JP2010277806A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2010277806A
JP2010277806A JP2009128464A JP2009128464A JP2010277806A JP 2010277806 A JP2010277806 A JP 2010277806A JP 2009128464 A JP2009128464 A JP 2009128464A JP 2009128464 A JP2009128464 A JP 2009128464A JP 2010277806 A JP2010277806 A JP 2010277806A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
expansion
contraction
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128464A
Other languages
Japanese (ja)
Inventor
Masakazu Yamada
雅一 山田
Tsutomu Nishioka
努 西岡
Masanori Sumihara
正則 住原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009128464A priority Critical patent/JP2010277806A/en
Publication of JP2010277806A publication Critical patent/JP2010277806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery having: a configuration prepared in one with a larger expansion and contraction degree upon charging and discharging out of a positive electrode plate and a negative electrode plate, for performing function which suppresses the expansion and construction of the one with the larger expansion and contraction degree; with high safety by alleviating stress caused by expansion and contraction of the electrode plates upon charging and discharging the nonaqueous secondary battery, and by preventing breakage or buckling of the electrode plates upon charging and discharging. <P>SOLUTION: An electrode group 10 configured with a cathode plate 4 with a positive electrode mixture coating material coated on a positive electrode collector 1 and with positive electrode mixture layers 2a, 2b formed, a negative electrode plate 8 with a negative electrode mixture coating material coated on a negative electrode collector 5 and with negative electrode mixture layers 6a, 6b formed on the negative electrode collector 5, with a separator 9 intervened between them and spirally wound, further has a configuration with the expansion and contraction suppressing function for suppressing expansion and contraction in either of the positive electrode plate 4 or the negative electrode plate 8 with the larger expansion and contraction degree upon charging and discharging. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池に関し、特に安全性に優れた非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion secondary battery, and more particularly to a non-aqueous secondary battery excellent in safety.

近年、携帯用電子機器の電源として利用が広がっているリチウムイオン二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量のリチウムイオン二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化に伴って、更なるリチウムイオン二次電池の高容量化が望まれている。 In recent years, lithium ion secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode, and a composite of a transition metal such as LiCoO 2 and lithium for the positive electrode. An oxide is used as an active material, thereby realizing a lithium ion secondary battery having a high potential and a high discharge capacity. However, with the recent increase in functionality of electronic devices and communication devices, it is desired to further increase the capacity of lithium ion secondary batteries.

ここで、高容量のリチウムイオン二次電池を実現するための発電要素である電極板としては、正極板および負極板ともに各々の構成材料を塗料化した電極合剤塗料を集電体の上に塗布して乾燥させた後にプレス等により規定の厚みまで圧縮する方法が用いられており、より多くの活物質を充填してプレスすることで活物質密度が高くなり、一層の高容量化が可能となる。さらに、上述の正極板と負極板とをセパレータを介して順に積層される又はセパレータを介して渦巻状に捲回した電極群をステンレス製、ニッケルメッキを施した鉄製、又はアルミニウム製などの金属からなる電池ケースに収納し、次に非水系電解液を電池ケース内に注液した後に電池ケースの開口部に封口板を密封固着してリチウムイオン二次電池が構成される。   Here, as an electrode plate that is a power generation element for realizing a high-capacity lithium ion secondary battery, an electrode mixture paint obtained by coating each constituent material on both the positive electrode plate and the negative electrode plate is placed on the current collector. After applying and drying, a method of compressing to the specified thickness by pressing or the like is used. By filling and pressing more active material, the active material density becomes higher and further increase in capacity is possible. It becomes. Further, an electrode group in which the above-described positive electrode plate and negative electrode plate are sequentially laminated via a separator or spirally wound via a separator is made of a metal such as stainless steel, nickel-plated iron, or aluminum. In a battery case, a non-aqueous electrolyte is poured into the battery case, and then a sealing plate is hermetically fixed to the opening of the battery case to form a lithium ion secondary battery.

ところで、リチウムイオン電池に代表される非水系二次電池の高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板とが内部短絡などにより非水系二次電池の急激な温度上昇が起こり熱暴走に至る恐れもあるため、非水系二次電池の安全性の向上が強く要求されている。特に、大型・高出力な非水系二次電池では、熱暴走の発生する確率が高くなるため、その発生する確率を低くするなどの安全性を向上させる工夫が必要である。   By the way, while increasing capacity of non-aqueous secondary batteries typified by lithium ion batteries, safety measures should be emphasized. In particular, the positive and negative plates are rapidly connected to the non-aqueous secondary battery due to an internal short circuit. There is a strong demand for improvement in the safety of non-aqueous secondary batteries, because there is a risk of excessive temperature rise and thermal runaway. In particular, a large-sized, high-power non-aqueous secondary battery has a high probability of thermal runaway, and thus a device for improving safety, such as reducing the probability of occurrence, is necessary.

上述のように非水系二次電池が内部短絡する要因としては、非水系二次電池の内部に異物が混入する以外にも図13(a)に示したように、正極集電体21の上に正極合剤層22a,22bを形成した正極板23と負極集電体24の上に負極合剤層25a,25bを形成した負極板26とを多孔質絶縁体からなるセパレータ27を介して捲回することにより電極群28を構成する際、さらには非水系二次電池を充放電する際に電極板に加わる応力によって電極板が破断あるいは挫屈することが考えられる。より詳しくは、渦巻状に捲回して電極群28を構成する際には構成要素である正極板23、負極板26、セパレータ27には引張応力が加わり、この際の各構成要素における伸び率の差によって最も伸び率が小さなものから破断することになる。加えて、非水系二次電池を充放電すると電極板の膨張収縮による応力が電極板に加わり、充放電を繰り返すことによる繰り返し応力により正極板23、負極板26もしくはセパレータ27の伸び率の最も低いものが優先的に破断してしまう。   As described above, the cause of the internal short circuit of the non-aqueous secondary battery is that, as shown in FIG. 13A, in addition to foreign matters entering the non-aqueous secondary battery, The positive electrode plate 23 on which the positive electrode mixture layers 22a and 22b are formed and the negative electrode plate 26 on which the negative electrode mixture layers 25a and 25b are formed on the negative electrode current collector 24 are sandwiched through a separator 27 made of a porous insulator. It is conceivable that the electrode plate is broken or buckled by the stress applied to the electrode plate when the electrode group 28 is configured by turning, and further when the non-aqueous secondary battery is charged and discharged. More specifically, when the electrode group 28 is formed by winding in a spiral shape, tensile stress is applied to the positive electrode plate 23, the negative electrode plate 26, and the separator 27, which are constituent elements, and the elongation rate of each constituent element at this time is increased. The difference causes the fracture from the smallest elongation. In addition, when a non-aqueous secondary battery is charged / discharged, stress due to expansion / contraction of the electrode plate is applied to the electrode plate, and the positive electrode plate 23, the negative electrode plate 26 or the separator 27 has the lowest elongation rate due to repeated stress due to repeated charge / discharge. Things break preferentially.

例えば、図13(b)に示したように充電時の負極板26の伸びに正極板23が追従できない場合には正極板23の破断(図中のF)が起こり、また、正極板23の破断が起きなくても図13(c)に示したように負極板26の挫屈によりセパレータ27が引き伸ばされることで、セパレータ27の厚みが薄くなる箇所(図中のG)が発生する。さらに、正極板23もしくは負極板26がセパレータ27よりも先に破断した場合には、いずれかの電極板の破断部がセパレータ27を突き破り正極板23と負極板26が短絡することに
なる。この短絡により大電流が流れ、その結果、非水系二次電池の温度が急激に上昇し、上述のように非水系二次電池が熱暴走する可能性がある。
For example, as shown in FIG. 13B, when the positive electrode plate 23 cannot follow the elongation of the negative electrode plate 26 during charging, the positive electrode plate 23 is broken (F in the figure). Even if no breakage occurs, as shown in FIG. 13C, the separator 27 is stretched due to the buckling of the negative electrode plate 26, thereby generating a portion (G in the figure) where the thickness of the separator 27 is reduced. Further, when the positive electrode plate 23 or the negative electrode plate 26 is broken before the separator 27, the broken portion of one of the electrode plates breaks through the separator 27 and the positive electrode plate 23 and the negative electrode plate 26 are short-circuited. Due to this short circuit, a large current flows, and as a result, the temperature of the non-aqueous secondary battery rises rapidly, and the non-aqueous secondary battery may run out of heat as described above.

そこで、正極板の破断を抑制するために、図14に示したように両面に正極合剤層を塗布形成した正極板33と両面に負極合剤層を塗布形成した負極板34とをセパレータ35を介して扁平状に捲回した発電要素32と非水系電解液を電池ケース36に収納した非水系二次電池31において、正極板33の両面のうち、内周側の第1面の正極合剤層を裏面の第2面の正極合剤層よりも柔軟性を高く(引張破断伸びを大きく)する方法が提案されている(例えば、特許文献1参照)。   Therefore, in order to suppress the breakage of the positive electrode plate, as shown in FIG. 14, the positive electrode plate 33 with the positive electrode mixture layer formed on both surfaces and the negative electrode plate 34 with the negative electrode mixture layer applied on both surfaces are separated by the separator 35. In the non-aqueous secondary battery 31 in which the power generation element 32 wound in a flat shape and the non-aqueous electrolyte solution are accommodated in the battery case 36, the positive electrode combination of the first surface on the inner peripheral side of both surfaces of the positive electrode plate 33 is A method has been proposed in which the agent layer has higher flexibility (higher tensile elongation at break) than the positive electrode mixture layer on the second surface on the back side (see, for example, Patent Document 1).

また、電極板の伸び率を向上させるために、図15に示したように正極リード44を接続した正極板41と負極リード45を接続した負極板42との間にセパレータ43を介在させて渦巻状に捲回して電池ケース47に収容し正極リード44を正極外部端子46に、負極リード45を電池ケース47に接続し、非水系電解液を注入した非水系二次電池において、正極板41および負極板42とこれら両電極間に介装されるべきセパレータ43とを積層する前又は巻き取る前に、結着材の再結晶化温度より高い温度であってその分解温度より低い温度で正極板41又は負極板42のいずれか一方もしくはその両方の電極板を加熱処理する方法が提案されている(例えば、特許文献2参照)。   In order to improve the elongation rate of the electrode plate, a separator 43 is interposed between the positive electrode plate 41 connected to the positive electrode lead 44 and the negative electrode plate 42 connected to the negative electrode lead 45 as shown in FIG. In a non-aqueous secondary battery in which a positive electrode lead 44 is connected to the positive electrode external terminal 46, a negative electrode lead 45 is connected to the battery case 47, and a non-aqueous electrolyte is injected, Before laminating or winding up the negative electrode plate 42 and the separator 43 to be interposed between the two electrodes, the positive electrode plate is heated at a temperature higher than the recrystallization temperature of the binder and lower than its decomposition temperature. There has been proposed a method of heat-treating one or both of the electrode plate 41 and the negative electrode plate 42 (for example, see Patent Document 2).

特開2007−103263号公報JP 2007-103263 A 特許第3066161号公報Japanese Patent No. 3066161

しかしながら、正極板の内周側の正極合剤層を外周側より柔軟にする、または電極板を熱処理するなどの上述した従来技術においては、電極群を構成する際に正極板に加わる曲げ応力による正極板の破断を抑制する効果は発揮するものの、非水系二次電池を充放電する際の電極板の膨張収縮を緩和し充放電時の電極板の破断または挫屈を抑制することが困難であるという課題を有していた。加えて、上述した特許文献1の従来技術では、正極板の表面と裏面に塗布する二種類の正極合剤塗料を作製し、この二種類の正極合剤塗料を正極集電体の上に塗布して形成する必要があり、正極板を作製するプロセスが複雑になってしまう。また、特許文献2の従来技術では、電極板を規定の厚みまでプレスした後に熱処理を施し捲回して電極群を構成するが、この熱処理によって規定の厚みまで圧縮された電極板がバックリングを起こし捲回前の電極板の厚みのバラツキが大きくなってしまう。さらに、捲回した電極群の直径のバラツキが大きくなってしまうなどの不具合を引き起こすことがある。   However, in the above-described prior art such as making the positive electrode mixture layer on the inner peripheral side of the positive electrode plate more flexible than the outer peripheral side or heat-treating the electrode plate, it is due to bending stress applied to the positive electrode plate when forming the electrode group. Although the effect of suppressing the breakage of the positive electrode plate is exhibited, it is difficult to reduce the expansion and contraction of the electrode plate when charging and discharging the non-aqueous secondary battery and to suppress the breakage or buckling of the electrode plate during charge and discharge. Had the problem of being. In addition, in the prior art of Patent Document 1 described above, two types of positive electrode mixture paints are prepared to be applied to the front and back surfaces of the positive electrode plate, and these two types of positive electrode mixture paints are applied on the positive electrode current collector. Therefore, the process for producing the positive electrode plate becomes complicated. In the prior art of Patent Document 2, an electrode group is formed by pressing the electrode plate to a specified thickness and then performing heat treatment and winding to form an electrode group. The electrode plate compressed to the specified thickness by this heat treatment causes buckling. The variation in the thickness of the electrode plate before winding becomes large. Furthermore, it may cause a problem such as a large variation in diameter of the wound electrode group.

本発明は上記従来の課題を鑑みてなされたもので、非水系二次電池における正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成とし、非水系二次電池を充放電する際の電極板の膨張収縮を緩和し充放電時の電極板の破断または挫屈を抑制することで安全性の高い非水系二次電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and has a configuration in which an expansion / contraction suppression function for suppressing expansion / contraction is provided on the one with a large expansion / contraction degree at the time of charge / discharge of the positive electrode plate and the negative electrode plate in the nonaqueous secondary battery, An object of the present invention is to provide a highly safe non-aqueous secondary battery by relaxing expansion / contraction of the electrode plate when charging / discharging the non-aqueous secondary battery and suppressing breakage or buckling of the electrode plate during charge / discharge. It is said.

上記目的を達成するために本発明の非水系二次電池は、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に付着させて負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回また
は積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成としたことを特徴とするものである。
In order to achieve the above object, the non-aqueous secondary battery of the present invention is a positive electrode current collector comprising a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium. The negative electrode current collector is prepared by mixing a positive electrode plate having a positive electrode mixture layer deposited thereon and an active material and a binder made of a material capable of holding lithium at least in a dispersion medium. A non-aqueous electrolyte solution and a non-aqueous electrolyte encapsulated in a battery case include an electrode group formed by winding or laminating a porous insulator between a negative electrode plate formed on a negative electrode mixture layer The water-based secondary battery is characterized in that an expansion / contraction suppression function for suppressing expansion / contraction is provided on the one where the degree of expansion / contraction during charging / discharging of the positive electrode plate and the negative electrode plate is large.

本発明の非水系二次電池によると、正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成としたことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和することができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能である。   According to the non-aqueous secondary battery of the present invention, the positive and negative electrode plates at the time of charging and discharging are provided with the expansion and contraction suppressing function for suppressing the expansion and contraction on the larger degree of expansion and contraction at the time of charging and discharging. The stress applied to the positive electrode plate or negative electrode plate due to the difference in degree of expansion and contraction due to the expansion and contraction of the negative electrode plate can be relaxed, and it is possible to suppress breakage or buckling of the electrode plate, and internal short circuit caused by these It is possible to provide a highly safe non-aqueous secondary battery.

本発明の一実施の形態に係る非水系二次電池における捲回後の電極群の要部を示す非水系二次電池用の電極群の要部を示す部分断面図The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries which shows the principal part of the electrode group after winding in the non-aqueous secondary battery which concerns on one embodiment of this invention 本発明の一実施の形態に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one embodiment of this invention. 本発明の一実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の比較例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on the comparative example of this invention. 本発明の一実施の形態に係る円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention. (a)従来例における非水系二次電池用の電極群の要部を示す部分断面図、(b)従来例における非水系二次電池において電極板の破断が発生した場合の電極群の要部を示す部分断面図、(c)従来例における非水系二次電池において電極群の挫屈が発生した場合の電極群の要部を示す部分断面図(A) The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries in a prior art example, (b) The principal part of an electrode group when the fracture | rupture of an electrode plate generate | occur | produces in the non-aqueous secondary battery in a prior art example (C) The fragmentary sectional view which shows the principal part of an electrode group in case the buckling of an electrode group generate | occur | produces in the non-aqueous secondary battery in a prior art example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させ捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成としたことにより、
充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和し電極板の破断および電極板の挫屈に起因した内部短絡を抑制することが可能となり、安全性の高い非水系二次電池を提供することができる。
In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is applied onto a positive electrode current collector. A negative electrode mixture layer obtained by applying a negative electrode mixture coating material obtained by kneading and dispersing an active material and a binder made of a material capable of holding lithium at least in a dispersion medium on a negative electrode current collector. A non-aqueous secondary battery in which an electrode group formed by winding or laminating a porous insulator with a non-aqueous electrolyte solution is enclosed in a battery case between a positive electrode plate and a negative electrode By having a configuration with an expansion / contraction suppression function that suppresses expansion / contraction on the larger expansion / contraction degree during charging / discharging of the plate,
Reducing stress applied to the positive electrode plate or negative electrode plate due to the difference in expansion / contraction between the positive electrode plate and the negative electrode plate during charge / discharge, and suppressing internal short circuit caused by electrode plate breakage and electrode plate buckling Therefore, a highly safe non-aqueous secondary battery can be provided.

本発明の第2の発明においては、伸縮抑制機能を正極集電体または負極集電体に設けたことにより、伸縮度の異なる正極板と負極板における一方の集電体の伸縮度を小さくし、集電体により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the second invention of the present invention, by providing the positive electrode current collector or the negative electrode current collector with the expansion / contraction suppression function, the expansion / contraction degree of one current collector between the positive electrode plate and the negative electrode plate having different expansion / contraction degrees is reduced. By reducing the difference in the degree of expansion / contraction between the two electrode plates by the current collector, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made closer.

本発明の第3の発明においては、伸縮抑制機能として正極集電体または負極集電体を伸縮度の小さい合金を用いて構成したことにより、集電体の前処理などを施すことなく、正極集電体または負極集電体の伸縮性を低下させて正極板または負極板を伸び難くすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the third invention of the present invention, the positive electrode current collector or the negative electrode current collector is constituted by using an alloy having a low degree of expansion and contraction as the expansion and contraction suppressing function, so that the positive electrode is not subjected to pretreatment of the current collector. By reducing the stretchability of the current collector or the negative electrode current collector to make the positive electrode plate or the negative electrode plate difficult to stretch, it becomes possible to bring the positive and negative electrode plates closer together.

本発明の第4の発明においては、伸縮抑制機能として正極集電体または負極集電体を調質処理により硬化させて構成したことにより、集電体の材質を大幅に変更することなく、正極集電体または負極集電体の硬度を高くして正極板または負極板を伸び難くすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the fourth invention of the present invention, the positive electrode current collector or the negative electrode current collector is cured by a tempering treatment as an expansion / contraction suppression function, so that the positive electrode material is not significantly changed without significantly changing the material of the current collector. By increasing the hardness of the current collector or the negative electrode current collector to make the positive electrode plate or the negative electrode plate difficult to stretch, it becomes possible to bring the degree of expansion and contraction between the positive electrode plate and the negative electrode plate closer.

本発明の第5の発明においては、伸縮抑制機能として正極集電体または負極集電体の厚みを厚くして構成したことにより、集電体の材質の変更および集電体の前処理などを伴うことなく、正極集電体または負極集電体の厚みの増大によって正極集電体または負極集電体を伸び難くし、両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the fifth invention of the present invention, the thickness of the positive electrode current collector or the negative electrode current collector is increased as the expansion / contraction suppression function, so that the material change of the current collector and the pretreatment of the current collector are performed. Without increasing the thickness of the positive electrode current collector or the negative electrode current collector, the positive electrode current collector or the negative electrode current collector is made difficult to extend, and the difference in the degree of expansion and contraction between the two electrode plates is reduced. It becomes possible to make the expansion / contraction degree of a board close.

本発明の第6の発明においては、伸縮抑制機能として正極集電体または負極集電体に長手方向に対して直交する肉厚部を設けて構成したことにより、集電体の材質の変更および集電体の前処理などを伴うことなく、肉厚部によって正極集電体または負極集電体を伸び難くし、両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the sixth invention of the present invention, the positive electrode current collector or the negative electrode current collector is provided with a thick portion perpendicular to the longitudinal direction as an expansion / contraction suppression function, thereby changing the material of the current collector and Without accompanying pre-treatment of the current collector, the positive electrode current collector or the negative electrode current collector is made difficult to extend by the thick part, and the difference in the degree of expansion / contraction between the two electrode plates is reduced. It becomes possible to make the degree of elasticity close.

本発明の第7の発明においては、伸縮抑制機能として正極集電体または負極集電体の幅を広くして構成したことにより、集電体の材質の変更および集電体の前処理などを伴うことなく、幅の増大によって正極集電体または負極集電体を伸び難くし、両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the seventh invention of the present invention, as the expansion and contraction suppressing function, the width of the positive electrode current collector or the negative electrode current collector is widened, so that the change of the material of the current collector and the pretreatment of the current collector are performed. Without increasing the width of the positive electrode current collector or the negative electrode current collector, it is possible to make the positive electrode plate and the negative electrode plate closer to each other by reducing the difference between the expansion and contraction of the two electrode plates. Become.

本発明の第8の発明においては、伸縮抑制機能として正極集電体または負極集電体を伸縮度の小さい合金で構成する、または調質処理により硬化する、または厚みを厚くする、または長手方向に対して直交する肉厚部を設ける、または幅を広くするかのいずれか二つ以上を組み合わせて構成したことにより、上記構成の組み合わせによる相乗効果で集電体による正極板と負極板の伸縮度の差を小さくするための作用をより効果的に発揮させることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the eighth invention of the present invention, the positive electrode current collector or the negative electrode current collector is composed of an alloy having a small degree of expansion or contraction, or is cured by a tempering treatment, or thickened, or longitudinally. The thickness of the positive electrode plate and the negative electrode plate can be expanded and contracted by the current collector due to the synergistic effect of the combination of the above configurations by providing a thick portion orthogonal to the width or widening the width. By exhibiting the effect for reducing the difference in degree more effectively, it becomes possible to bring the degree of expansion and contraction between the positive electrode plate and the negative electrode plate closer.

本発明の第9の発明においては、伸縮抑制機能を正極合剤層または負極合剤層に設けたことにより、伸縮度の異なる正極板と負極板における電極合剤層の伸縮度を小さくし、電極合剤層により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the ninth aspect of the present invention, by providing the expansion / contraction suppression function in the positive electrode mixture layer or the negative electrode mixture layer, the expansion ratio of the electrode mixture layer in the positive electrode plate and the negative electrode plate having different expansion degrees is reduced, By reducing the difference in the degree of expansion / contraction between the two electrode plates by the electrode mixture layer, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made closer.

本発明の第10の発明においては、伸縮抑制機能として伸縮度が大きい電極板の正極合剤層または負極合剤層の厚みを厚くして構成したことにより、電極合剤層の構成材料を大
幅に変更することなく、例えば電極合剤塗料の塗布条件の最適化によって、正極合剤層または負極合剤層の厚みの増大により正極合剤層または負極合剤層を伸び難くし、電極合剤層により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。
In the tenth aspect of the present invention, the constituent material of the electrode mixture layer is greatly increased by increasing the thickness of the positive electrode mixture layer or the negative electrode mixture layer of the electrode plate having a large degree of expansion and contraction as a function of suppressing expansion and contraction. For example, by optimizing the application conditions of the electrode mixture paint, the positive electrode mixture layer or the negative electrode mixture layer is made difficult to expand by increasing the thickness of the positive electrode mixture layer or the negative electrode mixture layer. By reducing the difference in the degree of expansion / contraction between the two electrode plates by the layer, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made closer.

本発明の第11の発明においては、伸縮抑制機能として正極合剤層の活物質密度を小さくするまたは負極合剤層の活物質密度を大きくして構成したことにより、電極合剤層の構成材料を大幅に変更することなく、例えば電極合剤塗料の塗布条件の最適化あるいは電極合剤層のプレス条件の最適化によって、正極合剤層または負極合剤層の活物質密度の増減により正極合剤層または負極合剤層を伸び難くし、電極合剤層により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the eleventh aspect of the present invention, the constituent material of the electrode mixture layer is constituted by reducing the active material density of the positive electrode mixture layer or increasing the active material density of the negative electrode mixture layer as an expansion and contraction suppressing function. Without significantly changing the active material density of the positive electrode mixture layer or the negative electrode mixture layer by, for example, optimizing the application conditions of the electrode mixture paint or the press conditions of the electrode mixture layer. By making the agent layer or the negative electrode mixture layer difficult to stretch and reducing the difference in the degree of expansion / contraction between the two electrode plates by the electrode mixture layer, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made closer.

本発明の第12の発明においては、伸縮抑制機能として伸縮度が大きい電極板の正極合剤層または負極合剤層の多孔度を大きくして構成したことにより、電極合剤層の構成材料を大幅に変更することなく、例えば電極合剤塗料の塗布条件の最適化あるいは電極合剤層のプレス条件の最適化によって、正極合剤層または負極合剤層の多孔度の増大により正極合剤層または負極合剤層を伸び難くし、正極合剤層または負極合剤層の伸縮度を小さくし、電極合剤層により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the twelfth aspect of the present invention, the constituent material of the electrode mixture layer is formed by increasing the porosity of the positive electrode mixture layer or the negative electrode mixture layer of the electrode plate having a large degree of expansion and contraction as a function of suppressing expansion and contraction. Without significantly changing the positive electrode mixture layer by increasing the porosity of the positive electrode mixture layer or the negative electrode mixture layer, for example, by optimizing the application conditions of the electrode mixture paint or by optimizing the press conditions of the electrode mixture layer Alternatively, the positive electrode plate and the negative electrode plate can be formed by making the negative electrode mixture layer difficult to stretch, reducing the expansion / contraction degree of the positive electrode mixture layer or the negative electrode mixture layer, and reducing the difference in expansion / contraction degree of both electrode plates by the electrode mixture layer. It becomes possible to make the degree of expansion / contraction close.

本発明の第13の発明においては、伸縮抑制機能として正極合剤層または負極合剤層を形成する結着材の硬度を高くして構成したことにより、電極合剤層の構成材料を大幅に変更することなく電極合剤層の結着材を変更することによって、正極合剤層または負極合剤層における結着材の硬度の増大により正極合剤層または負極合剤層を伸び難くし、電極合剤層により両電極板の伸縮度の差を小さくすることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the thirteenth aspect of the present invention, the constituent material of the electrode mixture layer is greatly increased by increasing the hardness of the binder forming the positive electrode mixture layer or the negative electrode mixture layer as an expansion / contraction suppression function. By changing the binder of the electrode mixture layer without changing, it is difficult to extend the positive electrode mixture layer or the negative electrode mixture layer by increasing the hardness of the binder in the positive electrode mixture layer or the negative electrode mixture layer, By reducing the difference in the degree of expansion / contraction between the two electrode plates by the electrode mixture layer, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made closer.

本発明の第14の発明においては、伸縮抑制機能として正極合剤層または負極合剤層の厚みを厚くする、または正極合剤層の活物質密度を小さくするか負極合剤層の活物質密度を大きくする、または多孔度を大きくする、または結着材の硬度を高くするかのいずれか二つ以上を組み合わせたことにより、上記構成の組み合わせによる相乗効果で電極合剤層による正極板と負極板の伸縮度の差を小さくするための作用をより効果的に発揮させることで、正極板と負極板の伸縮度をより効果的に近づけることが可能となる。   In the fourteenth aspect of the present invention, as the expansion / contraction suppression function, the thickness of the positive electrode mixture layer or the negative electrode mixture layer is increased, or the active material density of the positive electrode mixture layer is decreased or the active material density of the negative electrode mixture layer is increased. The positive electrode plate and the negative electrode by the electrode mixture layer by a synergistic effect by the combination of the above constitutions by combining any two or more of increasing the porosity, increasing the porosity, or increasing the hardness of the binder By exhibiting the effect for reducing the difference in the degree of expansion / contraction between the plates more effectively, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be brought closer to each other more effectively.

本発明の第15の発明においては、伸縮抑制機能を正極集電体または負極集電体に設けるとともに、正極合剤層または負極合剤層に設けて構成したことにより、集電体の伸縮度を小さくするとともに、電極合剤層の伸縮度を小さくし電極板により効果的に応力緩和効果を持たせることで、正極板と負極板の伸縮度を近づけることが可能となる。   In the fifteenth aspect of the present invention, the expansion / contraction suppression function is provided in the positive electrode current collector or the negative electrode current collector and is provided in the positive electrode mixture layer or the negative electrode mixture layer. It is possible to reduce the degree of expansion / contraction of the electrode mixture layer and to provide a stress relaxation effect more effectively by the electrode plate, thereby making it possible to bring the degree of expansion / contraction between the positive electrode plate and the negative electrode plate closer to each other.

本発明の第16の発明においては、伸縮抑制機能を正極集電体または負極集電体に設けるとともに、正極合剤層または負極合剤層の少なくとも片面に正極集電体または負極集電体の長手方向に対して直交する露出部を形成し伸縮緩和機能を付与したことにより、集電体の伸縮度を小さくし、この集電体に追従効果を持たせるとともに、電極合剤層の伸縮度を小さくし、この電極合剤層に追従効果を持たせることで、より効果的に正極板と負極板の伸縮度を近づけることが可能となる。   In the sixteenth invention of the present invention, the expansion / contraction suppression function is provided in the positive electrode current collector or the negative electrode current collector, and the positive electrode current collector layer or the negative electrode current mixture layer is provided on at least one surface of the positive electrode material mixture layer or the negative electrode material mixture layer. By forming an exposed part perpendicular to the longitudinal direction and providing an expansion / contraction relaxation function, the elasticity of the current collector is reduced and the current collector has a following effect, and the elasticity of the electrode mixture layer By making the electrode mixture layer have a follow-up effect, it becomes possible to make the expansion and contraction of the positive electrode plate and the negative electrode plate closer to each other more effectively.

本発明の第17の発明においては、伸縮抑制機能を正極合剤層または負極合剤層に設けるとともに、正極合剤層または負極合剤層の少なくとも片面に正極集電体または負極集電体の長手方向に対して直交する露出部を形成し伸縮緩和機能を付与したことにより、電極合剤層の伸縮度を小さくするとともに、この電極合剤層に追従効果を持たせ、より効果的
に応力緩和効果を発揮せることで、正極板と負極板の伸縮度を近づけることが可能となる。
In the seventeenth aspect of the present invention, the expansion / contraction suppression function is provided in the positive electrode mixture layer or the negative electrode mixture layer, and the positive electrode current collector or the negative electrode current collector is provided on at least one surface of the positive electrode mixture layer or the negative electrode mixture layer. By forming an exposed part perpendicular to the longitudinal direction and imparting an expansion / contraction relaxation function, the degree of expansion / contraction of the electrode mixture layer is reduced, and this electrode mixture layer has a follow-up effect, and stress is more effectively applied. By exhibiting the relaxation effect, it becomes possible to make the degree of expansion and contraction of the positive electrode plate and the negative electrode plate closer.

本発明の第18の発明においては、伸縮抑制機能を設けるとともに、正極板と負極板の充放電時の伸縮度が小さい方に伸縮を促進する伸縮促進機能を設けたことにより、伸縮度の異なる正極板と負極板における一方の電極板の伸縮度を小さくするとともに、他方の電極板の伸縮度を大きくすることで、より効果的に正極板と負極板の伸縮度を近づけることが可能となる。   In the eighteenth aspect of the present invention, an expansion / contraction suppression function is provided, and an expansion / contraction promotion function for accelerating expansion / contraction is provided in the direction where the expansion / contraction at the time of charging / discharging of the positive electrode plate and the negative electrode plate is small. By reducing the expansion / contraction degree of one electrode plate in the positive electrode plate and the negative electrode plate and increasing the expansion / contraction degree of the other electrode plate, it becomes possible to make the expansion degree of the positive electrode plate and the negative electrode plate closer to each other more effectively. .

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態に係る非水系二次電池における捲回後の電極群10の要部を示す断面図である。同図において本発明の非水系二次電池用の電極群10は、正極合剤塗料を正極集電体1の上に塗布して正極合剤層2a,2bを形成した正極板4と負極合剤塗料を負極集電体5の上に塗布して負極合剤層6a,6bを形成した負極板8の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けるとともに、この正極板4と負極板8との間に多孔質絶縁体としてのセパレータ9を介在させ渦巻状に捲回して構成されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of an electrode group 10 after winding in a nonaqueous secondary battery according to an embodiment of the present invention. In the figure, an electrode group 10 for a non-aqueous secondary battery according to the present invention includes a positive electrode plate 4 and a negative electrode composite, in which a positive electrode mixture paint is applied on the positive electrode current collector 1 to form positive electrode mixture layers 2a and 2b. The negative electrode plate 8 having the negative electrode mixture layers 6a and 6b formed on the negative electrode current collector 5 by applying an agent paint on the negative electrode collector layer 6 is provided with an expansion / contraction suppressing function for suppressing expansion / contraction on the larger expansion / contraction degree. A separator 9 as a porous insulator is interposed between the positive electrode plate 4 and the negative electrode plate 8 and is wound in a spiral shape.

ここで、上述した本発明のリチウムイオン二次電池に代表される非水系二次電池においては、図1に示すように充電時に負極板8にリチウムがインターカレーションされることで負極合剤層6a,6bが膨張することによる負極板8の伸長度Aとこの際の正極板4の伸長度C、および放電時に負極板8からリチウムがデインターカレーションされることで負極合剤層6a,6bが収縮することによる負極板8の収縮度Bとこの際の正極板4の収縮度Dを互いに近づけるために正極板4と負極板8の充放電時における伸縮度の大きい方に伸縮を抑制する伸縮抑制機能を設けた構成としている。   Here, in the non-aqueous secondary battery represented by the lithium ion secondary battery of the present invention described above, the negative electrode mixture layer is obtained by intercalating lithium with the negative electrode plate 8 during charging as shown in FIG. 6a, 6b expands the negative electrode plate 8 due to expansion, the positive electrode plate 4 expands at this time C, and lithium is deintercalated from the negative electrode plate 8 during discharge, so that the negative electrode mixture layer 6a, In order to make the contraction degree B of the negative electrode plate 8 due to the contraction of 6b and the contraction degree D of the positive electrode plate 4 at this time close to each other, the expansion and contraction is suppressed to the larger one during the charge / discharge of the positive electrode plate 4 and the negative electrode plate 8 The expansion / contraction suppression function is provided.

上述のように正極集電体1の表面または裏面に正極合剤層2a,2bを形成するには、正極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサーなどの分散機により混合分散し、アルミニウム箔などの正極集電体1への塗布に最適な粘度に調整しながら混練を行って正極合剤塗料を作製する。ここで、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   In order to form the positive electrode mixture layers 2a and 2b on the front surface or the back surface of the positive electrode current collector 1 as described above, a positive electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, and a planetary mixer, etc. And then kneading while adjusting the viscosity to be optimal for application to the positive electrode current collector 1 such as an aluminum foil to prepare a positive electrode mixture paint. Here, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。このときの結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。上述のようにして作製した正極合剤塗料を例えばアルミニウム箔からなる正極集電体1の上にダイコーターを用いて塗布した後に乾燥して所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリッタ加工して長尺帯状の正極板4が得られる。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination. As the binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder. The positive electrode mixture paint prepared as described above is applied on the positive electrode current collector 1 made of, for example, an aluminum foil using a die coater, dried and pressed to a predetermined thickness. By slitting into a width and a length, a long belt-like positive electrode plate 4 is obtained.

一方、負極集電体5の表面または裏面に負極合剤層6a,6bを形成するには、負極活物質、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、銅箔などの負極集電体5への塗布に最適な粘度に調整しながら混練を行って負極合剤塗料を作製する。ここで、負極用活物質としては、例えば各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、並びに各種の合金組成材料を用いることができる
。このときの結着材としては、ポリフッ化ビニリデンおよびその変性体を用いることができる。しかしながら、リチウムイオンの受入れ性を向上させるという観点からは、スチレン−ブタジエン共重合体ゴム粒子(SBR)またはその変性体とカルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂などを併用したものや、スチレン−ブタジエン共重合体ゴム粒子またはその変性体に上記セルロース系樹脂を少量添加したものを使用するのが好ましい。
On the other hand, in order to form the negative electrode mixture layers 6a and 6b on the front or back surface of the negative electrode current collector 5, the negative electrode active material and the binder are placed in an appropriate dispersion medium and mixed by a disperser such as a planetary mixer. Disperse and knead while adjusting the viscosity to be optimal for application to the negative electrode current collector 5 such as a copper foil to prepare a negative electrode mixture paint. Here, as the negative electrode active material, for example, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used. As the binder at this time, polyvinylidene fluoride and a modified product thereof can be used. However, from the viewpoint of improving the acceptability of lithium ions, a combination of a styrene-butadiene copolymer rubber particle (SBR) or a modified product thereof and a cellulose-based resin such as carboxymethyl cellulose (CMC), It is preferable to use a styrene-butadiene copolymer rubber particle or a modified product obtained by adding a small amount of the above cellulose resin.

上述のようにして作製した負極合剤塗料を例えば銅箔からなる負極集電体5の上にダイコーターを用いて塗布した後に乾燥して所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリッタ加工して長尺帯状の負極板8が得られる。以下、上述した正極板4および負極板8を使用した本発明の非水系二次電池について説明する。図12に、非水系二次電池の一例としての円筒形のリチウムイオン二次電池17を縦に切断した斜視図により示す。図12の円筒形のリチウムイオン二次電池17においては、複合リチウム酸化物を活物質とする正極板4とリチウムを保持しうる材料を活物質とする負極板8とをセパレータ9を介し渦巻状に捲回して電極群10が作製される。   After applying the negative electrode mixture paint prepared as described above onto a negative electrode current collector 5 made of, for example, copper foil using a die coater, drying and pressing to compress to a predetermined thickness, Slitting process into the width and length gives the long strip-like negative electrode plate 8. Hereinafter, the nonaqueous secondary battery of the present invention using the positive electrode plate 4 and the negative electrode plate 8 described above will be described. FIG. 12 is a perspective view of a cylindrical lithium ion secondary battery 17 as an example of a non-aqueous secondary battery cut vertically. In the cylindrical lithium ion secondary battery 17 of FIG. 12, a positive electrode plate 4 using a composite lithium oxide as an active material and a negative electrode plate 8 using a material capable of holding lithium as an active material are spirally formed via a separator 9. As a result, the electrode group 10 is produced.

電極群10は、有底円筒形の電池ケース11の内部に、絶縁板12により電池ケース11とは絶縁されて収容される一方で、電極群10の下部より導出した負極リード13が電池ケース11の底部に接続されるとともに、電極群10の上部より導出した正極リード14が封口板15に接続される。また、電池ケース11は、所定量の非水溶媒からなる非水系電解液(図示せず)が注液された後、開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げてかしめ封口される。ここで、セパレータ9は、リチウムイオン二次電池の使用範囲に耐えうる組成であればよいが、特にポリエチレン、ポリプロピレン等のオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが好ましい。このセパレータ9の厚みは、10〜25μmとするのが良い。   The electrode group 10 is housed inside the bottomed cylindrical battery case 11 while being insulated from the battery case 11 by the insulating plate 12, while the negative electrode lead 13 led out from the lower part of the electrode group 10 is the battery case 11. The positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15. Further, the battery case 11 is filled with a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof after the non-aqueous electrolyte solution (not shown) made of a predetermined amount of a non-aqueous solvent is injected. The opening of the case 11 is crimped inward by bending inward. Here, the separator 9 may have any composition that can withstand the usage range of the lithium ion secondary battery, but it is particularly preferable to use a single or composite of microporous films of olefin resins such as polyethylene and polypropylene. . The thickness of the separator 9 is preferably 10 to 25 μm.

このときの非水系電解液は、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また、正極板4または負極板8の上に良好な被膜を形成させるため、および過充電時の安定性を保証するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)、並びにその変性体を用いるのが好ましい。 The non-aqueous electrolyte at this time can use various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. Further, in order to form a good film on the positive electrode plate 4 or the negative electrode plate 8 and to ensure the stability at the time of overcharge, vinylene carbonate (VC) and cyclohexylbenzene (CHB), and modified products thereof are used. It is preferable to use it.

本発明の特徴である伸縮抑制機能の第1の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極集電体1または負極集電体5のいずれか一方を伸縮度の小さい合金を用いて構成することで実現できる。具体的な構成の一例としては、図2に示す負極集電体5を銅の合金で構成することで負極板8を伸び難くし、図1に示す負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第2の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極集電体1または負極集電体5のいずれか一方を調質処理により硬化させて構成することで実現できる。   As a first configuration of the expansion and contraction suppressing function that is a feature of the present invention, the electrode plate for a non-aqueous secondary battery according to the present invention is either one of the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. Can be realized by using an alloy having a small stretch. As an example of a specific configuration, the negative electrode current collector 5 shown in FIG. 2 is made of a copper alloy to make the negative electrode plate 8 difficult to stretch, and the degree of expansion A and B of the negative electrode plate 8 shown in FIG. The expansion and contraction degrees C and D of the plate 4 can be approached. Further, as a second configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention is tempered with either the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. This can be realized by curing.

具体的な構成の一例としては、図2に示す負極集電体5を熱処理などによる加工硬化により硬化させることで負極板8を伸び難くし、図1に示す負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第3の構成として、本発明の非水系二次電池用電極板は、図3に示すように正極集電体1または負極集電体5のいずれか一方の厚みを厚くして構成することで実現できる。   As an example of a specific configuration, the negative electrode current collector 5 shown in FIG. 2 is hardened by work hardening by heat treatment or the like to make the negative electrode plate 8 difficult to stretch, and the degree of expansion and contraction A, B of the negative electrode plate 8 shown in FIG. Can be brought close to the degree of expansion C and D of the positive electrode plate 4. As a third configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery according to the present invention has a thicker one of the positive electrode current collector 1 and the negative electrode current collector 5 as shown in FIG. This can be realized by configuring as above.

具体的な構成の一例としては、図3に示す負極集電体5の厚みT1を厚くすることで負極板8を伸び難くし、図1に示す負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第4の構成として、本発明の非水系二次電池用電極板は、図4に示すように正極集電体1または負極集電体5に長手方向に対して直交する肉厚部5aを設けることで実現できる。   As an example of a specific configuration, the negative electrode current collector 5 shown in FIG. 3 is made thicker by increasing the thickness T1 of the negative electrode current collector 5, so that the negative electrode plate 8 hardly stretches. 4 expansion / contraction degrees C and D can be approached. Further, as a fourth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention is orthogonal to the longitudinal direction of the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. This can be realized by providing the thick portion 5a.

具体的な構成の一例としては、図4に示す負極集電体5に長手方向に対して直交する肉厚部5aを設けることで負極板8を伸び難くし、図1に示す負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第5の構成として、本発明の非水系二次電池用電極板は、図5に示すように正極集電体1または負極集電体5の幅を広くして構成することで実現できる。   As an example of a specific configuration, the negative electrode current collector 5 shown in FIG. 4 is provided with a thick portion 5a orthogonal to the longitudinal direction, thereby making the negative electrode plate 8 difficult to extend. The expansion degrees A and B can be made close to the expansion degrees C and D of the positive electrode plate 4. Further, as a fifth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention is configured by widening the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. This can be achieved.

具体的な構成の一例としては、図5に示す負極集電体5の幅W1を広くすることで負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第6の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極集電体1または負極集電体5を伸縮度の小さい合金で構成する、または図2に示すように調質処理により硬化する、または図3に示すように厚みを厚くする、または図4に示すように長手方向に対して直交する肉厚部5aを設ける、または図5に示すように幅を広くするかのいずれか二つ以上を組み合わせて構成することで、正極板4の伸縮度と負極板8の伸縮度とを近づけることも同様に可能である。また、伸縮抑制機能の第7の構成として、本発明の非水系二次電池用電極板は、図6に示すように正極合剤層2a,2bまたは負極合剤層6a,6bの厚みを厚くすることで実現できる。   As an example of a specific configuration, by making the width W1 of the negative electrode current collector 5 shown in FIG. 5 wide, it is difficult for the negative electrode plate 8 to stretch. C, D can be approached. Further, as a sixth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery according to the present invention includes the positive electrode current collector 1 or the negative electrode current collector 5 made of an alloy having a small expansion / contraction degree as shown in FIG. 2 or cured by a tempering treatment as shown in FIG. 2, or thickened as shown in FIG. 3, or provided with a thick portion 5a orthogonal to the longitudinal direction as shown in FIG. As shown in FIG. 5, it is possible to make the degree of expansion / contraction of the positive electrode plate 4 and the degree of expansion / contraction of the negative electrode plate 8 close to each other by combining any two or more of the widths. Further, as a seventh configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention has a thick positive electrode mixture layer 2a, 2b or negative electrode mixture layer 6a, 6b as shown in FIG. This can be achieved.

具体的な構成の一例としては、図6に示す負極合剤層6a,6bの厚みT2を厚くすることで負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第8の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極合剤層2a,2bの活物質密度を小さくするまたは負極合剤層6a,6bの活物質密度を大きくすることで実現できる。   As an example of a specific configuration, by increasing the thickness T2 of the negative electrode mixture layers 6a and 6b shown in FIG. The degree of expansion and contraction can be close to C and D. Further, as an eighth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery according to the present invention reduces the active material density of the positive electrode mixture layers 2a and 2b as shown in FIG. This can be realized by increasing the active material density of 6a and 6b.

具体的な構成の一例としては、図2に示す正極合剤層2a,2bの活物質密度を小さくすることで、リチウムを吸蔵した際における負極板8の膨張およびリチウムを放出した際における負極板8の収縮による体積変化を緩和することができ、正極板4の伸縮度C,Dを負極板8の伸縮度A,Bに近づけることができる。また、伸縮抑制機能の第9の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極合剤層2a,2bまたは負極合剤層6a,6bの多孔度を大きくすることで実現できる。   As an example of a specific configuration, by reducing the active material density of the positive electrode mixture layers 2a and 2b shown in FIG. 2, the negative electrode plate 8 expands when lithium is occluded and the negative electrode plate releases lithium. 8 can be relaxed, and the degree of expansion C and D of the positive electrode plate 4 can be made closer to the degree of expansion A and B of the negative electrode plate 8. As a ninth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery according to the present invention has the porosity of the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b as shown in FIG. This can be achieved by increasing the size.

具体的な構成の一例としては、図2に示す負極合剤層6a,6bの多孔度を大きくすることで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。また、伸縮抑制機能の第10の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極合剤層2a,2bまたは負極合剤層6a,6bを形成する結着材の硬度を高くすることで実現できる。   As an example of a specific configuration, by increasing the porosity of the negative electrode mixture layers 6 a and 6 b shown in FIG. 2, the negative electrode plate 8 is hardly stretched, and the expansion and contraction degrees A and B of the negative electrode plate 8 are set to the positive electrode plate 4. The degree of expansion and contraction C, D can be approached. Further, as a tenth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention is formed by forming the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b as shown in FIG. This can be achieved by increasing the hardness of the dressing.

具体的な構成の一例としては、図2に示す負極合剤層6a,6bを形成する結着材の硬度を高くすることで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができる。さらに、伸縮抑制機能の第11の構成として、本発明の非水系二次電池用電極板は、図6に示すように正極合剤層2a,2bまたは負極合剤層6a,6bの厚みを厚くする、または図2に示すように活物質密度を小さくする、または図2に示すように多孔度を大きくする、または図2に示すように結着材の硬度を高くするかのいずれか二つ以上を組み合わせて構成することで、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることも同様に可能である。また、伸縮抑制機能の第12の構
成として、本発明の非水系二次電池用電極板は、図7に示すように伸縮抑制機能を正極集電体1または負極集電体5に設けるとともに、正極合剤層2a,2bまたは負極合剤層6a,6bに設けて構成することで実現できる。
As an example of a specific configuration, by increasing the hardness of the binder forming the negative electrode mixture layers 6a and 6b shown in FIG. B can be brought close to the degree of expansion C and D of the positive electrode plate 4. Further, as an eleventh configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention has a thick positive electrode mixture layer 2a, 2b or negative electrode mixture layer 6a, 6b as shown in FIG. Either to reduce the active material density as shown in FIG. 2, increase the porosity as shown in FIG. 2, or increase the hardness of the binder as shown in FIG. By combining the above, it is also possible to make the expansion and contraction degrees C and D of the positive electrode plate 4 and the expansion and contraction degrees A and B of the negative electrode plate 8 close to each other. As a twelfth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery according to the present invention is provided with the expansion / contraction suppression function in the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. This can be realized by providing the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b.

具体的な構成の一例としては、図7に示すように負極集電体5に長手方向に対して直交する肉厚部5aを設けるとともに、負極合剤層6a,6bの厚みT2を厚くしている。また、伸縮抑制機能に伸縮緩和機能を加えた構成として、本発明の非水系二次電池用電極板は、図8に示すように伸縮抑制機能を正極集電体1または負極集電体5に設けるとともに、正極合剤層2a,2bまたは負極合剤層6a,6bに正極集電体1または負極集電体5の長手方向に対して直交する露出部3a,3bを形成して構成することで実現できる。   As an example of a specific configuration, as shown in FIG. 7, the negative electrode current collector 5 is provided with a thick portion 5a orthogonal to the longitudinal direction, and the negative electrode mixture layers 6a and 6b are made thicker T2. Yes. Moreover, as a structure which added the expansion / contraction relaxation function to the expansion / contraction suppression function, the electrode plate for non-aqueous secondary batteries of the present invention has an expansion / contraction suppression function in the positive electrode current collector 1 or the negative electrode current collector 5 as shown in FIG. And providing exposed portions 3a and 3b orthogonal to the longitudinal direction of the positive electrode current collector 1 or the negative electrode current collector 5 in the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b. Can be realized.

具体的な構成の一例としては、図8に示すように負極集電体5の厚みT1を厚くするとともに、正極合剤層2a,2bの長手方向に対して直交する露出部3a,3bを同位相となるように形成している。また、伸縮抑制機能に伸縮緩和機能を加えた別構成として、本発明の非水系二次電池用電極板は、図9に示すように正極合剤層2a,2bまたは負極合剤層6a,6bに伸縮抑制機能を設けるとともに、正極合剤層2a,2bまたは負極合剤層6a,6bに露出部を設けて構成することで実現できる。   As an example of a specific configuration, the thickness T1 of the negative electrode current collector 5 is increased as shown in FIG. 8, and the exposed portions 3a and 3b orthogonal to the longitudinal direction of the positive electrode mixture layers 2a and 2b are the same. It forms so that it may become a phase. As another configuration in which expansion / contraction relaxation function is added to expansion / contraction suppression function, the nonaqueous secondary battery electrode plate of the present invention has positive electrode mixture layers 2a and 2b or negative electrode mixture layers 6a and 6b as shown in FIG. This can be realized by providing an expansion / contraction suppressing function and providing an exposed portion in the positive electrode mixture layers 2a and 2b or the negative electrode mixture layers 6a and 6b.

具体的な構成の一例としては、図9に示すように負極合剤層6a,6bの厚みT2を厚くするとともに、正極合剤層2a,2bの長手方向に対して直交する露出部3a,3bを同位相となるように形成している。また、伸縮抑制機能と伸縮促進機能を組み合わせた構成として、本発明の非水系二次電池用電極板は、図10に示すように正極板4または負極板8に伸縮抑制機能を設けるとともに、正極板4と負極板8の充放電時の伸縮度が小さい方に伸縮を促進する伸縮促進機能を設けて構成することで実現できる。   As an example of a specific configuration, as shown in FIG. 9, the negative electrode mixture layers 6a and 6b are made thicker and the exposed portions 3a and 3b are orthogonal to the longitudinal direction of the positive electrode mixture layers 2a and 2b. Are formed in the same phase. Moreover, as a structure combining the expansion / contraction suppression function and the expansion / contraction promotion function, the electrode plate for a non-aqueous secondary battery according to the present invention is provided with an expansion / contraction suppression function in the positive electrode plate 4 or the negative electrode plate 8 as shown in FIG. This can be realized by providing an expansion / contraction promotion function for promoting expansion / contraction in the direction in which the expansion / contraction during charging / discharging of the plate 4 and the negative electrode plate 8 is small.

具体的な構成の一例としては、図10に示すように負極集電体5に長手方向に対して直交する肉厚部5aを設けるとともに、正極集電体1に長手方向に対して直交する肉薄部1aを設けている。以下、具体的な実施例について、さらに詳しく説明する。   As an example of a specific configuration, as shown in FIG. 10, the negative electrode current collector 5 is provided with a thick portion 5a orthogonal to the longitudinal direction, and the positive electrode current collector 1 is thinned perpendicular to the longitudinal direction. Part 1a is provided. Hereinafter, specific examples will be described in more detail.

本発明の一実施例として、負極集電体を伸び難い合金で構成した実施例1について図面を参照しながら説明する。まず、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。次いで、この正極合剤塗料を図2に示すように厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   As an example of the present invention, Example 1 in which a negative electrode current collector is made of an alloy that is difficult to stretch will be described with reference to the drawings. First, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material Was mixed with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader to prepare a positive electrode mixture paint. Next, as shown in FIG. 2, this positive electrode mixture paint was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried and then pressed. The thickness of the positive electrode mixture layers 2a and 2b was 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、負極の活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。次いで、この負極合剤塗料を図2に示すように厚みが10μmのPb,Fe,Zn,Ni,Mnを添加したCu合金箔からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   On the other hand, 100 parts by weight of artificial graphite as the active material of the negative electrode, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder with respect to 100 parts by weight of the active material ( 1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water, and agitation in a double-arm kneader. An agent paint was prepared. Next, as shown in FIG. 2, this negative electrode mixture paint is applied to a negative electrode current collector 5 made of Cu alloy foil to which Pb, Fe, Zn, Ni, and Mn having a thickness of 10 μm are added, dried, and pressed. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形
のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例1とした。
Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5をPb,Fe,Zn,Ni,Mnを添加したCu合金で構成したことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode current collector 5 is made of a Cu alloy to which Pb, Fe, Zn, Ni, and Mn are added, so that the negative electrode plate 8 is hardly stretched, and the degree of expansion and contraction A and B of the negative electrode plate 8 is adjusted. Thus, it is considered that good battery performance was maintained.

本発明の一実施例として、負極集電体を調質処理により硬化させて構成した実施例2について図面を参照しながら説明する。まず、図2に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図2に示すように実施例1と同様の負極合剤塗料をあらかじめ熱処理による加工硬化により硬化させた厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the present invention, a second example in which a negative electrode current collector is cured by a tempering process will be described with reference to the drawings. First, as shown in FIG. 2, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 2, a negative electrode current collector made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm, which was previously cured by work hardening by heat treatment of the same negative electrode mixture paint as in Example 1 It was applied to the body 5 and dried, and then pressed to make the thickness of the negative electrode mixture layers 6a and 6b on one side of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例2とした。 More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 2.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5を加工硬化により硬化させたことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づける
ことができ、良好な電池性能を維持できたものと考えられる。
Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode current collector 5 is hardened by work hardening, so that the negative electrode plate 8 is difficult to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to the expansion and contraction degrees C and D of the positive electrode plate 4. It is considered that good battery performance could be maintained.

本発明の一実施例として、負極集電体の厚みを厚くして構成した実施例3について図面を参照しながら説明する。まず、図3に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図3に示すように実施例1と同様の負極合剤塗料を基準の厚みの10μmよりも厚くした厚みが12μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the present invention, Example 3 configured by increasing the thickness of the negative electrode current collector will be described with reference to the drawings. First, as shown in FIG. 3, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 3, a negative electrode current collector made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 12 μm made of the same negative electrode mixture paint as that of Example 1, which is thicker than the standard thickness of 10 μm. It was applied to the body 5 and dried, and then pressed to make the thickness of the negative electrode mixture layers 6a and 6b on one side of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例3とした。 More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 3.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5の厚みを厚くしたことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the thickness of the negative electrode current collector 5 is increased so that the negative electrode plate 8 is difficult to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to the expansion and contraction degrees C and D of the positive electrode plate 4, respectively. It is thought that the battery performance was maintained.

本発明の一実施例として、負極集電体に長手方向に対して直交する肉厚部を設けて構成した実施例4について図面を参照しながら説明する。まず、図4に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図4に示すように実施例1と同様の負極合剤塗料を長手方向に対して垂直方向に等間隔で高さが2μmの肉厚部5aを設けた厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   As an example of the present invention, Example 4 configured by providing a negative electrode current collector with a thick portion orthogonal to the longitudinal direction will be described with reference to the drawings. First, as shown in FIG. 4, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 4, a tough pitch copper foil having a thickness of 10 μm, in which a negative electrode mixture paint similar to that of Example 1 is provided with thick portions 5a having a height of 2 μm at equal intervals in the direction perpendicular to the longitudinal direction ( The negative electrode current collector 5 made of Cu (purity: 99.9%) was applied and dried, and then pressed to make the thickness of the negative electrode mixture layers 6a and 6b on one side of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚み20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁
板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例4とした。
Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 4.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5に肉厚部5aを設けたことで負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができたことで、良好な電池性能を維持できたものと考えられる。なお、実施例4においては負極集電体5の長手方向に対して直交する肉厚部5aとして、図4に示すように半円形の肉厚部5aを設けたが、これに限定されるものではなく、肉厚部5aが一定の幅を有するものであっても良いことは言うまでもない。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode current collector 5 is provided with the thick portion 5a to make the negative electrode plate 8 difficult to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to the expansion and contraction degrees C and D of the positive electrode plate 4, respectively. Thus, it is considered that good battery performance could be maintained. In Example 4, as the thick part 5a orthogonal to the longitudinal direction of the negative electrode current collector 5, the semicircular thick part 5a was provided as shown in FIG. 4, but the present invention is not limited to this. Needless to say, the thick portion 5a may have a certain width.

本発明の一実施例として、負極集電体の幅を広くして構成した実施例5について図面を参照しながら説明する。まず、図5に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、基準の幅の56mmにスリッタ加工して正極板4を作製した。一方、図5に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、基準の幅の58mmよりも広くした幅W1が59mmとなるようにスリッタ加工して負極板8を作製した。   As an embodiment of the present invention, a fifth embodiment in which the width of the negative electrode current collector is widened will be described with reference to the drawings. First, as shown in FIG. 5, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a standard width of 56 mm. On the other hand, as shown in FIG. 5, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting so that the width W1 wider than the reference width of 58 mm was 59 mm.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例5とした。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 5.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5の幅を広くしたことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the width of the negative electrode current collector 5 is widened so that the negative electrode plate 8 is difficult to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to the expansion and contraction degrees C and D of the positive electrode plate 4. It is thought that the battery performance was maintained.

本発明における実施例1〜5の組み合わせの一実施例として、負極集電体を伸縮度の小さい合金で構成するとともに、負極集電体に長手方向に対して直交する肉厚部を設けて構成した実施例6について図面を参照しながら説明する。まず、図4に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図4に示すように実施例1と同様の負極合剤塗料を長手方向に対して垂直方向に等間隔で高さが2μmの肉厚部5aを設けた厚みが10μmのPb,Fe,Zn,Ni,Mnを添加したCu合金箔からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   As one example of the combination of Examples 1 to 5 in the present invention, the negative electrode current collector is composed of an alloy having a small expansion and contraction, and the negative electrode current collector is provided with a thick portion perpendicular to the longitudinal direction. Example 6 will be described with reference to the drawings. First, as shown in FIG. 4, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 4, a negative electrode mixture paint similar to that in Example 1 is provided with Pb, Fe, and 10 μm thick Pb, Fe, The negative electrode current collector 5 made of Cu alloy foil added with Zn, Ni, Mn was applied to the negative electrode current collector 5 and dried, followed by pressing to make the thickness of the negative electrode mixture layers 6a and 6b on one side to 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚み20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例6とした。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 6.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5を伸縮度の小さい合金で構成した効果に加えて、負極集電体5に設けた肉厚部5aの相乗効果により、負極板8をさらに伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because, in addition to the effect that the negative electrode current collector 5 is made of an alloy having a small degree of expansion and contraction, the negative electrode plate 8 is further hardly stretched due to the synergistic effect of the thick portion 5a provided on the negative electrode current collector 5, It is considered that the degree of expansion and contraction A and B of 8 can be brought close to the degree of expansion and contraction C and D of the positive electrode plate 4, and good battery performance can be maintained.

本発明の一実施例として、負極合剤層の厚みを厚くした実施例7について図面を参照しながら説明する。まず、図6に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして活物質密度を3.6g/ccとし片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図6に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みT2を基準の厚みの85μmよりも厚くした90μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the present invention, Example 7 in which the thickness of the negative electrode mixture layer is increased will be described with reference to the drawings. First, as shown in FIG. 6, the same positive electrode mixture paint as in Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The active material density was 3.6 g / cc and the thickness of the positive electrode mixture layers 2a and 2b on one side was 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 6, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the thickness T2 of the negative electrode mixture layers 6a and 6b on one side was set to 90 μm, which was thicker than the standard thickness of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部
より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例7とした。
More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 7.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極合剤層6a,6bの厚みを厚くしたことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because by increasing the thickness of the negative electrode mixture layers 6a and 6b, it is difficult for the negative electrode plate 8 to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be made closer to the expansion and contraction degrees C and D of the positive electrode plate 4, respectively. It is considered that good battery performance could be maintained.

本発明の一実施例として、正極合剤層の活物質密度を小さくした実施例8について図面を参照しながら説明する。まず、図2に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして基準活物質密度の3.6g/ccよりも小さくした3.4g/ccの活物質密度とし片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。次いで、図2に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして活物質密度を1.6g/ccとし片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   As an example of the present invention, Example 8 in which the active material density of the positive electrode mixture layer is reduced will be described with reference to the drawings. First, as shown in FIG. 2, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The active material density was 3.4 g / cc, which was pressed to be smaller than the standard active material density of 3.6 g / cc, and the thickness of the positive electrode mixture layers 2a, 2b on one side was 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Next, as shown in FIG. 2, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the active material density was set to 1.6 g / cc, and the thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC、DMC、MEC混合溶媒にLiPFを1MとVCを3重量だけ部溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例8とした。上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 8. Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed.

これは、正極合剤層2a,2bの活物質密度を小さくしたことで、インターカレーションされるリチウム量を相対的に減少させて負極合剤層6a,6bの膨張収縮を緩和することで負極板8を伸び難くし、正極板4の伸縮度C,Dを負極板8の伸縮度A,Bに近づけることができ、良好な電池性能を維持できたものと考えられる。なお、実施例8においては正極合剤層2a,2bの活物質密度を小さくしたが、これに限定されるものではなく、負極合剤層6a,6bの活物質密度を大きくすることで、インターカレーションし得るリ
チウム量を相対的に増大させて負極合剤層6a,6bの膨張収縮を抑制することで負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることも同様に可能である。
This is because by reducing the active material density of the positive electrode mixture layers 2a and 2b, the amount of intercalated lithium is relatively reduced, and the expansion and contraction of the negative electrode mixture layers 6a and 6b is alleviated. It is considered that the plate 8 is made difficult to stretch, and the expansion and contraction degrees C and D of the positive electrode plate 4 can be brought close to the expansion and contraction levels A and B of the negative electrode plate 8, respectively. In Example 8, the active material density of the positive electrode mixture layers 2a and 2b was reduced. However, the present invention is not limited to this. By increasing the active material density of the negative electrode mixture layers 6a and 6b, By relatively increasing the amount of lithium that can be categorized and suppressing the expansion and contraction of the negative electrode mixture layers 6 a and 6 b, the negative electrode plate 8 is hardly stretched. It is also possible to approach the degree of elasticity C and D in the same way.

本発明の一実施例として、負極合剤層の多孔度を大きくした実施例9について図面を参照しながら説明する。まず、図2に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。次いで、図2に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして活物質密度を1.6g/ccとし片面側の負極合剤層6a,6bの厚みが89μmで基準多孔度25%よりも大きい多孔度28%とした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the present invention, Example 9 in which the porosity of the negative electrode mixture layer is increased will be described with reference to the drawings. First, as shown in FIG. 2, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Next, as shown in FIG. 2, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the active material density was 1.6 g / cc, and the thickness of the negative electrode mixture layers 6a and 6b on one side was 89 μm, and the porosity was 28%, which was larger than the reference porosity of 25%. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例9とした。上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極合剤層6a,6bの多孔度を大きくしたことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。 More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 9. Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode mixture layers 6 a and 6 b have increased porosity, which makes the negative electrode plate 8 difficult to stretch, and the expansion and contraction degrees A and B of the negative electrode plate 8 can be made closer to the expansion and contraction degrees C and D of the positive electrode plate 4. It is considered that good battery performance could be maintained.

本発明の一実施例として、負極合剤層を形成する結着材の硬度を高くして構成した実施例10について図面を参照しながら説明する。まず、図2に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、負極の活物質として人造黒鉛を100重量部、結着材としてポリフッ化ビニリデンを活物質100重量部に対して2.5重量部、および適量のN−メチル−2−ピロリドンとともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。次に、この負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。   As an example of the present invention, Example 10 configured by increasing the hardness of the binder forming the negative electrode mixture layer will be described with reference to the drawings. First, as shown in FIG. 2, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm, dried, and then pressed. Thus, the thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, 100 parts by weight of artificial graphite as an active material for the negative electrode, 2.5 parts by weight of polyvinylidene fluoride as a binder for 100 parts by weight of the active material, and a suitable amount of N-methyl-2-pyrrolidone The mixture was stirred with a kneader to prepare a negative electrode mixture paint. Next, this negative electrode mixture coating material was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm, dried and then pressed to form a negative electrode mixture layer on one side. The thickness of 6a, 6b was 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚
みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例10とした。
Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Subsequently, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 10.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極板8に用いた結着材をスチレン−ブタジエン共重合体ゴム粒子分散体からポリフッ化ビニリデンに変更したことにより、負極板8の硬度が高くなったことで、負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the hardness of the negative electrode plate 8 is increased by changing the binder used for the negative electrode plate 8 from the styrene-butadiene copolymer rubber particle dispersion to the polyvinylidene fluoride, thereby extending the negative electrode plate 8. It is considered that the degree of expansion and contraction A and B of the negative electrode plate 8 can be made closer to the degree of expansion and contraction C and D of the positive electrode plate 4 and good battery performance can be maintained.

本発明における実施例10〜13の組み合わせの一実施例として、負極合剤層の厚みを厚くするとともに、正極合剤層の活物質密度を小さくして構成した実施例11について図面を参照しながら説明する。まず、図2に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして基準活物質密度の3.6g/ccよりも小さくした3.4g/ccの活物質密度とし片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。 次に、図2に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みT2を基準の厚みの85μmよりも厚くした90μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the combination of Examples 10 to 13 in the present invention, while referring to the drawing, Example 11 was configured with the negative electrode mixture layer thickened and the active material density of the positive electrode mixture layer reduced. explain. First, as shown in FIG. 2, a positive electrode mixture paint similar to that of Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The active material density was 3.4 g / cc, which was pressed to be smaller than the standard active material density of 3.6 g / cc, and the thickness of the positive electrode mixture layers 2a, 2b on one side was 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. Next, as shown in FIG. 2, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. After that, the thickness T2 of the negative electrode mixture layers 6a and 6b on one side was set to 90 μm, which was thicker than the standard thickness of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次いで、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC、DMC、MEC混合溶媒にLiPFを1MとVCを3重量だけ部溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例11とした。 More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 was connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 11.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極合剤層6a,6bの厚みを厚くしたことで、
負極板8を伸び難くするとともに、正極合剤層2a,2bの活物質密度を低くしたことで、インターカレーションされるリチウム量を相対的に減少させて負極合剤層6a,6bの膨張収縮を緩和することで負極板8を伸び難くし、正極板4の伸縮度C,Dを負極板8の伸縮度A,Bに近づけることができ、良好な電池性能を維持できたものと考えられる。
なお、実施例11においては正極合剤層2a,2bの活物質密度を低くする構成としたが、これに限定されるものではなく、負極合剤層6a,6bの活物質密度を高くすることでインターカレーションしうるリチウム量を相対的に増大させて負極板8を伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることも同様に可能である。
Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the thickness of the negative electrode mixture layers 6a and 6b is increased.
The negative electrode plate 8 is made difficult to extend and the active material density of the positive electrode mixture layers 2a and 2b is lowered, so that the amount of lithium intercalated is relatively reduced, and the negative electrode mixture layers 6a and 6b expand and contract. It is considered that the negative electrode plate 8 is made difficult to extend by relaxing the above, and the expansion and contraction degrees C and D of the positive electrode plate 4 can be brought close to the expansion and contraction degrees A and B of the negative electrode plate 8, respectively. .
In Example 11, the active material density of the positive electrode mixture layers 2a and 2b is reduced. However, the present invention is not limited to this, and the active material density of the negative electrode mixture layers 6a and 6b is increased. It is also possible to make the negative electrode plate 8 difficult to stretch by relatively increasing the amount of lithium that can be intercalated in the same manner, and to make the degree of expansion A and B of the negative electrode plate 8 close to the degree of expansion C and D of the positive electrode plate 4. is there.

本発明の一実施例として、負極集電体に長手方向に対して直交する肉厚部を設けるとともに、負極合剤層の厚みを厚くした実施例12について図面を参照しながら説明する。まず、図7に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして活物質密度を3.6g/ccとし片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。一方、図7に示したように実施例1と同様の負極合剤塗料を長手方向に対して垂直方向に等間隔で高さが2μmの肉厚部5aを設けた厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みT2を基準の厚みの85μmよりも厚くした90μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。   As an example of the present invention, Example 12 in which a negative electrode current collector is provided with a thick portion perpendicular to the longitudinal direction and the thickness of the negative electrode mixture layer is increased will be described with reference to the drawings. First, as shown in FIG. 7, the same positive electrode mixture paint as in Example 1 was applied to a positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The active material density was 3.6 g / cc and the thickness of the positive electrode mixture layers 2a and 2b on one side was 75 μm. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery. On the other hand, as shown in FIG. 7, a tough pitch copper foil having a thickness of 10 μm, in which a negative electrode mixture paint similar to that of Example 1 is provided with thick portions 5 a having a height of 2 μm at equal intervals in the direction perpendicular to the longitudinal direction. It was applied to the negative electrode current collector 5 made of (Cu purity: 99.9%), dried and pressed to make the thickness T2 of the negative electrode mixture layers 6a and 6b on one side thicker than the standard thickness of 85 μm. The thickness was 90 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced.

より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例12とした。 More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 12.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5に設けた肉厚部5aの効果に加えて、負極合剤層6a,6bの厚みを厚くした相乗効果により負極板8をさらに伸び難くし、負極板8の伸縮度A,Bを正極板4の伸縮度C,Dに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because, in addition to the effect of the thick portion 5a provided in the negative electrode current collector 5, the negative electrode plate 8 is made more difficult to extend due to the synergistic effect of increasing the thickness of the negative electrode mixture layers 6a and 6b. It is considered that the degrees A and B can be made close to the degree of expansion and contraction C and D of the positive electrode plate 4, and good battery performance can be maintained.

本発明の一実施例として、負極集電体の厚みを厚くするとともに、正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相で設けて構成した実施例13について図面を参照しながら説明する。まず、図8に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等ピッチで
、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの露出部3bを等ピッチで長手方向に対して一様に設けて間欠塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの露出部3aを、また裏面に表面と同位相で幅が5mmの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。
As one example of the present invention, the negative electrode current collector was thickened, and exposed portions perpendicular to the longitudinal direction of the positive electrode current collector were provided in the same phase on the front and back surfaces of the positive electrode mixture layer. Example 13 will be described with reference to the drawings. First, as shown in FIG. 8, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil having a thickness of 15 μm (Al purity: 99.85%). An exposed portion 3a having a width of 5 mm is formed on the surface in the vertical direction at an equal pitch, and an exposed portion 3b having the same phase as the surface is formed on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 at an equal pitch. A positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a, 2b on one side was 100 μm after being provided uniformly in the longitudinal direction, intermittently applied, and dried. Next, this positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the thickness of the positive electrode mixture layers 2 a and 2 b on one side is 75 μm, and the exposed portion 3 a having a width of 5 mm is formed on the surface. An exposed portion 3b having the same phase as the front surface and a width of 5 mm was formed uniformly on the back surface in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図8に示したように実施例1と同様の負極合剤塗料を基準の厚みの10μmよりも厚くした厚みが12μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 8, a negative electrode assembly made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 12 μm, which is a thicker than the standard thickness of 10 μm of the same negative electrode mixture paint as in Example 1. It applied to the electric body 5, dried, and pressed, and the thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例13とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 13.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極集電体5の厚みを厚くしたことで負極板8を伸び難くするとともに、正極集電体1の長手方向に対して一様に露出部3a,3bを設けたことで、この露出部3a,3bが膨張収縮に伴う応力を緩和する効果を発揮して正極板4に加わる応力を緩和し、正極板4の伸縮度C,Dを負極板8の伸縮度A,Bに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode current collector 5 is made thick so that the negative electrode plate 8 is hardly stretched and the exposed portions 3a and 3b are provided uniformly in the longitudinal direction of the positive electrode current collector 1. The exposed portions 3a and 3b exhibit the effect of relaxing the stress associated with expansion and contraction to relieve the stress applied to the positive electrode plate 4, and bring the expansion and contraction degrees C and D of the positive electrode plate 4 closer to the expansion and contraction levels A and B of the negative electrode plate 8, respectively. It is considered that good battery performance was maintained.

本発明の一実施例として、負極合剤層の厚みを厚くするとともに、正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相で設けて構成した実施例14について図面を参照しながら説明する。まず、図9に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの露出部3bを等ピッチで長手方向に対して一様に設けて間欠塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの露出部3aを、また裏面に表面と同位相で幅が5mmの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   As an embodiment of the present invention, the thickness of the negative electrode mixture layer was increased, and the exposed portion perpendicular to the longitudinal direction of the positive electrode current collector was provided in the same phase on the front and back surfaces of the positive electrode mixture layer. Example 14 will be described with reference to the drawings. First, as shown in FIG. 9, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. An exposed portion 3a having a width of 5 mm is formed on the surface in the vertical direction at an equal pitch, and an exposed portion 3b having the same phase as the surface is formed on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 at an equal pitch. A positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a, 2b on one side was 100 μm after being provided uniformly in the longitudinal direction, intermittently applied, and dried. Next, this positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the thickness of the positive electrode mixture layers 2 a and 2 b on one side is 75 μm, and the exposed portion 3 a having a width of 5 mm is formed on the surface. An exposed portion 3b having the same phase as the front surface and a width of 5 mm was formed uniformly on the back surface in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図9に示したように実施例1と同様の負極合剤塗料を厚みが12μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みT2を基準の厚みの85μmよりも厚くした90μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 9, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 12 μm and dried. Later, the thickness T2 of the negative electrode mixture layers 6a and 6b on one side was set to 90 μm, which was thicker than the standard thickness of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例14とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 14.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、負極合剤層6a,6bの厚みを厚くしたことで、負極板8を伸び難くするとともに、正極集電体1の長手方向に対して一様に露出部3a,3bを設けたことで、この露出部3a,3bが膨張収縮に伴う応力を緩和する効果を発揮して正極板4に加わる応力を緩和し、正極板4の伸縮度C,Dを負極板8の伸縮度A,Bに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the negative electrode mixture layers 6a and 6b are made thick so that the negative electrode plate 8 is difficult to extend and the exposed portions 3a and 3b are provided uniformly in the longitudinal direction of the positive electrode current collector 1. Thus, the exposed portions 3a and 3b exhibit the effect of relaxing the stress associated with expansion and contraction to relieve the stress applied to the positive electrode plate 4, and the expansion and contraction degrees C and D of the positive electrode plate 4 are set to the expansion and contraction levels A and D of the negative electrode plate 8, respectively. It is considered that good battery performance could be maintained because it was able to approach B.

本発明の一実施例として、正極集電体に長手方向に対して直交する肉薄部を設けるとともに、負極集電体に長手方向に対して直交する肉厚部を設けて構成した実施例15について図面を参照しながら説明する。まず、図10に示すように実施例1と同様の正極合剤塗料を長手方向に対して垂直方向に等間隔で深さが2μmの肉薄部1aを設けた厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して正極板4を作製した。   As an example of the present invention, about Example 15 in which the positive electrode current collector is provided with a thin part perpendicular to the longitudinal direction and the negative electrode current collector is provided with a thick part perpendicular to the longitudinal direction This will be described with reference to the drawings. First, as shown in FIG. 10, a positive electrode mixture paint similar to that of Example 1 was provided with thin portions 1a having a depth of 2 μm at equal intervals in the direction perpendicular to the longitudinal direction, and an aluminum foil having a thickness of 15 μm (Al The thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm after being applied to a positive electrode current collector 1 having a purity of 99.85% and dried. Then, the positive electrode plate 4 was produced by slitting to a specified width of the cylindrical battery.

一方、図10に示すように実施例1と同様の負極合剤塗料を長手方向に対して垂直方向に等間隔で高さが2μmの肉厚部5aを設けた厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリッタ加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚み20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 10, a tough pitch copper foil having a thickness of 10 μm, in which a negative electrode mixture paint similar to that of Example 1 is provided with thick portions 5a having a height of 2 μm at equal intervals in the direction perpendicular to the longitudinal direction ( The negative electrode current collector 5 made of Cu (purity: 99.9%) was applied and dried, and then pressed to make the thickness of the negative electrode mixture layers 6a and 6b on one side of 85 μm. Then, the negative electrode plate 8 was produced by slitting to a specified width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だ
け溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例15とした。
Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 15.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1に肉薄部1aを設けたことで正極板4を伸び易くするとともに、負極集電体5に肉厚部5aを設けることにより負極板8を伸び難くした。、これにより、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを互いに近づけることができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This made the positive electrode plate 4 easy to extend by providing the thin part 1 a on the positive electrode current collector 1, and made the negative electrode plate 8 difficult to extend by providing the thick part 5 a on the negative electrode current collector 5. Thus, it is considered that the degree of expansion and contraction C and D of the positive electrode plate 4 and the degree of expansion and contraction A and B of the negative electrode plate 8 can be brought close to each other, and good battery performance can be maintained.

(比較例1)
まず、図11に示したように実施例1と同様の正極合剤塗料を厚みが15μm(基準の厚み)のアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして活物質密度を3.6g/cc(基準の活物質密度)とし片面側の正極合剤層2a,2bの厚みが75μm(基準の厚み)で多孔度を15%(基準の多孔度)とした。その後、56mmの幅(基準の幅)にスリッタ加工して正極板4を作製した。一方、図11に示したように実施例1と同様の負極合剤塗料を厚みが10μm(基準の厚み)のタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして活物質密度を1.6g/cc(基準の活物質密度)とし片面側の負極合剤層6a,6bの厚みが85μm(基準の厚み)で多孔度を25%(基準の多孔度)とした。その後、58mm幅(基準の幅)にスリッタ加工して負極板8を作製した。
(Comparative Example 1)
First, as shown in FIG. 11, the same positive electrode mixture paint as that of Example 1 was applied to the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm (reference thickness). After drying and pressing, the active material density is 3.6 g / cc (standard active material density), the thickness of the positive electrode mixture layers 2a and 2b on one side is 75 μm (standard thickness), and the porosity is 15%. (Standard porosity). Then, the positive electrode plate 4 was produced by slitting to a width of 56 mm (reference width). On the other hand, as shown in FIG. 11, the same negative electrode mixture paint as in Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm (reference thickness). After coating, drying and pressing, the active material density is 1.6 g / cc (reference active material density), the thickness of the negative electrode mixture layers 6a and 6b on one side is 85 μm (reference thickness), and the porosity is 25. % (Standard porosity). Then, the negative electrode plate 8 was produced by slitting to a width of 58 mm (reference width).

以上のようにして作製した正極板4と負極板8とを用いて、図12に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10の中から10個を抜き出し有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を比較例1とした。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 12 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. Ten electrodes were extracted from the electrode group 10 and accommodated in the bottomed cylindrical battery case 11 together with the insulating plate 12. A negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was set as Comparative Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返した結果、100個のうち4個にサイクル劣化が認められた。そこで、この4個のリチウムイオン二次電池17を解体したところ、正極板4が破断したものが1個、負極板8が挫屈したものが3個であった。上記の比較例1のリチウムイオン二次電池17においては、充放電時の負極合剤層6a,6bの膨張収縮による負極板8の伸縮度A,Bに対して正極板4の伸縮度C,Dが追従できなかったために、正極板4の破断および負極板8の挫屈が発生したものと考えられる。   As a result of repeating the charge / discharge of 100 lithium ion secondary batteries 17 produced as described above for 500 cycles, cycle deterioration was observed in 4 out of 100 batteries. Thus, when the four lithium ion secondary batteries 17 were disassembled, one was broken by the positive electrode plate 4 and three were bent by the negative electrode plate 8. In the lithium ion secondary battery 17 of Comparative Example 1 described above, the degree of expansion C of the positive electrode plate 4 with respect to the degree of expansion A and B of the negative electrode plate 8 due to expansion and contraction of the negative electrode mixture layers 6a and 6b during charging and discharging. Since D could not follow, it is considered that the positive electrode plate 4 was broken and the negative electrode plate 8 was buckled.

本発明に係る非水系二次電池は、正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成とすることにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和する
ことができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能であるため電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。
The non-aqueous secondary battery according to the present invention includes a positive and negative electrode plate at the time of charge and discharge, by providing a stretch suppressing function that suppresses expansion and contraction on the larger degree of expansion and contraction at the time of charge and discharge of the positive electrode plate and the negative electrode plate. The stress applied to the positive electrode plate or negative electrode plate due to the difference in degree of expansion and contraction due to the expansion and contraction of the negative electrode plate can be relaxed, and it is possible to suppress breakage or buckling of the electrode plate, and internal short circuit caused by these Therefore, it is possible to provide a highly safe non-aqueous secondary battery, so that it is useful as a portable power source or the like for which higher capacity is desired along with the multifunctionalization of electronic devices and communication devices.

1 正極集電体
1a 肉薄部
2a,2b 正極合剤層
3a,3b 露出部
4 正極板
5 負極集電体
5a 肉厚部
6a,6b 負極合剤層
8 負極板
9 セパレータ
10 電極群
11 電池ケース
12 絶縁板
13 負極リード
14 正極リード
15 封口板
16 封口ガスケット
17 リチウムイオン二次電池
A,B 負極板の伸縮度
C,D 正極板の伸縮度
T1 負極集電体の厚み
T2 負極合剤層の厚み
W1 負極集電体の幅
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 1a Thin part 2a, 2b Positive electrode mixture layer 3a, 3b Exposed part 4 Positive electrode plate 5 Negative electrode collector 5a Thick part 6a, 6b Negative electrode mixture layer 8 Negative electrode plate 9 Separator 10 Electrode group 11 Battery case 12 Insulating plate 13 Negative electrode lead 14 Positive electrode lead 15 Sealing plate 16 Sealing gasket 17 Lithium ion secondary battery A, B Elasticity of negative electrode plate C, D Elasticity of positive electrode plate T1 Negative electrode current collector thickness T2 Negative electrode mixture layer Thickness W1 Width of negative electrode current collector

Claims (18)

少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させ渦巻状に捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、前記正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けた構成としたことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode mixture layer formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector; A negative electrode mixture coating material in which an active material made of a material capable of holding lithium and a binder are kneaded and dispersed in a dispersion medium is applied on the negative electrode current collector to form a porous material between the negative electrode plate and the negative electrode plate. A non-aqueous secondary battery in which an electrode group formed by winding or stacking in a spiral shape with a porous insulator interposed therein is enclosed in a battery case together with a non-aqueous electrolyte solution, during charging and discharging of the positive electrode plate and the negative electrode plate A non-aqueous secondary battery having a configuration in which an expansion / contraction suppression function for suppressing expansion / contraction is provided on the side having a larger expansion / contraction degree. 前記伸縮抑制機能を正極集電体または負極集電体に設けたことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the expansion / contraction suppression function is provided in a positive electrode current collector or a negative electrode current collector. 前記伸縮抑制機能として正極集電体または負極集電体を伸縮度の小さい合金を用いて構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein a positive electrode current collector or a negative electrode current collector is configured by using an alloy having a low expansion / contraction degree as the expansion / contraction suppression function. 前記伸縮抑制機能として正極集電体または負極集電体を調質処理により硬化させて構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein the non-aqueous secondary battery is configured by curing a positive electrode current collector or a negative electrode current collector by a tempering treatment as the expansion / contraction suppression function. 前記伸縮抑制機能として正極集電体または負極集電体の厚みを厚くして構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein a thickness of the positive electrode current collector or the negative electrode current collector is increased as the expansion / contraction suppression function. 前記伸縮抑制機能として正極集電体または負極集電体に長手方向に対して直交する肉厚部を設けて構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein as the expansion / contraction suppression function, the positive electrode current collector or the negative electrode current collector is provided with a thick portion orthogonal to the longitudinal direction. 前記伸縮抑制機能として正極集電体または負極集電体の幅を広くして構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein a width of the positive electrode current collector or the negative electrode current collector is widened as the expansion / contraction suppression function. 前記伸縮抑制機能として正極集電体または負極集電体を伸縮度の小さい合金で構成する、または調質処理により硬化する、または厚みを厚くする、または長手方向に対して直交する肉厚部を設ける、または幅を広くするかのいずれか二つ以上を組み合わせて構成したことを特徴とする請求項2に記載の非水系二次電池。   As the expansion / contraction suppression function, a positive electrode current collector or a negative electrode current collector is composed of an alloy having a low expansion / contraction degree, or is hardened by a tempering treatment, or thickened, or a thick portion perpendicular to the longitudinal direction. The nonaqueous secondary battery according to claim 2, wherein the nonaqueous secondary battery is configured by combining any two or more of providing or widening the width. 前記伸縮抑制機能を正極合剤層または負極合剤層に設けたことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the expansion / contraction suppression function is provided in a positive electrode mixture layer or a negative electrode mixture layer. 前記伸縮抑制機能として伸縮度が大きい電極板の正極合剤層または負極合剤層の厚みを厚くして構成したことを特徴とする請求項9に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 9, wherein, as the expansion / contraction suppression function, the positive electrode mixture layer or the negative electrode mixture layer of the electrode plate having a large expansion / contraction degree is thickened. 前記伸縮抑制機能として正極合剤層の活物質密度を小さくするまたは負極合剤層の活物質密度を大きくして構成したことを特徴とする請求項9に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 9, wherein, as the expansion / contraction suppression function, the active material density of the positive electrode mixture layer is reduced or the active material density of the negative electrode mixture layer is increased. 前記伸縮抑制機能として伸縮度が大きい電極板の正極合剤層または負極合剤層の多孔度を大きくして構成したことを特徴とする請求項9に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 9, wherein, as the expansion / contraction suppression function, the positive electrode mixture layer or the negative electrode mixture layer of the electrode plate having a large expansion / contraction degree is configured to have a large porosity. 前記伸縮抑制機能として正極合剤層または負極合剤層を形成する結着材の硬度を高くして構成したことを特徴とする請求項9に記載の非水系二次電池。   10. The non-aqueous secondary battery according to claim 9, wherein the non-aqueous secondary battery is configured by increasing a hardness of a binder forming the positive electrode mixture layer or the negative electrode mixture layer as the expansion / contraction suppression function. 前記伸縮抑制機能として正極合剤層または負極合剤層の厚みを厚くする、または正極合
剤層の活物質密度を小さくするか負極合剤層の活物質密度を大きくする、または多孔度を大きくする、または結着材の硬度を高くするかのいずれか二つ以上を組み合わせたことを特徴とする請求項9に記載の非水系二次電池。
As the expansion / contraction suppression function, the thickness of the positive electrode mixture layer or the negative electrode mixture layer is increased, or the active material density of the positive electrode mixture layer is decreased or the active material density of the negative electrode mixture layer is increased, or the porosity is increased. The non-aqueous secondary battery according to claim 9, which is a combination of any two or more of increasing the hardness of the binder or increasing the hardness of the binder.
前記伸縮抑制機能を正極集電体または負極集電体に設けるとともに、前記正極合剤層または負極合剤層に設けて構成したことを特徴とする請求項1に記載の非水系二次電池。   2. The non-aqueous secondary battery according to claim 1, wherein the expansion / contraction suppression function is provided in a positive electrode current collector or a negative electrode current collector and is provided in the positive electrode mixture layer or the negative electrode mixture layer. 前記伸縮抑制機能を正極集電体または負極集電体に設けるとともに、正極合剤層または負極合剤層の少なくとも片面に正極集電体または負極集電体の長手方向に対して直交する露出部を形成し伸縮緩和機能を付与したことを特徴とする請求項1に記載の非水系二次電池。   The expansion / contraction suppressing function is provided in the positive electrode current collector or the negative electrode current collector, and at least one surface of the positive electrode mixture layer or the negative electrode mixture layer is exposed to be orthogonal to the longitudinal direction of the positive electrode current collector or the negative electrode current collector The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is provided with an expansion / contraction relaxation function. 前記伸縮抑制機能を正極合剤層または負極合剤層に設けるとともに、正極合剤層または負極合剤層の少なくとも片面に正極集電体または負極集電体の長手方向に対して直交する露出部を形成し伸縮緩和機能を付与したことを特徴とする請求項1に記載の非水系二次電池。   The expansion / contraction suppressing function is provided in the positive electrode mixture layer or the negative electrode mixture layer, and at least one surface of the positive electrode mixture layer or the negative electrode mixture layer is exposed to be orthogonal to the longitudinal direction of the positive electrode current collector or the negative electrode current collector The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is provided with an expansion / contraction relaxation function. 少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させ渦巻状に捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、前記正極板と負極板の充放電時の伸縮度が大きい方に伸縮を抑制する伸縮抑制機能を設けるとともに、前記正極板と負極板の充放電時の伸縮度が小さい方に伸縮を促進する伸縮促進機能を設けたことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode mixture layer formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector; A negative electrode mixture coating material in which an active material made of a material capable of holding lithium and a binder are kneaded and dispersed in a dispersion medium is applied on the negative electrode current collector to form a porous material between the negative electrode plate and the negative electrode plate. A non-aqueous secondary battery in which an electrode group formed by winding or stacking in a spiral shape with a porous insulator interposed therein is enclosed in a battery case together with a non-aqueous electrolyte solution, during charging and discharging of the positive electrode plate and the negative electrode plate The expansion / contraction suppressing function for suppressing expansion / contraction is provided on the larger one of the expansion / contraction degree, and the expansion / contraction promotion function for promoting expansion / contraction is provided on the one having the smaller expansion / contraction degree during charging / discharging of the positive electrode plate and the negative electrode plate. Non-aqueous secondary battery.
JP2009128464A 2009-05-28 2009-05-28 Nonaqueous secondary battery Pending JP2010277806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128464A JP2010277806A (en) 2009-05-28 2009-05-28 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128464A JP2010277806A (en) 2009-05-28 2009-05-28 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2010277806A true JP2010277806A (en) 2010-12-09

Family

ID=43424601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128464A Pending JP2010277806A (en) 2009-05-28 2009-05-28 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2010277806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014827A1 (en) * 2011-07-22 2013-01-31 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2013065500A1 (en) * 2011-11-04 2013-05-10 株式会社 日立製作所 Cylindrical rolled-type battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014827A1 (en) * 2011-07-22 2013-01-31 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN103563158A (en) * 2011-07-22 2014-02-05 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
JPWO2013014827A1 (en) * 2011-07-22 2015-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US9257717B2 (en) 2011-07-22 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2013065500A1 (en) * 2011-11-04 2013-05-10 株式会社 日立製作所 Cylindrical rolled-type battery

Similar Documents

Publication Publication Date Title
JP5046352B2 (en) Method for producing lithium ion secondary battery
WO2009157158A1 (en) Nonaqueous electrolyte secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2006294469A (en) Nonaqueous electrolyte secondary battery
JP2013175325A (en) Method of manufacturing composition for positive electrode mixture layer formation and method of manufacturing lithium ion secondary battery
JP2007141527A (en) Electrode and nonaqueous secondary battery using it
JP5441143B2 (en) Lithium secondary battery for mobile devices
US20110236748A1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2010061819A (en) Nonaqueous secondary battery
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2013098022A (en) Battery electrode plate and battery using the same
JP2010062049A (en) Nonaqueous secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2007324074A (en) Electrode plate for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
JP2010061940A (en) Nonaqueous secondary battery
JP2010277806A (en) Nonaqueous secondary battery
JP2013073779A (en) Method of preparing composition for positive electrode mixture layer formation, and method of manufacturing nonaqueous electrolytic solution secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011023130A (en) Nonaqueous secondary battery
JP2010009817A (en) Nonaqueous secondary battery
JP2010061820A (en) Nonaqueous secondary battery
JP2007220510A (en) Method of manufacturing cathode mixture containing composition, method of manufacturing anode mixture containing composition, method of manufacturing cathode for battery, method of manufacturing anode for battery, nonaqueous secondary battery, and its manufacturing method
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery