを5%から10%の範囲とすることは、負極板3の波打ちとカール量の両方を抑制する効果が大きいことが分かった。   On the other hand, when (B−A) / B is in the range of 5% to 10%, the curl amount h increases with an increase in (B−A) / B. This is because the difference in the amount of expansion of the negative electrode active material between the inner side and the outer side becomes large. Further, when (B−A) / B is 11%, the curl amount increases, so that the workability when the negative electrode plate 3 is spirally wound together with the positive electrode plate via the separator 7 is deteriorated. Therefore, the mass ratio difference (B−A) / B between the negative electrode active material and lithium on the inner side and the outer side is in the range of 5% to 10%. It has been found that the effect of suppressing is great.

本発明の別の実施例5について図面を参照しながら説明する。図3に示すように、突起1a,1bを設けた負極集電体1として表面粗さRa=0.8で突起1a,1bを含む厚み10μmの銅箔を巻き取ったロールを、突起1a側の表面に負極活物質の柱状粒子2aが形成される向きで図2に示す真空蒸着装置にセットし、真空槽103内を排気ポンプ113により排気した。その後真空槽103中において、巻き出しロール110から突起1aを設けた負極集電体1が搬送ローラ111を介して送られ、キャンロール105に沿って一定の速度で走行させた。ケイ素を投入した坩堝を蒸発源104として、電子ビームを用いて加熱し、同時に酸素ノズル107より酸素を導入した。負極活物質の蒸気が酸素を含む雰囲気で供給され、マスク106の開口部を通過した負極活物質の蒸気により突起1aを設けた負極集電体1の裏面に厚みが9μmで目付け量が15g/mの負極活物質の柱状粒子2aが形成された。こうして得られた負極板3は巻き取りロール112に巻き取った。 Another embodiment 5 of the present invention will be described with reference to the drawings. As shown in FIG. 3, the negative electrode current collector 1 provided with the protrusions 1a and 1b is a roll having a surface roughness Ra = 0.8 and a roll of 10 μm thick copper foil including the protrusions 1a and 1b. 2 was set in the vacuum vapor deposition apparatus shown in FIG. 2 in such a direction that the columnar particles 2 a of the negative electrode active material were formed on the surface, and the inside of the vacuum chamber 103 was exhausted by the exhaust pump 113. Thereafter, in the vacuum chamber 103, the negative electrode current collector 1 provided with the protrusions 1 a from the unwinding roll 110 was sent through the transport roller 111 and was run along the can roll 105 at a constant speed. A crucible containing silicon was used as an evaporation source 104 and heated using an electron beam, and oxygen was introduced from an oxygen nozzle 107 at the same time. The negative electrode active material vapor was supplied in an atmosphere containing oxygen, and the negative electrode current collector 1 provided with protrusions 1a by the vapor of the negative electrode active material passed through the opening of the mask 106 had a thickness of 9 μm and a basis weight of 15 g / Columnar particles 2a of m 2 negative electrode active material were formed. The negative electrode plate 3 thus obtained was wound up on a winding roll 112.

次に、真空槽103を大気圧に戻し、突起1b側の表面に負極活物質の柱状粒子2bが形成される向きでセットして、柱状粒子2aを形成した走行速度よりも遅い速度で走行させ、その他の条件は上記柱状粒子2aを形成した方法と同じ方法で柱状粒子2bを形成した。このとき、柱状粒子2bの厚みは10μmで目付け量は16g/mであった。こうして得られた負極板3を、蒸着源104にリチウムを投入した別の真空蒸着装置に柱状粒子2aにリチウムが補填される向きでセットし、負極板3を走行させながら抵抗加熱を用いて蒸着源を加熱して、柱状粒子2aにリチウム蒸気によってリチウムを補填した。このとき、柱状粒子2aに補填したリチウムと負極活物質の質量比が20.0%となるように負極板3の走行速度を設定した。 Next, the vacuum chamber 103 is returned to atmospheric pressure, set in the direction in which the columnar particles 2b of the negative electrode active material are formed on the surface on the protrusion 1b side, and traveled at a speed slower than the traveling speed at which the columnar particles 2a were formed. As for other conditions, the columnar particles 2b were formed by the same method as the method for forming the columnar particles 2a. At this time, the thickness of the columnar particles 2b was 10 μm, and the basis weight was 16 g / m 2 . The negative electrode plate 3 obtained in this way is set in another vacuum vapor deposition apparatus in which lithium is introduced into the vapor deposition source 104 in a direction in which the columnar particles 2a are supplemented with lithium, and vapor deposition is performed using resistance heating while the negative electrode plate 3 is running. The source was heated to supplement the columnar particles 2a with lithium by lithium vapor. At this time, the traveling speed of the negative electrode plate 3 was set so that the mass ratio of lithium supplemented in the columnar particles 2a and the negative electrode active material was 20.0%.

次に、この真空蒸着装置を大気圧に戻し、柱状粒子2bにリチウムが補填される向きにセットし直して柱状粒子2bに補填したリチウムと負極活物質の質量比が20.0%となるように負極板3の走行速度を設定し、その他は柱状粒子2aのときと同条件で柱状粒子2bにリチウムを補填した。こうして得られた負極板3を、非水系二次電池27の規定されている幅にスリット加工して長さ1mの非水系二次電池用負極板3を10枚作製した。こうして得られた負極板3について、実施例1と同様の方法で評価を行った。それぞれ10枚について負極板3の波打ちの発生確率と、カール量hの平均値を(表2)に示す。
また、比較のために上述の比較例1の評価結果も(表2)に示す。
Next, this vacuum evaporation apparatus is returned to atmospheric pressure, and is reset so that lithium is filled in the columnar particles 2b, so that the mass ratio of lithium and the negative electrode active material filled in the columnar particles 2b becomes 20.0%. The traveling speed of the negative electrode plate 3 was set to the other, and lithium was supplemented to the columnar particles 2b under the same conditions as those for the columnar particles 2a. The negative electrode plate 3 obtained in this way was slit into the prescribed width of the non-aqueous secondary battery 27 to produce 10 negative electrode plates 3 for a non-aqueous secondary battery having a length of 1 m. The negative electrode plate 3 thus obtained was evaluated in the same manner as in Example 1. The occurrence probability of the negative electrode plate 3 and the average value of the curl amount h are shown in Table 2 for 10 sheets each.
For comparison, the evaluation results of Comparative Example 1 are also shown in (Table 2).

Figure 2011023131
Figure 2011023131

(表2)に示すように、巻内側と巻外側での負極活物質とリチウムの質量比を同じとしても、巻内側の負極活物質の厚みを9μmとし、巻外側の負極活物質の厚み10μmよりも小さくすることで、負極板3の波打ちの発生率を小さしカール量hを減少させることができる。これは、巻内側と巻外側での負極活物質とリチウムの質量比を同じとしても、巻内側の負極活物質の厚みを巻外側の負極活物質の厚みよりも小さくすることで、巻内側の負極活物質の膨張量が巻外側の負極活物質の膨張量よりも小さくなったためと考えられる。さらに、巻内側の負極活物質の厚みを巻外側の負極活物質の厚みよりも小さくすることに加えて、実施例1〜4にあるように巻内側の負極活物質とリチウムの質量比を巻外側の負極活物質とリチウムの質量比よりも小さくすることによって、波打ちの発生率とカール量の改善にさらに効果が得られる。   As shown in Table 2, even if the mass ratio of the negative electrode active material and lithium on the inner side and the outer side is the same, the thickness of the negative electrode active material on the inner side is 9 μm, and the thickness of the negative electrode active material on the outer side is 10 μm. By making it smaller than this, the occurrence rate of the undulation of the negative electrode plate 3 can be reduced and the curl amount h can be reduced. This is because even if the mass ratio of the negative electrode active material and lithium on the inner side and the outer side is the same, the thickness of the negative electrode active material on the inner side is made smaller than the thickness of the negative electrode active material on the outer side. This is probably because the amount of expansion of the negative electrode active material was smaller than the amount of expansion of the negative electrode active material on the outside of the winding. Further, in addition to making the thickness of the negative electrode active material on the inner side smaller than the thickness of the negative electrode active material on the outer side, the mass ratio of the negative electrode active material on the inner side and lithium is wound as in Examples 1-4. By making it smaller than the mass ratio of the outer negative electrode active material and lithium, an effect can be further improved in improving the occurrence rate of waviness and the curl amount.

まず、実施例5と同様に、突起1aを設けた負極集電体1の巻内側における負極活物質の柱状粒子2aを厚み9μm、突起1bを設けた負極集電体1の巻外側における負極活物質の柱状粒子2bを厚み10μmで形成した後、巻内側の負極活物質とリチウムの質量比Aと巻外側の負極活物質とリチウムの質量比Bの差(B−A)/Bが5%となるように両面にリチウムを蒸着し、スリット加工して負極板3を作製した。次いで、正極板6においては、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。   First, in the same manner as in Example 5, the negative electrode active material columnar particles 2a on the inner side of the negative electrode current collector 1 provided with the protrusions 1a are 9 μm thick, and the negative electrode active material on the outer side of the negative electrode current collector 1 provided with the protrusions 1b. After the columnar particles 2b of the material are formed with a thickness of 10 μm, the difference (BA) / B between the mass ratio A of the negative electrode active material and lithium inside the roll and the mass ratio B of the negative electrode active material and lithium outside the roll is 5%. Lithium was vapor-deposited on both sides so as to form a negative electrode plate 3 by slit processing. Next, in the positive electrode plate 6, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 100 parts by weight of polyvinylidene fluoride as a binder. A positive electrode mixture paint was prepared by stirring and kneading 2 parts by weight with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader.

次いで、図4に示したように、この正極合剤塗料を厚み15μmのアルミニウム箔からなる正極集電体4の表面に塗布し乾燥させた後に片面側の正極合剤層5a,5bの厚みがそれぞれ85μmとなる正極板6を作製した。さらに、この正極板6を総厚みが140μmとなるようにプレスすることで、片面側の正極合剤層5a,5bの厚みがそれぞれ64μmとして、非水系二次電池27の規定されている幅にスリット加工して正極板6を作製した。   Next, as shown in FIG. 4, after this positive electrode mixture paint was applied to the surface of the positive electrode current collector 4 made of an aluminum foil having a thickness of 15 μm and dried, the thickness of the positive electrode mixture layers 5 a and 5 b on one side was reduced. Positive electrode plates 6 each having a thickness of 85 μm were prepared. Furthermore, by pressing this positive electrode plate 6 so that the total thickness becomes 140 μm, the thickness of the positive electrode mixture layers 5 a and 5 b on one side is set to 64 μm, and the width of the nonaqueous secondary battery 27 is specified. The positive electrode plate 6 was produced by slit processing.

以上のようにして作製した負極板3と正極板6とを用いて、図5に示すような非水系二次電池27を作製した。より具体的には、正極板6と負極板3とを厚み20μmのポリエチレン微多孔フィルムのセパレータ7を介して渦巻状に巻回し電極群10を作製した。次いで、この電極群10が有底円筒形の電池ケース21の内部に絶縁板22により電池ケース21とは絶縁されて収容される一方で、電極群10の下部より導出した負極リード23を電池ケース21の底部に接続するとともに、電極群10の上部より導出した正極リード24を封口板25に接続した。さらに、電池ケース21は、所定量の非水溶媒からなる電解液(図示せず)が注液された後、開口部に封口ガスケット26を周縁に取り付けた封口板25を挿入し、電池ケース21の開口部を内方向に折り曲げてかしめ封口し作製した100個の非水系二次電池27を実施例3とした。   A nonaqueous secondary battery 27 as shown in FIG. 5 was produced using the negative electrode plate 3 and the positive electrode plate 6 produced as described above. More specifically, the positive electrode plate 6 and the negative electrode plate 3 were wound in a spiral shape through a separator 7 made of a polyethylene microporous film having a thickness of 20 μm to produce an electrode group 10. Next, the electrode group 10 is housed in the bottomed cylindrical battery case 21 while being insulated from the battery case 21 by the insulating plate 22, while the negative electrode lead 23 led out from the lower part of the electrode group 10 is placed in the battery case. The positive electrode lead 24 led out from the upper part of the electrode group 10 was connected to the sealing plate 25. Further, the battery case 21 is injected with an electrolyte solution (not shown) made of a predetermined amount of a non-aqueous solvent, and thereafter, a sealing plate 25 with a sealing gasket 26 attached to the periphery is inserted into the opening, and the battery case 21 is inserted. The 100 non-aqueous secondary batteries 27 produced by folding the opening of each of the two inwardly and caulking and sealing were used as Example 3.

(比較例4)
比較例1と同様にして、突起1aを設けた負極集電体1の巻内側における負極活物質の
柱状粒子2aを厚みが10μmで目付け量が16g/m、突起1bを設けた負極集電体1の巻外側における負極活物質の柱状粒子2bも同様に厚みが10μmで目付け量が16g/mとなるように形成した後、リチウムを両面に同じ条件で柱状粒子2a,2bに補填したリチウムと負極活物質の質量比が20.0%となるように蒸着し、スリット加工して負極板3を作製した。また、正極合剤塗料は実施例3と同様のものを用いた。次いで、この正極合剤塗料を用いて厚み15μmのアルミニウム箔からなる正極集電体4に塗布し乾燥させた後に片面側の正極合剤層5a,5bの厚みが85μmとなる正極板6を作製した。さらに、この正極板6を総厚みが140μmとなるようにプレスすることで、片面側の正極合剤層5a,5bの厚みが64μmとなる正極板6を作製し、非水系二次電池27の規定されている幅にスリット加工して比較例1の正極板6として用いた。さらに、これらの正極板6と負極板3を用いて、実施例6と同様にして作製した非水系二次電池27を比較例4とした。次いで、渦巻状に巻回した実施例6、比較例4の非水系二次電池27について電池性能の評価を行った。実施例6と比較例4の負極板3の特徴を(表3)にまとめる。
(Comparative Example 4)
In the same manner as in Comparative Example 1, the negative electrode active material columnar particles 2a on the inner side of the negative electrode current collector 1 provided with the protrusions 1a have a thickness of 10 μm and a basis weight of 16 g / m 2 . Similarly, the columnar particles 2b of the negative electrode active material on the outer side of the body 1 were formed to have a thickness of 10 μm and a basis weight of 16 g / m 2, and then lithium was supplemented to the columnar particles 2a and 2b under the same conditions on both sides. Vapor deposition was performed so that the mass ratio of lithium to the negative electrode active material was 20.0%, and slit processing was performed to prepare the negative electrode plate 3. The positive electrode mixture paint used was the same as in Example 3. Next, using this positive electrode mixture paint, a positive electrode plate 6 having a thickness of 85 μm on one side of the positive electrode mixture layers 5a and 5b after being applied to a positive electrode current collector 4 made of an aluminum foil having a thickness of 15 μm and dried. did. Further, by pressing the positive electrode plate 6 so that the total thickness becomes 140 μm, the positive electrode plate 6 in which the thickness of the positive electrode mixture layers 5 a, 5 b on one side becomes 64 μm is prepared, and the non-aqueous secondary battery 27 It was used as the positive electrode plate 6 of Comparative Example 1 after slitting to a prescribed width. Further, a non-aqueous secondary battery 27 produced in the same manner as in Example 6 using these positive electrode plate 6 and negative electrode plate 3 was used as Comparative Example 4. Next, the battery performance of the non-aqueous secondary battery 27 of Example 6 and Comparative Example 4 wound in a spiral shape was evaluated. The characteristics of the negative electrode plate 3 of Example 6 and Comparative Example 4 are summarized in (Table 3).

Figure 2011023131
Figure 2011023131

実施例6および比較例4の非水系二次電池27について、それぞれ100個の初期容量を評価した後、充放電を500サイクル繰り返した後の容量を評価した。さらに、500サイクル繰り返した後に非水系二次電池27および電極群10を解体し観察した。充放電を500サイクル繰り返した後の容量を評価した結果、実施例6の容量維持率は比較例4の容量維持率に対して約1.7倍容量維持率が高かった。また500サイクル後に分解し観察した結果、実施例6においてはリチウム析出、負極板3の破断、負極板3の挫屈、負極板3における負極活物質の脱落などの不具合は認められなかった。しかしながら、比較例4においてはリチウムの析出、負極板3の破断、負極板3の座屈、負極板3における負極活物質の脱落などの不具合が100個中75個で認められた。   About the non-aqueous secondary battery 27 of Example 6 and Comparative Example 4, after evaluating 100 initial capacity | capacitance, respectively, the capacity | capacitance after repeating charging / discharging 500 cycles was evaluated. Furthermore, after repeating 500 cycles, the nonaqueous secondary battery 27 and the electrode group 10 were disassembled and observed. As a result of evaluating the capacity after 500 cycles of charge and discharge, the capacity maintenance ratio of Example 6 was about 1.7 times higher than the capacity maintenance ratio of Comparative Example 4. As a result of decomposition and observation after 500 cycles, in Example 6, no defects such as lithium precipitation, breakage of the negative electrode plate 3, buckling of the negative electrode plate 3, and loss of the negative electrode active material in the negative electrode plate 3 were observed. However, in Comparative Example 4, defects such as lithium deposition, breakage of the negative electrode plate 3, buckling of the negative electrode plate 3, and loss of the negative electrode active material in the negative electrode plate 3 were observed in 75 pieces out of 100 pieces.

この評価の結果、実施例6では電極群10を構成した際に電極板の巻内側と巻外側の曲率の差に起因した応力差を緩和したことと、充電時により大きな圧縮応力を受ける巻内側にある負極活物質の柱状粒子の厚みを薄くすることで応力を緩和したことにより、電極板の破断または挫屈を抑制することができ、その結果500サイクルでの容量を維持することができたと考えられる。このことから、充放電における膨張収縮の応力を緩和するために、電極板の表裏で負極活物質の柱状粒子の厚みと負極活物質とリチウムの質量比に差を持たせることは、充放電サイクルにおける容量劣化、および負極板3の破断等の不具合を防止する効果が大きいと言える。   As a result of this evaluation, when the electrode group 10 was constructed in Example 6, the stress difference due to the difference in curvature between the inner side and the outer side of the electrode plate was alleviated, and the inner side that received a larger compressive stress during charging. By reducing the stress by reducing the thickness of the columnar particles of the negative electrode active material in the electrode, breakage or buckling of the electrode plate could be suppressed, and as a result, the capacity at 500 cycles could be maintained. Conceivable. From this, in order to relieve the stress of expansion and contraction during charging and discharging, it is necessary to provide a difference in the thickness of the columnar particles of the negative electrode active material and the mass ratio of the negative electrode active material and lithium on the front and back of the electrode plate. It can be said that the effect of preventing defects such as capacity deterioration in the case of the above and breakage of the negative electrode plate 3 is great.

本発明にかかる負極板およびそれを用いた非水系二次電池は、高容量活物質を用い、かつリチウムイオンの吸蔵による負極活物質の膨張時における負極活物質の柱状粒子間の圧縮力による破壊、特に充放電に伴う膨張収縮の影響を受けやすく、且つ、膨張空間が少なく粒子破壊の生じやすい巻き内側にある負極活物質の柱状粒子の破壊を抑制することができるので、負極板およびそれを用いた非水系二次電池として有用である。   The negative electrode plate according to the present invention and a non-aqueous secondary battery using the same are broken by compressive force between columnar particles of the negative electrode active material when the negative electrode active material expands due to occlusion of lithium ions using a high capacity active material In particular, since it is possible to suppress the columnar particles of the negative electrode active material on the inner side of the winding which is easily affected by expansion and contraction due to charge and discharge and has a small expansion space and easily causes particle breakage, the negative electrode plate and the It is useful as the used non-aqueous secondary battery.

1 負極集電体
1a,1b 突起
2a,2b 負極活物質の柱状粒子
3 負極板
4 正極集電体
5 正極活物質層
6 正極板
7 セパレータ
10 電極群
21 電池ケース
22 絶縁板
23 負極リード
24 正極リード
25 封口板
26 封口ガスケット
27 非水系二次電池
31 凸状にカールした負極板
32 凹状にカールした負極板
33 波打ち状にカールした負極板
41 定盤
103 真空槽
104 蒸発源
105 キャンロール
106 マスク
107 酸素ノズル
110 巻き出しロール
111 搬送ローラ
112 巻き取りロール
113 排気ポンプ
h 負極板のカール量
L 負極板の長さ
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 1a, 1b Protrusion 2a, 2b Columnar particle of negative electrode active material 3 Negative electrode plate 4 Positive electrode collector 5 Positive electrode active material layer 6 Positive electrode plate 7 Separator 10 Electrode group 21 Battery case 22 Insulating plate 23 Negative electrode lead 24 Positive electrode Lead 25 Sealing plate 26 Sealing gasket 27 Non-aqueous secondary battery 31 Convex-curled negative electrode plate 32 Concave-curled negative electrode plate 33 Corrugated negative-electrode plate 41 Surface plate 103 Vacuum chamber 104 Evaporation source 105 Can roll 106 Mask 107 Oxygen nozzle 110 Unwinding roll 111 Conveying roller 112 Winding roll 113 Exhaust pump h Curling amount of negative electrode plate L Length of negative electrode plate

Claims (7)

金属箔からなる負極集電体の両面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた非水系二次電池用負極板であって、前記負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側の負極活物質の膨張量を巻外側となる側の負極活物質の膨張量より少なくなるように構成したことを特徴とする非水系二次電池用負極板。   A negative electrode active material comprising a compound containing silicon and oxygen or a compound containing tin and oxygen on both sides of a negative electrode current collector made of metal foil, and a negative electrode plate for a non-aqueous secondary battery in which lithium is supported on the negative electrode active material The amount of expansion of the negative electrode active material on the inner side when the negative electrode plate is spirally wound with the positive electrode plate through the porous insulating layer is determined from the amount of expansion of the negative electrode active material on the outer side. A negative electrode plate for a non-aqueous secondary battery, characterized in that the negative electrode plate is configured to be reduced. 金属箔からなる負極集電体の両面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた非水系二次電池用負極板であって、前記負極板が多孔質絶縁層を介して正極板とともに渦巻状に巻回されるときの巻内側となる側の負極活物質とリチウムの質量比を巻外側となる側の負極活物質とリチウムの質量比より少なくなるように構成したことを特徴とする非水系二次電池用負極板。   A negative electrode active material comprising a compound containing silicon and oxygen or a compound containing tin and oxygen on both sides of a negative electrode current collector made of metal foil, and a negative electrode plate for a non-aqueous secondary battery in which lithium is supported on the negative electrode active material And when the negative electrode plate is spirally wound together with the positive electrode plate through the porous insulating layer, the negative electrode active material on the outer side is determined by the mass ratio of the negative electrode active material on the inner side and lithium on the inner side. A negative electrode plate for a non-aqueous secondary battery, wherein the negative electrode plate is configured to be less than a mass ratio of a substance and lithium. 前記巻内側となる側の負極活物質とリチウムの質量比を巻外側となる側の負極活物質とリチウムの質量比より5%から10%少なくなるように構成した請求項2記載の非水系二次電池用負極板。   3. The non-aqueous system according to claim 2, wherein the mass ratio of the negative electrode active material on the inner side and lithium is 5% to 10% less than the mass ratio of the negative electrode active material and lithium on the outer side. Negative electrode for secondary battery. 前記巻内側と巻外側となる側の負極活物質の量を同じとし、巻内側の負極活物質に担持させたリチウムの量を巻外側の負極活物質に担持させたリチウムの量より少なくなるように構成した請求項2記載の非水系二次電池用負極板。   The amount of the negative electrode active material on the inner side and the outer side of the winding is the same, and the amount of lithium carried on the negative electrode active material on the inner side is smaller than the amount of lithium carried on the negative electrode active material on the outer side of the winding The negative electrode plate for a non-aqueous secondary battery according to claim 2, which is configured as described above. 前記巻内側となる側の負極活物質の量を巻外側となる側の負極活物質の量より少なくなるように構成した請求項2記載の非水系二次電池用負極板。   The negative electrode plate for a nonaqueous secondary battery according to claim 2, wherein the amount of the negative electrode active material on the inner side becomes smaller than the amount of the negative electrode active material on the outer side. 前記巻内側となる側の負極活物質層の厚みを巻外側となる側の負極活物質層の厚みより薄くなるように構成した請求項1記載の非水系二次電池用負極板。   2. The negative electrode plate for a non-aqueous secondary battery according to claim 1, wherein the negative electrode active material layer on the inner side becomes thinner than the negative electrode active material layer on the outer side. 集電体の両表面に正極活物質層を形成した正極板と、集電体の両表面にケイ素と酸素とを含む化合物またはスズと酸素とを含む化合物からなる負極活物質とこの負極活物質にリチウムを担持させた負極板とを多孔質絶縁層を介して渦巻状に巻回して構成した電極群を非水電解液とともに電池ケースに封入してなる非水系二次電池において、前記負極板として請求項1から請求項6のいずれか1つに記載の負極板を用いたことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode active material layer formed on both surfaces of a current collector, a negative electrode active material comprising a compound containing silicon and oxygen or a compound containing tin and oxygen on both surfaces of the current collector, and the negative electrode active material In the non-aqueous secondary battery, in which a negative electrode plate carrying lithium is wound in a battery case together with a non-aqueous electrolyte, the negative electrode plate is wound in a spiral shape with a porous insulating layer interposed therebetween. A non-aqueous secondary battery using the negative electrode plate according to any one of claims 1 to 6.
JP2009164756A 2009-07-13 2009-07-13 Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Withdrawn JP2011023131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164756A JP2011023131A (en) 2009-07-13 2009-07-13 Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164756A JP2011023131A (en) 2009-07-13 2009-07-13 Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2011023131A true JP2011023131A (en) 2011-02-03

Family

ID=43633041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164756A Withdrawn JP2011023131A (en) 2009-07-13 2009-07-13 Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2011023131A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125030A1 (en) * 2012-02-24 2013-08-29 トヨタ自動車株式会社 Hermetically-sealed secondary battery
US20140141305A1 (en) * 2011-07-22 2014-05-22 Panasonic Corporation Nonaqueous electrolyte secondary battery
JPWO2013125030A1 (en) * 2012-02-24 2015-07-30 トヨタ自動車株式会社 Sealed secondary battery
CN110556589A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN110556590A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
JP2019212602A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Lithium secondary battery
CN113571777A (en) * 2021-07-19 2021-10-29 恒大新能源汽车投资控股集团有限公司 Winding type battery cell and lithium ion battery
CN116888751A (en) * 2023-01-03 2023-10-13 宁德时代新能源科技股份有限公司 Negative electrode plate, electrode assembly comprising same, battery cell, battery and power utilization device
WO2024053225A1 (en) * 2022-09-08 2024-03-14 株式会社村田製作所 Secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140141305A1 (en) * 2011-07-22 2014-05-22 Panasonic Corporation Nonaqueous electrolyte secondary battery
US9257717B2 (en) * 2011-07-22 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2013125030A1 (en) * 2012-02-24 2013-08-29 トヨタ自動車株式会社 Hermetically-sealed secondary battery
JPWO2013125030A1 (en) * 2012-02-24 2015-07-30 トヨタ自動車株式会社 Sealed secondary battery
CN110556589A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN110556590A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
JP2019212602A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Lithium secondary battery
JP7162175B2 (en) 2018-05-31 2022-10-28 パナソニックIpマネジメント株式会社 lithium secondary battery
CN113571777A (en) * 2021-07-19 2021-10-29 恒大新能源汽车投资控股集团有限公司 Winding type battery cell and lithium ion battery
WO2024053225A1 (en) * 2022-09-08 2024-03-14 株式会社村田製作所 Secondary battery
CN116888751A (en) * 2023-01-03 2023-10-13 宁德时代新能源科技股份有限公司 Negative electrode plate, electrode assembly comprising same, battery cell, battery and power utilization device

Similar Documents

Publication Publication Date Title
JP7311169B2 (en) Structurally controlled deposition of silicon on nanowires
JP2011023131A (en) Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP4831075B2 (en) Nonaqueous electrolyte secondary battery
JP5153734B2 (en) Current collector for non-aqueous electrolyte secondary battery
JP4036889B2 (en) battery
JP4865673B2 (en) Lithium secondary battery
US8389156B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2008044683A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2011080901A1 (en) Positive electrode for a nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using said positive electrode
JP2008171798A (en) Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
US8048569B2 (en) Non-aqueous electrolyte secondary battery
WO2011043026A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
US8187755B2 (en) Electrode for electrochemical element, its manufacturing method, and electrochemical element using the same
KR20100107027A (en) Nonaqueous electrolyte secondary battery
JP2010118353A (en) Manufacturing method for negative electrode of nonaqueous electrolyte secondary battery
JP2007109423A (en) Manufacturing method of nonaqueous electrolyte secondary battery, and its anode
CN110235289B (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2007128659A (en) Anode for lithium secondary battery, and lithium secondary battery using the same
JP7116895B2 (en) Manufacturing method of wound electrode body
JP2007328932A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2011023130A (en) Nonaqueous secondary battery
JP2010061820A (en) Nonaqueous secondary battery
JP2008258139A (en) Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2011154786A (en) Apparatus for manufacturing electrode plate of electrochemical device
JP2009037895A (en) Negative electrode plate for lithium secondary battery, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120618

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130308