JP2010061820A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2010061820A
JP2010061820A JP2008223114A JP2008223114A JP2010061820A JP 2010061820 A JP2010061820 A JP 2010061820A JP 2008223114 A JP2008223114 A JP 2008223114A JP 2008223114 A JP2008223114 A JP 2008223114A JP 2010061820 A JP2010061820 A JP 2010061820A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode plate
current collector
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008223114A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Masakazu Yamada
雅一 山田
Tsutomu Nishioka
努 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008223114A priority Critical patent/JP2010061820A/en
Publication of JP2010061820A publication Critical patent/JP2010061820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery with high safety, the safety being achieved by having a structure where expansion and contraction rate upon charging and discharging of a positive electrode plate and that of a negative electrode plate become as close as possible in the nonaqueous secondary battery, stress due to expansion and contraction of the electrode plates upon charging and discharging in the nonaqueous secondary battery is alleviated, and break or buckling of the electrode plate upon charging and discharging is restrained. <P>SOLUTION: In an electrode group 10 structured by winding in a spiral shape the positive electrode plate 4 forming thin portions 3a 3b of positive mixture layers 2a, 2b on a positive electrode collector 1 with positive electrode mixture paint applied on that 1, the negative electrode plate 8 forming negative electrode mixture layers 6a, 6b on a negative electrode collector 5 with negative electrode mixture paint applied on that 5, and a separator 9 interposed between 4 and 8, expansion and contraction rates A, B of the positive electrode plate 4 and expansion and contraction rates C, D of the negative electrode plate 8 are made to be close with each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池に関し、特に安全性に優れた非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion secondary battery, and more particularly to a non-aqueous secondary battery excellent in safety.

近年、携帯用電子機器の電源として利用が広がっているリチウムイオン二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量のリチウムイオン二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化に伴って、更なるリチウムイオン二次電池の高容量化が望まれている。 In recent years, lithium ion secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode, and a composite of a transition metal such as LiCoO 2 and lithium for the positive electrode. An oxide is used as an active material, thereby realizing a lithium ion secondary battery having a high potential and a high discharge capacity. However, with the recent increase in functionality of electronic devices and communication devices, it is desired to further increase the capacity of lithium ion secondary batteries.

ここで、高容量のリチウムイオン二次電池を実現するための発電要素である電極板としては、正極板および負極板ともに各々の構成材料を塗料化した電極合剤塗料を集電体の上に塗布して乾燥させた後にプレス等により規定の厚みまで圧縮する方法が用いられており、より多くの活物質を充填してプレスすることで活物質密度が高くなり、一層の高容量化が可能となる。   Here, as an electrode plate that is a power generation element for realizing a high-capacity lithium ion secondary battery, an electrode mixture paint obtained by coating each constituent material on both the positive electrode plate and the negative electrode plate is placed on the current collector. After applying and drying, a method of compressing to the specified thickness by pressing or the like is used. By filling and pressing more active material, the active material density becomes higher and further increase in capacity is possible. It becomes.

さらに、上述の正極板と負極板とをセパレータを介して順に積層される又はセパレータを介して渦巻状に捲回した電極群をステンレス製、ニッケルメッキを施した鉄製、又はアルミニウム製などの金属からなる電池ケースに収納し、次に非水系電解液を電池ケース内に注液した後に電池ケースの開口部に封口板を密封固着してリチウムイオン二次電池が構成される。   Further, an electrode group in which the above-described positive electrode plate and negative electrode plate are sequentially laminated via a separator or spirally wound via a separator is made of a metal such as stainless steel, nickel-plated iron, or aluminum. In a battery case, a non-aqueous electrolyte is poured into the battery case, and then a sealing plate is hermetically fixed to the opening of the battery case to form a lithium ion secondary battery.

ところで、リチウムイオン電池に代表される非水系二次電池の高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板とが内部短絡などにより非水系二次電池の急激な温度上昇が起こり熱暴走に至る恐れもあるため、非水系二次電池の安全性の向上が強く要求されている。特に、大型・高出力な非水系二次電池では、熱暴走の発生する確率が高くなるため、その発生する確率を低くするなどの安全性を向上させる工夫が必要である。   By the way, while increasing capacity of non-aqueous secondary batteries typified by lithium ion batteries, safety measures should be emphasized. In particular, the positive and negative plates are rapidly connected to the non-aqueous secondary battery due to an internal short circuit. There is a strong demand for improvement in the safety of non-aqueous secondary batteries, because there is a risk of excessive temperature rise and thermal runaway. In particular, a large-sized, high-power non-aqueous secondary battery has a high probability of thermal runaway, and thus a device for improving safety, such as reducing the probability of occurrence, is necessary.

上述のように非水系二次電池が内部短絡する要因としては、非水系二次電池の内部に異物が混入する以外にも図14(a)に示したように、正極集電体21の上に正極合剤層22a,22bを形成した正極板23と負極集電体24の上に負極合剤層25a,25bを形成した負極板26とをセパレータ27を介して捲回することにより電極群28を構成する際、さらには非水系二次電池を充放電する際に電極板に加わる応力によって電極板が破断あるいは挫屈することが考えられる。   As described above, the cause of the internal short circuit of the non-aqueous secondary battery is that, as shown in FIG. 14 (a), foreign matter is mixed into the non-aqueous secondary battery. The positive electrode plate 23 on which the positive electrode mixture layers 22 a and 22 b are formed and the negative electrode plate 26 on which the negative electrode mixture layers 25 a and 25 b are formed on the negative electrode current collector 24 are wound through a separator 27 to form an electrode group. It is conceivable that the electrode plate is broken or buckled by the stress applied to the electrode plate when the non-aqueous secondary battery is charged and discharged.

より詳しくは、渦巻状に捲回して電極群28を構成する際には構成要素である正極板23、負極板26、セパレータ27には引張応力が加わり、この際の各構成要素における伸び率の差によって最も伸び率が小さなものから破断することになる。   More specifically, when the electrode group 28 is formed by winding in a spiral shape, tensile stress is applied to the positive electrode plate 23, the negative electrode plate 26, and the separator 27, which are constituent elements, and the elongation rate of each constituent element at this time is increased. The difference causes the fracture from the smallest elongation.

加えて、非水系二次電池を充放電すると電極板の膨張収縮による応力が電極板に加わり、充放電を繰り返すことによる繰り返し応力により正極板23、負極板26もしくはセパレータ27の伸び率の最も低いものが優先的に破断してしまう。   In addition, when a non-aqueous secondary battery is charged / discharged, stress due to expansion / contraction of the electrode plate is applied to the electrode plate, and the positive electrode plate 23, the negative electrode plate 26 or the separator 27 has the lowest elongation rate due to repeated stress due to repeated charge / discharge. Things break preferentially.

例えば、図14(b)に示したように充電時の負極板26の伸びに正極板23が追従できない場合には正極板23の破断(図中のF)が起こり、また、正極板23の破断が起き
なくても図14(c)に示したように負極板26の挫屈によりセパレータ27が引き伸ばされることで、セパレータ27の厚みが薄くなる箇所(図中のG)が発生する。
For example, as shown in FIG. 14B, when the positive electrode plate 23 cannot follow the elongation of the negative electrode plate 26 during charging, the positive electrode plate 23 breaks (F in the figure). Even if no breakage occurs, as shown in FIG. 14C, the separator 27 is stretched by the buckling of the negative electrode plate 26, thereby generating a portion where the thickness of the separator 27 is reduced (G in the figure).

さらに、正極板23もしくは負極板26がセパレータ27よりも先に破断した場合には、いずれかの電極板の破断部がセパレータ27を突き破り正極板23と負極板26が短絡することになる。この短絡により大電流が流れ、その結果、非水系二次電池の温度が急激に上昇し、上述のように非水系二次電池が熱暴走する可能性がある。   Further, when the positive electrode plate 23 or the negative electrode plate 26 is broken before the separator 27, the broken portion of one of the electrode plates breaks through the separator 27 and the positive electrode plate 23 and the negative electrode plate 26 are short-circuited. Due to this short circuit, a large current flows, and as a result, the temperature of the non-aqueous secondary battery rises rapidly, and the non-aqueous secondary battery may run out of heat as described above.

そこで、正極板の破断を抑制するために、図15に示したように両面に正極合剤層を塗布形成した正極板33と両面に負極合剤層を塗布形成した負極板34とをセパレータ35を介して扁平状に捲回した発電要素32と非水電解液を電池ケース36に収納した非水系二次電池31において、正極板33の両面のうち、内周側の第1面の正極合剤層を裏面の第2面の正極合剤層よりも柔軟性を高く(引張破断伸びを大きく)する方法が提案されている(例えば、特許文献1参照)。   Therefore, in order to suppress breakage of the positive electrode plate, as shown in FIG. 15, the positive electrode plate 33 with the positive electrode mixture layer formed on both sides and the negative electrode plate 34 with the negative electrode mixture layer applied on both sides, as shown in FIG. In the non-aqueous secondary battery 31 in which the power generation element 32 wound in a flat shape and the non-aqueous electrolyte solution are housed in the battery case 36, the positive electrode combination of the first surface on the inner peripheral side of both surfaces of the positive electrode plate 33 is A method has been proposed in which the agent layer has higher flexibility (higher tensile elongation at break) than the positive electrode mixture layer on the second surface on the back side (see, for example, Patent Document 1).

また、電極板の伸び率を向上させるために、図16に示したように正極リード44を接続した正極板41と負極リード45を接続した負極板42との間にセパレータ43を介在させて渦巻状に捲回して電池ケース47に収容し正極リード44を正極外部端子46に、負極リード45を電池ケース47に接続し、非水電解液を注入した非水系二次電池において、正極板41および負極板42とこれら両電極間に介装されるべきセパレータ43とを積層する前又は巻き取る前に、結着材の再結晶化温度より高い温度であってその分解温度より低い温度で正極板41又は負極板42のいずれか一方もしくはその両方の電極板を加熱処理する方法が提案されている(例えば、特許文献2参照)。
特開2007−103263号公報 特許第3066161号公報
Further, in order to improve the elongation rate of the electrode plate, a separator 43 is interposed between the positive electrode plate 41 connected to the positive electrode lead 44 and the negative electrode plate 42 connected to the negative electrode lead 45 as shown in FIG. In the non-aqueous secondary battery in which the positive electrode lead 44 is connected to the positive electrode external terminal 46, the negative electrode lead 45 is connected to the battery case 47, and a non-aqueous electrolyte is injected, Before laminating or winding up the negative electrode plate 42 and the separator 43 to be interposed between the two electrodes, the positive electrode plate is heated at a temperature higher than the recrystallization temperature of the binder and lower than its decomposition temperature. There has been proposed a method of heat-treating one or both of the electrode plate 41 and the negative electrode plate 42 (for example, see Patent Document 2).
JP 2007-103263 A Japanese Patent No. 3066161

しかしながら、正極板の内周側の正極合剤層を外周側より柔軟にするまたは正極板を熱処理するなどの上述した従来技術においては、電極群を構成する際に正極板に加わる曲げ応力による正極板の破断を抑制する効果は発揮するものの、非水系二次電池を充放電する際の電極板の膨張収縮による応力を緩和し充放電時の電極板の破断または挫屈を抑制することが困難であるという課題を有していた。   However, in the above-described conventional techniques such as making the positive electrode mixture layer on the inner peripheral side of the positive electrode plate more flexible than the outer peripheral side or heat-treating the positive electrode plate, the positive electrode due to bending stress applied to the positive electrode plate when forming the electrode group Although the effect of suppressing the breakage of the plate is exhibited, it is difficult to relieve the stress due to the expansion and contraction of the electrode plate when charging / discharging the nonaqueous secondary battery and to suppress the breakage or buckling of the electrode plate during charge / discharge Had the problem of being.

加えて、上述した特許文献1の従来技術では、正極板の表面と裏面に塗布する二種類の正極合剤塗料を作製し、この二種類の正極合剤塗料を正極集電体の上に塗布して形成する必要があり、正極板を作製するプロセスが複雑になってしまう。   In addition, in the prior art of Patent Document 1 described above, two types of positive electrode mixture paints are prepared to be applied to the front and back surfaces of the positive electrode plate, and these two types of positive electrode mixture paints are applied on the positive electrode current collector. Therefore, the process for producing the positive electrode plate becomes complicated.

また、特許文献2の従来技術では、正極板を規定の厚みまでプレスした後に熱処理を施し捲回して電極群を構成するが、この熱処理によって規定の厚みまで圧縮された正極板がバックリングを起こし捲回前の正極板の厚みバラツキが大きくなってしまう。さらに、捲回した電極群の直径のバラツキが大きくなってしまうなどの不具合を引き起こすことがある。   In the prior art of Patent Document 2, the positive electrode plate is pressed to a specified thickness and then heat treated and wound to form an electrode group. The positive electrode plate compressed to the specified thickness by this heat treatment causes buckling. The thickness variation of the positive electrode plate before winding becomes large. Furthermore, it may cause a problem such as a large variation in diameter of the wound electrode group.

本発明は上記従来の課題を鑑みてなされたもので、非水系二次電池における正極板と負極板の充放電時の伸縮度を互いに近くなるように構成し、非水系二次電池を充放電する際の電極板の膨張収縮による応力を緩和し充放電時の電極板の破断または挫屈を抑制することで安全性の高い非水系二次電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and is configured so that the degree of expansion and contraction of the positive electrode plate and the negative electrode plate in the non-aqueous secondary battery is close to each other, and the non-aqueous secondary battery is charged / discharged. An object of the present invention is to provide a highly safe non-aqueous secondary battery by relieving stress due to expansion and contraction of the electrode plate and suppressing breakage or buckling of the electrode plate during charging and discharging.

上記目的を達成するために本発明の非水系二次電池は、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に付着させて負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極合剤層または負極合剤層の少なくともいずれか一方に厚みの薄い箇所を部分的に設けるかまたは正極合塗料または負極合剤塗料の少なくともいずれか一方を間欠的に付着させ正極集電体または負極集電体の露出部を設けることで正極板と負極板の充放電時の伸縮度を互いに近くなるように構成したことを特徴とするものである。   In order to achieve the above object, the non-aqueous secondary battery of the present invention is a positive electrode current collector comprising a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium. The negative electrode current collector is prepared by mixing a positive electrode plate having a positive electrode mixture layer deposited thereon and an active material and a binder made of a material capable of holding lithium at least in a dispersion medium. A non-aqueous electrolyte solution and a non-aqueous electrolyte encapsulated in a battery case include an electrode group formed by winding or laminating a porous insulator between a negative electrode plate formed on a negative electrode mixture layer A water-based secondary battery in which at least one of the positive electrode mixture layer and the negative electrode mixture layer is partially provided with a thin portion, or at least one of the positive electrode mixture paint or the negative electrode mixture paint is intermittently provided. Adhere to positive electrode current collector or negative It is characterized in that it has configured to be close to each other to stretch degree during charge and discharge of the positive electrode plate and negative electrode plate by providing the exposed part of the current collector.

本発明の非水系二次電池によると、正極合剤層または負極合剤層の少なくともいずれか一方に厚みの薄い箇所を部分的に設けるかまたは正極合塗料または負極合剤塗料の少なくともいずれか一方を間欠的に付着させ正極集電体または負極集電体の露出部を設けることで正極板と負極板の充放電時の伸縮度を互いに近くなるように構成したことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和することができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能である。   According to the non-aqueous secondary battery of the present invention, at least one of the positive electrode mixture layer and the negative electrode mixture layer is partially provided with a thin portion, or at least one of the positive electrode mixture or the negative electrode mixture paint. The positive electrode during charging / discharging is configured to be close to each other by charging and discharging the positive electrode plate and the negative electrode plate by providing an exposed portion of the positive electrode current collector or the negative electrode current collector. The stress applied to the positive electrode plate or the negative electrode plate due to the difference in expansion and contraction due to the expansion and contraction of the plate and the negative electrode plate can be relieved, and it is possible to suppress breakage or buckling of the electrode plate. It is possible to provide a highly safe non-aqueous secondary battery by suppressing internal short circuit.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に付着させ前記負極集電体の上に負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極合剤層または負極合剤層の少なくともいずれか一方に厚みの薄い箇所を部分的に設けるかまたは正極合塗料または負極合剤塗料の少なくともいずれか一方を間欠的に付着させ正極集電体または負極集電体の露出部を設けることで正極板と負極板の充放電時の伸縮度を互いに近くなるように構成したことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和し電極板の破断および電極板の挫屈に起因した内部短絡を抑制することが可能となり、安全性の高い非水系二次電池を提供することができる。   In the first aspect of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is adhered onto a positive electrode current collector. A negative electrode mixture coating material prepared by kneading and dispersing an active material made of a material capable of holding lithium and a binder at least in a dispersion medium is attached onto a negative electrode current collector by forming a positive electrode plate on which a positive electrode mixture layer is formed. A non-aqueous two-electrode assembly comprising a non-aqueous electrolyte and an electrode group formed by winding or laminating a porous insulator between a negative electrode plate having a negative electrode mixture layer formed on an electric body together with a non-aqueous electrolyte solution A secondary battery in which at least one of the positive electrode mixture layer and the negative electrode mixture layer is partially provided with a thin portion, or at least one of the positive electrode mixture paint or the negative electrode mixture paint is intermittently attached. Let positive current collector or negative electrode By providing an exposed portion of the electric conductor, the degree of expansion and contraction of the positive electrode plate and the negative electrode plate is made closer to each other, so that the difference in expansion and contraction due to the expansion and contraction of the positive electrode plate and the negative electrode plate during charging and discharging is reduced. It is possible to relieve the stress applied to the positive electrode plate or the negative electrode plate and suppress internal short circuit due to electrode plate breakage and electrode plate buckling, and to provide a highly safe non-aqueous secondary battery it can.

本発明の第2の発明においては、正極合剤層または負極合剤層の厚みの薄い箇所を長手方向に対して一様に設けたことにより、この厚みの薄い箇所に応力緩和効果を付与し正極板あるいは負極板に加わる応力を電極板の長手方向により効果的に分散させることができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the second invention of the present invention, the thin portion of the positive electrode mixture layer or the negative electrode mixture layer is uniformly provided in the longitudinal direction, thereby providing a stress relaxation effect to the thin portion. The stress applied to the positive electrode plate or the negative electrode plate can be effectively dispersed in the longitudinal direction of the electrode plate, and the breakage or buckling of the electrode plate can be more effectively suppressed.

本発明の第3の発明においては、正極合剤層または負極合剤層の厚みの薄い箇所の幅を捲回方向に対して段階的に変えたことにより、一例として正極合剤層の厚みが薄い箇所の幅を捲回方向に対して段階的に狭くすることで電極群を構成した際に正極板の捲き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the third invention of the present invention, the thickness of the positive electrode mixture layer or the negative electrode mixture layer is changed stepwise with respect to the winding direction so that the thickness of the positive electrode mixture layer is, for example, Since the width of the thin part is gradually reduced with respect to the winding direction, the stress difference due to the difference in curvature between the start and end of the positive electrode plate can be reduced when the electrode group is configured. It is possible to effectively suppress breakage of the positive electrode plate and buckling of the positive electrode plate in the electrode group.

本発明の第4の発明においては、正極合剤層または負極合剤層の厚みの薄い箇所のピッチを捲回方向に対して段階的に変えたことにより、一例として正極合剤層の厚みが薄い箇所のピッチを捲回方向に対して段階的に広くすることで電極群を構成した際に正極板の捲
き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および電極板の挫屈を効果的に抑制することが可能となる。
In the fourth aspect of the present invention, the thickness of the positive electrode mixture layer or the negative electrode mixture layer is changed stepwise with respect to the winding direction by changing the pitch of the thin portion of the positive electrode mixture layer or the negative electrode mixture layer. Since the pitch of the thin part is gradually increased with respect to the winding direction, the stress difference due to the difference in curvature between the start and end of the positive electrode plate can be reduced when the electrode group is configured. It is possible to effectively suppress breakage of the positive electrode plate and buckling of the electrode plate in the electrode group.

本発明の第5の発明においては、捲回した電極群における正極板または負極板の外周側にある正極/負極合剤層の厚みの薄い箇所の幅と内周側にある正極/負極合剤層の厚みの薄い箇所の幅を変えたことにより、一例として渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所の幅を外周側にある正極合剤層の厚みが薄い箇所の幅よりも広くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the fifth aspect of the present invention, the width of the thin portion of the positive electrode / negative electrode mixture layer on the outer peripheral side of the positive electrode plate or negative electrode plate in the wound electrode group and the positive electrode / negative electrode mixture on the inner peripheral side By changing the width of the thin portion of the layer, as an example, the positive electrode mixture layer on the outer peripheral side of the thin portion of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group The stress difference due to the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate can be alleviated by making the width of the part thinner than the width of the thin part, the breakage of the positive electrode plate in the electrode group and the positive electrode plate It becomes possible to suppress buckling effectively.

本発明の第6の発明においては、捲回した電極群における正極板または負極板の外周側にある正極/負極合剤層の厚みが薄い箇所のピッチと内周側にある正極/負極合剤層の厚みが薄い箇所のピッチを変えたことにより、一例として渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所のピッチを外周側にある正極合剤層の厚みが薄い箇所のピッチよりも狭くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the sixth invention of the present invention, the pitch of the positive electrode / negative electrode mixture layer on the outer peripheral side of the positive electrode plate or negative electrode plate in the wound electrode group and the positive electrode / negative electrode mixture on the inner peripheral side are thin. By changing the pitch of the portion where the thickness of the layer is thin, as an example, the positive electrode mixture layer where the pitch of the portion where the thickness of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group is thin is on the outer peripheral side The stress difference due to the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate can be relaxed by making it narrower than the pitch of the portion where the thickness of the positive electrode plate is thin. It becomes possible to suppress buckling effectively.

本発明の第7の発明においては、正極合剤層または負極合剤層の厚みの薄い箇所を長手方向に対して一様に設ける、または捲回方向に対して段階的に幅を変える、または捲回方向に対して段階的にピッチを変える、または外周側と内周側で幅を変える、または外周側
と内周側でピッチを変えるかかのいずれか二つ以上を組み合わせて構成したことにより、厚みの薄い箇所の形成形態に応じた応力緩和効果を発揮させて正極板または負極板の伸縮度を調整することで、正極板と負極板の伸縮度をより近づけることが可能となる。
In the seventh invention of the present invention, the thin portion of the positive electrode mixture layer or the negative electrode mixture layer is uniformly provided in the longitudinal direction, or the width is changed stepwise in the winding direction, or A combination of two or more of either changing the pitch stepwise with respect to the winding direction, changing the width between the outer circumference and the inner circumference, or changing the pitch between the outer circumference and the inner circumference. Thus, it is possible to bring the positive and negative electrode plates closer together by exerting a stress relaxation effect according to the formation form of the thin portion and adjusting the expansion and contraction degree of the positive electrode plate or the negative electrode plate.

本発明の第8の発明においては、正極集電体または負極集電体の露出部を長手方向に対して一様に設けたことにより、この露出部に応力緩和効果を付与し正極板あるいは負極板に加わる応力を電極板の長手方向により効果的に分散させることができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the eighth aspect of the present invention, the exposed portion of the positive electrode current collector or the negative electrode current collector is provided uniformly in the longitudinal direction, thereby imparting a stress relaxation effect to the exposed portion, and the positive electrode plate or the negative electrode current collector. The stress applied to the plate can be effectively dispersed in the longitudinal direction of the electrode plate, and the breakage or buckling of the electrode plate can be more effectively suppressed.

本発明の第9の発明においては、正極集電体または負極集電体の露出部の幅を捲回方向に対して段階的に変えたことにより、一例として正極集電体の露出部の幅を捲回方向に対して段階的に狭くすることで電極群を構成した際に正極板の捲き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the ninth aspect of the present invention, the width of the exposed portion of the positive electrode current collector is taken as an example by changing the width of the exposed portion of the positive electrode current collector or the negative electrode current collector stepwise with respect to the winding direction. When the electrode group is configured by gradually reducing the winding direction with respect to the winding direction, the stress difference due to the difference in curvature between the start and end of the positive electrode plate can be reduced. It is possible to effectively suppress breakage of the positive electrode plate and buckling of the electrode plate.

本発明の第10の発明においては、正極集電体または負極集電体の露出部のピッチを捲回方向に対して段階的に変えたことにより、一例として正極集電体の露出部のピッチを捲回方向に対して段階的に広くすることで電極群を構成した際に正極板の捲き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the tenth aspect of the present invention, the pitch of the exposed portion of the positive electrode current collector is exemplified by changing the pitch of the exposed portion of the positive electrode current collector or the negative electrode current collector stepwise with respect to the winding direction. When the electrode group is configured by widening in a stepwise manner with respect to the winding direction, the stress difference due to the difference in curvature between the start and end of the positive electrode plate can be reduced. It is possible to effectively suppress breakage of the positive electrode plate and buckling of the electrode plate.

本発明の第11の発明においては、捲回した電極群における正極板または負極板の外周側にある露出部の幅と内周側にある露出部の幅を変えたことにより、一例として渦巻状の電極群における正極板の内周側にある露出部の幅を外周側にある露出部の幅よりも広くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the eleventh aspect of the present invention, by changing the width of the exposed portion on the outer peripheral side of the positive electrode plate or the negative electrode plate in the wound electrode group and the width of the exposed portion on the inner peripheral side, By making the width of the exposed portion on the inner peripheral side of the positive electrode plate wider than the width of the exposed portion on the outer peripheral side in the electrode group, the stress difference due to the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate can be reduced. It is possible to relax, and it becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the positive electrode plate in the electrode group.

本発明の第12の発明においては、捲回した電極群における正極板または負極板の外周
側にある露出部のピッチと内周側にある露出部のピッチを変えたことにより、一例として渦巻状の電極群における正極板の内周側にある露出部のピッチを外周側にある露出部のピッチよりも狭くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。
In the twelfth aspect of the present invention, by changing the pitch of the exposed portion on the outer peripheral side of the positive electrode plate or the negative electrode plate in the wound electrode group and the pitch of the exposed portion on the inner peripheral side, By making the pitch of the exposed part on the inner peripheral side of the positive electrode plate in the electrode group smaller than the pitch of the exposed part on the outer peripheral side, the stress difference due to the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate can be reduced. It is possible to relax, and it becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the positive electrode plate in the electrode group.

本発明の第13の発明においては、正極集電体または負極集電体の露出部を長手方向に対して一様に設ける、または捲回方向に対して段階的に幅を変える、または捲回方向に対して段階的にピッチを変える、または外周側と内周側で幅を変える、または外周側と内周側でピッチを変えるかのいずれか二つ以上を組み合わせて構成したことにより、露出部の形成形態に応じた応力緩和効果を発揮させて正極板または負極板の伸縮度を調整することで、正極板と負極板の伸縮度をより近づけることが可能となる。   In the thirteenth aspect of the present invention, the exposed portions of the positive electrode current collector or the negative electrode current collector are uniformly provided in the longitudinal direction, or the width is changed stepwise in the winding direction, or the winding is performed. Exposure by changing the pitch stepwise with respect to the direction, changing the width on the outer peripheral side and the inner peripheral side, or changing the pitch on the outer peripheral side and the inner peripheral side. By adjusting the degree of expansion / contraction of the positive electrode plate or the negative electrode plate by exerting a stress relaxation effect according to the formation form of the part, it becomes possible to make the expansion degree of the positive electrode plate and the negative electrode plate closer.

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態に係る非水系二次電池における捲回後の電極群10の要部を示す斜視図である。同図において本発明の非水系二次電池用の電極群10は、正極合剤塗料を正極集電体1の上に塗布して正極合剤層2a,2bを形成した正極板4と負極合剤塗料を負極集電体5の上に塗布して負極合剤層6a,6bを形成した負極板8との間に多孔質絶縁体としてのセパレータ9を介在させ渦巻状に捲回して構成されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a main part of an electrode group 10 after winding in a non-aqueous secondary battery according to an embodiment of the present invention. In the figure, an electrode group 10 for a non-aqueous secondary battery according to the present invention includes a positive electrode plate 4 and a negative electrode composite, in which a positive electrode mixture paint is applied on the positive electrode current collector 1 to form positive electrode mixture layers 2a and 2b. A separator 9 serving as a porous insulator is interposed between the negative electrode plate 8 on which the negative electrode current collector layer 6a, 6b is formed by applying a coating agent on the negative electrode current collector 5, and is wound in a spiral shape. ing.

ここで、上述した本発明のリチウムイオン二次電池に代表される非水系二次電池においては、図1に示すように充電時に負極板8にリチウムがインターカレーションされることで負極合剤層6a,6bが膨張することによる負極板8の伸長度Aとこの際の正極板4の伸長度C、および放電時に負極板8からリチウムがデインターカレーションされることで負極合剤層6a,6bが収縮することによる負極板8の収縮度Bとこの際の正極板4の収縮度Dを互いに近づけるための構成の一例として、正極合剤層2a,2bに厚みが薄い箇所3a,3bを長手方向に対して一様に設けた構成としている。   Here, in the non-aqueous secondary battery represented by the lithium ion secondary battery of the present invention described above, the negative electrode mixture layer is obtained by intercalating lithium with the negative electrode plate 8 during charging as shown in FIG. 6a, 6b expands the negative electrode plate 8 due to expansion, the positive electrode plate 4 expands at this time C, and lithium is deintercalated from the negative electrode plate 8 during discharge, so that the negative electrode mixture layer 6a, As an example of a configuration for bringing the contraction degree B of the negative electrode plate 8 due to the contraction of 6b and the contraction degree D of the positive electrode plate 4 at this time closer to each other, thin portions 3a and 3b are formed on the positive electrode mixture layers 2a and 2b. It is the structure provided uniformly with respect to the longitudinal direction.

上述のように正極集電体1の表面または裏面に正極合剤層2a,2bを形成するには、正極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサーなどの分散機により混合分散し、アルミニウム箔などの正極集電体1への塗布に最適な粘度に調整しながら混練を行って正極合剤塗料を作製する。   In order to form the positive electrode mixture layers 2a and 2b on the front surface or the back surface of the positive electrode current collector 1 as described above, a positive electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, and a planetary mixer, etc. And then kneading while adjusting the viscosity to be optimal for application to the positive electrode current collector 1 such as an aluminum foil to prepare a positive electrode mixture paint.

ここで、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Here, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

このときの結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。   As the binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder.

上述のようにして作製した正極合剤塗料を例えばアルミニウム箔からなる正極集電体1の上にダイコーターを用いて正極合剤層2a,2bの厚みが薄い箇所3a,3bが長手方向に一様に形成されるように正極合剤層2a,2bを塗布し形成した後に乾燥して所定の
厚みまで圧縮するようにプレスした後、規定の幅および長さにスリッタ加工して長尺帯状の正極板4が得られる。
The positive electrode mixture paint produced as described above is placed on the positive electrode current collector 1 made of, for example, an aluminum foil using a die coater so that the portions 3a and 3b where the thickness of the positive electrode mixture layers 2a and 2b is thin are aligned in the longitudinal direction. After coating and forming the positive electrode mixture layers 2a and 2b so as to be formed in the same manner, they are dried and pressed so as to be compressed to a predetermined thickness, and then slitted to a specified width and length to form a long strip shape. The positive electrode plate 4 is obtained.

一方、負極集電体5の表面または裏面に負極合剤層6a,6bを形成するには、負極活物質、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、銅箔などの負極集電体5への塗布に最適な粘度に調整しながら混練を行って負極合剤塗料を作製する。   On the other hand, in order to form the negative electrode mixture layers 6a and 6b on the front or back surface of the negative electrode current collector 5, the negative electrode active material and the binder are placed in an appropriate dispersion medium and mixed by a disperser such as a planetary mixer. Disperse and knead while adjusting the viscosity to be optimal for application to the negative electrode current collector 5 such as a copper foil to prepare a negative electrode mixture paint.

ここで、負極用活物質としては、例えば各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、並びに各種の合金組成材料を用いることができる。このときの結着材としては、ポリフッ化ビニリデンおよびその変性体を用いることができる。   Here, as the negative electrode active material, for example, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used. As the binder at this time, polyvinylidene fluoride and modified products thereof can be used.

しかしながら、リチウムイオンの受入れ性を向上させるという観点からは、スチレン−ブタジエン共重合体ゴム粒子(SBR)またはその変性体とカルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂などを併用したものや、スチレン−ブタジエン共重合体ゴム粒子またはその変性体に上記セルロース系樹脂を少量添加したものを使用するのが好ましい。   However, from the viewpoint of improving the acceptability of lithium ions, styrene-butadiene copolymer rubber particles (SBR) or a modified product thereof and a cellulose resin including carboxymethyl cellulose (CMC), It is preferable to use a styrene-butadiene copolymer rubber particle or a modified product obtained by adding a small amount of the above cellulose resin.

上述のようにして作製した負極合剤塗料を例えば銅箔からなる負極集電体5の上にダイコーターを用いて塗布した後に乾燥して所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリッタ加工して長尺帯状の負極板8が得られる。   After applying the negative electrode mixture paint prepared as described above onto a negative electrode current collector 5 made of, for example, copper foil using a die coater, drying and pressing to compress to a predetermined thickness, Slitting process into the width and length gives the long strip-like negative electrode plate 8.

以下、上述した正極板4および負極板8を使用した本発明の非水系二次電池について説明する。図13に、非水系二次電池の一例としての円筒形のリチウムイオン二次電池17を縦に一部を切断した斜視図により示す。   Hereinafter, the nonaqueous secondary battery of the present invention using the positive electrode plate 4 and the negative electrode plate 8 described above will be described. FIG. 13 is a perspective view of a cylindrical lithium ion secondary battery 17 as an example of a non-aqueous secondary battery, with a part thereof cut vertically.

図13の円筒形のリチウムイオン二次電池17においては、複合リチウム酸化物を活物質とする正極板4とリチウムを保持しうる材料を活物質とする負極板8とをセパレータ9を介し渦巻状に捲回して電極群10が作製される。   In the cylindrical lithium ion secondary battery 17 of FIG. 13, a positive electrode plate 4 using a composite lithium oxide as an active material and a negative electrode plate 8 using a material capable of holding lithium as an active material are spirally arranged via a separator 9. As a result, the electrode group 10 is produced.

電極群10は、有底円筒形の電池ケース11の内部に絶縁板12により電池ケース11とは絶縁されて収容される一方で、電極群10の下部より導出した負極リード13が電池ケース11の底部に接続されるとともに、電極群10の上部より導出した正極リード14が封口板15に接続される。   The electrode group 10 is housed inside the bottomed cylindrical battery case 11 while being insulated from the battery case 11 by the insulating plate 12, while the negative electrode lead 13 led out from the lower part of the electrode group 10 has the battery case 11. The positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15 while being connected to the bottom.

また、電池ケース11は、所定量の非水溶媒からなる非水系電解液(図示せず)が注液された後、開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げてかしめ封口される。   Further, the battery case 11 is filled with a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof after the non-aqueous electrolyte solution (not shown) made of a predetermined amount of a non-aqueous solvent is injected. The opening of the case 11 is crimped inward by bending inward.

ここで、セパレータ9は、リチウムイオン二次電池の使用範囲に耐えうる組成であればよいが、特にポリエチレン、ポリプロピレン等のオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが好ましい。このセパレータ9の厚みは、10〜25μmとするのが良い。   Here, the separator 9 may have any composition that can withstand the usage range of the lithium ion secondary battery, but it is particularly preferable to use a single or composite of microporous films of olefin resins such as polyethylene and polypropylene. . The thickness of the separator 9 is preferably 10 to 25 μm.

このときの非水系電解液は、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。 The non-aqueous electrolyte at this time can use various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent.

また、正極板4または負極板8の上に良好な被膜を形成させるためおよび過充電時の安
定性を保証するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)、並びにその変性体を用いるのが好ましい。
Further, in order to form a good film on the positive electrode plate 4 or the negative electrode plate 8 and to ensure the stability at the time of overcharge, vinylene carbonate (VC) and cyclohexylbenzene (CHB), and modified products thereof are used. Is preferred.

上述した正極板4と負極板8の充放電時の伸縮度を互いに近づける第1の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極合剤層2a,2bまたは負極合剤層6a,6bの少なくともいずれか一方に厚みが薄い箇所3a,3dを長手方向に対して一様に設けることで実現できる。   As a first configuration for making the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 close to each other as described above, the electrode plate for a non-aqueous secondary battery of the present invention includes a positive electrode mixture layer 2a, This can be realized by providing the thin portions 3a and 3d uniformly in the longitudinal direction in at least one of 2b or the negative electrode mixture layers 6a and 6b.

具体的な構成の一例としては、正極板4において正極合剤層2a,2bの一部に上述した厚みが薄い箇所3c,3dを形成するために、図2に示す正極集電体1の長手方向の少なくとも一箇所以上に、上述した正極合剤層2a,2bの厚みが薄い箇所3c,3dを長手方向に対して一様に塗布形成する第1の工程を経て作製される。   As an example of a specific configuration, in order to form the thin portions 3c and 3d described above in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the length of the positive electrode current collector 1 shown in FIG. The positive electrode mixture layers 2a and 2b described above are produced through a first step in which the thin portions 3c and 3d of the positive electrode mixture layers 2a and 2b are uniformly applied and formed in the longitudinal direction at least in one direction.

この第1の工程において、正極合剤層2a,2bの厚みが薄い箇所3c,3dを塗布形成する方法としては、ダイのマニホールド内部を負圧にした後に圧力を開放し正極合剤塗料を再吐出の際のタイミングが重要であり、精度よくタイミング調整することにより、正極合剤層2a,2bの厚みが薄い箇所3c,3dを長手方向に対して一様に形成することが可能である。   In this first step, the portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b is thin are applied and formed. After the inside of the die manifold is made negative pressure, the pressure is released and the positive electrode mixture paint is re-applied. The timing at the time of discharge is important, and by adjusting the timing accurately, it is possible to uniformly form the portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b is thin in the longitudinal direction.

さらに、この正極合剤塗料が乾燥された後に正極合剤層2a,2bの厚みが薄い箇所3c,3dにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第2の工程を経て、正極板4の長手方向の少なくとも一箇所以上に厚みが薄い箇所3c,3dが長手方向に対して一様に形成される。   Furthermore, after this positive electrode mixture paint is dried, after passing through a second step in which the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion in the portions 3c and 3d, The thin portions 3c and 3d are uniformly formed in the longitudinal direction at least at one or more locations in the longitudinal direction of the positive electrode plate 4.

この長手方向に対して一様に形成した正極合剤層2a,2bの厚みが薄い箇所3c,3dで正極板4を伸縮し易くし、正極板4に加わる応力を長手方向に効果的に分散させることで正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることができる。   The positive electrode mixture layer 2a, 2b formed uniformly with respect to the longitudinal direction is easily expanded and contracted at the thin portions 3c, 3d, and the stress applied to the positive electrode plate 4 is effectively dispersed in the longitudinal direction. By doing so, the expansion and contraction degrees C and D of the positive electrode plate 4 and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to each other.

また、本発明の別の非水系二次電池用電極板は、図3に示すように正極板4と負極板8の伸縮度を互いに近づける第2の構成として、正極板4または負極板8の少なくともいずれか一方に正極合剤層2a,2bまたは負極合剤層6a,6bの厚みが薄い箇所3c,3dの幅を捲回方向に対して段階的に変えることで実現できる。   Further, another electrode plate for a non-aqueous secondary battery according to the present invention includes a positive electrode plate 4 or a negative electrode plate 8 as a second configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. This can be realized by stepwise changing the widths of the portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b is thin in at least one of the winding directions.

具体的な構成の一例としては、図3に示すように正極集電体1の長手方向に対して垂直方向の表面に捲き始めから順に幅W1>W2>W3である厚みが薄い箇所3cを、裏面に表面と同位相で捲き始めから順に幅W1>W2>W3である厚みが薄い箇所3dを捲回方向に対して段階的に形成している。   As an example of a specific configuration, as shown in FIG. 3, a thin portion 3c having width W1> W2> W3 in order from the beginning of spreading on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, A thin portion 3d having widths W1> W2> W3 in order from the beginning of rolling in the same phase as the front surface is formed on the back surface in a stepwise manner in the winding direction.

この構成とすることで、E方向に渦巻状に捲回して図13に示す電極群10を構成した際に曲率の違いにより捲き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この捲き始めの負極板8と対極する捲き始めの正極板4に捲き終わりの正極板4よりも幅が広い厚みが薄い箇所3c,3dを形成したことで電極群10における正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることになる。   With this configuration, when the electrode group 10 shown in FIG. 13 is formed by winding in a spiral shape in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding due to the difference in curvature than the negative electrode plate 8 at the end of winding. However, the positive electrode plate 10 in the electrode group 10 is formed by forming the portions 3c and 3d, which are wider than the positive electrode plate 4 at the end of the firing, on the positive electrode plate 4 opposite to the negative electrode plate 8 at the start of the operation. The expansion and contraction of the plate 4 is promoted, and the stress applied to the positive electrode plate 4 is more effectively relaxed.

この正極板4において正極合剤層2a,2bの一部に上述した厚みが薄い箇所3c,3dを形成するためには、図3に示すように正極集電体1の長手方向に対して垂直方向の表裏面に上述した正極合剤層2a,2bの厚みが薄い箇所3c,3dを捲き始めから順に幅W1>W2>W3で捲回方向に対して段階的に塗布して形成する第1の工程を経て作製される。   In order to form the above-mentioned thin portions 3c and 3d in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, as shown in FIG. 3, it is perpendicular to the longitudinal direction of the positive electrode current collector 1. First, the portions 3c and 3d where the thicknesses of the positive electrode mixture layers 2a and 2b described above are thin are applied to the front and back surfaces in the direction from the start to the width W1> W2> W3 in a stepwise manner in the winding direction. It is produced through the process.

次いで、この正極合剤塗料が乾燥されたのち、正極合剤層2a,2bの厚みが薄い箇所3c,3dにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第2の工程を経て、正極板4の長手方向の少なくとも一箇所以上に正極合剤層2a,2bの厚みが薄い箇所3c,3dが捲回方向に対して段階的に形成される。   Next, after the positive electrode mixture paint is dried, a second step is performed in which the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion in the portions 3c and 3d. The portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b is thin are formed stepwise in the winding direction at least at one or more locations in the longitudinal direction of the positive electrode plate 4.

また、本発明の別の非水系二次電池用電極板は、図4に示すように正極板4と負極板8の伸縮度を互いに近づける第3の構成として、正極板4または負極板8の少なくともいずれか一方に正極合剤層2a,2bまたは負極合剤層6a,6bの厚みが薄い箇所3c,3dのピッチを捲回方向に対して段階的に変えることで実現できる。   Further, another electrode plate for a non-aqueous secondary battery according to the present invention has a third configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. This can be realized by stepwise changing the pitch of the portions 3c, 3d where the thickness of the positive electrode mixture layers 2a, 2b or the negative electrode mixture layers 6a, 6b is thin in at least one of the winding directions.

具体的な構成の一例としては、図4に示すように正極集電体1の長手方向に対して垂直方向の表面は正極合剤層2aの一部に厚みが薄い箇所3cを捲き始めから順にピッチP1<P2<P3の間隔で、裏面は正極合剤層2bの一部に表面と同位相の厚みが薄い箇所3dを捲き始めから順にピッチP1<P2<P3の間隔で捲回方向に対して段階的に形成している。   As an example of a specific configuration, as shown in FIG. 4, the surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 has a portion 3c having a small thickness formed on a part of the positive electrode mixture layer 2a in order from the beginning. The pitch P1 <P2 <P3, and the back surface is a part of the positive electrode mixture layer 2b, and a portion 3d having the same phase as the surface is thinned in order from the beginning in order of pitch P1 <P2 <P3 with respect to the winding direction. It is formed step by step.

この構成とすることで、E方向に渦巻状に捲回して図13に示す電極群10を構成した際に曲率の違いにより捲き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この捲き始めの負極板8と対極する捲き始めの正極板4に捲き終わりの正極板4より厚みが薄い箇所3c,3dを狭いピッチで形成したことで電極群10における正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることになる。   With this configuration, when the electrode group 10 shown in FIG. 13 is formed by winding in a spiral shape in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding due to the difference in curvature than the negative electrode plate 8 at the end of winding. However, the positive electrode plate 4 in the electrode group 10 is formed by forming the portions 3c and 3d having a thickness smaller than that of the positive electrode plate 4 at the end of the winding on the positive electrode plate 4 at the start of the counter electrode with the negative electrode plate 8 at the start of the operation. 4 is promoted and the stress applied to the positive electrode plate 4 is more effectively relaxed.

この正極板4において正極合剤層2a,2bの一部に上述した厚みが薄い箇所3c,3dを形成するためには、図6に示すように正極集電体1の長手方向の少なくとも一箇所以上に、上述した正極合剤層2a,2bの厚みが薄い箇所3c,3dを捲き始めから順にピッチP1<P2<P3の間隔で捲回方向に対して段階的に塗布して形成する第1の工程を経て作製される。   In order to form the above-mentioned thin portions 3c and 3d in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, at least one portion in the longitudinal direction of the positive electrode current collector 1 as shown in FIG. As described above, the first positive electrode mixture layers 2a and 2b are formed by applying the thin portions 3c and 3d in a stepwise manner in the winding direction at intervals of pitch P1 <P2 <P3 in order from the beginning. It is produced through the process.

次いで、この正極合剤塗料が乾燥されたのち、正極合剤層2a,2bの厚みが薄い箇所3c,3dにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第二の工程を経て、正極板4の長手方向の少なくとも一箇所以上に正極合剤層2a,2bの厚みが薄い箇所3c,3dが捲回方向に対して段階的に形成される。   Next, after the positive electrode mixture paint is dried, the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion in the portions 3c and 3d where the thickness is thin. The portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b is thin are formed stepwise in the winding direction at least at one or more locations in the longitudinal direction of the positive electrode plate 4.

また、本発明の別の非水系二次電池用電極板は、図5に示すように正極板4と負極板8の伸縮度を互いに近づける第4の構成として、電極群10の正極板4または負極板8における外周側にある正極合剤層2aまたは負極合剤層6aの厚みが薄い箇所3cの幅W4と内周側にある正極合剤層2bまたは負極合剤層6bの厚みが薄い箇所3dの幅W5が異なるように正極合塗料および負極合剤塗料を塗布することで実現できる。   Further, another electrode plate for a non-aqueous secondary battery according to the present invention includes a positive electrode plate 4 of the electrode group 10 or a fourth structure in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made close to each other as shown in FIG. A portion where the thickness of the positive electrode mixture layer 2a or the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 is thin and the width W4 of the thin portion 3c and the positive electrode mixture layer 2b or the negative electrode mixture layer 6b on the inner peripheral side are thin. This can be realized by applying the positive electrode mixture paint and the negative electrode mixture paint so that the width W5 of 3d is different.

具体的な構成の一例としては、図5に示すように正極集電体1の表面に幅W4の正極合剤層2aの厚みが薄い箇所3cを、裏面にW5>W4である幅W5の正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成している。   As an example of a specific configuration, as shown in FIG. 5, a portion 3c where the positive electrode mixture layer 2a having a width W4 is thin is formed on the surface of the positive electrode current collector 1, and a positive electrode having a width W5 where W5> W4 on the back surface. The portion 3d where the thickness of the mixture layer 2b is thin is uniformly formed in the longitudinal direction.

この構成とすることで、E方向に渦巻状に捲回して電極群を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が加わることになるが、この外周側の負極合剤層6bと対極する正極板4における内周側の正極合剤層2bの厚みが薄い箇所3dの幅W5を外周側の正極合剤層2aの厚みが薄い箇所3cの幅W4よりも広く形成することで正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることになる。   With this configuration, when the electrode group is formed by spirally winding in the E direction, a tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the inner peripheral side Although a compressive stress is applied to the negative electrode mixture layer 6b, the width W5 of the portion 3d where the thickness of the positive electrode mixture layer 2b on the inner peripheral side in the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side is thin. Is formed wider than the width W4 of the portion 3c where the thickness of the positive electrode mixture layer 2a on the outer peripheral side is thin, the expansion and contraction of the positive electrode plate 4 is promoted, and the stress applied to the positive electrode plate 4 is more effectively relieved. .

この正極板4において正極合剤層2a,2bの一部に上述した厚みが薄い箇所3c,3dを形成するために、図5に示すように正極集電体1の表面に幅W4の正極合剤層2aの厚みが薄い箇所3c、裏面にW5>W4である幅W5の正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に塗布して形成する第1の工程を経て作製される。   In order to form the above-mentioned thin portions 3c and 3d in part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, as shown in FIG. A first step in which a portion 3c where the thickness of the agent layer 2a is thin and a portion 3d where the thickness of the positive electrode mixture layer 2b having a width W5 of W5> W4 is thin is applied uniformly to the longitudinal direction on the back surface; It is made after.

次いで、この正極合剤塗料が乾燥されたのち、正極合剤層2a,2bの厚みが薄い箇所3c,3dにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第二の工程を経て、正極板4の長手方向に内周側にある正極合剤層2bの厚みが薄い箇所3dの幅W5が外周側にある正極合剤層2aの厚みが薄い箇所3cの幅W4よりも広くなるように厚みが薄い箇所3c,3dが長手方向に対して一様に形成される。   Next, after the positive electrode mixture paint is dried, the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion in the portions 3c and 3d where the thickness is thin. The width W5 of the portion 3d where the thickness of the positive electrode mixture layer 2b on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is thin is wider than the width W4 of the portion 3c where the thickness of the positive electrode mixture layer 2a on the outer peripheral side is thin. Thus, the thin portions 3c and 3d are uniformly formed in the longitudinal direction.

また、本発明の別の非水系二次電池用電極板は、図6に示すように正極板4と負極板8の伸縮度を互いに近づける第5の構成として、電極群10の正極板4または負極板8における外周側にある正極合剤層2aまたは負極合剤層6aの厚みが薄い箇所3cのピッチP4と内周側にある正極合剤層2bまたは負極合剤層6bの厚みが薄い箇所3dのピッチP5が異なるように正極合塗料および負極合剤塗料を塗布することで実現できる。   In addition, another electrode plate for a non-aqueous secondary battery according to the present invention has a fifth configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. A portion where the positive electrode mixture layer 2a or the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 is thin and the pitch P4 of the portion 3c and the positive electrode mixture layer 2b or the negative electrode mixture layer 6b on the inner peripheral side are thin. This can be realized by applying the positive electrode mixture paint and the negative electrode mixture paint so that the pitch P5 of 3d is different.

具体的な構成の一例としては、図6に示すように正極集電体1の表面に正極合剤層2aの厚みが薄い箇所3cをP4のピッチで、裏面にP5<P4であるピッチP5で正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成している。   As an example of a specific configuration, as shown in FIG. 6, the portion 3c where the thickness of the positive electrode mixture layer 2a is thin on the surface of the positive electrode current collector 1 is P4 pitch, and the back surface is P5 <P4. A portion 3d where the thickness of the positive electrode mixture layer 2b is thin is uniformly formed in the longitudinal direction.

この構成とすることで、渦巻状に捲回して電極群を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が加わることになるが、この外周側の負極合剤層6bと対極する正極板4における内周側の正極合剤層2bの厚みが薄い箇所3dのピッチP5を外周側の正極合剤層2aの厚みが薄い箇所3cのピッチP4よりも狭く形成することで正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることになる。   With this configuration, when the electrode group is formed by winding in a spiral shape, tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the negative electrode mixture on the inner peripheral side is applied. Although compression stress is applied to the layer 6b, the pitch P5 of the portion 3d where the thickness of the positive electrode mixture layer 2b on the inner peripheral side of the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side is thin is set to the outer peripheral side. By forming the positive electrode mixture layer 2a to be narrower than the pitch P4 of the portion 3c where the thickness is small, the expansion and contraction of the positive electrode plate 4 is promoted and the stress applied to the positive electrode plate 4 is more effectively relieved.

この正極板4において正極合剤層2a,2bの一部に上述した厚みが薄い箇所3c,3dを形成するために、図6に示すように正極集電体1の表面に正極合剤層2aの厚みが薄い箇所3cをP4のピッチで、裏面にP5<P4であるピッチP5で正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に塗布して形成する第1の工程を経て作製される。   In order to form the above-described thin portions 3c and 3d in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the positive electrode mixture layer 2a is formed on the surface of the positive electrode current collector 1 as shown in FIG. A portion 3c having a small thickness is applied at a pitch of P4, and a portion 3d having a thin thickness of the positive electrode mixture layer 2b is uniformly applied to the longitudinal direction at a pitch P5 of P5 <P4 on the back surface. It is produced through a process.

次いで、この正極合剤塗料が乾燥されたのち、正極合剤層2a,2bの厚みが薄い箇所3c,3dにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第2の工程を経て、正極板4の長手方向に内周側にある正極合剤層2bの厚みが薄い箇所3dのピッチP5が外周側にある正極合剤層2aの厚みが薄い箇所3cのピッチP4よりも狭くなるように厚みが薄い箇所3c,3dが長手方向に対して一様に形成される。   Next, after the positive electrode mixture paint is dried, a second step is performed in which the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion in the portions 3c and 3d. The pitch P5 of the portion 3d where the thickness of the positive electrode mixture layer 2b on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is smaller than the pitch P4 of the portion 3c where the thickness of the positive electrode mixture layer 2a on the outer peripheral side is thin. Thus, the thin portions 3c and 3d are uniformly formed in the longitudinal direction.

さらに、本発明の別の非水系二次電池用電極板は、正極板4と負極板8の伸縮度を互いに近づける第6の構成として、図2に示すように正極合剤層2a,2bまたは負極合剤層6a,6bの少なくともいずれか一方に厚みが薄い箇所3a,3dを長手方向に対して一様に設けるか、または図3に示すように正極板4または負極板8の少なくともいずれか一方に正極合剤層2a,2bまたは負極合剤層6a,6bの厚みが薄い箇所3c,3dの幅を捲回方向に対して段階的に変えるか、または図4に示すように正極板4または負極板8の少なくともいずれか一方に正極合剤層2a,2bまたは負極合剤層6a,6bの厚みが薄い箇所3c,3dのピッチを捲回方向に対して段階的に変えるか、または図5に示すように電極群10の正極板4または負極板8における外周側にある正極合剤層2aまたは負極合剤層6aの厚みが薄い箇所3cの幅W4と内周側にある正極合剤層2bまたは負極合
剤層6bの厚みが薄い箇所3dの幅W5が異なるように正極合塗料および負極合剤塗料を塗布するか、または図6に示すように電極群10の正極板4または負極板8における外周側にある正極合剤層2aまたは負極合剤層6aの厚みが薄い箇所3cのピッチP4と内周側にある正極合剤層2bまたは負極合剤層6bの厚みが薄い箇所3dのピッチP5が異なるように正極合塗料および負極合剤塗料を塗布するかのいずれか二つ以上を組み合わせて構成することも同様に可能である。
Further, another electrode plate for a non-aqueous secondary battery according to the present invention has, as a sixth configuration in which the expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 are made close to each other, as shown in FIG. At least one of the negative electrode mixture layers 6a and 6b is provided with thin portions 3a and 3d uniformly in the longitudinal direction, or at least one of the positive electrode plate 4 and the negative electrode plate 8 as shown in FIG. On the other hand, the width of the portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b is thin is changed stepwise with respect to the winding direction, or as shown in FIG. Alternatively, the pitch of the portions 3c and 3d where the thickness of the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b is thin is changed stepwise with respect to the winding direction on at least one of the negative electrode plates 8. As shown in FIG. 5, the positive electrode plate 4 of the electrode group 10 or A portion where the thickness of the positive electrode mixture layer 2a or the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 is thin and the width W4 of the thin portion 3c and the positive electrode mixture layer 2b or the negative electrode mixture layer 6b on the inner peripheral side are thin. The positive electrode mixture and the negative electrode mixture are applied so that the width W5 of 3d is different, or the positive electrode mixture layer 2a on the outer peripheral side of the positive electrode plate 4 or the negative electrode plate 8 of the electrode group 10 as shown in FIG. The positive electrode mixture and the negative electrode mixture are different so that the pitch P4 of the portion 3c where the thickness of the negative electrode mixture layer 6a is thin and the pitch P5 of the portion 3d where the thickness of the positive electrode mixture layer 2b or the negative electrode mixture layer 6b on the inner peripheral side is thin are different. Similarly, any two or more of coating agent coatings may be combined.

また、本発明の別の非水系二次電池用電極板は、図7に示すように正極板4と負極板8の伸縮度を互いに近づける第7の構成として、正極集電体1または負極集電体5の少なくともいずれか一方に露出部3a,3bを長手方向に対して一様に設けることで実現できる。   Another electrode plate for a non-aqueous secondary battery according to the present invention includes a positive electrode current collector 1 or a negative electrode current collector as a seventh configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. This can be realized by providing the exposed portions 3a and 3b uniformly in at least one of the electric bodies 5 in the longitudinal direction.

具体的な構成の一例としては、正極板4において正極合剤層2a,2bの一部に上述した正極集電体1の露出部3a,3bを形成するために、図7に示すように正極集電体1の長手方向の少なくとも一箇所以上に、正極集電体1の露出部3a,3bを長手方向に対して一様に間欠塗布して形成する第1の工程を経て作製される。   As an example of a specific configuration, in order to form the exposed portions 3a and 3b of the positive electrode current collector 1 described above in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, as shown in FIG. It is produced through a first step in which the exposed portions 3a and 3b of the positive electrode current collector 1 are uniformly and intermittently applied in the longitudinal direction at least at one or more locations in the longitudinal direction of the current collector 1.

この第1の工程において、正極集電体1の露出部3a,3bを間欠塗布して形成する方法としては、ダイコーター等を用い正極集電体1の長手方向に対して垂直方向に正極集電体1の露出部3a,3bを間欠的に形成するための間欠塗布システムを用いることができる。   In this first step, as a method of forming the exposed portions 3a and 3b of the positive electrode current collector 1 by intermittent application, a positive electrode current collector is formed in a direction perpendicular to the longitudinal direction of the positive electrode current collector 1 using a die coater or the like. An intermittent coating system for intermittently forming the exposed portions 3a and 3b of the electric body 1 can be used.

さらに、この正極合剤塗料が乾燥されたのち、所定厚みにプレスされる第2の工程を経て、正極板4の長手方向の少なくとも一箇所以上に正極集電体1の露出部3a,3bが長手方向に対して一様に形成される。   Further, after the positive electrode mixture paint is dried, the exposed portions 3a and 3b of the positive electrode current collector 1 are provided in at least one place in the longitudinal direction of the positive electrode plate 4 through a second step of pressing to a predetermined thickness. It is uniformly formed in the longitudinal direction.

この長手方向に対して一様に形成した正極集電体1の露出部3a,3bに膨張収縮に伴う応力を緩和させる効果を付与することで正極板4に加わる応力を緩和することで、図1に示すのと同じように正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることができる。   By relieving the stress applied to the positive electrode plate 4 by providing the exposed portions 3a and 3b of the positive electrode current collector 1 uniformly formed in the longitudinal direction with the effect of relieving the stress accompanying expansion and contraction, In the same manner as shown in FIG. 1, the expansion / contraction degrees C and D of the positive electrode plate 4 and the expansion / contraction degrees A and B of the negative electrode plate 8 can be made close to each other.

なお、負極板8における負極合剤層6a,6bの一部に負極集電体1の露出部(図示せず)を形成して膨張収縮に伴う応力を緩和させる効果を付与し負極板8に加わる応力を緩和することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。   In addition, an exposed portion (not shown) of the negative electrode current collector 1 is formed on a part of the negative electrode mixture layers 6 a and 6 b in the negative electrode plate 8 to impart an effect of relieving stress accompanying expansion and contraction. By relaxing the applied stress, it is also possible to bring the expansion and contraction degrees C and D of the positive electrode plate 4 close to the expansion and contraction degrees A and B of the negative electrode plate 8.

また、本発明の別の非水系二次電池用電極板は、図8に示すように正極板4と負極板8の伸縮度を互いに近づける第8の構成として、正極集電体1または負極集電体5の露出部3a,3bの幅を捲回方向に対して段階的に変えることで実現できる。   In addition, another electrode plate for a non-aqueous secondary battery according to the present invention has a positive current collector 1 or a negative electrode current collector as an eighth configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is close to each other as shown in FIG. This can be realized by changing the width of the exposed portions 3a and 3b of the electric body 5 stepwise with respect to the winding direction.

具体的な構成の一例としては、図8に示すように正極集電体1の長手方向に対して垂直方向の表面に捲き始めから順に幅W1>W2>W3である正極集電体1の露出部3aを、裏面に表面と同位相で捲き始めから順に幅W1>W2>W3である正極集電体1の露出部3bを捲回方向に対して段階的に形成している。   As an example of a specific configuration, as shown in FIG. 8, exposure of the positive electrode current collector 1 having the width W1> W2> W3 in order from the start of spreading on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1. The exposed portion 3b of the positive electrode current collector 1 having a width W1> W2> W3 is formed in a stepwise manner in the winding direction in order from the beginning of the portion 3a on the back surface in the same phase as the front surface.

この構成とすることで、E方向に渦巻状に捲回して図12に示す電極群10を構成した際に曲率の違いにより捲き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この捲き始めの負極板8と対極する捲き始めの正極板4に捲き終わりの正極板4よりも幅が広い正極集電体1の露出部3a,3bを形成したことで電極群10における正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることにな
る。
With this configuration, when the electrode group 10 shown in FIG. 12 is formed by spirally winding in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding due to the difference in curvature than the negative electrode plate 8 at the end of winding. However, the exposed portions 3a and 3b of the positive electrode current collector 1 having a wider width than the positive electrode plate 4 at the end of firing are formed on the positive electrode plate 4 at the start of operation opposite to the negative electrode plate 8 at the start of firing. The expansion and contraction of the positive electrode plate 4 in the group 10 is promoted, and the stress applied to the positive electrode plate 4 is more effectively relaxed.

この正極板4において正極合剤層2a,2bの一部に上述した正極集電体1の露出部3a,3bを形成するためには、図8に示すように正極集電体1の長手方向に対して垂直方向の表裏面に上述した正極集電体1の露出部3a,3bを捲き始めから順に幅W1>W2>W3で捲回方向に対して段階的に間欠塗布して形成する第1の工程を経て作製される。   In order to form the exposed portions 3a and 3b of the positive electrode current collector 1 described above in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the longitudinal direction of the positive electrode current collector 1 as shown in FIG. The first and second exposed portions 3a and 3b of the positive electrode current collector 1 are formed on the front and rear surfaces in the vertical direction by applying intermittently stepwise with respect to the winding direction in order of width W1> W2> W3 from the beginning. It is manufactured through one step.

次いで、この正極合剤塗料が乾燥されたのち、所定厚みにプレスされる第2の工程を経て、正極板4の長手方向の少なくとも一箇所以上に正極集電体1の露出部3a,3bが捲回方向に対して段階的に形成される。   Next, after the positive electrode mixture paint is dried, the exposed portions 3a and 3b of the positive electrode current collector 1 are provided in at least one place in the longitudinal direction of the positive electrode plate 4 through a second step of pressing to a predetermined thickness. It is formed stepwise with respect to the winding direction.

なお、負極板8における負極合剤層6a,6bの一部に負極集電体1の露出部(図示せず)を形成して膨張収縮に伴う応力を緩和させる効果を付与し負極板8に加わる応力を緩和することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。   In addition, an exposed portion (not shown) of the negative electrode current collector 1 is formed on a part of the negative electrode mixture layers 6 a and 6 b in the negative electrode plate 8 to impart an effect of relieving stress accompanying expansion and contraction. By relaxing the applied stress, it is also possible to bring the expansion and contraction degrees C and D of the positive electrode plate 4 close to the expansion and contraction degrees A and B of the negative electrode plate 8.

また、本発明の別の非水系二次電池用電極板は、図9に示すように正極板4と負極板8の伸縮度を互いに近づける第9の構成として、正極板4または負極板8の少なくともいずれか一方に正極集電体1または負極集電体5の露出部3a,3bのピッチを捲回方向に対して段階的に変えることで実現できる。   Further, another electrode plate for a non-aqueous secondary battery according to the present invention has a ninth configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. This can be realized by changing the pitch of the exposed portions 3a and 3b of the positive electrode current collector 1 or the negative electrode current collector 5 stepwise in at least one of the winding directions.

具体的な構成の一例としては、図9に示すように正極集電体1の長手方向に対して垂直方向の表面は正極合剤層2aの一部に正極集電体1の露出部3aを捲き始めから順にピッチP1<P2<P3の間隔で、裏面は正極合剤層2bの一部に表面と同位相の正極集電体1の露出部3bを捲き始めから順にピッチP1<P2<P3の間隔で捲回方向に対して段階的に形成している。   As an example of a specific configuration, as shown in FIG. 9, the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 has an exposed portion 3a of the positive electrode current collector 1 on a part of the positive electrode mixture layer 2a. The pitch P1 <P2 <P3 in order from the beginning of the firing, with the pitch P1 <P2 <P3 in order and the back surface of the exposed portion 3b of the positive electrode current collector 1 in phase with the surface of a part of the positive electrode mixture layer 2b. Are formed stepwise with respect to the winding direction.

この構成とすることで、E方向に渦巻状に捲回して図13に示す電極群10を構成した際に曲率の違いにより捲き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この捲き始めの負極板8と対極する捲き始めの正極板4に捲き終わりの正極板4より正極集電体1の露出部3a,3bを狭いピッチで形成したことで電極群10における正極板4の伸縮が促進され正極板4に加わる応力がより効果的に緩和されることになる。   With this configuration, when the electrode group 10 shown in FIG. 13 is formed by winding in a spiral shape in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding due to the difference in curvature than the negative electrode plate 8 at the end of winding. In other words, the exposed portions 3a and 3b of the positive electrode current collector 1 are formed at a narrower pitch than the positive electrode plate 4 at the end of firing on the positive electrode plate 4 at the start of firing opposite to the negative electrode plate 8 at the beginning of firing. 10, the expansion and contraction of the positive electrode plate 4 is promoted, and the stress applied to the positive electrode plate 4 is more effectively relaxed.

この正極板4において正極合剤層2a,2bの一部に上述した正極集電体1の露出部3a,3bを形成するためには、図9に示すように正極集電体1の長手方向の少なくとも一箇所以上に、上述した正極集電体1の露出部3a,3bを捲き始めから順にピッチP1<P2<P3の間隔で捲回方向に対して段階的に間欠塗布して形成する第1の工程を経て作製される。   In order to form the exposed portions 3a and 3b of the positive electrode current collector 1 described above in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, as shown in FIG. 9, the longitudinal direction of the positive electrode current collector 1 The exposed portions 3a and 3b of the positive electrode current collector 1 described above are formed at least at one or more locations by applying intermittently stepwise in the winding direction at intervals of pitch P1 <P2 <P3 from the beginning. It is manufactured through one step.

次いで、この正極合剤塗料が乾燥されたのち、所定厚みにプレスされる第2の工程を経て、正極板4の長手方向の少なくとも一箇所以上に正極集電体1の露出部3a,3bが捲回方向に対して段階的に形成される。   Next, after the positive electrode mixture paint is dried, the exposed portions 3a and 3b of the positive electrode current collector 1 are provided in at least one place in the longitudinal direction of the positive electrode plate 4 through a second step of pressing to a predetermined thickness. It is formed stepwise with respect to the winding direction.

なお、負極板8における負極合剤層6a,6bの一部に負極集電体1の露出部(図示せず)を形成して膨張収縮に伴う応力を緩和させる効果を付与し負極板8に加わる応力を緩和することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。   In addition, an exposed portion (not shown) of the negative electrode current collector 1 is formed on a part of the negative electrode mixture layers 6 a and 6 b in the negative electrode plate 8 to impart an effect of relieving stress accompanying expansion and contraction. By relaxing the applied stress, it is also possible to bring the expansion and contraction degrees C and D of the positive electrode plate 4 close to the expansion and contraction degrees A and B of the negative electrode plate 8.

また、本発明の別の非水系二次電池用電極板は、図10に示すように正極板4と負極板
8の伸縮度を互いに近づける第10の構成として、電極群10の正極板4または負極板8における外周側にある正極集電体1または負極集電体5の露出部3aの幅W4と内周側にある正極集電体1または負極集電体5の露出部3bの幅W5が異なるように正極合塗料および負極合剤塗料を塗布することで実現できる。
In addition, another electrode plate for a non-aqueous secondary battery according to the present invention has a tenth configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other as shown in FIG. The width W4 of the exposed portion 3a of the positive electrode current collector 1 or negative electrode current collector 5 on the outer peripheral side of the negative electrode plate 8 and the width W5 of the exposed portion 3b of the positive electrode current collector 1 or negative electrode current collector 5 on the inner peripheral side. Can be realized by applying a positive electrode mixture and a negative electrode mixture.

具体的な構成の一例としては、図10に示すように正極集電体1の表面に幅W4の正極集電体1の露出部3aを、裏面にW5>W4である幅W5の正極集電体1の露出部3bを長手方向に対して一様に形成している。   As an example of a specific configuration, as shown in FIG. 10, the exposed portion 3a of the positive electrode current collector 1 having a width W4 is formed on the surface of the positive electrode current collector 1, and the positive electrode current collector having a width W5 having W5> W4 on the back surface. The exposed portion 3b of the body 1 is uniformly formed in the longitudinal direction.

この構成とすることで、E方向に渦巻状に捲回して電極群を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が加わることになるが、この外周側の負極合剤層6bと対極する正極板4の内周側にある正極集電体1の露出部3bの幅W5を外周側にある正極集電体1の露出部3aの幅W4よりも広く形成することで正極板4の伸縮が促進され正極板4に加わる応力が緩和されることになる。   With this configuration, when the electrode group is formed by spirally winding in the E direction, a tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the inner peripheral side Although the compressive stress is applied to the negative electrode mixture layer 6b, the width W5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side is set. By forming it wider than the width W4 of the exposed portion 3a of the positive electrode current collector 1 on the outer peripheral side, the expansion and contraction of the positive electrode plate 4 is promoted, and the stress applied to the positive electrode plate 4 is relieved.

正極板4において正極合剤層2a,2bの一部に上述した正極集電体1の露出部3a,3bを形成するために、図10に示すように正極集電体1の表面に幅W4の正極集電体1の露出部3a、裏面にW5>W4である幅W5の正極集電体1の露出部3bを長手方向に対して一様に間欠塗布して形成する第1の工程を経て作製される。   In order to form the above-described exposed portions 3a and 3b of the positive electrode current collector 1 in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, a width W4 is formed on the surface of the positive electrode current collector 1 as shown in FIG. A first step of forming the exposed portion 3a of the positive electrode current collector 1 and the exposed portion 3b of the positive electrode current collector 1 having a width W5 satisfying W5> W4 on the back surface thereof by intermittently applying uniformly in the longitudinal direction. It is made after.

次いで、この正極合剤塗料が乾燥されたのち、所定厚みにプレスされる第2の工程を経て、正極板4の長手方向に内周側にある正極集電体1の露出部3bの幅W5が外周側にある正極集電体1の露出部3aの幅W4よりも広くなるように正極集電体1の露出部3a,3bが長手方向に対して一様に形成される。   Next, after the positive electrode mixture paint is dried, the width W5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is passed through a second step of pressing to a predetermined thickness. The exposed portions 3a and 3b of the positive electrode current collector 1 are uniformly formed in the longitudinal direction so that the width W4 is wider than the width W4 of the exposed portion 3a of the positive electrode current collector 1 on the outer peripheral side.

なお、負極板8における負極合剤層6a,6bの一部に負極集電体1の露出部(図示せず)を形成して負極板8の膨張収縮を抑制し正極板4に加わる応力を緩和することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。   Note that an exposed portion (not shown) of the negative electrode current collector 1 is formed in a part of the negative electrode mixture layers 6 a and 6 b in the negative electrode plate 8 to suppress the expansion and contraction of the negative electrode plate 8 and to apply stress to the positive electrode plate 4. By relaxing, it is also possible to make the expansion degrees C and D of the positive electrode plate 4 close to the expansion degrees A and B of the negative electrode plate 8.

また、本発明の別の非水系二次電池用電極板は、図11に示すように正極板4と負極板8の伸縮度を互いに近づける第11の構成として、電極群10の正極板4または負極板8における外周側にある正極集電体1または負極集電体5の露出部3aのピッチP4と内周側にある正極集電体1または負極集電体5の露出部3bのピッチP5が異なるように正極合塗料および負極合剤塗料を塗布することで実現できる。   In addition, another electrode plate for a non-aqueous secondary battery according to the present invention has an eleventh configuration in which the expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 are close to each other as shown in FIG. The pitch P4 of the exposed portion 3a of the positive electrode current collector 1 or negative electrode current collector 5 on the outer peripheral side of the negative electrode plate 8 and the pitch P5 of the exposed portion 3b of the positive electrode current collector 1 or negative electrode current collector 5 on the inner peripheral side. Can be realized by applying a positive electrode mixture and a negative electrode mixture.

具体的な構成の一例としては、図11に示すように正極集電体1の表面に正極集電体1の露出部3aをP4のピッチで、裏面にP5<P4であるピッチP5で正極集電体1の露出部3bを長手方向に対して一様に形成している。   As an example of a specific configuration, as shown in FIG. 11, the exposed portion 3a of the positive electrode current collector 1 is formed on the surface of the positive electrode current collector 1 with a pitch of P4, and the back surface is collected with a pitch P5 of P5 <P4. The exposed portion 3b of the electric body 1 is formed uniformly with respect to the longitudinal direction.

この構成とすることで、渦巻状に捲回して電極群を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が加わることになるが、この外周側の負極合剤層6bと対極する正極板4の内周側にある正極集電体1の露出部3bのピッチP5を外周側にある正極集電体1の露出部3aのピッチP4よりも狭く形成することで正極板4の伸縮が促進され正極板4に加わる応力が緩和されることになる。   With this configuration, when the electrode group is formed by winding in a spiral shape, tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the negative electrode mixture on the inner peripheral side is applied. Although compression stress is applied to the layer 6b, the pitch P5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side is set on the outer peripheral side. By forming it narrower than the pitch P4 of the exposed portion 3a of a certain positive electrode current collector 1, the expansion and contraction of the positive electrode plate 4 is promoted, and the stress applied to the positive electrode plate 4 is relieved.

この正極板4において正極合剤層2a,2bの一部に上述した正極集電体1の露出部3a,3bを形成するために、図11に示すように正極集電体1の表面に正極集電体1の露出部3aをP4のピッチで、裏面にP5<P4であるピッチP5で正極集電体1の露出部
3bを長手方向に対して一様に間欠塗布して形成する第1の工程を経て作製される。
In order to form the above-described exposed portions 3a and 3b of the positive electrode current collector 1 in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the positive electrode current collector 1 has a positive electrode on the surface thereof as shown in FIG. First, the exposed portion 3a of the current collector 1 is formed by intermittently uniformly applying the exposed portion 3b of the positive electrode current collector 1 with respect to the longitudinal direction at a pitch P5 of P4 and P5 <P4 on the back surface. It is produced through the process.

次いで、この正極合剤塗料が乾燥されたのち、所定厚みにプレスされる第2の工程を経て、正極板4の長手方向に内周側にある正極集電体1の露出部3bのピッチP5が外周側にある正極集電体1の露出部3aのピッチP4よりも狭くなるように正極集電体1の露出部3a,3bが長手方向に対して一様に形成される。   Next, after the positive electrode mixture paint is dried, the pitch P5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is passed through a second step of pressing to a predetermined thickness. The exposed portions 3a and 3b of the positive electrode current collector 1 are uniformly formed with respect to the longitudinal direction so as to be narrower than the pitch P4 of the exposed portions 3a of the positive electrode current collector 1 on the outer peripheral side.

なお、負極板8における負極合剤層6a,6bの一部に負極集電体1の露出部(図示せず)を形成して負極板8の膨張収縮を抑制し正極板4に加わる応力を緩和することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。   Note that an exposed portion (not shown) of the negative electrode current collector 1 is formed in a part of the negative electrode mixture layers 6 a and 6 b in the negative electrode plate 8 to suppress the expansion and contraction of the negative electrode plate 8 and to apply stress to the positive electrode plate 4. By relaxing, it is also possible to make the expansion degrees C and D of the positive electrode plate 4 close to the expansion degrees A and B of the negative electrode plate 8.

さらに、本発明の別の非水系二次電池用電極板は、正極板4と負極板8の伸縮度を互いに近づける第12の構成として、図7に示すように正極集電体1または負極集電体5の少なくともいずれか一方に露出部3a,3bを長手方向に対して一様に設けるか、または図8に示すように正極集電体1または負極集電体5の露出部3a,3bの幅を捲回方向に対して段階的に変えるか、または図9に示すように正極板4または負極板8の少なくともいずれか一方に正極集電体1または負極集電体5の露出部3a,3bのピッチを捲回方向に対して段階的に変えるか、または図10に示すように電極群10の正極板4または負極板8における外周側にある正極集電体1または負極集電体5の露出部3aの幅W4と内周側にある正極集電体1または負極集電体5の露出部3bの幅W5が異なるように正極合塗料および負極合剤塗料を塗布するか、または図11に示すように電極群10の正極板4または負極板8における外周側にある正極集電体1または負極集電体5の露出部3aのピッチP4と内周側にある正極集電体1または負極集電体5の露出部3bのピッチP5が異なるように正極合塗料および負極合剤塗料を塗布するかのいずれか二つ以上を組み合わせて構成することも同様に可能である。   Furthermore, another electrode plate for a non-aqueous secondary battery according to the present invention has a twelfth configuration in which the degree of expansion and contraction of the positive electrode plate 4 and the negative electrode plate 8 is made closer to each other, as shown in FIG. Exposed portions 3a and 3b are uniformly provided in the longitudinal direction on at least one of the current collectors 5, or exposed portions 3a and 3b of the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. Or the exposed portion 3a of the positive electrode current collector 1 or the negative electrode current collector 5 on at least one of the positive electrode plate 4 and the negative electrode plate 8 as shown in FIG. , 3b is changed stepwise with respect to the winding direction, or the positive electrode current collector 1 or the negative electrode current collector on the outer peripheral side of the positive electrode plate 4 or the negative electrode plate 8 of the electrode group 10 as shown in FIG. 5 of the exposed portion 3a and the positive electrode current collector 1 or the negative electrode on the inner peripheral side The positive electrode mixture paint and the negative electrode mixture paint are applied so that the width W5 of the exposed portion 3b of the electric body 5 is different, or is on the outer peripheral side of the positive electrode plate 4 or the negative electrode plate 8 of the electrode group 10 as shown in FIG. The positive electrode composite paint and the positive electrode paint so that the pitch P4 of the exposed portion 3a of the positive electrode current collector 1 or negative electrode current collector 5 and the pitch P5 of the exposed portion 3b of the positive electrode current collector 1 or negative electrode current collector 5 on the inner peripheral side are different. Similarly, any two or more of the negative electrode mixture paints may be applied in combination.

以下、本発明の具体的な一実施例として、正極合剤層に厚みの薄い箇所を長手方向に対して一様に設けた実施例について図面を参照しながらさらに詳しく説明する。   Hereinafter, as a specific example of the present invention, an example in which thin portions of the positive electrode mixture layer are uniformly provided in the longitudinal direction will be described in more detail with reference to the drawings.

まず、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。   First, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material Was mixed with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader to prepare a positive electrode mixture paint.

次いで、図2に示すようにこの正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの厚みが薄い箇所3cを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの厚みが薄い箇所3dを等ピッチで長手方向に対して一様に設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、かつ正極合剤層2a,2bの厚みが薄い箇所3c,3dの厚みが65μmとなる正極板4を作製した。   Next, as shown in FIG. 2, the positive electrode mixture paint has a width on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. A portion 3c having a small thickness of 5 mm is formed at an equal pitch, and a portion 3d having a thickness of 5 mm having the same phase as the front surface on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 is formed at an equal pitch in the longitudinal direction. On the other hand, after uniform coating, drying and drying, the thickness of the positive electrode mixture layers 2a and 2b on one side is 100 μm and the thickness of the positive electrode mixture layers 2a and 2b is 3 μm and 3d is 65 μm. A positive electrode plate 4 was prepared.

さらに、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmで厚みが65μmの正極合剤層2aの厚みが薄い箇所3cを、また裏面に表面と同位相に幅が5mmで厚みが65μmの正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Furthermore, the positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the positive electrode mixture layers 2a and 2b on one side have a thickness of 75 μm, and the surface has a width of 5 mm and a thickness of 65 μm. The portion 3c where the thickness of the layer 2a is thin, and the portion 3d where the thickness of the positive electrode mixture layer 2b whose width is 5 mm and thickness is 65 μm in the same phase as the front surface are thin are uniformly formed in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、負極の活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエ
ン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。
On the other hand, 100 parts by weight of artificial graphite as the active material of the negative electrode, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder with respect to 100 parts by weight of the active material ( 1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water, and agitation in a double-arm kneader. An agent paint was prepared.

次いで、図2に示すようにこの負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。   Next, as shown in FIG. 2, this negative electrode mixture paint was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm, dried, and then negative electrode on one side. A negative electrode plate 8 in which the thickness of the mixture layers 6a and 6b was 110 μm was produced.

さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例1とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して垂直方向の表面に正極合剤層2aの厚みが薄い箇所3c、裏面に表面と同幅かつ同位相の正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成したことで、正極板4を伸縮し易くし正極板4に加わる応力を長手方向に効果的に分散させるとともに、この正極合剤層2a,2bの厚みが薄い箇所3c,3dと対向する位置の負極板8の伸縮による体積変化を抑制することができたために、良好な電池特性を維持できたものと考えられる。   This is because the positive electrode mixture layer 2a has a thin portion 3c on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and the back surface has the same width and phase as the positive electrode mixture layer 2b. By forming the portion 3d uniformly with respect to the longitudinal direction, the positive electrode plate 4 can be easily stretched and the stress applied to the positive electrode plate 4 is effectively dispersed in the longitudinal direction, and the positive electrode mixture layers 2a and 2b It is considered that good battery characteristics could be maintained because the volume change due to expansion and contraction of the negative electrode plate 8 at a position facing the thin portions 3c and 3d could be suppressed.

なお、実施例1においては表面の正極合剤層2aの厚みが薄い箇所3cと裏面の正極合剤層2bの厚みが薄い箇所3dを同位相で形成したが、正極板4の表裏面で位相をずらせて厚みが薄い箇所3c,3dを形成することも同様に可能である。   In Example 1, the portion 3c where the thickness of the positive electrode mixture layer 2a on the front surface is thin and the portion 3d where the thickness of the positive electrode mixture layer 2b on the back surface is thin are formed in the same phase. It is also possible to form the portions 3c and 3d having a small thickness by shifting them.

本発明の一実施例として、正極合剤層の厚みが薄い箇所の幅を捲回方向に対して段階的に狭くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, an embodiment in which the width of a portion where the thickness of the positive electrode mixture layer is thin is reduced stepwise with respect to the winding direction will be described with reference to the drawings.

まず、図3に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方
向の表面に捲き始めからW1=5mm>W2=4.5mm>W3=4.0mmと順次幅を狭くした正極合剤層2aの厚みが薄い箇所3cを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で捲き始めからW1=5mm>W2=4.5mm>W3=4.0mmと順次幅を狭くした正極合剤層2bの厚みが薄い箇所3dを等ピッチで捲回方向に対して段階的に設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、かつ正極合剤層2a,2bの厚みが薄い箇所3a,3bの厚みが75μmとなる正極板4を作製した。
First, as shown in FIG. 3, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. W1 = 5 mm> W2 = 4.5 mm> W3 = 4.0 mm from the beginning of spreading on the surface in the vertical direction, and the positive electrode mixture layer 2a, whose width is successively narrowed, is formed at an equal pitch, and the positive electrode current collector The thickness of the positive electrode mixture layer 2b, in which W1 = 5 mm> W2 = 4.5 mm> W3 = 4.0 mm, and the width of the positive electrode mixture layer 2b are sequentially narrowed from the beginning in the same phase as the front surface on the back surface perpendicular to the longitudinal direction of 1. The portions 3d are provided stepwise in the winding direction at equal pitches, applied, dried, and then the thickness of the positive electrode mixture layers 2a, 2b on one side is 100 μm, and the thickness of the positive electrode mixture layers 2a, 2b The positive electrode plate 4 in which the thickness of the thin portions 3a and 3b is 75 μm is prepared. It was.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面にW1=5mm>W2=4.5mm>W3=4.0mmの正極合剤層2aの厚みが薄い箇所3cを、また裏面に表面と同位相でW1=5mm>W2=4.5mm>W3=4.0mmの正極合剤層2bの厚みが薄い箇所3dを捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the thickness of the positive electrode mixture layers 2a and 2b on one side is 75 μm and the surface has W1 = 5 mm> W2 = 4.5 mm> W3. = 4.0 mm of the positive electrode mixture layer 2 a having a small thickness 3 c, and the back surface of the positive electrode mixture layer 2 b having the same phase as the front surface W 1 = 5 mm> W 2 = 4.5 mm> W 3 = 4.0 mm A thin portion 3d was formed stepwise in the winding direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図3に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cu:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, after applying the negative electrode mixture paint similar to that of Example 1 to the negative electrode current collector 5 made of a tough pitch copper foil (Cu: 99.9%) having a thickness of 10 μm and drying as shown in FIG. A negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例2とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 2.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して垂直方向の表面に捲き始めから順次幅を狭くした厚みが薄い箇所3cを等ピッチで、また裏面に表面と同位相で捲き始めから順次幅を狭くした厚みが薄い箇所3dを等ピッチで捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the thin portions 3c, which are narrowed from the beginning in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1, are thinned at equal pitches, and the width is sequentially increased from the beginning in the same phase as the surface. Are formed in a stepwise manner in the winding direction at equal pitches, so that the positive electrode mixture layers 2a and 2b at the beginning of winding and the positive electrode mixture layer 2a at the end of winding are formed. It is considered that the stress difference due to expansion and contraction due to the difference in curvature from 2b could be alleviated and good battery characteristics could be maintained.

なお、実施例2においては表面の正極合剤層2aの厚みが薄い箇所3cと裏面の正極合
剤層2bの厚みが薄い箇所3dを同位相で形成したが、正極板4の表裏面で位相をずらせて厚みが薄い箇所3c,3dを形成することも同様に可能である。
In Example 2, the portion 3c where the thickness of the positive electrode mixture layer 2a on the front surface is thin and the portion 3d where the thickness of the positive electrode mixture layer 2b on the back surface is thin are formed in the same phase. It is also possible to form the portions 3c and 3d having a small thickness by shifting them.

本発明の一実施例として、正極合剤層の厚みが薄い箇所のピッチを捲回方向に対して段階的に広くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, an embodiment in which the pitch of the portion where the thickness of the positive electrode mixture layer is thin is increased stepwise in the winding direction will be described with reference to the drawings.

まず、図4に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極合剤層2aの厚みが薄い箇所3cを捲き始めからP1=20mm<P2=30mm<P3=40mmのピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの正極合剤層2bの厚みが薄い箇所3dを捲き始めからP1=20mm<P2=30mm<P3=40mmのピッチで設けて捲回方向に対して段階的に塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、かつ正極合剤層2a,2bの厚みが薄い箇所3c,3dの厚みが75μmとなる正極板4を作製した。   First, as shown in FIG. 4, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. P1 = 20 mm <P2 = 30 mm <P3 = 40 mm pitch from the beginning of spreading a portion 3c where the thickness of the positive electrode mixture layer 2a having a width of 5 mm is thin on the surface in the vertical direction, and with respect to the longitudinal direction of the positive electrode current collector 1 Then, a portion 3d of the positive electrode mixture layer 2b having the same phase as the front surface and a width of 5 mm is thinly provided on the back surface in the vertical direction at a pitch of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm from the start. On the other hand, after being applied stepwise and dried, the thickness of the positive electrode mixture layers 2a, 2b on one side is 100 μm, and the thickness of the portions 3c, 3d where the positive electrode mixture layers 2a, 2b are thin is 75 μm. A positive electrode plate 4 was produced.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの正極合剤層2aの厚みが薄い箇所3cをP1=20mm<P2=30mm<P3=40mmのピッチで、また裏面に表面と同位相で幅が5mmの正極合剤層2bの厚みが薄い箇所3dをP1=20mm<P2=30mm<P3=40mmのピッチで捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, whereby the thickness of the positive electrode mixture layer 2a, 2b on one side is 75 μm and the thickness of the positive electrode mixture layer 2a is 5 mm wide on the surface. The thin portion 3c has a pitch of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm, and the thin portion 3d of the positive electrode mixture layer 2b having the same phase as the front surface and a width of 5 mm on the back surface has a thickness of P1 = 20 mm <P2 = It formed in steps with respect to the winding direction at a pitch of 30 mm <P3 = 40 mm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図4に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 4, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例3とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 3.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して垂直方向の表面に厚みが薄い箇所3cを捲き始めから順次ピッチを広くして、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で厚みが薄い箇所3dを捲き始めから順次ピッチを広くし捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the pitch is gradually increased from the beginning of the rolling of the thin portion 3c on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1. By forming a thin portion 3d having the same phase as the front surface on the back surface and gradually increasing the pitch from the beginning and forming it stepwise in the winding direction, the positive electrode mixture layers 2a and 2b at the beginning of winding in the electrode group 10 and It is considered that the stress difference due to expansion and contraction due to the difference in curvature with the positive electrode mixture layers 2a and 2b at the end of rolling can be alleviated, and good battery characteristics can be maintained.

なお、実施例3においては表面の正極合剤層2aの厚みが薄い箇所3cと裏面の正極合剤層2bの厚みが薄い箇所3dを同位相で形成したが、正極板4の表裏面で位相をずらせて厚みが薄い箇所3c,3dを形成することも同様に可能である。   In Example 3, the portion 3c where the thickness of the positive electrode mixture layer 2a on the front surface is thin and the portion 3d where the thickness of the positive electrode mixture layer 2b on the back surface is thin are formed in the same phase. It is also possible to form the portions 3c and 3d having a small thickness by shifting them.

本発明の一実施例として、渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所の幅を外周側にある正極合剤層の厚みが薄い箇所の幅よりも広くした実施例について図面を参照しながら説明する。   As one embodiment of the present invention, the width of the portion where the thickness of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group is thinner than the width of the portion where the thickness of the positive electrode mixture layer on the outer peripheral side is thinner. An embodiment which is also widened will be described with reference to the drawings.

まず、図5に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅W4が5mmの正極合剤層2aの厚みが薄い箇所3cを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅W5が6mmの正極合剤層2bの厚みが薄い箇所3dを等ピッチで設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、かつ正極合剤層2a,2bの厚みが薄い箇所3c,3dの厚みが75μmとなる正極板4を作製した。   First, as shown in FIG. 5, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. A portion 3c where the thickness of the positive electrode mixture layer 2a having a width W4 of 5 mm is thin on the surface in the vertical direction at an equal pitch, and a width W5 in the same phase as the surface on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 The positive electrode mixture layer 2b having a thickness of 6 mm is provided with a thin portion 3d at an equal pitch, applied, dried, and then the positive electrode mixture layer 2a, 2b on one side has a thickness of 100 μm, and the positive electrode mixture layer 2a, A positive electrode plate 4 in which the thicknesses of the portions 3c and 3d where the thickness 2b is thin was 75 μm was produced.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの正極合剤層2aの厚みが薄い箇所3cを、また裏面に表面と同位相で幅が6mmの正極合剤層2bの厚みが薄い箇所3dを形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, whereby the thickness of the positive electrode mixture layer 2a, 2b on one side is 75 μm and the thickness of the positive electrode mixture layer 2a is 5 mm wide on the surface. A thin portion 3c was formed, and a thin portion 3d of the positive electrode mixture layer 2b having the same phase as the front surface and a width of 6 mm was formed on the back surface. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図5に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 5, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次
電池17を実施例4とした。
Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 4.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の表面に幅W4の正極合剤層2aの厚みが薄い箇所3cを、裏面にW5>W4である幅W5の正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because a portion 3c where the thickness of the positive electrode mixture layer 2a having a width W4 is thin is formed on the surface of the positive electrode current collector 1, and a portion 3d where the thickness of the positive electrode mixture layer 2b having a width W5 of W5> W4 is thin is formed on the back surface. By forming the electrode group 10 uniformly with respect to the direction, expansion and contraction due to a difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side when the electrode group 10 is configured. It is considered that the stress difference caused by the above can be alleviated and good battery characteristics can be maintained.

なお、実施例4においては表面の正極合剤層2aの厚みが薄い箇所3cと裏面の正極合剤層2bの厚みが薄い箇所3dを同位相で形成したが、正極板4の表裏面で位相をずらせて厚みが薄い箇所3c,3dを形成することも同様に可能である。   In Example 4, the portion 3c where the thickness of the positive electrode mixture layer 2a on the front surface is thin and the portion 3d where the thickness of the positive electrode mixture layer 2b on the back surface is thin are formed in the same phase. It is also possible to form the portions 3c and 3d having a small thickness by shifting them.

本発明の一実施例として、渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所のピッチを外周側にある正極合剤層の厚みが薄い箇所のピッチよりも狭くした実施例について図面を参照しながら説明する。   As an example of the present invention, the pitch of the portion where the thickness of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group is thinner than the pitch of the portion where the thickness of the positive electrode mixture layer on the outer peripheral side is thinner. An embodiment with a narrower width will be described with reference to the drawings.

まず、図6に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極合剤層2aの厚みが薄い箇所3cを30mmのピッチP4で、また正極集電体1の長手方向に対して垂直方向の裏面に幅が5mmの正極合剤層2bの厚みが薄い箇所3dを15mmのピッチP5で設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、かつ正極合剤層2a,2bの厚みが薄い箇所3c,3dの厚みが75μmとなる正極板4を作製した。   First, as shown in FIG. 6, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The positive electrode mixture layer 2a having a width of 5 mm on the surface in the vertical direction has a thin portion 3c with a pitch P4 of 30 mm, and the positive electrode mixture having a width of 5 mm on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1. The portion 3d where the thickness of the agent layer 2b is thin is provided with a pitch P5 of 15 mm, and after coating and drying, the thickness of the positive electrode mixture layers 2a, 2b on one side is 100 μm and the thickness of the positive electrode mixture layers 2a, 2b The positive electrode plate 4 in which the thicknesses of the thin portions 3c and 3d were 75 μm was produced.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの正極合剤層2aの厚みが薄い箇所3cを30mmのピッチP4で、また裏面に幅が5mmの正極合剤層2bの厚みが薄い箇所3dを15mmのピッチP5で形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, whereby the thickness of the positive electrode mixture layer 2a, 2b on one side is 75 μm and the thickness of the positive electrode mixture layer 2a is 5 mm wide on the surface. The thin part 3c was formed with a pitch P4 of 30 mm, and the thin part 3d of the positive electrode mixture layer 2b with a width of 5 mm was formed on the back surface with a pitch P5 of 15 mm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図6に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 6, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極
群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。
The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例5とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 5.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の表面に正極合剤層2aの厚みが薄い箇所3cをP4のピッチで、裏面にP5<P4であるピッチP5で正極合剤層2bの厚みが薄い箇所3dを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because a portion 3c where the thickness of the positive electrode mixture layer 2a is thin on the surface of the positive electrode current collector 1 is a pitch P4, and a portion 3d where the thickness of the positive electrode mixture layer 2b is thin at a pitch P5 where P5 <P4. By forming the electrode group 10 uniformly with respect to the longitudinal direction, expansion is caused by a difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side. It is considered that the stress difference caused by the shrinkage could be relaxed, and good battery characteristics could be maintained.

なお、実施例5においては表面の正極合剤層2aの厚みが薄い箇所3cと裏面の正極合剤層2bの厚みが薄い箇所3dを同じ幅で形成したが、表裏面または同一面の長手方向で幅を変えることも同様に可能である。   In Example 5, the portion 3c where the thickness of the positive electrode mixture layer 2a on the front surface is thin and the portion 3d where the thickness of the positive electrode mixture layer 2b on the back surface is thin are formed with the same width. It is possible to change the width as well.

本発明の一実施例として、正極集電体に露出部を長手方向に対して一様に設けた実施例について図面を参照しながら説明する。   As an embodiment of the present invention, an embodiment in which an exposed portion is provided uniformly in the longitudinal direction on a positive electrode current collector will be described with reference to the drawings.

まず、図7に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの露出部3bを等ピッチで長手方向に対して一様に設けて間欠塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   First, as shown in FIG. 7, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. An exposed portion 3a having a width of 5 mm is formed on the surface in the vertical direction at an equal pitch, and an exposed portion 3b having the same phase as the surface is formed on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 at an equal pitch. A positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a, 2b on one side was 100 μm after being provided uniformly in the longitudinal direction, intermittently applied, and dried.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの露出部3aを、また裏面に表面と同位相で幅が5mmの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the exposed portion 3a having a thickness of 75 μm on one side and a width of 5 mm on the front surface is formed on the back surface. An exposed portion 3b having the same phase as the surface and a width of 5 mm was uniformly formed in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図7に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして活物質密度を1.6g/ccとし片面側の負極合剤層6a,6bの厚みを85μm(多孔度25%)とした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 7, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the active material density was 1.6 g / cc, and the thickness of the negative electrode mixture layers 6a and 6b on one side was 85 μm (porosity 25%). Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電
極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。
Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例6とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 6.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して一様に露出部3a,3bを設けたことで、この露出部3a,3bが膨張収縮に伴う応力を緩和する効果を発揮して正極板4に加わる応力を緩和し、正極板4の伸縮度を負極板8の伸縮度に近づけることができ、良好な電池特性を維持できたものと考えられる。   This is because the exposed portions 3a and 3b are provided uniformly in the longitudinal direction of the positive electrode current collector 1, so that the exposed portions 3a and 3b exhibit the effect of relieving the stress accompanying expansion and contraction, and the positive electrode plate. It is considered that the stress applied to 4 was relaxed, and the degree of expansion / contraction of the positive electrode plate 4 could be brought close to the degree of expansion / contraction of the negative electrode plate 8, and good battery characteristics could be maintained.

なお、実施例6においては表面の露出部3aと裏面の露出部3bを同位相で形成したが、正極板4の表裏面で位相をずらせて露出部3a,3bを形成することも同様に可能である。また、表面の露出部3aと裏面の露出部3bを等ピッチで形成したが、表裏面または同一面の長手方向でピッチを変えることも同様に可能である。   In Example 6, the exposed portion 3a on the front surface and the exposed portion 3b on the back surface are formed in the same phase, but it is also possible to form the exposed portions 3a and 3b by shifting the phase on the front and back surfaces of the positive electrode plate 4. It is. Moreover, although the exposed portion 3a on the front surface and the exposed portion 3b on the back surface are formed at an equal pitch, it is also possible to change the pitch in the longitudinal direction of the front and back surfaces or the same surface.

さらに、実施例6においては正極集電体1の長手方向に対して一様に露出部3a,3bを設けた構成としたが、これに限定されるものではなく、負極集電体5の長手方向に対して一様に露出部(図示せず)を設けることも同様に可能である。   Furthermore, in Example 6, it was set as the structure which provided the exposed parts 3a and 3b uniformly with respect to the longitudinal direction of the positive electrode collector 1, However, It is not limited to this, The longitudinal direction of the negative electrode collector 5 is set. It is also possible to provide an exposed portion (not shown) uniformly with respect to the direction.

本発明の一実施例として、正極集電体の露出部の幅を捲回方向に対して段階的に狭くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, an embodiment in which the width of the exposed portion of the positive electrode current collector is reduced stepwise in the winding direction will be described with reference to the drawings.

まず、図8に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に捲き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で捲き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3bを等ピッチで捲回方向に対して段階的に設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   First, as shown in FIG. 8, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil having a thickness of 15 μm (Al purity: 99.85%). The exposed portions 3a of the positive electrode current collector 1 whose widths are successively narrowed such that W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the beginning of spreading on the surface in the vertical direction are arranged at an equal pitch, and the positive electrode current collector 1 The exposed portion 3b of the positive electrode current collector 1 whose width is successively narrowed such as W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the beginning of spreading in the same phase as the front surface on the back surface perpendicular to the longitudinal direction, etc. A positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a and 2b on one side became 100 μm after being provided by being applied stepwise in the winding direction at a pitch, and dried.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面にW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3aを、また裏面に表面と同位相でW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3bを捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極
板4を作製した。
Next, the positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the positive electrode mixture layers 2a and 2b on one side have a thickness of 75 μm and the surface has W4 = 5 mm> W5 = 4.5 mm> W6. = Exposed portion 3a of positive electrode current collector 1 of 4.0 mm, and exposed portion 3b of positive electrode current collector 1 of W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm in the same phase as the front surface on the back surface It formed in steps with respect to the winding direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図8に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cu:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 8, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu: 99.9%) having a thickness of 10 μm and dried. A negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例7とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 7.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して垂直方向の表面に捲き始めから順次幅を狭くした正極集電体1の露出部3aを等ピッチで、また裏面に表面と同位相で捲き始めから順次幅を狭くした正極集電体1の露出部3bを等ピッチで捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the exposed portions 3a of the positive electrode current collector 1 whose width is narrowed sequentially from the beginning of the surface on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 are spread at an equal pitch and on the back surface in the same phase as the surface. By forming the exposed portion 3b of the positive electrode current collector 1 having a narrow width from the beginning in a stepwise manner at an equal pitch with respect to the winding direction, the electrode mixture 10 and the positive electrode mixture layers 2a and 2b at the start of winding are spread. It is considered that the stress difference due to expansion and contraction due to the difference in curvature with the positive electrode mixture layers 2a and 2b at the end can be relaxed, and good battery characteristics can be maintained.

なお、実施例6においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3aを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。   In Example 6, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3a of the positive electrode current collector 1 on the back surface were formed in the same phase, but the positive and negative electrodes were shifted in phase on the front and back surfaces of the positive electrode plate 4. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

さらに、実施例7においては正極集電体1の露出部3a,3bの幅を捲回方向に対して段階的に狭くした構成としたが、これに限定されるものではなく、負極集電体5に露出部(図示せず)を設け、この露出部の幅を捲回方向に対して段階的に狭くすることも同様に可能である。   Furthermore, in Example 7, although the width of the exposed portions 3a and 3b of the positive electrode current collector 1 was reduced stepwise with respect to the winding direction, the present invention is not limited to this, and the negative electrode current collector is not limited thereto. It is also possible to provide an exposed portion (not shown) in 5 and to narrow the width of the exposed portion in a stepwise manner in the winding direction.

本発明の一実施例として、正極集電体の露出部のピッチを捲回方向に対して段階的に広くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, an embodiment in which the pitch of the exposed portion of the positive electrode current collector is increased stepwise in the winding direction will be described with reference to the drawings.

まず、図9に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミ
ニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極集電体1の露出部3aを捲き始めからP1=20mm<P2=30mm<P3=40mmのピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの正極集電体1の露出部3bを捲き始めからP1=20mm<P2=30mm<P3=40mmのピッチで設けて捲回方向に対して段階的に塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。
First, as shown in FIG. 9, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. A pitch of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm from the beginning of spreading the exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm on the surface in the vertical direction, and perpendicular to the longitudinal direction of the positive electrode current collector 1 The exposed portion 3b of the positive electrode current collector 1 having the same phase as the front surface and a width of 5 mm is provided on the back surface in the direction at a pitch of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm from the start and stepwise with respect to the winding direction. The positive electrode plate 4 in which the thickness of the positive electrode mixture layers 2a and 2b on one side becomes 100 μm after being applied to and dried.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの正極集電体1の露出部3aをP1=20mm<P2=30mm<P3=40mmのピッチで、また裏面に表面と同位相で幅が5mmの正極集電体1の露出部3bをP1=20mm<P2=30mm<P3=40mmのピッチで捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the positive electrode current collector 1 having a thickness of 75 μm on one side and a width of 5 mm on the surface is exposed. The portion 3a has a pitch of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm, and the exposed portion 3b of the positive electrode current collector 1 having the same phase as the front surface and a width of 5 mm on the back surface has P1 = 20 mm <P2 = 30 mm <P3 = It formed in steps with respect to the winding direction at a pitch of 40 mm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図9に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 9, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例8とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 8.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の長手方向に対して垂直方向の表面に正極集電体1の露出部3aを捲き始めから順次ピッチを広くして、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で正極集電体1の露出部3bを捲き始めから順次ピッチを広くし捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the pitch is gradually increased from the beginning of the exposed portion 3a of the positive electrode current collector 1 on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and with respect to the longitudinal direction of the positive electrode current collector 1. Then, the exposed portion 3b of the positive electrode current collector 1 is formed on the back surface in the vertical direction in the same phase as the front surface, and the pitch is gradually increased from the beginning and formed stepwise in the winding direction. It is considered that the stress difference due to expansion and contraction due to the difference in curvature between the positive electrode mixture layers 2a and 2b and the positive electrode mixture layers 2a and 2b at the end of rolling can be alleviated, and good battery characteristics can be maintained. It is done.

なお、実施例8においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露
出部3bを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。
In Example 8, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed in the same phase. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

さらに、実施例8においては正極集電体1の露出部3a,3bのピッチを捲回方向に対して段階的に広くした構成としたが、これに限定されるものではなく、負極集電体5に露出部(図示せず)を設け、この露出部のピッチを捲回方向に対して段階的に広くすることも同様に可能である。   Further, in Example 8, the pitch of the exposed portions 3a and 3b of the positive electrode current collector 1 is gradually increased with respect to the winding direction. However, the present invention is not limited to this, and the negative electrode current collector is not limited thereto. It is also possible to provide an exposed portion (not shown) in 5 and increase the pitch of the exposed portion stepwise in the winding direction.

本発明の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電体の露出部の幅を外周側にある正極集電体の露出部の幅よりも広くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, the width of the exposed portion of the positive electrode current collector on the inner peripheral side of the positive electrode plate in the spiral electrode group is made wider than the width of the exposed portion of the positive electrode current collector on the outer peripheral side. Examples will be described with reference to the drawings.

まず、図10に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅W4が5mmの正極集電体1の露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅W5が6mmの正極集電体1の露出部3bを等ピッチで設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   First, as shown in FIG. 10, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a of the positive electrode current collector 1 having a width W4 of 5 mm are formed on the surface in the vertical direction at an equal pitch, and the back surface perpendicular to the longitudinal direction of the positive electrode current collector 1 is in phase with the surface and the width W5 is 6 mm. A positive electrode plate 4 was prepared in which the exposed portions 3b of the positive electrode current collector 1 were applied at an equal pitch, coated, and dried, and then the thickness of the positive electrode mixture layers 2a, 2b on one side became 100 μm.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅W4が5mmの正極集電体1の露出部3aを、また裏面に表面と同位相で幅W5が6mmの正極集電体1の露出部3bを形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed so that the total thickness is 165 μm, whereby the positive electrode current collector layer 1 having a thickness of 75 μm on one side and a width W4 of 5 mm on the surface is obtained. The exposed portion 3a and the exposed portion 3b of the positive electrode current collector 1 having the same phase as the front surface and a width W5 of 6 mm were formed on the back surface. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図10に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 10, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例9とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 9.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10
を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。
Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Further, 20 out of 100 lithium ion secondary batteries 17 after 500 cycles of charge / discharge were extracted.
As a result, no defects such as lithium deposition, electrode plate breakage, electrode plate buckling, and electrode mixture layer dropping were observed.

これは、正極集電体1の表面に幅W4の正極集電体1の露出部3aを、裏面にW5>W4である幅W5の正極集電体1の露出部3bを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the exposed portion 3a of the positive electrode current collector 1 having a width W4 is formed on the surface of the positive electrode current collector 1, and the exposed portion 3b of the positive electrode current collector 1 having a width W5 of W5> W4 is formed on the back surface with respect to the longitudinal direction. Due to the uniform formation, when the electrode group 10 is configured, the stress difference due to expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side. It is considered that good battery characteristics could be maintained.

なお、実施例9においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。   In Example 9, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed in the same phase. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

さらに、実施例9においては電極群における正極板4の内周側にある正極集電体1の露出部3bの幅W5を外周側にある正極集電体1の露出部3aの幅W4よりも広くした構成としたが、これに限定されるものではなく、負極集電体5に露出部(図示せず)を設け、負極板8の内周側にある負極集電体5の露出部の幅を外周側にある負極集電体の露出部の幅よりも広くすることも同様に可能である。   Furthermore, in Example 9, the width W5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate 4 in the electrode group is larger than the width W4 of the exposed portion 3a of the positive electrode current collector 1 on the outer peripheral side. However, the present invention is not limited to this configuration, and the negative electrode current collector 5 is provided with an exposed portion (not shown) so that the exposed portion of the negative electrode current collector 5 on the inner peripheral side of the negative electrode plate 8 is provided. Similarly, it is possible to make the width wider than the width of the exposed portion of the negative electrode current collector on the outer peripheral side.

本発明の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電体1の露出部のピッチを外周側にある正極集電体1の露出部のピッチよりも狭くした実施例について図面を参照しながら説明する。   As an embodiment of the present invention, the pitch of the exposed portion of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate in the spiral electrode group is narrower than the pitch of the exposed portion of the positive electrode current collector 1 on the outer peripheral side. The embodiment will be described with reference to the drawings.

まず、図11に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極集電体1の露出部3aを30mmピッチP4で、また正極集電体1の長手方向に対して垂直方向の裏面に幅が5mmの正極集電体1の露出部3bを15mmピッチP5で設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   First, as shown in FIG. 11, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm on the surface in the vertical direction is formed with a 30 mm pitch P4, and the positive electrode current collector 1 having a width of 5 mm on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 The exposed portion 3b was provided with a 15 mm pitch P5, coated, dried, and then the positive electrode mixture layer 2a, 2b on one side had a thickness of 100 μm.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、かつ表面に幅が5mmの正極集電体1の露出部3aを30mmのピッチP4で、また裏面に幅が5mmの正極集電体1の露出部3bを15mmのピッチP5で形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the positive electrode current collector 1 having a thickness of 75 μm on one side and a width of 5 mm on the surface is exposed. The portions 3a were formed at a pitch P4 of 30 mm, and the exposed portions 3b of the positive electrode current collector 1 having a width of 5 mm were formed on the back surface at a pitch P5 of 15 mm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図11に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し、乾燥させた後に片面側の負極合剤層6a,6bの厚みが110μmとなる負極板8を作製した。さらに、この負極板8を総厚みが180μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, as shown in FIG. 11, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the negative electrode plate 8 in which the thickness of the negative electrode mixture layers 6a and 6b on one side was 110 μm was produced. Further, this negative electrode plate 8 was pressed to a total thickness of 180 μm, and then slitted to a specified width of the cylindrical battery to produce the negative electrode plate 8.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced.

この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極
群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC、DMC、MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。
The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例10とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 10.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極集電体1の表面に正極集電体1の露出部3aをP4のピッチで、裏面にP5<P4であるピッチP5で正極集電体1の露出部3bを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性を維持できたものと考えられる。   This is because the exposed portion 3a of the positive electrode current collector 1 on the surface of the positive electrode current collector 1 has a pitch of P4, and the back surface of the exposed portion 3b of the positive electrode current collector 1 with a pitch P5 of P5 <P4 with respect to the longitudinal direction. When the electrode group 10 is formed, the stress accompanying expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side when the electrode group 10 is formed. It is considered that the difference could be alleviated and good battery characteristics could be maintained.

なお、実施例10においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同じ幅で形成したが、表裏面または同一面の長手方向で幅を変えることも同様に可能である。   In Example 10, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface are formed with the same width, but the width is changed in the longitudinal direction of the front and back surfaces or the same surface. It is possible as well.

さらに、実施例10においては電極群における正極板4の内周側にある正極集電体1の露出部3bのピッチP5を外周側にある正極集電体1の露出部3aのピッチP4よりも狭くした構成としたが、これに限定されるものではなく、負極集電体5に露出部(図示せず)を設け、負極板8の内周側にある負極集電体5の露出部のピッチを外周側にある負極集電体の露出部のピッチよりも狭くすることも同様に可能である。   Furthermore, in Example 10, the pitch P5 of the exposed portion 3b of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate 4 in the electrode group is larger than the pitch P4 of the exposed portion 3a of the positive electrode current collector 1 on the outer peripheral side. However, the present invention is not limited to this, and the negative electrode current collector 5 is provided with an exposed portion (not shown) so that the exposed portion of the negative electrode current collector 5 on the inner peripheral side of the negative electrode plate 8 is provided. It is also possible to make the pitch narrower than the pitch of the exposed portion of the negative electrode current collector on the outer peripheral side.

また、本発明の別の一実施例として、実施例1で示したように正極合剤層に厚みの薄い箇所を長手方向に対して一様に設けるか、または実施例2で示したように正極合剤層の厚みが薄い箇所の幅を捲回方向に対して段階的に狭くするか、または実施例3で示したように正極合剤層の厚みが薄い箇所のピッチを捲回方向に対して段階的に広くするか、または実施例4で示したように渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所の幅を外周側にある正極合剤層の厚みが薄い箇所の幅よりも広くするか、または実施例5で示したように渦巻状の電極群における正極板の内周側にある正極合剤層の厚みが薄い箇所のピッチを外周側にある正極合剤層の厚みが薄い箇所のピッチよりも狭くするかのいずれか二つ以上を組み合わせて構成することも同様に可能である。   Further, as another embodiment of the present invention, as shown in Embodiment 1, the thin portion of the positive electrode mixture layer is uniformly provided in the longitudinal direction, or as shown in Embodiment 2. The width of the portion where the thickness of the positive electrode mixture layer is thin is gradually reduced with respect to the winding direction, or the pitch of the portion where the thickness of the positive electrode mixture layer is thin as shown in Example 3 is set in the winding direction. In contrast, the width of the portion where the thickness of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group is small as shown in Example 4 is set on the outer peripheral side. The pitch of the portion where the thickness of the positive electrode mixture layer on the inner peripheral side of the positive electrode plate in the spiral electrode group is thin as shown in Example 5 is wider than the width of the portion where the thickness of the agent layer is thin. Combine any two or more of the positive electrode mixture layers on the outer peripheral side to be narrower than the pitch of the thin part. It is likewise possible to configure Te Align.

さらに、本発明の別の一実施例として、実施例6で示したように正極集電体に露出部を長手方向に対して一様に設けるか、または実施例7で示したように正極集電体の露出部の幅を捲回方向に対して段階的に狭くするか、または実施例8で示したように正極集電体の露出部のピッチを捲回方向に対して段階的に広くするか、または実施例9で示したように渦巻状の電極群における正極板の内周側にある正極集電体の露出部の幅を外周側にある正極集電体の露出部の幅よりも広くするか、または実施例10で示したように渦巻状の電極群における正極板の内周側にある正極集電体の露出部のピッチを外周側にある正極集電体の露出部のピッチよりも狭くするかのいずれか二つ以上を組み合わせて構成することも同様に可能である。   Further, as another embodiment of the present invention, the positive electrode current collector is uniformly provided in the longitudinal direction as shown in the sixth embodiment, or the positive electrode collector is used as shown in the seventh embodiment. The width of the exposed portion of the electric body is reduced stepwise with respect to the winding direction, or the pitch of the exposed portion of the positive electrode current collector is increased stepwise with respect to the winding direction as shown in Example 8. Or, as shown in Example 9, the width of the exposed portion of the positive electrode current collector on the inner peripheral side of the positive electrode plate in the spiral electrode group is larger than the width of the exposed portion of the positive electrode current collector on the outer peripheral side. Or, as shown in Example 10, the pitch of the exposed portion of the positive electrode current collector on the inner peripheral side of the positive electrode plate in the spiral electrode group is set to the pitch of the exposed portion of the positive electrode current collector on the outer peripheral side. Similarly, any two or more of the pitches narrower than the pitch can be combined.

(比較例1)
まず、図12に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、56mmの幅にスリッタ加工して正極板4を作製した。
(Comparative Example 1)
First, as shown in FIG. 12, the same positive electrode mixture paint as in Example 1 was applied to the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a width of 56 mm.

次いで、図12に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、58mm幅にスリッタ加工して負極板8を作製した。   Next, as shown in FIG. 12, a negative electrode mixture paint similar to that of Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting to a width of 58 mm.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。   Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced.

この電極群10の中から10個を抜き出し有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。 Ten electrodes were extracted from the electrode group 10 and accommodated in the bottomed cylindrical battery case 11 together with the insulating plate 12. A negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected.

その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を比較例1とした。   Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was set as Comparative Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返した結果、100個のうち4個にサイクル劣化が認められた。そこで、この4個のリチウムイオン二次電池を解体したところ、正極板4が破断したものが1個、負極板8が挫屈したものが3個であった。   As a result of repeating the charge / discharge of 100 lithium ion secondary batteries 17 produced as described above for 500 cycles, cycle deterioration was observed in 4 out of 100 batteries. Thus, when the four lithium ion secondary batteries were disassembled, one was broken by the positive electrode plate 4 and three were crooked by the negative electrode plate 8.

上記比較例1のリチウムイオン二次電池17においては、充放電時の負極合剤層6a,6bの膨張収縮による負極板8の伸縮度A,Bに対して正極板4の伸縮度C,Dが追従できなかったために、正極板4の破断および負極板8の挫屈が発生したものと考えられる。   In the lithium ion secondary battery 17 of the comparative example 1, the degree of expansion and contraction C and D of the positive electrode plate 4 with respect to the degree of expansion and contraction A and B of the negative electrode plate 8 due to expansion and contraction of the negative electrode mixture layers 6a and 6b during charging and discharging. Therefore, it is considered that the positive electrode plate 4 was broken and the negative electrode plate 8 was bent.

本発明に係る非水系二次電池は、正極板と負極板の充放電時の伸縮度を互いに近くなるように構成したことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和することができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能であるため電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。   The non-aqueous secondary battery according to the present invention is configured such that the degree of expansion and contraction of the positive electrode plate and the negative electrode plate is close to each other, so The stress applied to the positive electrode plate or the negative electrode plate due to the difference can be relieved, and it is possible to suppress the breakage or buckling of the electrode plate. Since it is possible to provide a secondary battery, it is useful as a portable power source or the like for which higher capacity is desired with the increase in functionality of electronic devices and communication devices.

本発明の一実施の形態に係る非水系二次電池における捲回後の電極群の要部を示す非水系二次電池用の電極群の要部を示す部分断面図The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries which shows the principal part of the electrode group after winding in the non-aqueous secondary battery which concerns on one embodiment of this invention 本発明の一実施の形態に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one embodiment of this invention. 本発明の一実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の比較例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on the comparative example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の一実施の形態に係る円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention. (a)従来例における非水系二次電池用の電極群の要部を示す部分断面図、(b)従来例における非水系二次電池において電極板の破断が発生した場合の電極群の要部を示す部分断面図、(c)従来例における非水系二次電池において電極群の挫屈が発生した場合の電極群の要部を示す部分断面図(A) The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries in a prior art example, (b) The principal part of an electrode group when the fracture | rupture of an electrode plate generate | occur | produces in the non-aqueous secondary battery in a prior art example (C) The fragmentary sectional view which shows the principal part of an electrode group in case the buckling of an electrode group generate | occur | produces in the non-aqueous secondary battery in a prior art example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example

符号の説明Explanation of symbols

1 正極集電体
2a,2b 正極合剤層
3a,3b 露出部
3c,3d 厚みが薄い箇所
4 正極板
5 負極集電体
6a,6b 負極合剤層
8 負極板
9 セパレータ
10 電極群
11 電池ケース
12 絶縁板
13 負極リード
14 正極リード
15 封口板
16 封口ガスケット
17 リチウムイオン二次電池
A,B 負極板の伸縮度
C,D 正極板の伸縮度
E 電極群の捲回方向
P1,P2,P3,P4,P5 厚みが薄い箇所のピッチ
W1,W2,W3,W4,W5 厚みが薄い箇所の幅
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2a, 2b Positive mix layer 3a, 3b Exposed part 3c, 3d Thick place 4 Positive electrode plate 5 Negative electrode collector 6a, 6b Negative mix layer 8 Negative electrode plate 9 Separator 10 Electrode group 11 Battery case 12 Insulating plate 13 Negative electrode lead 14 Positive electrode lead 15 Sealing plate 16 Sealing gasket 17 Lithium ion secondary battery A, B Elasticity of negative electrode plate C, D Elasticity of positive electrode plate E Winding direction P1, P2, P3 of electrode group P4, P5 Pitch W1, W2, W3, W4, W5 where the thickness is thin Width of the portion where the thickness is thin

Claims (13)

少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に付着させて負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、前記正極合剤層または負極合剤層の少なくともいずれか一方に厚みの薄い箇所を部分的に設けるかまたは前記正極合塗料または負極合剤塗料の少なくともいずれか一方を間欠的に付着させ正極集電体または負極集電体の露出部を設けることで前記正極板と負極板の充放電時の伸縮度を互いに近くなるように構成したことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode mixture layer formed by adhering a positive electrode mixture coating material obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium onto a positive electrode current collector; Between a negative electrode plate in which a negative electrode mixture layer is formed by adhering a negative electrode mixture paint obtained by kneading and dispersing at least an active material made of a material capable of holding lithium and a binder in a dispersion medium onto a negative electrode current collector A non-aqueous secondary battery in which an electrode group formed by winding or laminating a porous insulator is enclosed in a battery case together with a non-aqueous electrolyte solution, the positive electrode mixture layer or the negative electrode mixture The exposed portion of the positive electrode current collector or the negative electrode current collector is provided by partially providing a thin portion on at least one of the layers or by adhering at least one of the positive electrode mixture paint or the negative electrode mixture paint intermittently. By providing the positive electrode plate and Nonaqueous secondary battery, characterized in that to constitute a telescopic degree during charging and discharging of the electrode plate to be close to each other. 前記正極合剤層または負極合剤層の厚みの薄い箇所を長手方向に対して一様に設けたことを特徴とする請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein the thin portion of the positive electrode mixture layer or the negative electrode mixture layer is provided uniformly in the longitudinal direction. 前記正極合剤層または負極合剤層の厚みの薄い箇所の幅を捲回方向に対して段階的に変えたことを特徴とする請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein the width of the thin portion of the positive electrode mixture layer or the negative electrode mixture layer is changed stepwise with respect to the winding direction. 前記正極合剤層または負極合剤層の厚みの薄い箇所のピッチを捲回方向に対して段階的に変えたことを特徴とする請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein the pitch of the thin portion of the positive electrode mixture layer or the negative electrode mixture layer is changed stepwise with respect to the winding direction. 前記捲回した電極群における正極板または負極板の外周側にある正極/負極合剤層の厚みの薄い箇所の幅と内周側にある正極/負極合剤層の厚みの薄い箇所の幅を変えたことを特徴とする請求項1に記載の非水系二次電池。   In the wound electrode group, the width of the thin portion of the positive electrode / negative electrode mixture layer on the outer peripheral side of the positive electrode plate or the negative electrode plate and the width of the thin portion of the positive electrode / negative electrode mixture layer on the inner peripheral side are set. The nonaqueous secondary battery according to claim 1, wherein the nonaqueous secondary battery is changed. 前記捲回した電極群における正極板または負極板の外周側にある正極/負極合剤層の厚みが薄い箇所のピッチと内周側にある正極/負極合剤層の厚みが薄い箇所のピッチを変えたことを特徴とする請求項1に記載の非水系二次電池。   In the wound electrode group, the pitch of the thin portion of the positive electrode / negative electrode mixture layer on the outer peripheral side of the positive electrode plate or the negative electrode plate and the pitch of the thin portion of the positive electrode / negative electrode mixture layer on the inner peripheral side are set. The nonaqueous secondary battery according to claim 1, wherein the nonaqueous secondary battery is changed. 前記正極合剤層または負極合剤層の厚みの薄い箇所を長手方向に対して一様に設ける、または捲回方向に対して段階的に幅を変える、または捲回方向に対して段階的にピッチを変える、または外周側と内周側で幅を変える、または外周側と内周側でピッチを変えるかかのいずれか二つ以上を組み合わせて構成したことを特徴とする請求項1に記載の非水系二次電池。   The thin portion of the positive electrode mixture layer or the negative electrode mixture layer is uniformly provided in the longitudinal direction, or the width is changed stepwise with respect to the winding direction, or stepwise with respect to the winding direction. 2. The structure according to claim 1, wherein the pitch is changed, the width is changed between the outer peripheral side and the inner peripheral side, or the pitch is changed between the outer peripheral side and the inner peripheral side. Non-aqueous secondary battery. 前記正極集電体または負極集電体の露出部を長手方向に対して一様に設けたことを特徴とする請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein an exposed portion of the positive electrode current collector or the negative electrode current collector is provided uniformly in the longitudinal direction. 前記正極集電体または負極集電体の露出部の幅を捲回方向に対して段階的に変えたことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the width of the exposed portion of the positive electrode current collector or the negative electrode current collector is changed stepwise with respect to the winding direction. 前記正極集電体または負極集電体の露出部のピッチを捲回方向に対して段階的に変えたことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the pitch of the exposed portions of the positive electrode current collector or the negative electrode current collector is changed stepwise with respect to the winding direction. 前記捲回した電極群における正極板または負極板の外周側にある正極/負極集電体の露出部の幅と内周側にある正極/負極集電体の露出部の幅を変えたことを特徴とする請求項1に記載の非水系二次電池。   In the wound electrode group, the width of the exposed portion of the positive / negative current collector on the outer peripheral side of the positive electrode plate or the negative electrode plate and the width of the exposed portion of the positive / negative current collector on the inner peripheral side are changed. The non-aqueous secondary battery according to claim 1. 前記捲回した電極群における正極板または負極板の外周側にある正極/負極集電体の露
出部のピッチと内周側にある正極/負極集電体の露出部のピッチを変えたことを特徴とする請求項1に記載の非水系二次電池。
The pitch of the exposed portion of the positive electrode / negative electrode current collector on the outer peripheral side of the positive electrode plate or the negative electrode plate and the pitch of the exposed portion of the positive electrode / negative electrode current collector on the inner peripheral side in the wound electrode group are changed. The non-aqueous secondary battery according to claim 1.
前記正極集電体または負極集電体の露出部を長手方向に対して一様に設ける、または捲回方向に対して段階的に幅を変える、または捲回方向に対して段階的にピッチを変える、または外周側と内周側で幅を変える、または外周側と内周側でピッチを変えるかのいずれか二つ以上を組み合わせて構成したことを特徴とする請求項1に記載の非水系二次電池。   The exposed portion of the positive electrode current collector or the negative electrode current collector is uniformly provided in the longitudinal direction, or the width is changed stepwise with respect to the winding direction, or the pitch is gradually changed with respect to the winding direction. The non-aqueous system according to claim 1, wherein the non-aqueous system is a combination of any two or more of changing, changing the width on the outer peripheral side and the inner peripheral side, or changing the pitch on the outer peripheral side and the inner peripheral side. Secondary battery.
JP2008223114A 2008-09-01 2008-09-01 Nonaqueous secondary battery Pending JP2010061820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223114A JP2010061820A (en) 2008-09-01 2008-09-01 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223114A JP2010061820A (en) 2008-09-01 2008-09-01 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2010061820A true JP2010061820A (en) 2010-03-18

Family

ID=42188424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223114A Pending JP2010061820A (en) 2008-09-01 2008-09-01 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2010061820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443988A (en) * 2011-03-25 2013-12-11 株式会社杰士汤浅国际 Cylindrical battery and electrode structure for battery
JP2019212417A (en) * 2018-06-01 2019-12-12 日産自動車株式会社 Cell device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443988A (en) * 2011-03-25 2013-12-11 株式会社杰士汤浅国际 Cylindrical battery and electrode structure for battery
EP2690697A1 (en) * 2011-03-25 2014-01-29 GS Yuasa International Ltd. Cylindrical battery and electrode structure for battery
EP2690697A4 (en) * 2011-03-25 2014-08-20 Gs Yuasa Int Ltd Cylindrical battery and electrode structure for battery
US10243177B2 (en) 2011-03-25 2019-03-26 Gs Yuasa International Ltd. Cylindrical battery and battery electrode structure
JP2019212417A (en) * 2018-06-01 2019-12-12 日産自動車株式会社 Cell device

Similar Documents

Publication Publication Date Title
WO2009157158A1 (en) Nonaqueous electrolyte secondary battery
WO2013108396A1 (en) Production method for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
US20130219703A1 (en) Method for producing composition for forming positive electrode material mixture layer and method for producing lithium ion secondary battery
JP2007141527A (en) Electrode and nonaqueous secondary battery using it
JP4988169B2 (en) Lithium secondary battery
JP2005123047A (en) Lithium secondary battery and manufacturing method thereof
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2010061819A (en) Nonaqueous secondary battery
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2011048769A1 (en) Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group
JP2013098022A (en) Battery electrode plate and battery using the same
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2007324074A (en) Electrode plate for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
JP2010062049A (en) Nonaqueous secondary battery
JP2018160379A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2010061820A (en) Nonaqueous secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP2010061940A (en) Nonaqueous secondary battery
JP2013089441A (en) Electrode group for battery and battery using the same
JP2016100161A (en) Method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP2009134916A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2010277806A (en) Nonaqueous secondary battery