JP2011023130A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2011023130A
JP2011023130A JP2009164755A JP2009164755A JP2011023130A JP 2011023130 A JP2011023130 A JP 2011023130A JP 2009164755 A JP2009164755 A JP 2009164755A JP 2009164755 A JP2009164755 A JP 2009164755A JP 2011023130 A JP2011023130 A JP 2011023130A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
expansion
current collector
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164755A
Other languages
Japanese (ja)
Inventor
Masakazu Yamada
雅一 山田
Tsutomu Nishioka
努 西岡
Masanori Sumihara
正則 住原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009164755A priority Critical patent/JP2011023130A/en
Publication of JP2011023130A publication Critical patent/JP2011023130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery of high safety with a structure of an expansion and contraction alleviating function for alleviating expansion and contraction given to a positive electrode plate in the battery, and restraining break or buckling of an electrode plate at charge and discharge through relaxing of stress due to expansion and contraction of the electrode plate at charging and discharging of the battery. <P>SOLUTION: An electrode group 10 structured by winding around a positive electrode plate 4 having positive electrode mixture layers 2a, 2b formed by coating positive electrode mixture paint on a positive electrode collector 1, and an negative electrode plate 8 having negative electrode mixture layers 6a, 6b formed by coating negative electrode mixture paint on an negative electrode collector 5, with an interposition of a separator 9 is so constituted to provide the positive electrode plate 4 with an expansion and contraction alleviating function for alleviating expansion and contraction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池に関し、特に安全性に優れた非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion secondary battery, and more particularly to a non-aqueous secondary battery excellent in safety.

近年、携帯用電子機器の電源として利用が広がっているリチウムイオン二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量のリチウムイオン二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化に伴って、更なるリチウムイオン二次電池の高容量化が望まれている。 In recent years, lithium ion secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode, and a composite of a transition metal such as LiCoO 2 and lithium for the positive electrode. An oxide is used as an active material, thereby realizing a lithium ion secondary battery having a high potential and a high discharge capacity. However, with the recent increase in functionality of electronic devices and communication devices, it is desired to further increase the capacity of lithium ion secondary batteries.

ここで、高容量のリチウムイオン二次電池を実現するための発電要素である電極板としては、正極板および負極板ともに各々の構成材料を塗料化した電極合剤塗料を集電体の上に塗布して乾燥させた後にプレス等により規定の厚みまで圧縮する方法が用いられており、より多くの活物質を充填してプレスすることで活物質密度が高くなり、一層の高容量化が可能となる。   Here, as an electrode plate that is a power generation element for realizing a high-capacity lithium ion secondary battery, an electrode mixture paint obtained by coating each constituent material on both the positive electrode plate and the negative electrode plate is placed on the current collector. After applying and drying, a method of compressing to the specified thickness by pressing or the like is used. By filling and pressing more active material, the active material density becomes higher and further increase in capacity is possible. It becomes.

さらに、上述の正極板と負極板とをセパレータを介して順に積層される又はセパレータを介して渦巻状に捲回した電極群をステンレス製、ニッケルメッキを施した鉄製、又はアルミニウム製などの金属からなる電池ケースに収納し、次に非水系電解液を電池ケース内に注液した後に電池ケースの開口部に封口板を密封固着してリチウムイオン二次電池が構成される。   Further, an electrode group in which the above-described positive electrode plate and negative electrode plate are sequentially laminated via a separator or spirally wound via a separator is made of a metal such as stainless steel, nickel-plated iron, or aluminum. In a battery case, a non-aqueous electrolyte is poured into the battery case, and then a sealing plate is hermetically fixed to the opening of the battery case to form a lithium ion secondary battery.

ところで、リチウムイオン電池に代表される非水系二次電池の高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板とが内部短絡などにより非水系二次電池の急激な温度上昇が起こり熱暴走に至る恐れもあるため、非水系二次電池の安全性の向上が強く要求されている。特に、大型・高出力な非水系二次電池では、熱暴走の発生する確率が高くなるため、その発生する確率を低くするなどの安全性を向上させる工夫が必要である。   By the way, while increasing capacity of non-aqueous secondary batteries typified by lithium ion batteries, safety measures should be emphasized. In particular, the positive and negative plates are rapidly connected to the non-aqueous secondary battery due to an internal short circuit. There is a strong demand for improvement in the safety of non-aqueous secondary batteries, because there is a risk of excessive temperature rise and thermal runaway. In particular, a large-sized, high-power non-aqueous secondary battery has a high probability of thermal runaway, and thus a device for improving safety, such as reducing the probability of occurrence, is necessary.

上述のように非水系二次電池が内部短絡する要因としては、非水系二次電池の内部に異物が混入する以外にも図14(a)に示したように、正極集電体21の上に正極合剤層22a,22bを形成した正極板23と、負極集電体24の上に負極合剤層25a,25bを形成した負極板26とを多孔質絶縁体からなるセパレータ27を介して捲回することにより電極群28を構成する際、さらには非水系二次電池を充放電する際に電極板に加わる応力によって電極板が破断あるいは挫屈することが考えられる。より詳しくは、渦巻状に捲回して電極群28を構成する際には構成要素である正極板23、負極板26、セパレータ27には引張応力が加わり、この際の各構成要素における伸び率の差によって最も伸び率が小さなものから破断することになる。加えて、非水系二次電池を充放電すると電極板の膨張収縮による応力が電極板に加わり、充放電を繰り返すことによる繰り返し応力により正極板23、負極板26もしくはセパレータ27の伸び率の最も低いものが優先的に破断してしまう。   As described above, the cause of the internal short circuit of the non-aqueous secondary battery is that, as shown in FIG. 14 (a), foreign matter is mixed into the non-aqueous secondary battery. The positive electrode plate 23 having the positive electrode mixture layers 22a and 22b formed thereon and the negative electrode plate 26 having the negative electrode mixture layers 25a and 25b formed on the negative electrode current collector 24 through a separator 27 made of a porous insulator. It is conceivable that when the electrode group 28 is formed by winding, and further when the non-aqueous secondary battery is charged and discharged, the electrode plate is broken or buckled by stress applied to the electrode plate. More specifically, when the electrode group 28 is formed by winding in a spiral shape, tensile stress is applied to the positive electrode plate 23, the negative electrode plate 26, and the separator 27, which are constituent elements, and the elongation rate of each constituent element at this time is increased. The difference causes the fracture from the smallest elongation. In addition, when a non-aqueous secondary battery is charged / discharged, stress due to expansion / contraction of the electrode plate is applied to the electrode plate, and the positive electrode plate 23, the negative electrode plate 26 or the separator 27 has the lowest elongation rate due to repeated stress due to repeated charge / discharge. Things break preferentially.

例えば、図14(b)に示したように充電時の負極板26の伸びに正極板23が追従できない場合には正極板23の破断(図中のF)が起こり、また、正極板23の破断が起きなくても図14(c)に示したように負極板26の挫屈によりセパレータ27が引き伸ばされることで、セパレータ27の厚みが薄くなる箇所(図中のG)が発生する。さらに、
正極板23もしくは負極板26がセパレータ27よりも先に破断した場合には、いずれかの電極板の破断部がセパレータ27を突き破り正極板23と負極板26が短絡することになる。この短絡により大電流が流れ、その結果、非水系二次電池の温度が急激に上昇し、上述のように非水系二次電池が熱暴走する可能性がある。
For example, as shown in FIG. 14B, when the positive electrode plate 23 cannot follow the elongation of the negative electrode plate 26 during charging, the positive electrode plate 23 breaks (F in the figure). Even if no breakage occurs, as shown in FIG. 14C, the separator 27 is stretched by the buckling of the negative electrode plate 26, thereby generating a portion where the thickness of the separator 27 is reduced (G in the figure). further,
When the positive electrode plate 23 or the negative electrode plate 26 is broken before the separator 27, the broken portion of one of the electrode plates breaks through the separator 27 and the positive electrode plate 23 and the negative electrode plate 26 are short-circuited. Due to this short circuit, a large current flows, and as a result, the temperature of the non-aqueous secondary battery rises rapidly, and the non-aqueous secondary battery may run out of heat as described above.

そこで、正極板の破断を抑制するために、図15に示したように両面に正極合剤層を塗布形成した正極板33と両面に負極合剤層を塗布形成した負極板34とをセパレータ35を介して扁平状に捲回した発電要素32と非水系電解液を電池ケース36に収納した非水系二次電池31において、正極板33の両面のうち、内周側の第1面の正極合剤層を裏面の第2面の正極合剤層よりも柔軟性を高く(引張破断伸びを大きく)する方法が提案されている(例えば、特許文献1参照)。   Therefore, in order to suppress breakage of the positive electrode plate, as shown in FIG. 15, the positive electrode plate 33 with the positive electrode mixture layer formed on both sides and the negative electrode plate 34 with the negative electrode mixture layer applied on both sides, as shown in FIG. In the non-aqueous secondary battery 31 in which the power generation element 32 wound in a flat shape and the non-aqueous electrolyte solution are accommodated in the battery case 36, the positive electrode combination of the first surface on the inner peripheral side of both surfaces of the positive electrode plate 33 is A method has been proposed in which the agent layer has higher flexibility (higher tensile elongation at break) than the positive electrode mixture layer on the second surface on the back side (see, for example, Patent Document 1).

また、電極板の伸び率を向上させるために、図16に示したように正極リード44を接続した正極板41と負極リード45を接続した負極板42との間にセパレータ43を介在させて渦巻状に捲回して電池ケース47に収容し正極リード44を正極外部端子46に、負極リード45を電池ケース47に接続し、非水系電解液を注入した非水系二次電池において、正極板41および負極板42とこれら両電極間に介装されるべきセパレータ43とを積層する前又は巻き取る前に、結着材の再結晶化温度より高い温度であってその分解温度より低い温度で正極板41又は負極板42のいずれか一方もしくはその両方の電極板を加熱処理する方法が提案されている(例えば、特許文献2参照)。   Further, in order to improve the elongation rate of the electrode plate, a separator 43 is interposed between the positive electrode plate 41 connected to the positive electrode lead 44 and the negative electrode plate 42 connected to the negative electrode lead 45 as shown in FIG. In a non-aqueous secondary battery in which a positive electrode lead 44 is connected to the positive electrode external terminal 46, a negative electrode lead 45 is connected to the battery case 47, and a non-aqueous electrolyte is injected, Before laminating or winding up the negative electrode plate 42 and the separator 43 to be interposed between the two electrodes, the positive electrode plate is heated at a temperature higher than the recrystallization temperature of the binder and lower than its decomposition temperature. There has been proposed a method of heat-treating one or both of the electrode plate 41 and the negative electrode plate 42 (for example, see Patent Document 2).

特開2007−103263号公報JP 2007-103263 A 特許第3066161号公報Japanese Patent No. 3066161

しかしながら、正極板の内周側の正極合剤層を外周側より柔軟にする、または電極板を熱処理するなどの上述した従来技術においては、電極群を構成する際に正極板に加わる曲げ応力による正極板の破断を抑制する効果は発揮するものの、非水系二次電池を充放電する際の電極板の膨張収縮による応力を緩和し充放電時の電極板の破断または挫屈を抑制することが困難であるという課題を有していた。   However, in the above-described prior art such as making the positive electrode mixture layer on the inner peripheral side of the positive electrode plate more flexible than the outer peripheral side or heat-treating the electrode plate, it is due to bending stress applied to the positive electrode plate when forming the electrode group. Although the effect of suppressing the breakage of the positive electrode plate is exhibited, the stress due to the expansion and contraction of the electrode plate when charging and discharging the non-aqueous secondary battery can be relieved to suppress the breakage or buckling of the electrode plate during charge and discharge. It had the problem of being difficult.

加えて、上述した特許文献1の従来技術では、正極板の表面と裏面に塗布する二種類の正極合剤塗料を作製し、この二種類の正極合剤塗料を正極集電体の上に塗布して形成する必要があり、正極板を作製するプロセスが複雑になってしまう。   In addition, in the prior art of Patent Document 1 described above, two types of positive electrode mixture paints are prepared to be applied to the front and back surfaces of the positive electrode plate, and these two types of positive electrode mixture paints are applied on the positive electrode current collector. Therefore, the process for producing the positive electrode plate becomes complicated.

また、特許文献2の従来技術では、電極板を規定の厚みまでプレスした後に熱処理を施し捲回して電極群を構成するが、この熱処理によって規定の厚みまで圧縮された電極板がバックリングを起こし捲回前の電極板の厚みバラツキが大きくなってしまう。さらに、捲回した電極群の直径のバラツキが大きくなってしまうなどの不具合を引き起こすことがある。   In the prior art of Patent Document 2, an electrode group is formed by pressing the electrode plate to a specified thickness and then performing heat treatment and winding to form an electrode group. The electrode plate compressed to the specified thickness by this heat treatment causes buckling. The thickness variation of the electrode plate before winding becomes large. Furthermore, it may cause a problem such as a large variation in diameter of the wound electrode group.

本発明は上記従来の課題を鑑みてなされたもので、非水系二次電池における正極板に伸縮を緩和する伸縮緩和機能を設けた構成とし、非水系二次電池を充放電する際の電極板の膨張収縮に伴う応力を緩和し充放電時の電極板の破断または挫屈を抑制することで安全性の高い非水系二次電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and has a structure in which a positive and negative electrode plate in a non-aqueous secondary battery is provided with an expansion / contraction relaxation function for relaxing expansion and contraction, and an electrode plate for charging and discharging the non-aqueous secondary battery An object of the present invention is to provide a highly safe non-aqueous secondary battery by relieving the stress accompanying expansion and contraction of the electrode and suppressing fracture or buckling of the electrode plate during charging and discharging.

上記目的を達成するために本発明の非水系二次電池は、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に付着させて負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極板に伸縮を緩和する伸縮緩和機能を設けた構成としたことを特徴とするものである。   In order to achieve the above object, the non-aqueous secondary battery of the present invention is a positive electrode current collector comprising a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium. The negative electrode current collector is prepared by mixing a positive electrode plate having a positive electrode mixture layer deposited thereon and an active material and a binder made of a material capable of holding lithium at least in a dispersion medium. A non-aqueous electrolyte solution and a non-aqueous electrolyte encapsulated in a battery case include an electrode group formed by winding or laminating a porous insulator between a negative electrode plate formed on a negative electrode mixture layer An aqueous secondary battery is characterized in that the positive electrode plate is provided with an expansion / contraction relaxation function for relaxing expansion / contraction.

本発明の非水系二次電池によると、正極板に伸縮を緩和する伸縮緩和機能を設けた構成としたことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和することができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能である。   According to the non-aqueous secondary battery of the present invention, the positive electrode plate is provided with an expansion / contraction relaxation function that relaxes expansion / contraction, resulting in a difference in expansion / contraction between the positive electrode plate and the negative electrode plate during charge / discharge. The stress applied to the positive electrode plate or the negative electrode plate can be relieved, and it is possible to suppress breakage or buckling of the electrode plate. It is possible to provide.

本発明の一実施の形態に係る非水系二次電池における捲回後の電極群の要部を示す非水系二次電池用の電極群の要部を示す部分断面図The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries which shows the principal part of the electrode group after winding in the non-aqueous secondary battery which concerns on one embodiment of this invention 本発明の一実施の形態に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one embodiment of this invention. 本発明の一実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on one Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on another Example of this invention. 本発明の比較例に係る非水系二次電池における捲回前の電極群の要部を示す斜視図The perspective view which shows the principal part of the electrode group before winding in the non-aqueous secondary battery which concerns on the comparative example of this invention. 本発明の一実施の形態に係る円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention. (a)従来例における非水系二次電池用の電極群の要部を示す部分断面図、(b)従来例における非水系二次電池において電極板の破断が発生した場合の電極群の要部を示す部分断面図、(c)従来例における非水系二次電池において電極群の挫屈が発生した場合の電極群の要部を示す部分断面図(A) The fragmentary sectional view which shows the principal part of the electrode group for non-aqueous secondary batteries in a prior art example, (b) The principal part of an electrode group when the fracture | rupture of an electrode plate generate | occur | produces in the non-aqueous secondary battery in a prior art example (C) The fragmentary sectional view which shows the principal part of an electrode group in case the buckling of an electrode group generate | occur | produces in the non-aqueous secondary battery in a prior art example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example 従来例における非水系二次電池の断面図Cross-sectional view of a non-aqueous secondary battery in a conventional example

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、正極板に伸縮を緩和する伸縮緩和機能を設けた構成としたことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和し電極板の破断および電極板の挫屈に起因した内部短絡を抑制することが可能となり、安全性の高い非水系二次電池を提供することができる。   In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is applied onto a positive electrode current collector. A negative electrode mixture layer obtained by applying a negative electrode mixture coating material obtained by kneading and dispersing an active material and a binder made of a material capable of holding lithium at least in a dispersion medium on a negative electrode current collector. A non-aqueous secondary battery in which a porous insulating material is wound or laminated with a non-aqueous electrolyte solution enclosed in a battery case with a porous insulator interposed between the non-aqueous secondary battery and the positive electrode plate By adopting a structure that provides an expansion / contraction relaxation function for relaxing expansion / contraction, the stress applied to the positive electrode plate or the negative electrode plate due to the difference in expansion / contraction due to expansion / contraction between the positive electrode plate and the negative electrode plate during charge / discharge is alleviated. Caused by fracture and electrode plate buckling And it is possible to suppress the internal short circuit, it is possible to provide a highly safe nonaqueous secondary battery.

本発明の第2の発明においては、伸縮緩和機能として正極合剤層の少なくとも片面に正極集電体の長手方向に対して直交する露出部を形成して構成したことにより、正極合剤層の構成材料を大幅に変更することなく正極合剤塗料の塗布条件の最適化により正極板に伸縮緩和機能を付与することができ、この正極合剤層の露出部により正極板または負極板の膨張収縮に伴う応力を緩和することで、電極板の破断または挫屈を抑制することが可能となる。   In the second invention of the present invention, by forming an exposed portion orthogonal to the longitudinal direction of the positive electrode current collector on at least one surface of the positive electrode mixture layer as a stretching relaxation function, The expansion and contraction function of the positive electrode plate or negative electrode plate can be imparted to the positive electrode plate by optimizing the application conditions of the positive electrode mixture paint without significantly changing the constituent materials. By relieving the stress accompanying this, it becomes possible to suppress breakage or buckling of the electrode plate.

本発明の第3の発明においては、伸縮緩和機能として正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相となるように形成して構成したことにより、正極板または負極板の膨張収縮に伴う応力を緩和させる効果を電極板の厚み方向により効果的に分散させることができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the third invention of the present invention, as the expansion / contraction relaxation function, the exposed portion orthogonal to the longitudinal direction of the positive electrode current collector is formed in the same phase on the front and back surfaces of the positive electrode mixture layer. Can effectively disperse the stress associated with the expansion and contraction of the positive electrode plate or the negative electrode plate in the thickness direction of the electrode plate, and more effectively suppress the breakage or buckling of the electrode plate. It becomes.

本発明の第4の発明においては、伸縮緩和機能として正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を異位相となるように形成して構成したことにより、正極板または負極板の膨張収縮に伴う応力を緩和させる効果を電極板の長手方向により効果的に分散させることができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the fourth invention of the present invention, as an expansion / contraction relaxation function, an exposed portion perpendicular to the longitudinal direction of the positive electrode current collector is formed on the front and back surfaces of the positive electrode mixture layer so as to be out of phase. Thus, the effect of relieving the stress accompanying expansion and contraction of the positive electrode plate or the negative electrode plate can be more effectively dispersed in the longitudinal direction of the electrode plate, and the breakage or buckling of the electrode plate can be more effectively suppressed. It becomes possible.

本発明の第5の発明においては、伸縮緩和機能として正極集電体の露出部の幅を変えて形成して構成したことにより、この露出部の幅を最適化することにより正極板に付与する応力緩和効果を調整することができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the fifth aspect of the present invention, the expansion / contraction relaxation function is formed by changing the width of the exposed portion of the positive electrode current collector, so that the width of the exposed portion is optimized and applied to the positive electrode plate. The stress relaxation effect can be adjusted, and the breakage or buckling of the electrode plate can be suppressed more effectively.

本発明の第6の発明においては、伸縮緩和機能として露出部の幅を正極合剤層の外周側と内周側で変えて形成して構成したことにより、一例として渦巻状の電極群における正極板の内周側にある正極合剤層の肉薄部の幅を外周側にある正極合剤層の肉薄部の幅よりも広くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the sixth aspect of the present invention, as an example of the expansion / contraction relaxation function, the exposed portion width is changed between the outer peripheral side and the inner peripheral side of the positive electrode mixture layer, thereby forming a positive electrode in a spiral electrode group as an example. By making the width of the thin portion of the positive electrode mixture layer on the inner peripheral side of the plate wider than the width of the thin portion of the positive electrode mixture layer on the outer peripheral side, the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate The resulting stress difference can be mitigated, and it becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the positive electrode plate in the electrode group.

本発明の第7の発明においては、伸縮緩和機能として露出部の幅を正極合剤層の巻き始め側と巻き終わり側で変えて形成して構成したことにより、一例として正極合剤層の露出部の幅を捲回方向に対して段階的に広くすることで電極群を構成した際に正極板の巻き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the seventh invention of the present invention, as an expansion / contraction relaxation function, the exposed portion is formed by changing the width of the exposed portion between the winding start side and the winding end side of the positive electrode mixture layer, so that the positive electrode mixture layer is exposed as an example. When the electrode group is configured by gradually widening the width of the part in the winding direction, the stress difference due to the difference in curvature between the start and end of winding of the positive electrode plate can be reduced. It becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the electrode plate in the group.

本発明の第8の発明においては、伸縮緩和機能として外周側と内周側の幅を変えるとともに、巻き始め側と巻き終わり側の幅を変えて露出部を形成したことにより、外周側と内周側における露出部の幅を変えたことによる効果に加えて、巻き始め側と巻き終わり側に
おける露出部の幅を変えた相乗効果によって、電極群中の電極板の破断および電極板の挫屈をより効果的に抑制することが可能となる。
In the eighth invention of the present invention, the outer peripheral side and the inner peripheral side are formed by changing the widths of the outer peripheral side and the inner peripheral side as the expansion / contraction relaxation function and changing the widths of the winding start side and the winding end side. In addition to the effect of changing the width of the exposed portion on the circumferential side, the synergistic effect of changing the width of the exposed portion on the winding start side and the winding end side causes the electrode plate in the electrode group to break and the electrode plate to buckle. Can be more effectively suppressed.

本発明の第9の発明においては、伸縮緩和機能として正極集電体の露出部の間隔を変えて形成して構成したことにより、露出部の間隔を最適化することにより正極板に付与する応力緩和効果を調整することができ、より効果的に電極板の破断または挫屈を抑制することが可能となる。   In the ninth aspect of the present invention, the stress imparted to the positive electrode plate by optimizing the interval between the exposed portions is formed by changing the interval between the exposed portions of the positive electrode current collector as the expansion / contraction relaxation function. The relaxation effect can be adjusted, and the breakage or buckling of the electrode plate can be suppressed more effectively.

本発明の第10の発明においては、伸縮緩和機能として露出部の間隔を正極合剤層の外周側と内周側で変えて形成して構成したことにより、一例として渦巻状の電極群における正極板の内周側にある正極合剤層の露出部の間隔を外周側にある正極合剤層の露出部の間隔よりも狭くすることで正極板の外周側と内周側の曲率の差に起因した応力差を緩和することができ、電極群中の正極板の破断および正極板の挫屈を効果的に抑制することが可能となる。   In the tenth aspect of the present invention, as an example of the expansion / contraction relaxation function, the interval between the exposed portions is changed and formed on the outer peripheral side and the inner peripheral side of the positive electrode mixture layer. By making the interval between the exposed portions of the positive electrode mixture layer on the inner peripheral side of the plate narrower than the interval between the exposed portions of the positive electrode mixture layer on the outer peripheral side, the difference in curvature between the outer peripheral side and the inner peripheral side of the positive electrode plate can be obtained. The resulting stress difference can be mitigated, and it becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the positive electrode plate in the electrode group.

本発明の第11の発明においては、伸縮緩和機能として露出部の間隔を正極合剤層の巻き始め側と巻き終わり側で変えて形成して構成したことにより、一例として正極合剤層の露出部の間隔を捲回方向に対して段階的に広くすることで電極群を構成した際に正極板の巻き始めと捲き終わりの曲率の差に起因した応力差を緩和することができるため、電極群中の正極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the eleventh aspect of the present invention, as an example of the expansion / contraction relaxation function, the exposed portion interval is changed between the winding start side and the winding end side of the positive electrode mixture layer. Since the gap between the portions can be gradually increased with respect to the winding direction, the difference in stress due to the difference in curvature between the start and end of winding of the positive electrode plate can be reduced when the electrode group is configured. It becomes possible to effectively suppress the breakage of the positive electrode plate and the buckling of the electrode plate in the group.

本発明の第12の発明においては、伸縮緩和機能として外周側と内周側の間隔を変えるとともに巻き始め側と巻き終わり側の間隔を変えて露出部を形成したことにより、外周側と内周側における露出部の間隔を変えたことによる効果に加えて、巻き始め側と巻き終わり側における露出部の間隔を変えた相乗効果によって、電極群中の電極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the twelfth aspect of the present invention, as the expansion / contraction relaxation function, the exposed portion is formed by changing the interval between the outer peripheral side and the inner peripheral side and changing the interval between the winding start side and the winding end side. In addition to the effect of changing the interval between the exposed portions on the side, the synergistic effect of changing the interval between the exposed portions on the winding start side and the winding end side reduces the breakage of the electrode plate and the electrode plate in the electrode group. It becomes possible to suppress effectively.

本発明の第13の発明においては、伸縮緩和機能として正極集電体の露出部の幅を変えるとともに、正極集電体の露出部の間隔を変えて露出部を形成したことにより、露出部の幅を変えたことによる効果に加えて、露出部の間隔を変えた相乗効果によって、電極群中の電極板の破断および電極板の挫屈を効果的に抑制することが可能となる。   In the thirteenth aspect of the present invention, the width of the exposed portion of the positive electrode current collector is changed as an expansion / contraction relaxation function, and the exposed portion is formed by changing the interval between the exposed portions of the positive electrode current collector. In addition to the effect of changing the width, it is possible to effectively suppress the breakage of the electrode plate and the buckling of the electrode plate in the electrode group by the synergistic effect of changing the interval between the exposed portions.

本発明の第14の発明においては、伸縮緩和機能を設けるとともに、正極板に伸縮を促進する伸縮促進機能を設けたことにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和するとともに、他方の電極板の伸縮度を大きくすることで、より効果的に正極板と負極板の伸縮度を近づけることが可能となる。   In the fourteenth aspect of the present invention, by providing an expansion / contraction relaxation function and an expansion / contraction promotion function for promoting expansion / contraction in the positive electrode plate, a difference in expansion / contraction due to expansion / contraction of the positive electrode plate and the negative electrode plate during charging / discharging. By relieving the stress applied to the positive electrode plate or the negative electrode plate due to the above and increasing the degree of expansion / contraction of the other electrode plate, the degree of expansion / contraction between the positive electrode plate and the negative electrode plate can be made more effective.

以下、本発明の一実施の形態について図面を参照しながら詳細に説明する。図1は本発明の一実施の形態に係る非水系二次電池における捲回後の電極群10の要部を示す断面図である。同図において本発明の非水系二次電池用の電極群10は、正極合剤塗料を正極集電体1の上に塗布して正極合剤層2a,2bを形成した正極板4と負極合剤塗料を負極集電体5の上に塗布して負極合剤層6a,6bを形成した負極板8において、正極板4に伸縮を緩和する伸縮緩和機能を設けるとともに、この正極板4と負極板8との間に多孔質絶縁体としてのセパレータ9を介在させ渦巻状に捲回して構成されている。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of an electrode group 10 after winding in a nonaqueous secondary battery according to an embodiment of the present invention. In the figure, an electrode group 10 for a non-aqueous secondary battery according to the present invention includes a positive electrode plate 4 and a negative electrode composite, in which a positive electrode mixture paint is applied on the positive electrode current collector 1 to form positive electrode mixture layers 2a and 2b. In the negative electrode plate 8 in which the agent coating material is applied on the negative electrode current collector 5 to form the negative electrode mixture layers 6a and 6b, the positive electrode plate 4 is provided with an expansion / contraction relaxation function, and the positive electrode plate 4 and the negative electrode A separator 9 as a porous insulator is interposed between the plate 8 and the plate 8 so as to be spirally wound.

ここで、上述した本発明の非水系二次電池の代表とされるリチウムイオン二次電池においては、図1に示すように充電時に負極板8にリチウムがインターカレーションされることで負極合剤層6a,6bが膨張することによる負極板8の伸長度Aとこの際の正極板4の伸長度Cとの伸長度の相違により生じる負極板8または正極板4に加わる応力、および
放電時に負極板8からリチウムがデインターカレーションされることで負極合剤層6a,6bが収縮することによる負極板8の収縮度Bとこの際の正極板4の収縮度Dとの収縮度の相違により生じる負極板8または正極板4に加わる応力を緩和するために正極板4に伸縮を緩和する伸縮緩和機能を設けた構成としている。上述のように正極集電体1の表面または裏面に正極合剤層2a,2bを形成するには、正極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサーなどの分散機により混合分散し、アルミニウム箔などの正極集電体1への塗布に最適な粘度に調整しながら混練を行って正極合剤塗料を作製する。
Here, in the lithium ion secondary battery represented by the non-aqueous secondary battery of the present invention described above, the negative electrode mixture is obtained by intercalating lithium with the negative electrode plate 8 during charging as shown in FIG. Stress applied to the negative electrode plate 8 or the positive electrode plate 4 due to the difference in elongation between the degree of elongation A of the negative electrode plate 8 due to expansion of the layers 6a and 6b and the degree of elongation C of the positive electrode plate 4 at this time, and the negative electrode during discharge Due to the difference in contraction between the contraction degree B of the negative electrode plate 8 and the contraction degree D of the positive electrode plate 4 due to the contraction of the negative electrode mixture layers 6a and 6b due to deintercalation of lithium from the plate 8. In order to relieve the stress applied to the negative electrode plate 8 or the positive electrode plate 4 generated, the positive electrode plate 4 is provided with an expansion / contraction relaxation function for relaxing expansion / contraction. In order to form the positive electrode mixture layers 2a and 2b on the front surface or the back surface of the positive electrode current collector 1 as described above, a positive electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, and a planetary mixer, etc. And then kneading while adjusting the viscosity to be optimal for application to the positive electrode current collector 1 such as an aluminum foil to prepare a positive electrode mixture paint.

ここで、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。このときの結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。上述のようにして作製した正極合剤塗料を例えばアルミニウム箔からなる正極集電体1の上にダイコーターを用いて塗布した後に乾燥して所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリット加工して長尺帯状の正極板4が得られる。   Here, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof. As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination. As the binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder. The positive electrode mixture paint prepared as described above is applied on the positive electrode current collector 1 made of, for example, an aluminum foil using a die coater, dried and pressed to a predetermined thickness. A long belt-like positive electrode plate 4 is obtained by slitting into a width and a length.

一方、負極集電体5の表面または裏面に負極合剤層6a,6bを形成するには、負極活物質、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、銅箔などの負極集電体5への塗布に最適な粘度に調整しながら混練を行って負極合剤塗料を作製する。ここで、負極用活物質としては、例えば各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、並びに各種の合金組成材料を用いることができる。このときの結着材としては、ポリフッ化ビニリデンおよびその変性体を用いることができる。しかしながら、リチウムイオンの受入れ性を向上させるという観点からは、スチレン−ブタジエン共重合体ゴム粒子(SBR)またはその変性体とカルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂などを併用したものや、スチレン−ブタジエン共重合体ゴム粒子またはその変性体に上記セルロース系樹脂を少量添加したものを使用するのが好ましい。上述のようにして作製した負極合剤塗料を例えば銅箔からなる負極集電体5の上にダイコーターを用いて塗布した後に乾燥して所定の厚みまで圧縮するようにプレスした後、規定の幅および長さにスリット加工して長尺帯状の負極板8が得られる。   On the other hand, in order to form the negative electrode mixture layers 6a and 6b on the front or back surface of the negative electrode current collector 5, the negative electrode active material and the binder are placed in an appropriate dispersion medium and mixed by a disperser such as a planetary mixer. Disperse and knead while adjusting the viscosity to be optimal for application to the negative electrode current collector 5 such as a copper foil to prepare a negative electrode mixture paint. Here, as the negative electrode active material, for example, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used. As the binder at this time, polyvinylidene fluoride and modified products thereof can be used. However, from the viewpoint of improving the acceptability of lithium ions, styrene-butadiene copolymer rubber particles (SBR) or a modified product thereof and a cellulose resin including carboxymethyl cellulose (CMC), It is preferable to use a styrene-butadiene copolymer rubber particle or a modified product obtained by adding a small amount of the above cellulose resin. After applying the negative electrode mixture paint prepared as described above onto a negative electrode current collector 5 made of, for example, copper foil using a die coater, drying and pressing to compress to a predetermined thickness, A long strip-shaped negative electrode plate 8 is obtained by slitting into a width and a length.

以下、上述した正極板4および負極板8を使用した本発明の非水系二次電池について説明する。図13に、非水系二次電池の一例としての円筒形のリチウムイオン二次電池17を縦に切断した斜視図により示す。図13の円筒形のリチウムイオン二次電池17においては、複合リチウム酸化物を活物質とする正極板4とリチウムを保持しうる材料を活物質とする負極板8とをセパレータ9を介し渦巻状に捲回して電極群10が作製される。   Hereinafter, the nonaqueous secondary battery of the present invention using the positive electrode plate 4 and the negative electrode plate 8 described above will be described. FIG. 13 is a perspective view of a cylindrical lithium ion secondary battery 17 as an example of a non-aqueous secondary battery cut vertically. In the cylindrical lithium ion secondary battery 17 of FIG. 13, a positive electrode plate 4 using a composite lithium oxide as an active material and a negative electrode plate 8 using a material capable of holding lithium as an active material are spirally arranged via a separator 9. As a result, the electrode group 10 is produced.

電極群10は、有底円筒形の電池ケース11の内部に、絶縁板12により電池ケース11とは絶縁されて収容される一方で、電極群10の下部より導出した負極リード13が電池ケース11の底部に接続されるとともに、電極群10の上部より導出した正極リード14が封口板15に接続される。また、電池ケース11は、所定量の非水溶媒からなる非水系電解液(図示せず)が注液された後、開口部に封口ガスケット16を周縁に取り付けた
封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げてかしめ封口される。ここで、セパレータ9は、リチウムイオン二次電池の使用範囲に耐えうる組成であればよいが、特にポリエチレン、ポリプロピレン等のオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが好ましい。このセパレータ9の厚みは、10〜25μmとするのが良い。このときの非水系電解液は、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また、正極板4または負極板8の上に良好な被膜を形成させるため、および過充電時の安定性を確保するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)、並びにその変性体を用いるのが好ましい。
The electrode group 10 is housed inside the bottomed cylindrical battery case 11 while being insulated from the battery case 11 by the insulating plate 12, while the negative electrode lead 13 led out from the lower part of the electrode group 10 is the battery case 11. The positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15. Further, the battery case 11 is filled with a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof after the non-aqueous electrolyte solution (not shown) made of a predetermined amount of a non-aqueous solvent is injected. The opening of the case 11 is crimped inward by bending inward. Here, the separator 9 may have any composition that can withstand the usage range of the lithium ion secondary battery, but it is particularly preferable to use a single or composite of microporous films of olefin resins such as polyethylene and polypropylene. . The thickness of the separator 9 is preferably 10 to 25 μm. The non-aqueous electrolyte at this time can use various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. In order to form a good film on the positive electrode plate 4 or the negative electrode plate 8 and to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof are used. It is preferable to use it.

本発明の特徴である伸縮緩和機能の第1の構成として、本発明の非水系二次電池用電極板は、図2に示すように正極合剤層2a,2bの長手方向に対して直交する露出部を同位相となるように形成して構成することで実現できる。具体的な構成の一例としては、図2に示す正極集電体1の表面に等間隔で正極合剤層2aの露出部3aを、裏面に表面と同位相、且つ、等間隔に正極合剤層2bの露出部3bを形成している。   As a first configuration of the expansion / contraction relaxation function that is a feature of the present invention, the electrode plate for a non-aqueous secondary battery of the present invention is orthogonal to the longitudinal direction of the positive electrode mixture layers 2a and 2b as shown in FIG. This can be realized by forming the exposed portion so as to have the same phase. As an example of a specific structure, the exposed portion 3a of the positive electrode mixture layer 2a is equidistantly provided on the surface of the positive electrode current collector 1 shown in FIG. An exposed portion 3b of the layer 2b is formed.

まず、正極合剤層2a,2bの露出部3a,3bを形成するためには、図2に示す正極集電体1の長手方向に正極合剤層2a,2bの露出部3a,3bを長手方向に対して等間隔に、且つ、露出部3aと露出部3bが同位相となるように塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に所定の厚みにプレスされる第2の工程を経て、正極板4に正極合剤層2a,2bの露出部3a,3bが長手方向に対して等間隔に形成される。この表面と裏面が同位相、且つ、長手方向に対して等間隔に形成した正極合剤層2a,2bの露出部3a,3bに正極板4または負極板8の膨張収縮を緩和させる効果を付与することで正極板4あるいは負極板8に加わる応力を緩和することができ、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることができる。また、伸縮緩和機能の第2の構成として、本発明の非水系二次電池用電極板は、図3に示すように正極合剤層2a,2bの長手方向に対して直交する露出部3a,3bを異位相となるように形成して構成することで実現できる。具体的な構成の一例としては、図3に示す正極集電体1の表面に等間隔で正極合剤層2aの露出部3aを、裏面に表面と位相を1/2ずらして正極合剤層2bの露出部3bを形成している。   First, in order to form the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b, the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b are elongated in the longitudinal direction of the positive electrode current collector 1 shown in FIG. It is manufactured through a first process in which the exposed portion 3a and the exposed portion 3b are applied and formed at equal intervals in the direction and in the same phase. Next, after the positive electrode mixture coating material is dried, the exposed portion 3a, 3b of the positive electrode mixture layers 2a, 2b on the positive electrode plate 4 in the longitudinal direction and the like is pressed to a predetermined thickness. Formed at intervals. The exposed surface 3a, 3b of the positive electrode mixture layer 2a, 2b formed in the same phase in the front surface and the back surface and at equal intervals in the longitudinal direction has an effect of relaxing expansion / contraction of the positive electrode plate 4 or the negative electrode plate 8 By doing so, the stress applied to the positive electrode plate 4 or the negative electrode plate 8 can be relaxed, and the expansion and contraction degrees C and D of the positive electrode plate 4 and the expansion and contraction degrees A and B of the negative electrode plate 8 can be brought close to each other. Further, as a second configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery of the present invention has an exposed portion 3a, which is orthogonal to the longitudinal direction of the positive electrode mixture layers 2a, 2b as shown in FIG. This can be realized by forming and configuring 3b to have different phases. As an example of a specific configuration, the exposed portion 3a of the positive electrode mixture layer 2a is equidistantly formed on the surface of the positive electrode current collector 1 shown in FIG. An exposed portion 3b of 2b is formed.

まず、正極合剤層2a,2bの露出部3a,3bを形成するためには、図3に示す正極集電体1の長手方向に正極合剤層2a,2bの露出部3a,3bを長手方向に対して等間隔に、且つ、露出部3aと露出部3bの位相が1/2ずれるように塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に正極合剤層2a,2bの露出部3a,3bにおける最薄部の厚みよりも厚い所定の厚みにプレスされる第2の工程を経て、正極板4に正極合剤層2a,2bの露出部3a,3bが長手方向に対して等間隔に形成される。この表面と裏面が異位相、且つ、長手方向に対して等間隔に形成した正極合剤層2a,2bの露出部3a,3bに正極板4または負極板8の膨張収縮を緩和させる効果を付与することで正極板4あるいは負極板8に加わる応力を緩和することができ、正極板4の伸縮度C,Dと負極板8の伸縮度A,Bを近づけることができる。また、伸縮緩和機能の第3の構成として、本発明の非水系二次電池用電極板は、図4に示すように露出部3a,3bの幅を正極合剤層2a,2bの外周側と内周側で変えて形成して構成することで実現できる。具体的な構成の一例としては、図4に示すように正極集電体1の表面に幅W2の正極合剤層2aの露出部3aを、裏面にW3>W2である幅W3の正極合剤層2bの露出部3bを長手方向に対して一様に形成している。この構成とすることで、E方向に渦巻状に捲回して電極群10を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が
加わることになるが、この外周側にある負極合剤層6bと対極する正極板4の内周側にある正極合剤層2bの露出部3bの幅W3を外周側にある正極合剤層2aの露出部3aの幅W2よりも広く形成することで負極板8の膨張収縮がより効果的に抑制され正極板4に加わる応力が緩和されることになる。
First, in order to form the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b, the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b are elongated in the longitudinal direction of the positive electrode current collector 1 shown in FIG. It is manufactured through a first step of coating and forming at equal intervals with respect to the direction and so that the phase of the exposed portion 3a and the exposed portion 3b is shifted by 1/2. Next, after the positive electrode mixture coating material is dried, the positive electrode plate is subjected to a second step in which the positive electrode mixture layers 2a and 2b are pressed to a predetermined thickness that is thicker than the thickness of the thinnest portion of the exposed portions 3a and 3b. 4, exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b are formed at equal intervals in the longitudinal direction. An effect of relaxing the expansion and contraction of the positive electrode plate 4 or the negative electrode plate 8 on the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b formed on the front surface and the rear surface in different phases and at equal intervals in the longitudinal direction. By applying, the stress applied to the positive electrode plate 4 or the negative electrode plate 8 can be relaxed, and the expansion degrees C and D of the positive electrode plate 4 and the expansion degrees A and B of the negative electrode plate 8 can be brought close to each other. As a third configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery according to the present invention has a width of the exposed portions 3a and 3b and the outer peripheral side of the positive electrode mixture layers 2a and 2b as shown in FIG. This can be realized by forming and changing the inner peripheral side. As an example of a specific configuration, as shown in FIG. 4, the exposed portion 3a of the positive electrode mixture layer 2a having the width W2 is formed on the surface of the positive electrode current collector 1, and the positive electrode mixture having the width W3 satisfying W3> W2 on the back surface. The exposed portion 3b of the layer 2b is uniformly formed in the longitudinal direction. With this configuration, when the electrode group 10 is formed by spirally winding in the E direction, tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the inner peripheral side Compressive stress is applied to the negative electrode mixture layer 6b, but the width of the exposed portion 3b of the positive electrode mixture layer 2b on the inner peripheral side of the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side. By forming W3 wider than the width W2 of the exposed portion 3a of the positive electrode mixture layer 2a on the outer peripheral side, expansion and contraction of the negative electrode plate 8 are more effectively suppressed, and stress applied to the positive electrode plate 4 is relieved. Become.

この正極板4において正極合剤層2a,2bの一部に上述した露出部3a,3bを形成するために、図4に示すように正極集電体1の表面に幅W2の正極合剤層2aの露出部3a、裏面にW3>W2である幅W3の正極合剤層2bの露出部3bを長手方向に対して一様に塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に所定の厚みにプレスされる第二の工程を経て、正極板4の長手方向に内周側にある正極合剤層2bの露出部3bの幅W3が外周側にある正極合剤層2aの露出部3aの幅W2よりも広くなるように露出部3a,3bが長手方向に対して一様に形成される。また、伸縮緩和機能の第4の構成として、本発明の非水系二次電池用電極板は、図5に示すように露出部3a,3bの幅を正極合剤層2a,2bの巻き始め側と巻き終わり側で変えて形成して構成することで実現できる。具体的な構成の一例としては、図5に示すように正極集電体1の長手方向に対して垂直方向の表面に巻き始めから順に幅W4>W5>W6である露出部3aを、裏面に表面と同位相で巻き始めから順に幅W4>W5>W6である露出部3bを捲回方向に対して段階的に形成している。この構成とすることで、E方向に渦巻状に捲回して図13に示す電極群10を構成した際に曲率の違いにより巻き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この巻き始めの負極板8と対極する巻き始めの正極板4に捲き終わりの正極板4よりも幅が広い露出部3a,3bを形成したことで電極群10における負極板8の膨張収縮がより効果的に抑制されることになり、正極板4に加わる応力がより効果的に緩和されることになる。   In order to form the above-described exposed portions 3a and 3b in a part of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, a positive electrode mixture layer having a width W2 on the surface of the positive electrode current collector 1 as shown in FIG. The exposed portion 3a of 2a and the exposed portion 3b of the positive electrode mixture layer 2b having a width W3 satisfying W3> W2 are formed on the back surface through a first process in which the exposed portion 3b is uniformly applied in the longitudinal direction. Next, the width W3 of the exposed portion 3b of the positive electrode mixture layer 2b on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is passed through a second step in which the positive electrode mixture paint is dried and pressed to a predetermined thickness. The exposed portions 3a and 3b are uniformly formed in the longitudinal direction so that the width W2 of the exposed portion 3a of the positive electrode mixture layer 2a on the outer peripheral side is wider. Further, as a fourth configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery according to the present invention has a width of the exposed portions 3a and 3b as shown in FIG. 5 and the winding start side of the positive electrode mixture layers 2a and 2b. It can be realized by forming and changing at the winding end side. As an example of a specific configuration, as shown in FIG. 5, an exposed portion 3a having widths W4> W5> W6 in order from the beginning of winding on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 is formed on the back surface. An exposed portion 3b having widths W4> W5> W6 is formed stepwise in the winding direction in order from the beginning of winding in the same phase as the surface. With this configuration, when the electrode group 10 shown in FIG. 13 is formed by spirally winding in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding more than the negative electrode plate 8 at the end of winding due to the difference in curvature. However, the negative electrode plate 8 in the electrode group 10 is formed by forming the exposed portions 3a and 3b wider than the positive electrode plate 4 at the end of rolling on the positive electrode plate 4 at the start of winding opposite to the negative electrode plate 8 at the start of winding. Therefore, the stress applied to the positive electrode plate 4 is alleviated more effectively.

この正極板4において正極合剤層2a,2bに露出部3a,3bを形成するためには、図5に示すように正極集電体1の長手方向に対して垂直方向の表裏面に正極合剤層2a,2bの露出部3a,3bを巻き始めから順に幅W4>W5>W6で捲回方向に対して段階的に塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に所定の厚みにプレスされる第2の工程を経て、正極板4の長手方向に正極合剤層2a,2bの露出部3a,3bが捲回方向に対して段階的に形成される。また、伸縮緩和機能の第5の構成として、本発明の非水系二次電池用電極板は、図6に示すように正極合剤層2a,2bの外周側と内周側の幅を変えるとともに、巻き始め側と巻き終わり側の幅を変えて露出部3a,3bを形成して構成することで、正極板4の伸縮度と負極板8の伸縮度とを近づけることも同様に可能である。具体的な構成の一例としては、図6に示すように正極集電体1の長手方向に対して垂直方向の表面に巻き始めから順に幅W4>W5>W6である露出部3aを、裏面に巻き始めから順に幅W7>W8>W9(ここで、W7>W4)である露出部3bを捲回方向に対して段階的に形成している。   In order to form the exposed portions 3a and 3b in the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the positive electrode mixture is formed on the front and rear surfaces perpendicular to the longitudinal direction of the positive electrode current collector 1 as shown in FIG. The exposed portions 3a and 3b of the agent layers 2a and 2b are manufactured through a first process in which the widths W4> W5> W6 are sequentially applied in the winding direction in order from the start of winding. Then, after the positive electrode mixture coating material is dried and then pressed to a predetermined thickness, the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b are wound in the winding direction in the longitudinal direction of the positive electrode plate 4. Are formed in stages. Further, as a fifth configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery of the present invention changes the width of the outer peripheral side and the inner peripheral side of the positive electrode mixture layers 2a and 2b as shown in FIG. Similarly, it is possible to make the expansion degree of the positive electrode plate 4 and the expansion degree of the negative electrode plate 8 close to each other by forming the exposed portions 3a and 3b by changing the width of the winding start side and the winding end side. . As an example of a specific configuration, as shown in FIG. 6, an exposed portion 3a having widths W4> W5> W6 in order from the beginning of winding on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 is formed on the back surface. An exposed portion 3b having a width W7> W8> W9 (W7> W4 here) is formed stepwise in the winding direction in order from the beginning of winding.

また、伸縮緩和機能の第6の構成として、本発明の非水系二次電池用電極板は、図7に示すように露出部3a,3bの間隔を正極合剤層2a,2bの外周側と内周側で変えて形成して構成することで実現できる。具体的な構成の一例としては、図7に示すように正極集電体1の表面に正極合剤層2aの露出部3aをP1の間隔で、裏面にP2<P1である間隔P2で正極合剤層2bの露出部3bを形成している。この構成とすることで、渦巻状に捲回して電極群10を構成した際に曲率の違いにより負極板8における外周側の負極合剤層6aには引張応力が加わり、内周側の負極合剤層6bには圧縮応力が加わることになるが、この外周側にある負極合剤層6bと対極する正極板4の内周側にある正極合剤層2bの露出部3bの間隔P2を外周側にある正極合剤層2aの露出部3aの間隔P2よりも狭く形成することで負極板8の膨張収縮がより効果的に抑制され正極板4に加わる応力が緩和されることになる。   Further, as a sixth configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery according to the present invention has an interval between the exposed portions 3a and 3b and the outer peripheral side of the positive electrode mixture layers 2a and 2b as shown in FIG. This can be realized by forming and changing the inner peripheral side. As an example of a specific configuration, as shown in FIG. 7, the exposed portion 3a of the positive electrode mixture layer 2a is formed on the surface of the positive electrode current collector 1 at an interval P1, and the back surface is formed at an interval P2 where P2 <P1. An exposed portion 3b of the agent layer 2b is formed. With this configuration, when the electrode group 10 is formed by winding in a spiral shape, tensile stress is applied to the negative electrode mixture layer 6a on the outer peripheral side of the negative electrode plate 8 due to the difference in curvature, and the negative electrode mixture on the inner peripheral side is applied. Although compressive stress is applied to the agent layer 6b, the interval P2 between the exposed portions 3b of the positive electrode mixture layer 2b on the inner peripheral side of the positive electrode plate 4 opposite to the negative electrode mixture layer 6b on the outer peripheral side is set to the outer periphery. By forming narrower than the interval P2 of the exposed portion 3a of the positive electrode mixture layer 2a on the side, the expansion and contraction of the negative electrode plate 8 is more effectively suppressed, and the stress applied to the positive electrode plate 4 is relieved.

この正極板4において正極合剤層2a,2bの露出部3a,3bを形成するために、図7に示すように正極集電体1の表面に正極合剤層2aの露出部3aをP1の間隔で、裏面にP2<P1である間隔P2で正極合剤層2bの露出部3bを塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に所定の厚みにプレスされる第2の工程を経て、正極板4の長手方向に内周側にある正極合剤層2bの露出部3bの間隔P2が外周側にある正極合剤層2aの露出部3aの間隔P1よりも狭くなるように露出部3a,3bが形成される。また、伸縮緩和機能の第7の構成として、本発明の非水系二次電池用電極板は、図8に示すように露出部の間隔を正極合剤層2a,2bの巻き始め側と巻き終わり側で変えて形成して構成することで実現できる。具体的な構成の一例としては、図8に示すように正極集電体1の長手方向に対して垂直方向の表面は正極合剤層2aに露出部3aを巻き始めから順に間隔P3<P4<P5の間隔で、裏面は正極合剤層2bの一部に表面と同位相の露出部3bを巻き始めから順に間隔P3<P4<P5の間隔で捲回方向に対して段階的に形成している。この構成とすることで、E方向に渦巻状に捲回して図13に示す電極群10を構成した際に曲率の違いにより巻き始めの負極板8は捲き終わりの負極板8より曲げ応力が加わることになるが、この巻き始めの負極板8と対極する巻き始めの正極板4に捲き終わりの正極板4よりも露出部3a,3bを狭い間隔で形成したことで電極群10における負極板8の膨張収縮がより効果的に抑制されることになり、正極板4に加わる応力がより効果的に緩和されることになる。   In order to form the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the exposed portion 3a of the positive electrode mixture layer 2a is formed on the surface of the positive electrode current collector 1 as shown in FIG. It is manufactured through a first step in which the exposed portion 3b of the positive electrode mixture layer 2b is applied and formed on the back surface at a distance P2 where P2 <P1. Next, after the positive electrode mixture coating material is dried and then pressed to a predetermined thickness, the interval P2 between the exposed portions 3b of the positive electrode mixture layer 2b on the inner peripheral side in the longitudinal direction of the positive electrode plate 4 is obtained. The exposed portions 3a and 3b are formed so as to be narrower than the interval P1 between the exposed portions 3a of the positive electrode mixture layer 2a on the outer peripheral side. Further, as a seventh configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery according to the present invention has an interval between the exposed portions as shown in FIG. 8 with the winding start side and the winding end of the positive electrode mixture layers 2a and 2b. It can be realized by forming and configuring on the side. As an example of a specific configuration, as shown in FIG. 8, the surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 has a spacing P3 <P4 <in order from the beginning of winding the exposed portion 3a around the positive electrode mixture layer 2a. The back surface is formed stepwise with respect to the winding direction at intervals of P3 <P4 <P5 in order from the start of winding the exposed portion 3b in phase with the surface around a part of the positive electrode mixture layer 2b at intervals of P5. Yes. With this configuration, when the electrode group 10 shown in FIG. 13 is formed by spirally winding in the E direction, bending stress is applied to the negative electrode plate 8 at the beginning of winding more than the negative electrode plate 8 at the end of winding due to the difference in curvature. The negative electrode plate 8 in the electrode group 10 is formed by forming the exposed portions 3a and 3b at a narrower interval than the positive electrode plate 4 at the end of rolling on the positive electrode plate 4 at the start of winding opposite to the negative electrode plate 8 at the start of winding. Therefore, the stress applied to the positive electrode plate 4 is alleviated more effectively.

この正極板4において正極合剤層2a,2bに露出部3a,3bを形成するためには、図8に示すように正極集電体1の長手方向に正極合剤層2a,2bの露出部3a,3bを巻き始めから順に間隔P3<P4<P5の間隔で捲回方向に対して段階的に塗布して形成する第1の工程を経て作製される。次いで、この正極合剤塗料が乾燥された後に所定の厚みにプレスされる第二の工程を経て、正極板4の長手方向に正極合剤層2a,2bの露出部3a,3bが捲回方向に対して段階的に形成される。また、伸縮緩和機能の第8の構成として、本発明の非水系二次電池用電極板は、図9に示すように正極合剤層2a,2bの外周側と内周側の間隔を変えるとともに、巻き始め側と巻き終わり側の間隔を変えて露出部を形成して構成することで、正極板4の伸縮度と負極板8の伸縮度とを近づけることも同様に可能である。具体的な構成の一例としては、図9に示すように正極集電体1の長手方向に対して垂直方向の表面は正極合剤層2aに露出部3aを巻き始めから順に間隔P3<P4<P5の間隔で、裏面は正極合剤層2bに露出部3bを巻き始めから順に間隔P6<P7<P8(ここで、P6>P3)の間隔で捲回方向に対して段階的に形成している。   In order to form the exposed portions 3a and 3b in the positive electrode mixture layers 2a and 2b in the positive electrode plate 4, the exposed portions of the positive electrode mixture layers 2a and 2b in the longitudinal direction of the positive electrode current collector 1 as shown in FIG. 3a and 3b are manufactured through a first process in which the winding is sequentially applied in the winding direction at intervals of P3 <P4 <P5 from the start of winding. Then, after the positive electrode mixture paint is dried, the exposed portions 3a and 3b of the positive electrode mixture layers 2a and 2b are wound in the winding direction in the longitudinal direction of the positive electrode plate 4 through a second step of pressing to a predetermined thickness. Are formed in stages. As an eighth configuration of the expansion / contraction relaxation function, the electrode plate for a non-aqueous secondary battery according to the present invention changes the interval between the outer peripheral side and the inner peripheral side of the positive electrode mixture layers 2a and 2b as shown in FIG. Similarly, it is possible to make the expansion degree of the positive electrode plate 4 and the expansion degree of the negative electrode plate 8 close to each other by forming the exposed portion by changing the interval between the winding start side and the winding end side. As an example of a specific configuration, as shown in FIG. 9, the surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 has an interval P3 <P4 <in order from the beginning of winding the exposed portion 3a around the positive electrode mixture layer 2a. The back surface is formed stepwise in the winding direction at intervals of P6 <P7 <P8 (where P6> P3) in order from the start of winding the exposed portion 3b around the positive electrode mixture layer 2b at intervals of P5. Yes.

また、伸縮抑制機能の第9の構成として、本発明の非水系二次電池用電極板は、図10に示すように正極集電体1の露出部3a,3bの幅を変えるとともに、正極集電体1の露出部3a,3bの間隔を変えて露出部3a,3bを形成して構成することで実現できる。具体的な構成の一例としては、図10に示すように正極集電体1の長手方向に対して垂直方向の表面に巻き始めから順に幅がW4>W5>W6で、且つ、間隔がP1<P2<P3である露出部3aを、裏面に表面と同位相で巻き始めから順に幅がW4>W5>W6で、且つ、間隔がP1<P2<P3である露出部3bを捲回方向に対して段階的に形成している。さらに、伸縮緩和機能と伸縮促進機能を組み合わせた構成として、本発明の非水系二次電池用電極板は、図11に示すように正極板4に伸縮緩和機能を設けるとともに、正極板4と負極板8の充放電時の伸縮度が小さい方に伸縮を促進する伸縮促進機能を設けて構成することで実現できる。具体的な構成の一例としては、図11に示すように正極集電体1の表面に等間隔で正極合剤層2aの露出部3aを、裏面に表面と同位相、且つ、等間隔に正極合剤層2bの露出部3bを形成するとともに、正極集電体1に長手方向に対して直交する肉薄部1aを設けている。   As a ninth configuration of the expansion / contraction suppression function, the electrode plate for a non-aqueous secondary battery of the present invention changes the width of the exposed portions 3a and 3b of the positive electrode current collector 1 as shown in FIG. This can be realized by changing the interval between the exposed portions 3a and 3b of the electric body 1 to form the exposed portions 3a and 3b. As an example of a specific configuration, as shown in FIG. 10, the width is W4> W5> W6 in order from the beginning of winding on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and the interval is P1 < The exposed portion 3a where P2 <P3 is wound on the back surface in the same phase as the front surface, and the exposed portion 3b where the width is W4> W5> W6 and the interval is P1 <P2 <P3 with respect to the winding direction. It is formed step by step. Furthermore, as a structure combining the expansion / contraction relaxation function and the expansion / contraction promotion function, the electrode plate for a non-aqueous secondary battery according to the present invention provides the expansion / contraction relaxation function for the positive electrode plate 4 as shown in FIG. This can be realized by providing an expansion / contraction accelerating function for accelerating expansion / contraction in the direction where the degree of expansion / contraction during charging / discharging of the plate 8 is small. As an example of a specific configuration, as shown in FIG. 11, the exposed portion 3 a of the positive electrode mixture layer 2 a is equidistantly formed on the surface of the positive electrode current collector 1, and the positive electrode is equidistantly spaced on the back surface in phase with the surface. While forming the exposed part 3b of the mixture layer 2b, the positive electrode current collector 1 is provided with a thin part 1a orthogonal to the longitudinal direction.

次に以下、本発明の実施例に関わる非水系二次電池について図を参照しながら詳細に説明する。   Next, nonaqueous secondary batteries according to embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施例として、正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相で設けて構成した実施例について図面を参照しながら説明する。まず、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。   As an embodiment of the present invention, an embodiment in which exposed portions orthogonal to the longitudinal direction of the positive electrode current collector are provided in the same phase on the front and back surfaces of the positive electrode mixture layer will be described with reference to the drawings. First, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material Was mixed with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader to prepare a positive electrode mixture paint.

次に、この正極合剤塗料を図2に示すように厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの露出部3bを等ピッチで長手方向に対して一様に設けて間欠塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。さらに、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの露出部3aを、また裏面に表面と同位相で幅が5mmの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。   Next, as shown in FIG. 2, the positive electrode mixture paint has a width on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a having a width of 5 mm are arranged at an equal pitch, and the exposed portions 3b having the same phase as the front surface and a width of 5 mm on the back surface perpendicular to the longitudinal direction of the positive electrode current collector 1 are arranged at an equal pitch with respect to the longitudinal direction. The positive electrode plate 4 in which the thickness of the positive electrode mixture layers 2a and 2b on one side becomes 100 μm after intermittent application, drying, and drying was prepared. Further, by pressing the positive electrode plate 4 so that the total thickness becomes 165 μm, the exposed portion 3 a having a thickness of 75 μm on one side of the positive electrode mixture layers 2 a and 2 b and a width of 5 mm on the surface An exposed portion 3b having the same phase as the front surface and a width of 5 mm was formed uniformly on the back surface in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、負極の活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。次に、図2に示すように厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして活物質密度を1.6g/ccとし片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。   On the other hand, 100 parts by weight of artificial graphite as the active material of the negative electrode, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder with respect to 100 parts by weight of the active material ( 1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water, and agitation in a double-arm kneader. An agent paint was prepared. Next, as shown in FIG. 2, it was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm, dried and then pressed to have an active material density of 1.6 g. / Cc, and the thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例1とした。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の長手方向に対して一様に露出部3a,3bを設けたことで、この露出部3a,3bが膨張収縮に伴う応力を緩和する効果を発揮して正極板4に加わる応力を緩和し、正極板4の伸縮度を負極板8の伸縮度に近づけることができ、良好な電池性能を維持できたものと考えられる。なお、実施例1においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同じ幅で形成し
たが、正極板4の表裏面で露出部3a,3bの幅を変えて正極集電体1の露出部3a,3bを形成することも同様に可能である。
Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portions 3a and 3b are provided uniformly in the longitudinal direction of the positive electrode current collector 1, so that the exposed portions 3a and 3b exhibit the effect of relieving the stress accompanying expansion and contraction, and the positive electrode plate. It is considered that the stress applied to 4 can be relaxed, and the degree of expansion and contraction of the positive electrode plate 4 can be brought close to the degree of expansion and contraction of the negative electrode plate 8, thereby maintaining good battery performance. In Example 1, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed with the same width, but the exposed portions 3a and 3b on the front and back surfaces of the positive electrode plate 4 were formed. It is also possible to form the exposed portions 3 a and 3 b of the positive electrode current collector 1 by changing the width of the positive electrode current collector 1.

本発明の別の一実施例として、正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を異位相で設けて構成した実施例について図面を参照しながら説明する。まず、図3に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等間隔で、また正極集電体1の長手方向に対して垂直方向の裏面に表面と位相が1/2ずれた幅が5mmの露出部3bを等間隔で長手方向に対して一様に設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、且つ、正極合剤層2a,2bの露出部3a,3bの厚みが65μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmで厚みが65μmの正極合剤層2aの露出部3aを、また裏面に表面と位相が1/2ずれた幅が5mmで厚みが65μmの正極合剤層2bの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。   As another example of the present invention, an example in which exposed portions orthogonal to the longitudinal direction of the positive electrode current collector are provided in different phases on the front and back surfaces of the positive electrode mixture layer while referring to the drawings. explain. First, as shown in FIG. 3, a positive electrode mixture paint similar to that in Example 1 was perpendicular to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a having a width of 5 mm are equidistantly formed on the surface of the positive electrode current collector 1 and the exposed portions 3b having a width of 5 mm having a phase shifted by 1/2 from the front surface on the back surface perpendicular to the longitudinal direction of the positive electrode current collector 1 After coating, drying, and drying at intervals, the thickness of the positive electrode mixture layers 2a, 2b on one side is 100 μm, and the exposed portions 3a, 3b of the positive electrode mixture layers 2a, 2b A positive electrode plate 4 having a thickness of 65 μm was prepared. Next, the positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the positive electrode mixture layers 2a and 2b on one side have a thickness of 75 μm, and the surface has a width of 5 mm and a thickness of 65 μm. The exposed portion 3a of the agent layer 2a and the exposed portion 3b of the positive electrode mixture layer 2b having a width of 5 mm and a thickness of 65 μm, which are ½ phase shifted from the front surface, were uniformly formed in the longitudinal direction on the back surface. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図3に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 3, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例2とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 2.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の長手方向に対して垂直方向の表面に正極合剤層2aの露出部3a、裏面に表面と同幅、且つ、異位相の正極合剤層2bの露出部3bを長手方向に対して形成したことで、リチウムをインターカレーションした際における負極板8の膨張およびリチウムをデインターカレーションした際における負極板8の収縮による体積変化を緩和することができたために、良好な電池性能を維持できたものと考えられる。なお、実施例2においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同じ幅で形成したが、正極板4の表裏面で露出部3a,3bの幅を変えて正極集電体1の露出部3a,3bを形成することも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portion 3a of the positive electrode mixture layer 2a on the surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1, the exposed portion of the positive electrode mixture layer 2b having the same width as the front surface and a different phase on the back surface. By forming 3b in the longitudinal direction, expansion of the negative electrode plate 8 when lithium was intercalated and volume change due to contraction of the negative electrode plate 8 when lithium was deintercalated could be mitigated. In addition, it is considered that good battery performance was maintained. In Example 2, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed with the same width, but the exposed portions 3a and 3b on the front and back surfaces of the positive electrode plate 4 were formed. It is also possible to form the exposed portions 3 a and 3 b of the positive electrode current collector 1 by changing the width of the positive electrode current collector 1.

本発明の別の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電
体の露出部の幅を外周側にある正極集電体の露出部の幅よりも広くした実施例について図面を参照しながら説明する。まず、図4に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅W2が5mmの正極集電体1の露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅W3が6mmの正極集電体1の露出部3bを等ピッチで設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。
As another embodiment of the present invention, the width of the exposed portion of the positive electrode current collector on the inner peripheral side of the positive electrode plate in the spiral electrode group is wider than the width of the exposed portion of the positive electrode current collector on the outer peripheral side. The embodiment will be described with reference to the drawings. First, as shown in FIG. 4, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a of the positive electrode current collector 1 having a width W2 of 5 mm are formed on the surface in the vertical direction at an equal pitch, and the back surface perpendicular to the longitudinal direction of the positive electrode current collector 1 is in phase with the surface and the width W3 is 6 mm. A positive electrode plate 4 was prepared in which the exposed portions 3b of the positive electrode current collector 1 were applied at an equal pitch, coated, and dried, and then the thickness of the positive electrode mixture layers 2a, 2b on one side became 100 μm.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅W2が5mmの正極集電体1の露出部3aを、また裏面に表面と同位相で幅W3が6mmの正極集電体1の露出部3bを形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。   Next, the positive electrode plate 4 is pressed so as to have a total thickness of 165 μm, whereby the positive electrode current collector 1 having a positive electrode mixture layer 2a, 2b on one side having a thickness of 75 μm and a width W2 of 5 mm on the surface. The exposed portion 3a of the positive electrode current collector 1 having the same phase as the front surface and a width W3 of 6 mm was formed on the back surface. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図4に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 4, the negative electrode mixture paint similar to that of Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例3とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 3.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の表面に幅W2の正極集電体1の露出部3aを、裏面にW3>W2である幅W3の正極集電体1の露出部3bを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池性能を維持できたものと考えられる。なお、実施例3においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portion 3a of the positive electrode current collector 1 having a width W2 on the surface of the positive electrode current collector 1 and the exposed portion 3b of the positive electrode current collector 1 having a width W3 satisfying W3> W2 on the back surface with respect to the longitudinal direction. Due to the uniform formation, when the electrode group 10 is configured, the stress difference due to expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side. It is considered that good battery performance was maintained. In Example 3, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed in the same phase. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

本発明の別の一実施例として、正極集電体1の露出部3aの幅を捲回方向に対して段階的に狭くした実施例について図面を参照しながら説明する。まず、図5に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に巻き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部
3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で巻き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3bを等ピッチで捲回方向に対して段階的に設けて塗布し乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。
As another embodiment of the present invention, an embodiment in which the width of the exposed portion 3a of the positive electrode current collector 1 is reduced stepwise with respect to the winding direction will be described with reference to the drawings. First, as shown in FIG. 5, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a of the positive electrode current collector 1 whose widths are successively narrowed such that W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the start of winding on the surface in the vertical direction are arranged at equal pitches, and the positive electrode current collector 1 The exposed portion 3b of the positive electrode current collector 1 whose width is successively narrowed, such as W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm, from the start of winding in the same phase as the front surface on the back surface perpendicular to the longitudinal direction, etc. A positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a and 2b on one side became 100 μm after being provided stepwise in the winding direction at a pitch, applied and dried.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面にW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3aを、また裏面に表面と同位相でW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3bを捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。一方、図5に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。   Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the thickness of the positive electrode mixture layers 2a, 2b on one side is 75 μm and the surface has W4 = 5 mm> W5 = 4.5 mm>. The exposed portion 3a of the positive electrode current collector 1 with W6 = 4.0 mm and the exposed portion 3b of the positive electrode current collector 1 with W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm in the same phase as the front surface on the back surface. Was formed stepwise with respect to the winding direction. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery. On the other hand, as shown in FIG. 5, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery.

以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例4とした。 Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 4.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の長手方向に対して垂直方向の表面に巻き始めから順次幅を狭くした正極集電体1の露出部3aを等ピッチで、また裏面に表面と同位相で巻き始めから順次幅を狭くした正極集電体1の露出部3bを等ピッチで捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池性能を維持できたものと考えられる。なお、実施例4においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3aを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portion 3a of the positive electrode current collector 1 whose width is narrowed sequentially from the beginning in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 is wound at an equal pitch and on the back surface at the same phase as the surface. By forming the exposed portion 3b of the positive electrode current collector 1 having a narrow width from the beginning in a stepwise manner at an equal pitch with respect to the winding direction, the electrode mixture 10 and the positive electrode mixture layers 2a and 2b at the start of winding are spread. It is considered that the stress difference due to expansion and contraction due to the difference in curvature from the positive electrode mixture layers 2a and 2b at the end can be alleviated, and good battery performance can be maintained. In Example 4, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3a of the positive electrode current collector 1 on the back surface were formed in the same phase. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

本発明の別の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電体の露出部の幅を外周側にある正極集電体の露出部の幅よりも広くするとともに、正極集電体の露出部の幅を捲回方向に対して段階的に狭くした実施例について図面を参照しながら説明する。まず、図6に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に巻き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に巻き始めからW7=6mm>W8=5.5mm>W9=5.
0mmと順次幅を狭くした正極集電体1の露出部3bを等ピッチで捲回方向に対して段階的に設けて塗布し乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面にW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3aを、また裏面にW7=6mm>W8=5.5mm>W9=5.0mmの正極集電体1の露出部3bを捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。
As another embodiment of the present invention, the width of the exposed portion of the positive electrode current collector on the inner peripheral side of the positive electrode plate in the spiral electrode group is wider than the width of the exposed portion of the positive electrode current collector on the outer peripheral side. In addition, an embodiment in which the width of the exposed portion of the positive electrode current collector is reduced stepwise in the winding direction will be described with reference to the drawings. First, as shown in FIG. 6, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portions 3a of the positive electrode current collector 1 whose widths are successively narrowed such that W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the start of winding on the surface in the vertical direction are arranged at equal pitches, and the positive electrode current collector 1 W7 = 6 mm> W8 = 5.5 mm> W9 = 5. From the beginning of winding on the back surface perpendicular to the longitudinal direction.
The thickness of the positive electrode mixture layers 2a and 2b on one side is set after the exposed portions 3b of the positive electrode current collector 1 having a width of 0 mm and the width of the positive electrode current collector 1 are successively applied at an equal pitch in the winding direction and dried. A positive electrode plate 4 having a thickness of 100 μm was produced. Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the thickness of the positive electrode mixture layers 2a, 2b on one side is 75 μm and the surface has W4 = 5 mm> W5 = 4.5 mm>. The exposed portion 3a of the positive electrode current collector 1 with W6 = 4.0 mm and the exposed portion 3b of the positive electrode current collector 1 with W7 = 6 mm> W8 = 5.5 mm> W9 = 5.0 mm in the winding direction on the back surface. In contrast, it was formed stepwise. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図6に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 6, the negative electrode mixture paint similar to that of Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例5とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 5.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1における裏面の露出部3bの幅を表面の露出部3aの幅よりも広く形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができたものと考えられる。これに加えて、正極集電体1の長手方向に対して垂直方向の表面に巻き始めからW4>W5>W6と順次幅を狭くした露出部3aを、また裏面に巻き始めからW7>W8>W9と順次幅を狭くした露出部3bを捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the width of the exposed portion 3b on the back surface of the positive electrode current collector 1 is formed wider than the width of the exposed portion 3a on the front surface, so that the positive electrode mixture layer 2b on the inner peripheral side when the electrode group 10 is formed. It is considered that the stress difference accompanying expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2a on the outer peripheral side and the positive electrode mixture layer 2a could be relaxed. In addition to this, the exposed portion 3a whose width is sequentially narrowed in the order of W4> W5> W6 from the beginning of winding on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and W7> W8> from the beginning of winding on the back surface. By forming W9 and the exposed portion 3b whose width is sequentially narrowed in a stepwise manner in the winding direction, the positive electrode mixture layers 2a and 2b at the beginning of winding and the positive electrode mixture layers 2a and 2b at the end of winding in the electrode group 10 are formed. It is considered that the stress difference due to expansion and contraction due to the difference in curvature with respect to the above could be alleviated, and good battery characteristic battery performance could be maintained.

本発明の別の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電体1の露出部の間隔を外周側にある正極集電体の露出部の間隔よりも狭くした実施例について図面を参照しながら説明する。まず、図7に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極集電体1の露出部3aを30mmの間隔P1で、また正極集電体1の長手方向に対して垂直方向の裏面に幅が5mmの正極集電体1の露出部3bを15mmの間隔P2で設けて塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a
,2bの厚みが75μmで、且つ、表面に幅が5mmの正極集電体1の露出部3aを30mmの間隔P1で、また裏面に幅が5mmの正極集電体1の露出部3bを15mmの間隔P2で形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。
As another embodiment of the present invention, the interval between the exposed portions of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate in the spiral electrode group is larger than the interval between the exposed portions of the positive electrode current collector on the outer peripheral side. A narrowed embodiment will be described with reference to the drawings. First, as shown in FIG. 7, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm on the surface in the vertical direction is spaced by a distance P1 of 30 mm, and the positive electrode current collector having a width of 5 mm on the back surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 After the 1 exposed portion 3b was applied with a spacing P2 of 15 mm, and coated and dried, a positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a and 2b on one side became 100 μm. Next, the positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the positive electrode mixture layer 2a on one side is pressed.
, 2b has a thickness of 75 μm, the exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm on the surface is spaced by a distance P1, and the exposed portion 3b of the positive electrode current collector 1 having a width of 5 mm is 15 mm on the back surface. Formed at the interval P2. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図7に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC、DMC、MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例6とした。 On the other hand, as shown in FIG. 7, the negative electrode mixture paint similar to that of Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 6.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の表面に正極集電体1の露出部3aをP1の間隔で、裏面にP2<P1である間隔P2で正極集電体1の露出部3bを長手方向に対して一様に形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池性能を維持できたものと考えられる。なお、実施例6においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同じ幅で形成したが、表裏面または同一面の長手方向で幅を変えることも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portion 3a of the positive electrode current collector 1 is placed on the surface of the positive electrode current collector 1 at an interval P1, and the back surface is exposed at an interval P2 where P2 <P1. When the electrode group 10 is formed, the stress accompanying expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2b on the inner peripheral side and the positive electrode mixture layer 2a on the outer peripheral side when the electrode group 10 is formed. It is considered that the difference could be alleviated and good battery performance could be maintained. In Example 6, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface are formed with the same width, but the width is changed in the longitudinal direction of the front and back surfaces or the same surface. It is possible as well.

本発明の別の一実施例として、正極集電体の露出部の間隔を捲回方向に対して段階的に広くした実施例について図面を参照しながら説明する。まず、図8に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極集電体1の露出部3aを巻き始めからP3=20mm<P4=30mm<P5=40mmのピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの正極集電体1の露出部3bを巻き始めからP3=20mm<P4=30mm<P5=40mmの間隔で設けて捲回方向に対して段階的に塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   As another embodiment of the present invention, an embodiment in which the interval between the exposed portions of the positive electrode current collector is increased stepwise in the winding direction will be described with reference to the drawings. First, as shown in FIG. 8, the same positive electrode mixture paint as that of Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil having a thickness of 15 μm (Al purity: 99.85%). From the beginning of winding the exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm on the surface in the vertical direction, the pitch P3 = 20 mm <P4 = 30 mm <P5 = 40 mm and perpendicular to the longitudinal direction of the positive electrode current collector 1 The exposed portion 3b of the positive electrode current collector 1 having the same phase as the front surface and a width of 5 mm is provided on the back surface in the direction from the start of winding, and is provided at intervals of P3 = 20 mm <P4 = 30 mm <P5 = 40 mm. The positive electrode plate 4 in which the thickness of the positive electrode mixture layers 2a and 2b on one side becomes 100 μm after being applied to and dried.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの正極集電体1の露出部3aをP3=20mm<P4=30mm<P5=40mmの間隔で、また裏面に表面と同位相で幅が5mmの正極集電体1の露出部3bをP3=20mm<P4=30mm<P5=40mmの間隔で捲回方向に対して段階的に形成した。その後、円筒形電池の規定
されている幅にスリット加工して正極板4を作製した。
Next, the positive electrode plate 4 is pressed so that the total thickness is 165 μm, so that the positive electrode mixture layers 2 a and 2 b on one side have a thickness of 75 μm and the surface has a width of 5 mm. The exposed portion 3a is spaced at an interval of P3 = 20 mm <P4 = 30 mm <P5 = 40 mm, and the exposed portion 3b of the positive electrode current collector 1 having the same phase as the front surface and a width of 5 mm on the back surface is exposed to P3 = 20 mm <P4 = 30 mm <P5. = It formed in steps with respect to the winding direction at intervals of 40 mm. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図8に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例7とした。 On the other hand, as shown in FIG. 8, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 7.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の長手方向に対して垂直方向の表面に正極集電体1の露出部3aを巻き始めから順次間隔を広くして、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で正極集電体1の露出部3bを巻き始めから順次間隔を広くし捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池性能を維持できたものと考えられる。なお、実施例7においては表面の正極集電体1の露出部3aと裏面の正極集電体1の露出部3bを同位相で形成したが、正極板4の表裏面で位相をずらせて正極集電体1の露出部3a,3bを形成することも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the interval is gradually increased from the beginning of winding of the exposed portion 3a of the positive electrode current collector 1 on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and with respect to the longitudinal direction of the positive electrode current collector 1. Then, the exposed portion 3b of the positive electrode current collector 1 is formed on the back surface in the vertical direction in the same phase as the front surface from the start of winding so that the interval is gradually increased and stepwise formed in the winding direction. It is considered that the stress difference due to expansion and contraction caused by the difference in curvature between the positive electrode mixture layers 2a and 2b and the positive electrode mixture layers 2a and 2b at the end of rolling can be alleviated, and good battery performance can be maintained. It is done. In Example 7, the exposed portion 3a of the positive electrode current collector 1 on the front surface and the exposed portion 3b of the positive electrode current collector 1 on the back surface were formed in the same phase. It is also possible to form the exposed portions 3a and 3b of the current collector 1.

本発明の別の一実施例として、渦巻状の電極群における正極板の内周側にある正極集電体1の露出部の間隔を外周側にある正極集電体1の露出部の間隔よりも狭くするとともに、正極集電体の露出部の間隔を捲回方向に対して段階的に広くした実施例について図面を参照しながら説明する。まず、図9に示したように、実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの正極集電体1の露出部3aを巻き始めからP3=20mm<P4=30mm<P5=40mmの間隔で、また正極集電体1の長手方向に対して垂直方向の裏面に幅が5mmの正極集電体1の露出部3bを巻き始めからP6=15mm<P7=25mm<P8=35mmの間隔で設けて捲回方向に対して段階的に塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。   As another embodiment of the present invention, the interval between the exposed portions of the positive electrode current collector 1 on the inner peripheral side of the positive electrode plate in the spiral electrode group is larger than the interval between the exposed portions of the positive electrode current collector 1 on the outer peripheral side. An example in which the distance between the exposed portions of the positive electrode current collector is increased stepwise in the winding direction will be described with reference to the drawings. First, as shown in FIG. 9, the same positive electrode mixture paint as in Example 1 was applied to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. The exposed portion 3a of the positive electrode current collector 1 having a width of 5 mm is wound on the surface in the vertical direction at intervals of P3 = 20 mm <P4 = 30 mm <P5 = 40 mm and perpendicular to the longitudinal direction of the positive electrode current collector 1 The exposed portion 3b of the positive electrode current collector 1 having a width of 5 mm is provided on the back surface in the direction from the start of winding at an interval of P6 = 15 mm <P7 = 25 mm <P8 = 35 mm, and is applied stepwise in the winding direction and dried. Then, a positive electrode plate 4 was produced in which the thickness of the positive electrode mixture layers 2a and 2b on one side was 100 μm.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの正極集電体1の露出部3aをP3=20mm<P4=30mm<P5=40mmの間隔で、また裏面に幅が5mmの正極集電体1の露出部3bをP6=15mm<P7=25mm<P8=35mmの間隔で捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅に
スリット加工して正極板4を作製した。
Next, the positive electrode plate 4 is pressed so that the total thickness is 165 μm, so that the positive electrode mixture layers 2 a and 2 b on one side have a thickness of 75 μm and the surface has a width of 5 mm. The exposed portions 3a are spaced at intervals of P3 = 20 mm <P4 = 30 mm <P5 = 40 mm, and the exposed portions 3b of the positive electrode current collector 1 having a width of 5 mm on the back surface are spaced at intervals of P6 = 15 mm <P7 = 25 mm <P8 = 35 mm. It formed in steps with respect to the winding direction. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図9に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例8とした。 On the other hand, as shown in FIG. 9, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was designated as Example 8.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1における裏面の露出部3bの間隔を表面の露出部3aの間隔よりも狭く形成したことで、電極群10を構成した際に内周側にある正極合剤層2bと外周側にある正極合剤層2aとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができたものと考えられる。これに加えて、正極集電体1の長手方向に対して垂直方向の表面に巻き始めからP3<P4<P5と順次間隔を広くした露出部3aを、また裏面に巻き始めからP6<P7<P8と順次幅を狭くした露出部3bを捲回方向に対して段階的に形成したことで、電極群10における巻き始めの正極合剤層2a,2bと捲き終わりの正極合剤層2a,2bとの曲率の差に起因した膨張収縮に伴う応力差を緩和することができ、良好な電池特性電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the gap between the exposed portions 3b on the back surface of the positive electrode current collector 1 is narrower than the interval between the exposed portions 3a on the front surface, so that the positive electrode mixture layer 2b on the inner peripheral side when the electrode group 10 is formed. It is considered that the stress difference accompanying expansion and contraction due to the difference in curvature between the positive electrode mixture layer 2a on the outer peripheral side and the positive electrode mixture layer 2a could be relaxed. In addition to this, the exposed portion 3a, which is gradually spaced from P3 <P4 <P5 from the beginning of winding on the surface perpendicular to the longitudinal direction of the positive electrode current collector 1, and P6 <P7 < P8 and the exposed portion 3b whose width is sequentially narrowed are formed stepwise in the winding direction, so that the positive electrode mixture layers 2a and 2b at the beginning of winding and the positive electrode mixture layers 2a and 2b at the end of winding in the electrode group 10 are formed. It is considered that the stress difference due to expansion and contraction due to the difference in curvature with respect to the above could be alleviated, and good battery characteristic battery performance could be maintained.

本発明の別の一実施例として、正極集電体の露出部の幅を捲回方向に対して段階的に狭くするとともに、正極集電体の露出部の間隔を捲回方向に対して段階的に広くした実施例について図面を参照しながら説明する。まず、図10に示すように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に巻き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3aを巻き始めからP1=20mm<P2=30mm<P3=40mmの間隔で、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で巻き始めからW4=5mm>W5=4.5mm>W6=4.0mmと順次幅を狭くした正極集電体1の露出部3bを巻き始めからP1=20mm<P2=30mm<P3=40mmの間隔で捲回方向に対して段階的に設けて塗布し乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmで、且つ、正極合剤層2a,2bの露出部3a,3bの厚みが75μmとなる正極板4を作製した。   As another embodiment of the present invention, the width of the exposed portion of the positive electrode current collector is reduced stepwise with respect to the winding direction, and the interval between the exposed portions of the positive electrode current collector is stepped with respect to the winding direction. Embodiments that are broadened will be described with reference to the drawings. First, as shown in FIG. 10, the positive electrode mixture paint similar to that of Example 1 was perpendicular to the longitudinal direction of the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm. W1 = 20 mm <P2 = 30 mm <P3 = from the beginning of winding the exposed portion 3a of the positive electrode current collector 1 whose width is sequentially narrowed to W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the beginning of winding W4 = 5 mm> W5 = 4.5 mm> W6 = 4.0 mm from the beginning of winding on the back surface perpendicular to the longitudinal direction of the positive electrode current collector 1 in the same phase as the front surface at intervals of 40 mm, and the width becomes narrower sequentially. After the exposed portion 3b of the positive electrode current collector 1 is wound, it is applied stepwise in the winding direction at intervals of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm, and is applied and dried, and then the positive electrode assembly on one side is combined. The thickness of the agent layers 2a and 2b is 100 μm And the positive electrode plate 4 from which the thickness of the exposed parts 3a and 3b of positive mix layer 2a and 2b was set to 75 micrometers was produced.

次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面にW4=5mm>W5=4.5mm>W6=4.0mmの正極集電体1の露出部3aをP1=20mm<P2=30mm<P3=40mmの間隔で、また裏面に表面と同位相でW4=5mm>W5=4.5mm>
W6=4.0mmの正極集電体1の露出部3bをP1=20mm<P2=30mm<P3=40mmの間隔で捲回方向に対して段階的に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。
Next, the positive electrode plate 4 is pressed to a total thickness of 165 μm, so that the thickness of the positive electrode mixture layers 2a, 2b on one side is 75 μm and the surface has W4 = 5 mm> W5 = 4.5 mm>. The exposed portion 3a of the positive electrode current collector 1 with W6 = 4.0 mm is spaced at an interval of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm, and in the same phase as the front surface at the back surface W4 = 5 mm> W5 = 4.5 mm>
The exposed portion 3b of the positive electrode current collector 1 with W6 = 4.0 mm was formed stepwise in the winding direction at intervals of P1 = 20 mm <P2 = 30 mm <P3 = 40 mm. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図10に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介してE方向に渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。   On the other hand, as shown in FIG. 10, the negative electrode mixture paint similar to that of Example 1 was applied to the negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound in the E direction through a polyethylene microporous film separator 9 having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例9とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 9.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の露出部3a,3bの幅を変えたことによる電極群10における巻き始めと捲き終わりの曲率の差に起因した膨張収縮に伴う応力差を緩和する効果に加えて、正極集電体1の露出部3a,3bの間隔を変えたことによる電極群10における巻き始めと捲き終わりの曲率の差に起因した膨張収縮に伴う応力差を緩和する相乗効果によって、膨張収縮に伴う応力差をより効果的に緩和することができ、良好な電池性能を維持できたものと考えられる。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is in addition to the effect of alleviating the stress difference accompanying expansion and contraction caused by the difference in curvature between the winding start and the winding end in the electrode group 10 by changing the width of the exposed portions 3a and 3b of the positive electrode current collector 1. Expansion and contraction by a synergistic effect of alleviating the stress difference associated with expansion and contraction caused by the difference in curvature between the winding start and the winding end in the electrode group 10 by changing the interval between the exposed portions 3a and 3b of the positive electrode current collector 1 It can be considered that the stress difference accompanying the process can be more effectively mitigated and good battery performance can be maintained.

本発明の別の一実施例として、正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相で設けるとともに、正極集電体に長手方向に対して直交する肉薄部を設けて構成した実施例について図面を参照しながら説明する。まず、図11に示すように実施例1と同様の正極合剤塗料を長手方向に対して垂直方向に等間隔で深さが2μmの肉薄部1aを設けた厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1の長手方向に対して垂直方向の表面に幅が5mmの露出部3aを等ピッチで、また正極集電体1の長手方向に対して垂直方向の裏面に表面と同位相で幅が5mmの露出部3bを等ピッチで長手方向に対して一様に設けて間欠塗布し、乾燥させた後に片面側の正極合剤層2a,2bの厚みが100μmとなる正極板4を作製した。次いで、この正極板4を総厚みが165μmとなるようにプレスすることで、片面側の正極合剤層2a,2bの厚みが75μmで、且つ、表面に幅が5mmの露出部3aを、また裏面に表面と同位相で幅が5mmの露出部3bを長手方向に対して一様に形成した。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。   As another example of the present invention, an exposed portion perpendicular to the longitudinal direction of the positive electrode current collector is provided in the same phase on the front and back surfaces of the positive electrode mixture layer, and the positive electrode current collector is disposed in the longitudinal direction. An embodiment configured by providing orthogonal thin portions will be described with reference to the drawings. First, as shown in FIG. 11, a positive electrode mixture paint similar to that in Example 1 was provided with thin portions 1a having a depth of 2 μm at equal intervals in the direction perpendicular to the longitudinal direction, and an aluminum foil having a thickness of 15 μm (Al The exposed portions 3a having a width of 5 mm are formed on the surface in the direction perpendicular to the longitudinal direction of the positive electrode current collector 1 having a purity of 99.85%) at an equal pitch and perpendicular to the longitudinal direction of the positive electrode current collector 1 The thickness of the positive electrode mixture layers 2a, 2b on one side after the exposed portions 3b having the same phase as the front surface and 5 mm wide on the back surface in the direction are uniformly applied to the longitudinal direction at equal pitches and dried. A positive electrode plate 4 having a thickness of 100 μm was produced. Next, this positive electrode plate 4 is pressed so that the total thickness becomes 165 μm, so that the thickness of the positive electrode mixture layers 2 a and 2 b on one side is 75 μm, and the exposed portion 3 a having a width of 5 mm is formed on the surface. An exposed portion 3b having the same phase as the front surface and a width of 5 mm was formed uniformly on the back surface in the longitudinal direction. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図11に示すように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定
されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚み20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10を有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。
On the other hand, as shown in FIG. 11, the negative electrode mixture paint similar to that of Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. The thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 of a polyethylene microporous film having a thickness of 20 μm were produced. The electrode group 10 was housed in the bottomed cylindrical battery case 11 together with the insulating plate 12, and the negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11.

次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオン二次電池17を実施例10とした。 Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was taken as Example 10.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返したが、サイクル劣化は生じなかった。また、充放電を500サイクル繰り返した後のリチウムイオン二次電池17の100個の中から20個を抜き出し電極群10を解体したところ、リチウム析出、電極板の破断、電極板の挫屈、電極合剤層の脱落などの不具合は認められなかった。これは、正極集電体1の長手方向に対して一様に露出部3a,3bを設けたことで、この露出部3a,3bが膨張収縮に伴う応力を緩和する効果を発揮して正極板4に加わる応力を緩和することができたものと考えられる。これに加えて、正極集電体1に肉薄部1aを設けたことで正極板4を伸び易くし正極板4と負極板8の伸縮度を互いに近づけることができたことで、良好な電池性能を維持できたものと考えられる。なお、実施例10における構成のリチウムイオン二次電池17においては、負極板8に比べて正極板4の方が充放電時の伸縮度が小さいため、正極板4の伸縮を促進する伸縮促進機能として正極集電体1に長手方向に対して直交する肉薄部1aを設けたが、これに限定されるものではなく、実施例10とは別の構成で負極板8の方が充放電時の伸縮度が小さいリチウムイオン二次電池17については、負極板8に伸縮を促進する伸縮促進機能を設けることも同様に可能である。   Charging / discharging of 100 lithium ion secondary batteries 17 produced as described above was repeated 500 cycles, but cycle deterioration did not occur. Moreover, when 20 pieces were extracted from 100 pieces of 100 lithium ion secondary batteries 17 after repeating 500 cycles of charge and discharge, and the electrode group 10 was disassembled, lithium deposition, electrode plate breakage, electrode plate buckling, electrode No defects such as dropping of the mixture layer were observed. This is because the exposed portions 3a and 3b are provided uniformly in the longitudinal direction of the positive electrode current collector 1, so that the exposed portions 3a and 3b exhibit the effect of relieving the stress accompanying expansion and contraction, and the positive electrode plate. It is considered that the stress applied to 4 could be relaxed. In addition to this, by providing the thin-walled portion 1a on the positive electrode current collector 1, the positive electrode plate 4 can be easily stretched, and the expansion and contraction degrees of the positive electrode plate 4 and the negative electrode plate 8 can be made closer to each other. It is thought that it was able to maintain. In the lithium ion secondary battery 17 having the configuration in Example 10, the positive electrode plate 4 has a smaller degree of expansion / contraction during charge / discharge than the negative electrode plate 8, so that the expansion / contraction promotion function promotes expansion / contraction of the positive electrode plate 4. Although the thin part 1a orthogonal to the longitudinal direction was provided in the positive electrode current collector 1, the present invention is not limited to this, and the negative electrode plate 8 is different from that in Example 10 in charge and discharge. For the lithium ion secondary battery 17 having a low degree of expansion / contraction, it is also possible to provide the negative electrode plate 8 with an expansion / contraction promotion function for promoting expansion / contraction.

(比較例1)
まず、図12に示したように実施例1と同様の正極合剤塗料を厚みが15μmのアルミニウム箔(Alの純度:99.85%)からなる正極集電体1に塗布し乾燥させた後にプレスして片面側の正極合剤層2a,2bの厚みを75μmとした。その後、円筒形電池の規定されている幅にスリット加工して正極板4を作製した。
(Comparative Example 1)
First, as shown in FIG. 12, the same positive electrode mixture paint as in Example 1 was applied to the positive electrode current collector 1 made of an aluminum foil (Al purity: 99.85%) having a thickness of 15 μm and dried. The thickness of the positive electrode mixture layers 2a and 2b on one side was set to 75 μm. Then, the positive electrode plate 4 was produced by slitting into a prescribed width of the cylindrical battery.

一方、図12に示したように実施例1と同様の負極合剤塗料を厚みが10μmのタフピッチ銅箔(Cuの純度:99.9%)からなる負極集電体5に塗布し乾燥させた後にプレスして片面側の負極合剤層6a,6bの厚みを85μmとした。その後、円筒形電池の規定されている幅にスリット加工して負極板8を作製した。以上のようにして作製した正極板4と負極板8とを用いて、図13に示すような円筒形のリチウムイオン二次電池17を作製した。より具体的には、正極板4と負極板8とを厚みが20μmのポリエチレン微多孔フィルムのセパレータ9を介して渦巻状に捲回した電極群10を100個作製した。この電極群10の中から10個を抜き出し有底円筒形の電池ケース11の内部に絶縁板12と共に収容し、電極群10の下部より導出した負極リード13を電池ケース11の底部に接続した。次に、電極群10の上部より導出した正極リード14を封口板15に接続し、電池ケース11に所定量のEC,DMC,MEC混合溶媒にLiPFを1MとVCを3重量部だけ溶解させた非水系電解液(図示せず)を注液した。その後、電池ケース11の開口部に封口ガスケット16を周縁に取り付けた封口板15を挿入し、電池ケース11の開口部を内方向に折り曲げて、かしめ封口することにより作製した円筒形のリチウムイオ
ン二次電池17を比較例1とした。
On the other hand, as shown in FIG. 12, the same negative electrode mixture paint as in Example 1 was applied to a negative electrode current collector 5 made of a tough pitch copper foil (Cu purity: 99.9%) having a thickness of 10 μm and dried. Later, the thickness of the negative electrode mixture layers 6a and 6b on one side was set to 85 μm. Then, the negative electrode plate 8 was produced by slitting into a prescribed width of the cylindrical battery. Using the positive electrode plate 4 and the negative electrode plate 8 produced as described above, a cylindrical lithium ion secondary battery 17 as shown in FIG. 13 was produced. More specifically, 100 electrode groups 10 in which the positive electrode plate 4 and the negative electrode plate 8 were spirally wound through a separator 9 made of a polyethylene microporous film having a thickness of 20 μm were produced. Ten electrodes were extracted from the electrode group 10 and accommodated in the bottomed cylindrical battery case 11 together with the insulating plate 12. A negative electrode lead 13 led out from the lower part of the electrode group 10 was connected to the bottom of the battery case 11. Next, the positive electrode lead 14 led out from the upper part of the electrode group 10 is connected to the sealing plate 15, and 1 part of LiPF 6 and 3 parts by weight of VC are dissolved in a predetermined amount of EC, DMC, and MEC mixed solvent in the battery case 11. A non-aqueous electrolyte solution (not shown) was injected. Thereafter, a sealing plate 15 having a sealing gasket 16 attached to the periphery thereof is inserted into the opening of the battery case 11, the opening of the battery case 11 is bent inward, and caulked and sealed. The secondary battery 17 was set as Comparative Example 1.

上述のようにして作製した100個のリチウムイオン二次電池17の充放電を500サイクル繰り返した結果、100個のうち4個にサイクル劣化が認められた。そこで、この4個のリチウムイオン二次電池17を解体したところ、正極板4が破断したものが1個、負極板8が挫屈したものが3個であった。上記の比較例1のリチウムイオン二次電池17においては、充放電時の負極合剤層6a,6bの膨張収縮による負極板8の伸縮度A,Bに対して正極板4の伸縮度C,Dが追従できなかったために、正極板4の破断および負極板8の挫屈が発生したものと考えられる。   As a result of repeating the charge / discharge of 100 lithium ion secondary batteries 17 produced as described above for 500 cycles, cycle deterioration was observed in 4 out of 100 batteries. Thus, when the four lithium ion secondary batteries 17 were disassembled, one was broken by the positive electrode plate 4 and three were bent by the negative electrode plate 8. In the lithium ion secondary battery 17 of Comparative Example 1 described above, the degree of expansion C of the positive electrode plate 4 with respect to the degree of expansion A and B of the negative electrode plate 8 due to expansion and contraction of the negative electrode mixture layers 6a and 6b during charging and discharging. Since D could not follow, it is considered that the positive electrode plate 4 was broken and the negative electrode plate 8 was buckled.

本発明によれば、正極板に伸縮を緩和する伸縮緩和機能を設けた構成とすることにより、充放電時における正極板と負極板の膨張収縮による伸縮度の差に起因した正極板あるいは負極板に加わる応力を緩和することができ、電極板の破断または挫屈を抑制することが可能であり、これらに起因した内部短絡を抑制し安全性の高い非水系二次電池を提供することが可能であるため電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。   According to the present invention, the positive electrode plate or the negative electrode plate caused by the difference in expansion and contraction due to the expansion and contraction of the positive electrode plate and the negative electrode plate during charging / discharging is provided by providing the positive electrode plate with an expansion / contraction relaxation function for relaxing expansion / contraction. It is possible to relieve the stress applied to the electrode, and it is possible to suppress breakage or buckling of the electrode plate, and it is possible to provide a highly safe non-aqueous secondary battery by suppressing internal short circuit caused by these Therefore, it is useful as a portable power source or the like for which a higher capacity is desired along with the multifunctionalization of electronic devices and communication devices.

1 正極集電体
1a 肉薄部
2a,2b 正極合剤層
3a,3b 露出部
4 正極板
5 負極集電体
6a,6b 負極合剤層
8 負極板
9 セパレータ
10 電極群
11 電池ケース
12 絶縁板
13 負極リード
14 正極リード
15 封口板
16 封口ガスケット
17 リチウムイオン二次電池
A,B 負極板の伸縮度
C,D 正極板の伸縮度
E 電極群の捲回方向
P1,P2,P3,P4,P5,P6,P7,P8 露出部の間隔
W2,W3,W4,W5,W6,W7,W8,W9 露出部の幅
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 1a Thin part 2a, 2b Positive electrode mixture layer 3a, 3b Exposed part 4 Positive electrode plate 5 Negative electrode collector 6a, 6b Negative electrode mixture layer 8 Negative electrode plate 9 Separator 10 Electrode group 11 Battery case 12 Insulating plate 13 Negative electrode lead 14 Positive electrode lead 15 Sealing plate 16 Sealing gasket 17 Lithium ion secondary battery A, B Stretching degree of negative electrode plate C, D Stretching degree of positive electrode plate E Winding direction of electrode group P1, P2, P3, P4, P5 P6, P7, P8 Exposed portion spacing W2, W3, W4, W5, W6, W7, W8, W9 Exposed portion width

Claims (14)

少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて渦巻状に捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、前記正極板に伸縮を緩和する伸縮緩和機能を設けた構成としたことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode mixture layer formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector; A negative electrode mixture coating material in which an active material made of a material capable of holding lithium and a binder are kneaded and dispersed in a dispersion medium is applied on the negative electrode current collector to form a porous material between the negative electrode plate and the negative electrode plate. A non-aqueous secondary battery in which an electrode group formed by winding or stacking in a spiral shape with a porous insulator interposed is enclosed in a battery case together with a non-aqueous electrolyte solution, and the expansion and contraction of the positive electrode plate is reduced. A non-aqueous secondary battery characterized by having a structure provided with an expansion / contraction relaxation function. 前記伸縮緩和機能として正極合剤層の少なくとも片面に正極集電体の長手方向に対して直交する露出部を形成して構成したことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein an exposed portion orthogonal to the longitudinal direction of the positive electrode current collector is formed on at least one surface of the positive electrode mixture layer as the expansion / contraction relaxation function. 前記伸緩和制機能として正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を同位相となるように形成して構成したことを特徴とする請求項2に記載の非水系二次電池。   3. The exposed portion perpendicular to the longitudinal direction of the positive electrode current collector is formed on the front surface and the back surface of the positive electrode mixture layer so as to have the same phase as the elongation relaxation control function. The nonaqueous secondary battery as described. 前記伸縮緩和機能として正極合剤層の表面と裏面に正極集電体の長手方向に対して直交する露出部を異位相となるように形成して構成したことを特徴とする請求項2に記載の非水系二次電池。   3. The expansion and contraction relaxation function is formed by forming exposed portions orthogonal to the longitudinal direction of the positive electrode current collector on the front and back surfaces of the positive electrode mixture layer so as to have different phases. The nonaqueous secondary battery as described. 前記伸縮緩和機能として正極集電体の露出部の幅を変えて形成して構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein the expansion / contraction relaxation function is formed by changing a width of an exposed portion of the positive electrode current collector. 前記伸縮緩和機能として露出部の幅を正極合剤層の外周側と内周側で変えて形成して構成したことを特徴とする請求項5に記載の非水系二次電池。   6. The non-aqueous secondary battery according to claim 5, wherein, as the expansion / contraction relaxation function, the width of the exposed portion is changed between the outer peripheral side and the inner peripheral side of the positive electrode mixture layer. 前記伸縮緩和機能として露出部の幅を正極合剤層の巻き始め側と巻き終わり側で変えて形成して構成したことを特徴とする請求項5に記載の非水系二次電池。   6. The non-aqueous secondary battery according to claim 5, wherein the expansion / contraction relaxation function is formed by changing the width of the exposed portion between the winding start side and the winding end side of the positive electrode mixture layer. 前記伸縮緩和機能として外周側と内周側の幅を変えるとともに、前記巻き始め側と巻き終わり側の幅を変えて露出部を形成したことを特徴とする請求項5に記載の非水系二次電池。   6. The non-aqueous secondary according to claim 5, wherein, as the expansion / contraction relaxation function, the exposed portion is formed by changing the width of the outer peripheral side and the inner peripheral side and changing the width of the winding start side and the winding end side. battery. 前記伸縮緩和機能として正極集電体の露出部の間隔を変えて形成して構成したことを特徴とする請求項2に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 2, wherein the expansion / contraction relaxation function is formed by changing an interval between exposed portions of the positive electrode current collector. 前記伸縮緩和機能として露出部の間隔を正極合剤層の外周側と内周側で変えて形成して構成したことを特徴とする請求項9に記載の非水系二次電池。   10. The non-aqueous secondary battery according to claim 9, wherein the non-aqueous secondary battery is formed by changing an interval between exposed portions on the outer peripheral side and the inner peripheral side of the positive electrode mixture layer as the expansion / contraction relaxation function. 前記伸縮緩和機能として露出部の間隔を正極合剤層の巻き始め側と巻き終わり側で変えて形成して構成したことを特徴とする請求項9に記載の非水系二次電池。   10. The non-aqueous secondary battery according to claim 9, wherein the expansion / contraction relaxation function is formed by changing an interval between exposed portions between a winding start side and a winding end side of the positive electrode mixture layer. 11. 前記伸縮緩和機能として外周側と内周側の間隔を変えるとともに前記巻き始め側と巻き終わり側の間隔を変えて露出部を形成したことを特徴とする請求項9に記載の非水系二次電池。   10. The non-aqueous secondary battery according to claim 9, wherein as the expansion / contraction relaxation function, an exposed portion is formed by changing an interval between the outer peripheral side and the inner peripheral side and changing an interval between the winding start side and the winding end side. . 前記伸縮緩和機能として正極集電体または負極集電体の露出部の幅を変えるとともに、正極集電体の露出部の間隔を変えて露出部を形成したことを特徴とする請求項2に記載の非水系二次電池。   The exposed portion is formed by changing a width of an exposed portion of the positive electrode current collector or the negative electrode current collector as the expansion / contraction relaxation function and changing an interval between the exposed portions of the positive electrode current collector. Non-aqueous secondary battery. 少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着材を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布し負極合剤層を形成した負極板との間に多孔質絶縁体を介在させて渦巻状に捲回または積層して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、前記正極板に伸縮を緩和する伸縮緩和機能を設けるとともに、前記正極板と負極板の充放電時の伸縮度が小さい方に伸縮を促進する伸縮促進機能を設けたことを特徴とする非水系二次電池。   A positive electrode plate having a positive electrode mixture layer formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector; A negative electrode mixture coating material in which an active material made of a material capable of holding lithium and a binder are kneaded and dispersed in a dispersion medium is applied on the negative electrode current collector to form a porous material between the negative electrode plate and the negative electrode plate. A non-aqueous secondary battery in which an electrode group formed by winding or stacking in a spiral shape with a porous insulator interposed is enclosed in a battery case together with a non-aqueous electrolyte solution, and the expansion and contraction of the positive electrode plate is reduced. A non-aqueous secondary battery provided with an expansion / contraction relaxation function and an expansion / contraction promotion function for promoting expansion / contraction in a direction where the degree of expansion / contraction during charging / discharging of the positive electrode plate and the negative electrode plate is small.
JP2009164755A 2009-07-13 2009-07-13 Nonaqueous secondary battery Pending JP2011023130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164755A JP2011023130A (en) 2009-07-13 2009-07-13 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164755A JP2011023130A (en) 2009-07-13 2009-07-13 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2011023130A true JP2011023130A (en) 2011-02-03

Family

ID=43633040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164755A Pending JP2011023130A (en) 2009-07-13 2009-07-13 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2011023130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044085A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element
US20220115713A1 (en) * 2020-10-12 2022-04-14 E-One Moli Energy Corp. Electrode Body and Cylindrical Lithium Battery Containing the Same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044085A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element
JP7352857B2 (en) 2019-09-06 2023-09-29 株式会社Gsユアサ Energy storage element
US20220115713A1 (en) * 2020-10-12 2022-04-14 E-One Moli Energy Corp. Electrode Body and Cylindrical Lithium Battery Containing the Same
JP2022063852A (en) * 2020-10-12 2022-04-22 イーワン モリ エナジー コーポレーション Electrode body and cylindrical lithium battery containing the same
JP7387687B2 (en) 2020-10-12 2023-11-28 イーワン モリ エナジー コーポレーション Electrode body and cylindrical lithium battery containing the same
US11973192B2 (en) * 2020-10-12 2024-04-30 E-One Moli Energy Corp. Electrode body and cylindrical lithium battery containing the same

Similar Documents

Publication Publication Date Title
JP6287707B2 (en) Nonaqueous electrolyte secondary battery
US7556881B2 (en) Lithium secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
WO2013108396A1 (en) Production method for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2009157158A1 (en) Nonaqueous electrolyte secondary battery
JP2007141527A (en) Electrode and nonaqueous secondary battery using it
JP5441143B2 (en) Lithium secondary battery for mobile devices
JP2009193924A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP7115296B2 (en) Negative electrode and lithium ion secondary battery
JP2015122264A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2011052122A1 (en) Collector and electrode for use in nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and manufacturing method thereof
JP2010061819A (en) Nonaqueous secondary battery
WO2016121350A1 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP6272996B2 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP2011023131A (en) Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011008929A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using this
JP2013098022A (en) Battery electrode plate and battery using the same
JP2010062049A (en) Nonaqueous secondary battery
JP2010061940A (en) Nonaqueous secondary battery
JP2018160379A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2011023130A (en) Nonaqueous secondary battery
JP2013089441A (en) Electrode group for battery and battery using the same
JP2010277806A (en) Nonaqueous secondary battery