JP2013089441A - Electrode group for battery and battery using the same - Google Patents
Electrode group for battery and battery using the same Download PDFInfo
- Publication number
- JP2013089441A JP2013089441A JP2011228594A JP2011228594A JP2013089441A JP 2013089441 A JP2013089441 A JP 2013089441A JP 2011228594 A JP2011228594 A JP 2011228594A JP 2011228594 A JP2011228594 A JP 2011228594A JP 2013089441 A JP2013089441 A JP 2013089441A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- battery
- separator
- negative electrode
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン電池に代表される電池用電極群およびこれを用いた電池に関するものである。 The present invention relates to a battery electrode group represented by a lithium ion battery and a battery using the same.
近年、携帯用電子機器の電源として利用が広がっている非水系二次電池はリチウム二次電池に代表され、負極活物質にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極活物質にLiCoO2等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって、高電位で高放電容量の非水系二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化や小型化に伴って、非水系二次電池の更なる小型高容量化が望まれている。 In recent years, non-aqueous secondary batteries, which are widely used as power sources for portable electronic devices, are typified by lithium secondary batteries, and use a carbonaceous material that can occlude and release lithium as a negative electrode active material, and a positive electrode active material. In addition, a composite oxide of lithium and a transition metal such as LiCoO 2 is used as an active material, thereby realizing a non-aqueous secondary battery having a high potential and a high discharge capacity. However, with the recent increase in functionality and miniaturization of electronic devices and communication devices, it is desired to further reduce the size and capacity of non-aqueous secondary batteries.
ここで、高容量の非水系二次電池を実現するための発電要素である電極板としては、正極板および負極板ともに各々の構成材料を塗料化した合剤塗料を集電体の上に塗布し乾燥後、プレス等により規定の厚みまで圧縮する方法が用いられており、より多くの活物質を充填してプレスすることにより活物質密度が高くなり、一層の高容量化が可能となる。 Here, as an electrode plate that is a power generation element for realizing a high-capacity non-aqueous secondary battery, a mixture paint obtained by coating each constituent material with a positive electrode plate and a negative electrode plate is applied on a current collector. Then, after drying, a method of compressing to a prescribed thickness by a press or the like is used. By filling and pressing with a larger amount of active material, the active material density becomes higher, and a further increase in capacity becomes possible.
また、上述の正極板と負極板とを多孔質絶縁体としてのセパレータを介して渦巻状に巻回した電極群をステンレス製、ニッケルメッキを施した鉄製、またはアルミニウム製等の金属からなる電池ケースに収納し、次に非水電解液を電池ケース内に注液した後、電池ケースの開口端部に封口板を密封固着して非水系二次電池が構成される。また、金属ケースの代わりに、アルミニウムラミネートフィルムなどの外装体を用いた扁平形ラミネート電池の開発も進んでいる。 In addition, a battery case made of a metal such as stainless steel, nickel-plated iron, or aluminum made of an electrode group in which the above-described positive electrode plate and negative electrode plate are spirally wound through a separator as a porous insulator Then, after pouring a non-aqueous electrolyte into the battery case, a sealing plate is hermetically fixed to the opening end of the battery case to form a non-aqueous secondary battery. In addition, development of a flat laminate battery using an exterior body such as an aluminum laminate film instead of a metal case is also progressing.
ところで、高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板との内部短絡などが原因で非水系二次電池の急激な温度上昇が起こり熱暴走に至る場合もあるため、非水系二次電池の安全性の向上が強く要求されている。特に、大型・高出力な非水系二次電池では、熱暴走の発生確率が高くなるためその発生確率を低くするなどの安全性を向上させる工夫が必要である。 By the way, while increasing capacity, safety measures should be emphasized, especially when a non-aqueous secondary battery suddenly rises in temperature due to an internal short circuit between the positive and negative plates, leading to thermal runaway. Therefore, there is a strong demand for improving the safety of non-aqueous secondary batteries. In particular, a large-sized, high-power non-aqueous secondary battery has a high probability of thermal runaway, and thus needs to be improved to improve safety, such as reducing the probability of occurrence.
上述のように非水系二次電池が内部短絡する要因としては、非水系二次電池の内部に異物が混入する以外にも電極群を構成する際、さらには電池を充放電する際に電極板に加わる応力によって電極板が破断することが考えられる。より詳しくは、渦巻状に巻回して電極群を構成する際または扁平形に圧縮成形する際には構成要素である正極板、負極板、セパレータには曲率半径の小さい部分で大きな応力が加わり、合剤層の脱落またはこの際の各構成要素における伸び率の差によって最も伸び率が小さなものから破断することになる。 As described above, the cause of the internal short circuit of the non-aqueous secondary battery is that the electrode plate is used when the electrode group is configured in addition to the contamination of the non-aqueous secondary battery, and further when the battery is charged / discharged. It is conceivable that the electrode plate breaks due to the stress applied to. More specifically, when constituting the electrode group by winding in a spiral shape or compression molding into a flat shape, a large stress is applied to the positive electrode plate, the negative electrode plate, and the separator, which are constituent elements, in a portion having a small curvature radius, The mixture layer is broken from the one having the smallest elongation rate due to the dropping of the mixture layer or the difference in the elongation rate among the components at this time.
また渦巻状に巻回する際、電極板とセパレータの位置関係にズレが生じ、電極板が露出することが考えられる。より詳しくは、電極板とセパレータを重ねて巻芯に巻きつけることで渦巻状に巻回した後、巻芯から抜く際、巻芯とセパレータの接触部分において摩擦が大きいために接触部のみが巻芯に残るため、その付近の電極板がセパレータで覆われなかったり、電極群の中心部分が巻回体からはみ出すという現象が起こり、電極群として体をなさないことになる。 Further, when winding in a spiral shape, it is conceivable that the positional relationship between the electrode plate and the separator is shifted and the electrode plate is exposed. More specifically, after winding the electrode plate and the separator on the winding core and winding it in a spiral shape, when removing from the winding core, the contact portion between the winding core and the separator has a large friction, so that only the contact portion is wound. Since it remains on the core, a phenomenon occurs in which the electrode plate in the vicinity thereof is not covered with the separator, or the central portion of the electrode group protrudes from the wound body, and the body does not form the electrode group.
そこで、このような短絡による熱暴走を抑制するために、例えば負極板の表面との摩擦係数を定義して負極板が膨張してもセパレータの表層部のつぶれが発生せず、サイクル特
性の低下を抑制できるようなセパレータが提案されている(例えば、特許文献1参照)。
Therefore, in order to suppress such thermal runaway due to a short circuit, for example, the coefficient of friction with the surface of the negative electrode plate is defined, and even if the negative electrode plate expands, the surface layer portion of the separator does not collapse and the cycle characteristics deteriorate. A separator that can suppress the above has been proposed (see, for example, Patent Document 1).
また、このような巻回の際の抜き時のズレを抑制するために、摩擦係数の小さい面を巻芯に接触させる巻回方法が提案されている(例えば、特許文献2参照)。 Moreover, in order to suppress the deviation | shift at the time of such extraction at the time of winding, the winding method which makes a surface with a small friction coefficient contact a core is proposed (for example, refer patent document 2).
また、同様に巻回体をよりスムーズに巻芯から抜くために、巻芯の表面処理による摩擦係数を定義して最適値を選択する方法が提案されている(例えば、特許文献3)。 Similarly, in order to remove the wound body more smoothly from the core, there has been proposed a method of selecting an optimum value by defining a friction coefficient by surface treatment of the core (for example, Patent Document 3).
しかしながら、上述した特許文献1の従来技術では、負極板とセパレータの相対摩擦係数を規定しているだけで、巻芯から抜き時のズレ等には何の対策も施していない。 However, the above-described prior art disclosed in Patent Document 1 merely defines the relative coefficient of friction between the negative electrode plate and the separator, and does not take any measures against a deviation or the like when the core is pulled out.
また、特許文献2の従来技術では、摩擦係数の小さい面を巻芯に接触させる巻回方法だが、相対的に摩擦係数の小さい面を巻芯に接触させても、抜き時の摩擦係数が十分に小さいとは言えず、課題は確実に解決できない。 Further, in the prior art of Patent Document 2, a winding method in which a surface with a small friction coefficient is brought into contact with the core, but even when a surface with a relatively small friction coefficient is brought into contact with the core, the friction coefficient at the time of extraction is sufficient. However, it cannot be said that the problem is surely solved.
また、特許文献3では巻芯の表面処理による摩擦係数を定義しているが、接触するセパレータとの摩擦係数との関係が不明であり、課題が確実に解決できるとは限らない。 Moreover, although the friction coefficient by the surface treatment of a core is defined in patent document 3, the relationship with the friction coefficient with the separator which contacts is unknown, and a subject may not be solved reliably.
本発明は、正極板と負極板とを両面で摩擦係数の異なるセパレータを介して巻回して電極群を構成する際に、セパレータの摩擦係数の大きい面を負極板と正極板のうち表面の摩擦係数の大きい方と接するように構成することで、製作時のズレや合剤の脱落を抑制し、また充放電を繰り返すことによる電極板の膨張収縮に起因した座屈を抑制して、信頼性の高い電池用電極群を提供することを目的としている。 In the present invention, when a positive electrode plate and a negative electrode plate are wound on both sides via a separator having a different friction coefficient to form an electrode group, the surface having a large friction coefficient is separated from the surface of the negative electrode plate and the positive electrode plate. By making contact with the one with the larger coefficient, it is possible to suppress the displacement and dropping of the mixture at the time of manufacture, and to suppress the buckling due to the expansion and contraction of the electrode plate due to repeated charge and discharge. It aims at providing the electrode group for batteries with high.
上記従来の課題を解決するために本発明の電池用電極群は、表面の摩擦係数の異なる正極板と負極板とを備え、前記正極板と前記負極板を両面で摩擦係数の異なるセパレータを介して巻回してなる電池用電極群であって、前記セパレータの摩擦係数の大きい面を正極板と負極板のうち表面の摩擦係数の大きい方と接するように巻回して構成したことを特徴とするものである。 In order to solve the above-described conventional problems, the battery electrode group of the present invention includes a positive electrode plate and a negative electrode plate having different friction coefficients on the surface, and the positive electrode plate and the negative electrode plate are interposed via separators having different friction coefficients on both sides. A battery electrode group formed by winding the separator so that a surface having a large friction coefficient of the separator is wound so as to be in contact with a surface having a larger coefficient of friction between the positive electrode plate and the negative electrode plate. Is.
本発明の電池用電極群によると、表面の摩擦係数の異なる正極板と負極板とを備え、前記正極板と前記負極板を両面で摩擦係数の異なるセパレータを介して巻回してなる電池用電極群において、前記セパレータの摩擦係数の大きい面を正極板と負極板のうち表面の摩擦係数の大きい方と接するように巻回して構成したことにより、製作時のセパレータのズレによる電極板の露出を抑制し、偏平形状に成形する際の合剤層の脱落を抑制することで内部短絡を抑制することが可能である。また、巻回状態の電極群において、電極板とセパレータの密着性が向上することにより、負極板にインターカレーションされるリチウムによって負極板の膨張による体積増加の際に電極群に加わる応力を抑制することができ、その結果、電極板の座屈を抑制し、電極板の破断を抑制することが可能である。また、この電極群を用いることで電極板の合剤脱落、破断または座屈に起因した内部短絡を抑制し安
全性の高い電池を提供することが可能である。
According to the battery electrode group of the present invention, a battery electrode comprising a positive electrode plate and a negative electrode plate having different surface friction coefficients, and the positive electrode plate and the negative electrode plate are wound on both sides via separators having different friction coefficients. In the group, the surface of the separator having a large coefficient of friction was wound so as to be in contact with the positive electrode plate and the negative electrode plate having the larger coefficient of friction on the surface, thereby exposing the electrode plate due to the deviation of the separator during manufacture. It is possible to suppress the internal short circuit by suppressing the dropping of the mixture layer when it is formed into a flat shape. In addition, by improving the adhesion between the electrode plate and the separator in the wound electrode group, the stress applied to the electrode group during volume increase due to expansion of the negative electrode plate is suppressed by lithium intercalated with the negative electrode plate As a result, it is possible to suppress buckling of the electrode plate and to suppress breakage of the electrode plate. In addition, by using this electrode group, it is possible to provide a battery with high safety by suppressing internal short circuit due to mixture dropping, fracture or buckling of the electrode plate.
本発明の第1の発明においては、表面の摩擦係数の異なる正極板と負極板とを備え、前記正極板と前記負極板を両面で摩擦係数の異なるセパレータを介して巻回してなる電池用電極群であって、セパレータの摩擦係数の大きい面を正極板と負極板のうち表面の摩擦係数の大きい方と接するように巻回して構成したことにより、セパレータと電極板の密着性が上がることで巻回時の巻き始めに発生するセパレータのズレによる電極板の露出と偏平形状に成形する際の合剤層の脱落を抑制することで内部短絡を抑制することが可能となり信頼性の高い電池用電極群を提供することができる。 In the first aspect of the present invention, a battery electrode comprising a positive electrode plate and a negative electrode plate having different friction coefficients on the surface, wherein the positive electrode plate and the negative electrode plate are wound on both sides via separators having different friction coefficients. It is a group, and the surface of the separator having a large friction coefficient is wound so as to be in contact with the larger one of the positive electrode plate and the negative electrode plate, thereby increasing the adhesion between the separator and the electrode plate. For high-reliability batteries, it is possible to suppress internal short-circuits by suppressing the electrode plate exposure due to the deviation of the separator that occurs at the beginning of winding and the dropping of the mixture layer when forming into a flat shape. An electrode group can be provided.
本発明の第2の発明においては、セパレータとしてポリオレフィン微多孔膜の片面にアラミドからなる耐熱性多孔質層を形成したものを用いたことにより、両面の摩擦係数の異なるセパレータを用いた電極群を構成することが可能となり、信頼性の高い電池用電極群を提供することができる。 In the second invention of the present invention, an electrode group using separators having different friction coefficients on both sides is obtained by using a polyolefin microporous membrane having a heat-resistant porous layer made of aramid on one side. Therefore, it is possible to provide a highly reliable battery electrode group.
本発明の第3の発明においては、セパレータの摩擦係数の大きい面を正極板と接するように巻回したことにより、正極板とセパレータとの密着性が向上することで、積層時または巻回時の巻き始めに発生するセパレータのズレによる電極板の露出が抑制でき、エネルギー密度の高い正極板が常にセパレータに覆われていることで、より安全性の高い電池用電極群を提供することができる。 In the third invention of the present invention, the surface of the separator having a large coefficient of friction is wound so as to be in contact with the positive electrode plate, thereby improving the adhesion between the positive electrode plate and the separator, so that at the time of lamination or winding. The exposure of the electrode plate due to the deviation of the separator that occurs at the beginning of winding can be suppressed, and the positive electrode plate having a high energy density is always covered with the separator, thereby providing a battery electrode group with higher safety. .
本発明の第4の発明においては、セパレータの摩擦係数の大きい面を負極板と接するように巻回したことにより、負極板とセパレータとの密着性が向上することで、扁平成形時に発生する特に負極合剤層の脱落を抑制することで、相対する正極合剤層に確実に負極合剤層を対向させることで、リチウム析出による内部短絡を抑制することで、より安全性の高い電池用電極群を提供することができる。 In the fourth invention of the present invention, the surface of the separator having a large friction coefficient is wound so as to be in contact with the negative electrode plate. Suppressing the dropping of the negative electrode mixture layer, the negative electrode mixture layer is surely opposed to the opposing positive electrode mixture layer, thereby suppressing an internal short circuit due to lithium deposition, and a higher safety battery electrode. Groups can be provided.
本発明の第5の発明においては、電池用電極群として本発明の第1〜4のいずれか1つのものを用いて非水電解液とともに電池ケースに封入して構成したことによりセパレータのズレによる電極板の露出を抑制し、さらにこれらに起因する内部短絡を効果的に抑制することできる。また、負極板にインターカレーションされるリチウムによって負極板の膨
張による体積増加の際に電極群に加わる応力を抑制することができ、その結果、電極板の座屈を抑制し、電極板の破断を抑制することが可能となって、電極板の合剤脱落、破断または座屈に起因した内部短絡を抑制し安全性の高い電池を提供することが可能である。
In the fifth invention of the present invention, any one of the first to fourth batteries of the present invention is used as a battery electrode group and enclosed in a battery case together with a non-aqueous electrolyte, thereby causing a separator displacement. Exposure of the electrode plate can be suppressed, and internal short circuit caused by these can be effectively suppressed. In addition, the lithium intercalated with the negative electrode plate can suppress the stress applied to the electrode group when the volume increases due to the expansion of the negative electrode plate, thereby suppressing the buckling of the electrode plate and breaking the electrode plate It is possible to suppress the internal short circuit due to the mixture dropping, breaking or buckling of the electrode plate, and to provide a highly safe battery.
以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
以下、本発明の一実施の形態について図面を参照しながら説明する。本発明の図1に示す電池の一例である角形非水系二次電池1は、電池用電極群2を有底偏平形の電池ケース3の内部に絶縁板4と共に収容し、電池用電極群2の上部より導出した負極リード5を絶縁ガスケット6を周縁に取り付けた端子7に接続し、次いで電池用電極群2の上部より導出した正極リード8を封口板9に接続し、電池ケース3の開口部に封口板9を挿入し、電池ケース3の開口部の外周に沿って、封口板9と電池ケース3を溶接して封口し、封栓口10から電池ケース3に所定量の非水溶媒からなる非水電解液(図示せず)を注液した後、封栓11を封口板9に溶接して構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A prismatic non-aqueous secondary battery 1 which is an example of the battery shown in FIG. 1 of the present invention has a battery electrode group 2 housed inside a bottomed flat battery case 3 together with an insulating plate 4, and the battery electrode group 2 The negative electrode lead 5 led out from the upper part of the battery is connected to a terminal 7 having an insulating gasket 6 attached to the periphery, and then the positive electrode lead 8 led out from the upper part of the battery electrode group 2 is connected to the sealing plate 9. The sealing plate 9 is inserted into the opening, the sealing plate 9 and the battery case 3 are welded and sealed along the outer periphery of the opening of the battery case 3, and a predetermined amount of nonaqueous solvent is supplied from the plug opening 10 to the battery case 3. After injecting a non-aqueous electrolyte solution (not shown) consisting of the following, the sealing plug 11 is welded to the sealing plate 9.
ここで、電池用電極群2は、図2に示すように複合リチウム酸化物を活物質とする正極板12とリチウムを保持しうる材料を活物質とする負極板13とを間に多孔質絶縁層としてのセパレータ14を介して渦巻状に巻回して構成している。ここで、正極板12と負極板13の表面の摩擦係数は異なる。さらに詳しくは、図3に示すように、正極板12とセパレータ14と負極板13とセパレータ14とを配置してAに示す方向に巻芯(図示せず)に巻き付けて、渦巻状に巻回して構成することができる。その後、扁平形電池の場合には、図4で示すような工程で偏平形状に成形している。上記セパレータ14は、表裏で摩擦係数の異なる構成になっており、片面にアラミドからなる耐熱性多孔質層15aを形成し片面は微多孔フィルム層15bからなるセパレータ14を用いて構成したもので、正極板12と対向する面にセパレータ14の摩擦係数の大きい耐熱性多孔質層15aを配置して、負極板13とセパレータ14とともにAに示す方向に巻芯(図示せず)に巻き付けて渦巻状に巻回して構成している。セパレータ14の厚みは、10〜25μmとするのが良い。正極板12と、セパレータ14の摩擦係数の大きい面とが接するように巻回して構成することで、巻回時におけるセパレータと正極板12のずれによる露出が抑制でき、また偏平形状に成形する際の合剤層の脱落を抑制することで内部短絡を抑制することが可能となり信頼性の高い電池用電極群2を提供することができる。 Here, as shown in FIG. 2, the battery electrode group 2 has a porous insulation between a positive electrode plate 12 using a composite lithium oxide as an active material and a negative electrode plate 13 using a material capable of holding lithium as an active material. It is configured to be wound in a spiral through a separator 14 as a layer. Here, the friction coefficients of the surfaces of the positive electrode plate 12 and the negative electrode plate 13 are different. More specifically, as shown in FIG. 3, the positive electrode plate 12, the separator 14, the negative electrode plate 13, and the separator 14 are arranged, wound around a winding core (not shown) in the direction indicated by A, and wound in a spiral shape. Can be configured. Thereafter, in the case of a flat battery, it is formed into a flat shape by a process as shown in FIG. The separator 14 has a configuration in which the friction coefficient is different between the front and back sides, a heat-resistant porous layer 15a made of aramid is formed on one side, and one side is made by using the separator 14 made of a microporous film layer 15b. A heat-resistant porous layer 15a having a large friction coefficient of the separator 14 is disposed on the surface facing the positive electrode plate 12, and is wound around a winding core (not shown) in the direction indicated by A together with the negative electrode plate 13 and the separator 14 in a spiral shape. It is structured by winding it around. The thickness of the separator 14 is preferably 10 to 25 μm. By winding the positive electrode plate 12 so that the surface having a large friction coefficient of the separator 14 is in contact with the positive electrode plate 12, exposure due to deviation between the separator and the positive electrode plate 12 during winding can be suppressed, and when forming into a flat shape By suppressing the dropping of the mixture layer, it is possible to suppress an internal short circuit and to provide a highly reliable battery electrode group 2.
さらに詳しくは、巻回開始時には、正極板12と負極板13とセパレータ14は図5に示すような位置関係になっていて、セパレータ14で挟まれていない正極板12を巻芯20に突入させて巻き込む必要があるが、密着性が低いと巻き込み時にすべってしまい、正しい位置関係を維持して巻回することができないことになる、しかし、図3に示すように、表面の摩擦係数の大きい正極板12とそれに対向する面にセパレータ14の摩擦係数の大きい耐熱性多孔質層15a面を配置して巻回することによって、正極板12とセパレータ14の密着性があがるので、電極板との密着性が上がり、特に巻き始めでの電極板の突入時に滑ることなく巻き込むことができるので、ずれることなく電極板の露出が抑制できる。 More specifically, at the start of winding, the positive electrode plate 12, the negative electrode plate 13, and the separator 14 are in a positional relationship as shown in FIG. 5, and the positive electrode plate 12 not sandwiched between the separators 14 is inserted into the core 20. However, if the adhesion is low, it will slip at the time of winding, and it will not be able to wind while maintaining the correct positional relationship. However, as shown in FIG. 3, the surface has a large coefficient of friction. By arranging and winding the surface of the positive electrode plate 12 and the heat-resistant porous layer 15a having a large friction coefficient on the surface facing the positive electrode plate 12, the adhesion between the positive electrode plate 12 and the separator 14 is improved. Adhesion is improved, and the electrode plate can be wound without slipping when the electrode plate enters, particularly at the beginning of winding. Therefore, the exposure of the electrode plate can be suppressed without shifting.
また巻回後扁平形状に成形する際には、図6(a)に示すように略円形状の巻回体を上下からはさんで圧縮するが、最内周の巻き始め部分は固定されていないため、従来は、圧縮による変形に伴いすべりが生じて内側へ移動する。そのため、図6(b)に示すように、湾曲部においてはセパレータが電極板に密着せず、押圧変形時に内側の合剤を保持できずに脱落をすることになる。一方で、本発明の実施の形態では、図6(c)に示すように、正極板12と、セパレータ14の摩擦係数の大きいとが密着しているため、圧縮による変形に伴いすべりが生じる事がないので、その結果湾曲部の形成時にも合剤層が保持でき
るため、合剤層の脱落を抑制できる。
Further, when forming into a flat shape after winding, as shown in FIG. 6 (a), a substantially circular wound body is compressed from above and below, but the winding start portion of the innermost circumference is fixed. Therefore, conventionally, slipping occurs due to deformation due to compression, and it moves inward. For this reason, as shown in FIG. 6B, the separator does not adhere to the electrode plate in the curved portion, and the inner mixture cannot be held during the pressure deformation and falls off. On the other hand, in the embodiment of the present invention, as shown in FIG. 6C, the positive electrode plate 12 and the separator 14 having a large friction coefficient are in close contact with each other. As a result, since the mixture layer can be held even when the curved portion is formed, the mixture layer can be prevented from falling off.
上記正極板12は、正極活物質、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、アルミニウム箔などの正極集電体16への塗布に最適な粘度に調整しながら混練を行って正極合剤塗料を作製する。 In the positive electrode plate 12, a positive electrode active material and a binder are put in an appropriate dispersion medium, mixed and dispersed by a disperser such as a planetary mixer, and an optimum viscosity for application to the positive electrode current collector 16 such as an aluminum foil. The positive electrode mixture paint is prepared by kneading while adjusting.
ここで、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。 Here, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof.
このときの導電材種としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。 As the conductive material type at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.
このときの正極用結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。 As the binder for the positive electrode at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. At this time, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.
次いで、正極集電体16に上述した正極合剤塗料を所定に厚みに塗布して正極合剤層17a、17bを形成し、乾燥したのちほぼ全面的に所定の厚みにプレスされる工程を経て、正極板12が作製される。 Next, the positive electrode mixture coating material described above is applied to the positive electrode current collector 16 in a predetermined thickness to form the positive electrode mixture layers 17a and 17b, and after drying, the entire surface is pressed to a predetermined thickness. A positive electrode plate 12 is produced.
一方、負極板13は、負極活物質、導電材、結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散し、銅箔などの負極集電体18への塗布に最適な粘度に調整しながら混練を行って負極合剤塗料を作製する。
ここで、負極用活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、並びに各種合金組成材料を用いることができる。
On the other hand, for the negative electrode plate 13, a negative electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, mixed and dispersed by a dispersing machine such as a planetary mixer, and applied to a negative electrode current collector 18 such as a copper foil. The negative electrode mixture paint is prepared by kneading while adjusting the viscosity to the optimum value.
Here, as the negative electrode active material, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used.
このときの負極用の結着材としては、ポリフッ化ビニリデンおよびその変性体を用いることができる。しかしながら、リチウムイオンの受入れ性を向上させるという観点からは、スチレン−ブタジエン共重合体ゴム粒子(SBR)またはその変性体とカルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等とを併用したものや、スチレン−ブタジエン共重合体ゴム粒子またはその変性体に上記セルロース系樹脂を少量添加したものを使用するのが好ましい。 As the binder for the negative electrode at this time, polyvinylidene fluoride and a modified product thereof can be used. However, from the viewpoint of improving the acceptability of lithium ions, styrene-butadiene copolymer rubber particles (SBR) or a modified product thereof and a cellulose resin such as carboxymethyl cellulose (CMC) are used in combination. It is preferable to use a styrene-butadiene copolymer rubber particle or a modified product thereof added with a small amount of the above cellulose resin.
次いで、負極集電体18に上述した負極合剤塗料を所定に厚みに塗布して負極合剤層19a、19bを形成し、乾燥したのちほぼ全面的に所定の厚みにプレスされる工程を経て、負極板13が作製される。 Next, the negative electrode mixture coating material described above is applied to the negative electrode current collector 18 to a predetermined thickness to form the negative electrode mixture layers 19a and 19b, dried, and then pressed almost entirely to a predetermined thickness. A negative electrode plate 13 is produced.
非水電解液は、電解質塩としてLiPF6およびLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正極板12または負極板13上に良好な皮膜を形成させるため、および過充電時の安定性を保証するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)、並びにその変性体を用いるのが好ましい。 The non-aqueous electrolyte can use various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. In addition, in order to form a good film on the positive electrode plate 12 or the negative electrode plate 13 and to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof are used. Is preferred.
(実施の形態2)
図7は、本発明の第2の実施形態における正極板12と負極板13とセパレータ14を示す概略図斜視図である。実施の形態1と同様の構成については、説明を割愛する。
(Embodiment 2)
FIG. 7 is a schematic perspective view showing the positive electrode plate 12, the negative electrode plate 13, and the separator 14 according to the second embodiment of the present invention. The description of the same configuration as that in Embodiment 1 is omitted.
図7に示すように、両面に多孔質絶縁層21を形成した負極板13と片面にアラミドからなる耐熱性多孔質層15aを形成し片面は微多孔フィルム層15bからなるセパレータ14を用いたもので、負極板13とそれに対向する面にセパレータ14の摩擦係数の大きい耐熱性多孔質層15aを配置して、正極板12とセパレータ14とともにAに示す方向に渦巻状に巻回して構成している。 As shown in FIG. 7, a negative electrode plate 13 having a porous insulating layer 21 formed on both sides and a heat-resistant porous layer 15a made of aramid on one side and a separator 14 made of a microporous film layer 15b on one side were used. The heat-resistant porous layer 15a having a large friction coefficient of the separator 14 is disposed on the negative electrode plate 13 and the surface facing the negative electrode plate 13, and is wound in a spiral shape in the direction indicated by A together with the positive electrode plate 12 and the separator 14. Yes.
さらに詳しくは、巻回開始時には、正極板12と負極板13とセパレータ14は図8に示すような位置関係になっていて、セパレータ14で挟まれない負極板13を巻芯20に突入させて巻き込む必要があるが、密着性が低いと巻き込み時にすべってしまい、正しい位置関係を維持して巻回することができないことになる、しかし、図7に示すように、負極板13とそれに対向する面にセパレータ14の摩擦係数の大きい耐熱性多孔質層15a面を配置して巻回することによって、負極板13とセパレータ14の密着性があがるので、電極板との密着性が上がり、特に巻き始めでの電極板の突入時に滑ることなく巻き込むことができるので、ずれることなく電極板の露出が抑制できる。 More specifically, at the start of winding, the positive electrode plate 12, the negative electrode plate 13, and the separator 14 are in a positional relationship as shown in FIG. 8, and the negative electrode plate 13 not sandwiched between the separators 14 is inserted into the core 20. Although it is necessary to wind up, if the adhesiveness is low, it slips at the time of winding, and it is impossible to wind while maintaining the correct positional relationship. However, as shown in FIG. By arranging and winding the surface of the heat-resistant porous layer 15a having a large friction coefficient of the separator 14 on the surface, the adhesion between the negative electrode plate 13 and the separator 14 is improved, so that the adhesion between the electrode plate and the electrode plate is improved. Since it can wind in without slipping at the time of the entrance of the electrode plate at the beginning, exposure of an electrode plate can be suppressed without slipping.
また巻回後扁平形状に成形する際には、図9(a)に示すように略円形状の巻回体を上下からはさんで圧縮するが、最内周の巻き始め部分は固定されていないため、従来は、圧縮による変形に伴いすべりが生じて内側へ移動する。そのため、図9(b)に示すように、湾曲部においてはセパレータが電極板に密着せず、押圧変形時に内側の合剤を保持できずに脱落をすることになる。一方で、本発明の実施の形態では、図9(c)に示すように、負極板13と、セパレータ14の摩擦係数の大きいとが密着しているため、圧縮による変形に伴いすべりが生じる事がないので、その結果湾曲部の形成時にも合剤層が保持できるため、合剤層の脱落を抑制できる。 Further, when forming into a flat shape after winding, as shown in FIG. 9A, a substantially circular wound body is compressed from above and below, but the winding start portion of the innermost circumference is fixed. Therefore, conventionally, slipping occurs due to deformation due to compression, and it moves inward. For this reason, as shown in FIG. 9B, the separator does not adhere to the electrode plate in the curved portion, and the inner mixture cannot be held during the pressure deformation and falls off. On the other hand, in the embodiment of the present invention, as shown in FIG. 9C, the negative electrode plate 13 and the separator 14 having a large coefficient of friction are in close contact with each other. As a result, since the mixture layer can be retained even when the curved portion is formed, the mixture layer can be prevented from falling off.
これにより、偏平形状に成形する際の合剤層の脱落を抑制することで内部短絡を抑制することが可能となり信頼性の高い電池用電極群2を提供することができる。 Thereby, it becomes possible to suppress an internal short circuit by suppressing dropping of the mixture layer when forming into a flat shape, and it is possible to provide the battery electrode group 2 with high reliability.
以上の様に、本発明の二次電池1は、電極板とセパレータ14との密着性が高いため、充電時に負極板13にインターカレーションされるリチウムイオンによる負極板13の膨張を抑制することができるため、電極板の体積膨張による電極群2の座屈を抑制し、座屈に起因した電極板の破断や内部短絡を抑制し安全性の高い二次電池1を提供できる。 As described above, since the secondary battery 1 of the present invention has high adhesion between the electrode plate and the separator 14, the expansion of the negative electrode plate 13 due to lithium ions intercalated with the negative electrode plate 13 during charging is suppressed. Therefore, the buckling of the electrode group 2 due to the volume expansion of the electrode plate can be suppressed, and the breakage of the electrode plate and the internal short circuit due to the buckling can be suppressed, and the highly safe secondary battery 1 can be provided.
なお、本実施の形態のセパレータ14は、表裏で摩擦係数の異なる構成になっており、片面にアラミドからなる耐熱性多孔質層15aを形成し片面は微多孔フィルム層15bからなるセパレータ14を用いて表裏で摩擦係数の異なる構成にしているが、二次電池1の使用範囲に耐えうる組成であれば、図10に示すように、特にポリエチレン、ポリプロピレン等のポリオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いてもよい。 In addition, the separator 14 of this Embodiment has the structure from which a friction coefficient differs in the front and back, uses the separator 14 which forms the heat resistant porous layer 15a which consists of an aramid on one side, and consists of the microporous film layer 15b on one side. However, if the composition can withstand the usage range of the secondary battery 1, as shown in FIG. 10, a microporous film of a polyolefin-based resin such as polyethylene or polypropylene, They may be used singly or in combination.
以下、具体的な実施例について、さらに詳しく説明する。
(実施例1)
以下のようにして、図3に示したのと同じ構造の正極板12と負極板13とセパレータ14を作製した。まず、正極板12においては、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデン(PVdF)を活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正
極合剤塗料を作製した。
Hereinafter, specific examples will be described in more detail.
Example 1
A positive electrode plate 12, a negative electrode plate 13, and a separator 14 having the same structure as shown in FIG. 3 were produced as follows. First, in the positive electrode plate 12, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and polyvinylidene fluoride (PVdF) as an active material are used as the active material. A positive electrode mixture paint was prepared by stirring and kneading 2 parts by weight with 100 parts by weight in a double-arm kneader together with an appropriate amount of N-methyl-2-pyrrolidone.
次いで、この正極合剤塗料を厚み15μmのアルミニウム箔からなる正極集電体16の表面と裏面に塗布し、乾燥後に片面側の正極合剤層17a、17bの厚みがそれぞれ100μmとなる正極板12を作製した。 Next, this positive electrode mixture paint is applied to the front and back surfaces of a positive electrode current collector 16 made of an aluminum foil having a thickness of 15 μm, and after drying, the positive electrode mixture layers 17a and 17b on one side have a thickness of 100 μm respectively. Was made.
さらに、この正極板12を、片面側の正極合剤層17a、17bの厚みがそれぞれ75μmで総厚みが165μmとなるようにプレスした後、角形非水系二次電池1に最適な幅にスリッタ加工して正極板12を作製した。 Further, this positive electrode plate 12 is pressed so that the positive electrode mixture layers 17a and 17b on one side have a thickness of 75 μm and a total thickness of 165 μm, respectively, and then slitted to a width optimal for the rectangular non-aqueous secondary battery 1. Thus, a positive electrode plate 12 was produced.
一方、負極板13においては活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。 On the other hand, in the negative electrode plate 13, 100 parts by weight of artificial graphite as an active material and 2.5 parts of a styrene-butadiene copolymer rubber particle dispersion (solid content of 40% by weight) as a binder are 2.5 parts per 100 parts by weight of the active material. 1 part by weight (1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethylcellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water are stirred in a double-arm kneader. A negative electrode mixture paint was prepared.
次いで、この負極合剤塗料を厚み10μmの銅箔からなる負極集電体18の表面と裏面に塗布し、乾燥後に片面側の負極合剤層19a、19bの厚みがそれぞれ110μmとなる負極板13を作製した。 Next, this negative electrode mixture paint is applied to the front and back surfaces of a negative electrode current collector 18 made of a copper foil having a thickness of 10 μm, and after drying, the negative electrode mixture layers 19a and 19b on one side have a thickness of 110 μm respectively. Was made.
さらに、この負極板13を片面側の負極合剤層19a、19bの厚みがそれぞれ85μm、総厚みが180μmとなるようにプレスした後、角形非水系二次電池1に最適な幅にスリッタ加工して負極板13を作製した。 Further, this negative electrode plate 13 was pressed so that the negative electrode mixture layers 19a and 19b on one side had a thickness of 85 μm and a total thickness of 180 μm, respectively, and then slitted to a width optimal for the rectangular non-aqueous secondary battery 1. Thus, a negative electrode plate 13 was produced.
セパレータ14においては、主成分がポリオレフィンである多孔質フィルムを基材として、その片方の表面にアラミドからなる摩擦係数の大きい耐熱性多孔質層15aを厚み2μmに塗布して作成した。 In the separator 14, a porous film whose main component is polyolefin was used as a base material, and a heat-resistant porous layer 15 a made of aramid and having a large friction coefficient was applied to a thickness of 2 μm on one surface.
以上のようにして作製した正極板12と負極板13とセパレータ14を用いて、図1に示すような角形非水系二次電池1を作製した。より具体的には、図3に示したように、正極板12と負極板13とセパレータ14の耐熱性多孔質層15aを正極板12に面するように配置して図3のA方向に渦巻状に巻回して扁平に成形した電池用電極群2を100個作製した。この電池用電極群2の中から60個を抜き出し有底偏平形の電池ケース3の内部に絶縁板4と共に収容し、電池用電極群2の上部より導出した負極リード5を絶縁ガスケット6を周縁に取り付けた端子7に接続し、次いで電池用電極群2の上部より導出した正極リード8を封口板9に接続し、電池ケース3の開口部に封口板9を挿入し電池ケース3の開口部の外周に沿って電池ケース3と封口板9とを溶接して封口し、封栓口10から電池ケース3に所定量の非水溶媒からなる非水電解液(図示せず)を注液した後、封栓11を封口板9に溶接して作製した角形非水系二次電池1を実施例1とした。
(実施例2)
以下のようにして、図7で示したのと同じ構造の正極板12と負極板13とセパレータ14を作製した。まず、実施例1と同様に正極板12とセパレータ14を作成した。負極板13は、実施例1と同様に作成した後、その表面にフィラーとしてAl3O2を含む無機化合物を厚み2μmで塗工した。これらの正極板12、負極板13、セパレータ14を図1に示すような角形非水系二次電池1を作製した。
Using the positive electrode plate 12, the negative electrode plate 13, and the separator 14 produced as described above, a rectangular non-aqueous secondary battery 1 as shown in FIG. 1 was produced. More specifically, as shown in FIG. 3, the heat-resistant porous layer 15a of the positive electrode plate 12, the negative electrode plate 13, and the separator 14 is disposed so as to face the positive electrode plate 12, and is swirled in the direction A in FIG. 100 battery electrode groups 2 wound into a shape and formed flat were produced. 60 batteries are extracted from the battery electrode group 2 and housed together with the insulating plate 4 in the flat bottomed battery case 3, and the negative electrode lead 5 led out from the upper part of the battery electrode group 2 is connected to the peripheral edge of the insulating gasket 6. The positive electrode lead 8 led out from the upper part of the battery electrode group 2 is connected to the sealing plate 9, and the sealing plate 9 is inserted into the opening of the battery case 3 to open the opening of the battery case 3. The battery case 3 and the sealing plate 9 are welded and sealed along the outer periphery of the battery, and a nonaqueous electrolyte solution (not shown) made of a predetermined amount of nonaqueous solvent is injected into the battery case 3 from the plug opening 10. Thereafter, a rectangular non-aqueous secondary battery 1 produced by welding the sealing plug 11 to the sealing plate 9 was taken as Example 1.
(Example 2)
A positive electrode plate 12, a negative electrode plate 13, and a separator 14 having the same structure as shown in FIG. 7 were produced as follows. First, a positive electrode plate 12 and a separator 14 were prepared in the same manner as in Example 1. The negative electrode plate 13 was prepared in the same manner as in Example 1, and then an inorganic compound containing Al 3 O 2 as a filler was applied to the surface thereof with a thickness of 2 μm. A square non-aqueous secondary battery 1 as shown in FIG. 1 was produced using the positive electrode plate 12, the negative electrode plate 13, and the separator 14.
より具体的には、図7に示したように、正極板12と負極板13とセパレータ14の摩擦係数の大きい耐熱性多孔質層15aを摩擦係数の大きい負極板13に面するように配置して図7のA方向に渦巻状に巻回して扁平に成形した電池用電極群2を100個作製した。これらの電池用電極群2の中から60個を抜き出し、実施例1と同様にして作製した角
形非水系二次電池1を実施例2とした。
(比較例1)
正極板12および負極板13およびセパレータ14は、実施例1と同様に作製したものを用いた。電池用電極群2はセパレータ14の摩擦係数が低い方を摩擦係数が高い正極板12に対向するように配置して、渦巻状に巻回して扁平に成形した電池用電極群2を100個作製した。これらの電池用電極群2の中から60個を抜き出し、実施例1と同様にして作製した角形非水系二次電池1を比較例1とした。
(比較例2)
正極板12および負極板13は実施例1と同様に作製したものを用いた。セパレータ14としては、ポリエチレン単一材料としたもので、表裏の摩擦係数は同じである。これらの正極板12と負極板13およびセパレータ14を用いて、渦巻状に巻回して扁平に成形した電池用電極群2を100個作製した。これらの電池用電極群2の中から60個を抜き出し、実施例1と同様にして作製した角形非水系二次電池1を比較例2とした。
(比較例3)
正極板12および負極板13は実施例1と同様に作製したものを用いた。セパレータ14は、多孔質フィルムを基材として、その両面にアラミドからなる摩擦係数の大きい耐熱性多孔質層15aを厚み2μmに塗布して作成した。
More specifically, as shown in FIG. 7, the heat-resistant porous layer 15a having a large friction coefficient of the positive electrode plate 12, the negative electrode plate 13, and the separator 14 is disposed so as to face the negative electrode plate 13 having a large friction coefficient. Thus, 100 battery electrode groups 2 that were spirally wound in the direction A in FIG. A rectangular nonaqueous secondary battery 1 produced in the same manner as in Example 1 was selected as Example 2 by extracting 60 pieces from these battery electrode groups 2.
(Comparative Example 1)
As the positive electrode plate 12, the negative electrode plate 13, and the separator 14, those produced in the same manner as in Example 1 were used. The battery electrode group 2 is arranged so that the separator 14 having a lower friction coefficient is opposed to the positive electrode plate 12 having a higher friction coefficient, and 100 battery electrode groups 2 formed into a flat shape by winding in a spiral shape are produced. did. A rectangular non-aqueous secondary battery 1 produced in the same manner as in Example 1 was selected as Comparative Example 1 by extracting 60 pieces from these battery electrode groups 2.
(Comparative Example 2)
The positive electrode plate 12 and the negative electrode plate 13 were produced in the same manner as in Example 1. The separator 14 is made of a single polyethylene material, and the friction coefficient between the front and back sides is the same. Using these positive electrode plate 12, negative electrode plate 13, and separator 14, 100 battery electrode groups 2 wound in a spiral shape and formed flat were produced. A rectangular non-aqueous secondary battery 1 produced in the same manner as in Example 1 was selected as Comparative Example 2 by extracting 60 pieces from these battery electrode groups 2.
(Comparative Example 3)
The positive electrode plate 12 and the negative electrode plate 13 were produced in the same manner as in Example 1. The separator 14 was prepared by applying a heat-resistant porous layer 15a made of aramid having a large friction coefficient to a thickness of 2 μm on both surfaces of a porous film as a base material.
電池用電極群2はセパレータ14の摩擦係数が低い方を正極板12に対向するように配置して、渦巻状に巻回して扁平に成形した電池用電極群2を100個作製した。これらの電池用電極群2の中から60個を抜き出し、実施例1と同様にして作製した角形非水系二次電池1を比較例3とした。 The battery electrode group 2 was placed so that the separator 14 having a lower friction coefficient was opposed to the positive electrode plate 12, and 100 battery electrode groups 2 that were spirally wound and formed flat were produced. A rectangular non-aqueous secondary battery 1 produced in the same manner as in Example 1 was selected as Comparative Example 3 by extracting 60 pieces from these battery electrode groups 2.
上記各実施例と比較例の所要内容を(表1)に示す。 The required contents of each of the above examples and comparative examples are shown in (Table 1).
(表1)の条件で渦巻状に巻回した電極群2および角形非水系二次電池1において、以下の内容で評価を行った。実施例1〜2および比較例1〜3についてそれぞれ100個の中から40個を抜き出して電池用電極群2を解体して観察した結果を(表2)に示す。 In the electrode group 2 and the square nonaqueous secondary battery 1 wound in a spiral shape under the conditions of (Table 1), evaluation was performed with the following contents. Tables 2 and 4 show the results obtained by extracting 40 pieces from 100 pieces for each of Examples 1 and 2 and Comparative Examples 1 to 3 and disassembling and observing the battery electrode group 2.
また、上述のようにして実施例1〜2および比較例1〜3について作製したそれぞれ60個の角形非水系二次電池1について、充放電を500サイクル繰り返したときの初期容量に対する容量維持率と電極板の厚みの変化率を(表2)に示す。 Moreover, about 60 square non-aqueous secondary batteries 1 produced about Examples 1-2 and Comparative Examples 1-3 as mentioned above, respectively, the capacity maintenance rate with respect to an initial capacity when charging / discharging is repeated 500 cycles, and The change rate of the thickness of the electrode plate is shown in (Table 2).
さらに、この60個のうちの30個を500サイクル繰り返した後に角形非水系二次電
池1および電池用電極群2を解体し観察した結果を(表2)に示す。
Furthermore, the results of disassembling and observing the prismatic non-aqueous secondary battery 1 and the battery electrode group 2 after repeating 30 of these 60 for 500 cycles are shown in (Table 2).
(表2)の結果より、実施例1〜2においては、いずれも正極板12、負極板13ともに電極板の破断や合剤層の脱落などの不具合は認められなかった。また500サイクル後の初期容量に対する容量維持率および500サイクル後に分解し観察した結果、リチウム析出、電極板の破断、電極板の座屈、合剤層の脱落などの不具合は認められなかった。 From the results of (Table 2), in Examples 1 and 2, in both the positive electrode plate 12 and the negative electrode plate 13, defects such as breakage of the electrode plate and dropping of the mixture layer were not recognized. Moreover, as a result of the capacity maintenance ratio with respect to the initial capacity after 500 cycles and the decomposition and observation after 500 cycles, problems such as lithium deposition, electrode plate breakage, electrode plate buckling, and mixture layer falling off were not observed.
また、500サイクル後の厚み増加量も小さく座屈が抑制されており、このため良好な電池特性が維持できたと考えられる。 Further, the increase in thickness after 500 cycles is small and buckling is suppressed, and it is considered that good battery characteristics can be maintained.
一方、比較例1〜3においては500サイクル後の初期容量に対する容量維持率は低下しており、500サイクル後に分解し観察した結果からリチウム析出、電極板の破断、電極板の座屈、合剤層の脱落などの不具合が認められた。 On the other hand, in Comparative Examples 1 to 3, the capacity retention ratio with respect to the initial capacity after 500 cycles is reduced, and from the results of decomposition and observation after 500 cycles, lithium deposition, electrode plate breakage, electrode plate buckling, and mixture Problems such as falling off of the layer were observed.
加えて、これらの500サイクル繰り返した後の残りの30個について、次のような試験を行った。 In addition, the following tests were performed on the remaining 30 after repeating these 500 cycles.
まず、落下試験として上述の角形非水系二次電池1を上限電圧4.2V、電流2Aの条件で2時間充電を行った後に、1.5mの高さからコンクリート面上に、角形非水系二次電池1の6面に対し各10回落下試験を行い、室温25℃にて10個の発熱温度を測定し、10個の平均値を求めた結果を(表3)に示す。また落下試験後の発熱の有無を確認した結果を(表3)に示す。 First, as a drop test, the above-described rectangular non-aqueous secondary battery 1 was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A, and then the rectangular non-aqueous secondary battery 1 was placed on a concrete surface from a height of 1.5 m. A drop test was performed 10 times on each of the six surfaces of the secondary battery 1, ten exothermic temperatures were measured at room temperature of 25 ° C., and the average value of the ten cells was obtained (Table 3). Moreover, the result of having confirmed the presence or absence of the heat | fever after a drop test is shown in (Table 3).
また、丸棒圧壊試験として上述の角形非水系二次電池1を上限電圧4.2V、電流2Aの条件で2時間充電を行った後、電池を寝かせた状態で長さ方向に対し垂直方向に直径10mmの丸棒で圧壊試験を実施し、室温25℃にて10個の発熱温度を測定し、10個の平均値を求めた結果を(表3)に示す。 Further, as a round bar crushing test, the above-described rectangular non-aqueous secondary battery 1 was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A, and then the battery was laid in a direction perpendicular to the length direction. A crush test was performed with a round bar having a diameter of 10 mm, 10 exothermic temperatures were measured at a room temperature of 25 ° C., and the average value of 10 pieces was obtained (Table 3).
さらに、150℃加熱試験として上述の角形非水系二次電池1を上限電圧4.2V、電流2Aの条件で2時間充電を行った後、電池を恒温層に挿入し、常温から5℃/分の条件で恒温層の温度を150℃まで昇温させて、そのときの電池発熱温度を測定し10個の平均値を求めた結果を(表3)に示す。 Furthermore, as a 150 ° C. heating test, the above-described rectangular non-aqueous secondary battery 1 was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A, and then the battery was inserted into a constant temperature layer to be 5 ° C./min from normal temperature. Table 3 shows the results obtained by raising the temperature of the constant temperature layer to 150 ° C. under the conditions, measuring the battery heat generation temperature at that time, and obtaining the average value of 10 pieces.
(表3)の結果より、実施例1〜2では500サイクル後の落下試験、丸棒圧壊試験、150℃加熱試験については、不具合は認められなかった。 From the result of (Table 3), in Examples 1-2, the malfunction was not recognized about the drop test after 500 cycles, a round bar crushing test, and a 150 degreeC heating test.
これは、座屈が抑制されており、それらに起因する内部短絡を抑制することができたために、良好な安全性を維持できたものと考えられる。 This is because buckling is suppressed and internal short circuit caused by them can be suppressed, and it is considered that good safety can be maintained.
一方、比較例1〜3で示した非水系二次電池1は、500サイクル後に分解し観察した結果、リチウム析出、電極板の破断、電極板の座屈、合剤層の脱落などの不具合が認められた。 On the other hand, the nonaqueous secondary battery 1 shown in Comparative Examples 1 to 3 was decomposed and observed after 500 cycles. As a result, problems such as lithium deposition, electrode plate breakage, electrode plate buckling, and mixture layer falling off were observed. Admitted.
また、落下試験、丸棒圧壊試験、釘刺し試験、150℃加熱試験のいずれの試験においても、発熱温度が高いことより、巻回時の合剤層の脱落や電極板の破断に起因する内部短絡や座屈が発生していることが原因と考えられる。 Also, in any of the drop test, the round bar crush test, the nail penetration test, and the 150 ° C. heating test, the internal temperature caused by the dropping of the mixture layer or the breakage of the electrode plate due to the high exothermic temperature. The cause is considered to be a short circuit or buckling.
以上の結果より、両面で摩擦係数のことなるセパレータ14の摩擦係数の大きい面を正極板12と負極板13のうち表面の摩擦係数の大きいほうと接するように構成したことにより、電極板との密着性が上がり、特に巻き始めでの電極板の突入時に滑ることなく巻き込むことで、ずれることなく電極板の露出を抑制したり、扁平に変形させる際の合剤層の脱落を抑制することで、それに伴う内部短絡を抑制することができた。 From the above results, the surface of the separator 14 having a different friction coefficient on both sides is configured to be in contact with the larger one of the surface friction coefficient of the positive electrode plate 12 and the negative electrode plate 13. Adhesion is improved, especially by rolling without slipping when the electrode plate enters at the beginning of winding, suppressing exposure of the electrode plate without slipping, or suppressing dropping of the mixture layer when deforming flat The internal short circuit accompanying it could be suppressed.
なお、実施例1〜2においては、渦巻状に巻回した電池用電極群2を作成したが、つづら折れ状に積層した電池用電極群2においても同様の効果が得られるのは言うまでもない。 In Examples 1 and 2, the battery electrode group 2 wound in a spiral shape was created, but it goes without saying that the same effect can be obtained in the battery electrode group 2 stacked in a zigzag manner.
さらに、これら実施例においては角形非水系二次電池1を用いて説明したが、円筒形非水系二次電池についても同様の効果が得られるのは言うまでもない。 Furthermore, in these examples, the rectangular non-aqueous secondary battery 1 has been described, but it goes without saying that the same effect can be obtained with a cylindrical non-aqueous secondary battery.
本発明に係る電池用電極群は、正極板と負極板とを両面で摩擦係数の異なるセパレータを介して巻回してなる電池用電極群において、セパレータの摩擦係数の大きい面を正極板と負極板のうち表面の摩擦係数の大きい方と接するように構成することによって、巻回時の電極板のずれによる電極板の露出を抑制し、扁平形状に成形する際の合剤の脱落を抑制することで内部短絡を抑制することが可能である。また、この電池用電極群を用いることで内部短絡による発熱を抑制し安全性の高い電池を提供することが可能であるため電子機
器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。
The battery electrode group according to the present invention is a battery electrode group in which a positive electrode plate and a negative electrode plate are wound through separators having different friction coefficients on both surfaces. By making contact with the one with the larger friction coefficient on the surface, the exposure of the electrode plate due to the displacement of the electrode plate at the time of winding is suppressed, and the dropping of the mixture when forming into a flat shape is suppressed It is possible to suppress an internal short circuit. In addition, by using this battery electrode group, it is possible to provide a highly safe battery by suppressing heat generation due to an internal short circuit, and therefore it is desired to increase the capacity with the multi-functionalization of electronic devices and communication devices. It is useful as a portable power source.
1 角形非水系二次電池
2 電池用電極群
3 電池ケース
4 絶縁板
5 負極リード
6 絶縁ガスケット
7 端子
8 正極リード
9 封口板
10 封栓口
11 封栓
12 正極板
13 負極板
14 セパレータ
15a 耐熱性多孔質層
15b 微多孔フィルム層
16 正極集電体
17a、17b 正極合剤層
18 負極集電体
19a、19b 負極合剤層
20 巻芯
DESCRIPTION OF SYMBOLS 1 Square non-aqueous secondary battery 2 Battery electrode group 3 Battery case 4 Insulating plate 5 Negative electrode lead 6 Insulating gasket 7 Terminal 8 Positive electrode lead 9 Sealing plate 10 Sealing port 11 Sealing 12 Positive electrode plate 13 Negative electrode plate 14 Separator 15a Heat resistance Porous layer 15b Microporous film layer 16 Positive electrode current collector 17a, 17b Positive electrode mixture layer 18 Negative electrode current collector 19a, 19b Negative electrode mixture layer 20 Winding core
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011228594A JP2013089441A (en) | 2011-10-18 | 2011-10-18 | Electrode group for battery and battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011228594A JP2013089441A (en) | 2011-10-18 | 2011-10-18 | Electrode group for battery and battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013089441A true JP2013089441A (en) | 2013-05-13 |
Family
ID=48533148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011228594A Pending JP2013089441A (en) | 2011-10-18 | 2011-10-18 | Electrode group for battery and battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013089441A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017103111A (en) * | 2015-12-02 | 2017-06-08 | トヨタ自動車株式会社 | Eddy-shaped electrode and method of manufacturing eddy-shaped electrode |
US10770729B2 (en) * | 2015-01-09 | 2020-09-08 | Semiconductor Energy Laboratory Co., Ltd. | Electrode, power storage device, and electronic equipment |
WO2022230626A1 (en) * | 2021-04-26 | 2022-11-03 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
WO2023177199A1 (en) * | 2022-03-16 | 2023-09-21 | 주식회사 엘지에너지솔루션 | Jelly-roll type electrode assembly, battery cell including same, and cylindrical battery |
-
2011
- 2011-10-18 JP JP2011228594A patent/JP2013089441A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10770729B2 (en) * | 2015-01-09 | 2020-09-08 | Semiconductor Energy Laboratory Co., Ltd. | Electrode, power storage device, and electronic equipment |
JP2017103111A (en) * | 2015-12-02 | 2017-06-08 | トヨタ自動車株式会社 | Eddy-shaped electrode and method of manufacturing eddy-shaped electrode |
US10069172B2 (en) | 2015-12-02 | 2018-09-04 | Toyota Jidosha Kabushiki Kaisha | Spirally-wound electrode and method of manufacturing spirally-wound electrode |
WO2022230626A1 (en) * | 2021-04-26 | 2022-11-03 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
WO2023177199A1 (en) * | 2022-03-16 | 2023-09-21 | 주식회사 엘지에너지솔루션 | Jelly-roll type electrode assembly, battery cell including same, and cylindrical battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5291020B2 (en) | Lithium secondary battery | |
TWI637550B (en) | Negative electrode material for non-aqueous electrolyte battery and method for producing negative electrode active material particles | |
JP5831557B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
WO2009157507A1 (en) | Lithium ion secondary cell | |
WO2011135613A1 (en) | Non-aqueous secondary battery and electrodes for use in same | |
US20090269654A1 (en) | Prismatic Storage Battery Or Cell With Flexible Recessed Portion | |
JP6152825B2 (en) | Non-aqueous electrolyte secondary battery | |
CN101785137A (en) | Cylindrical nonaqueous electrolytic secondary battery | |
TWI509863B (en) | Prismatic storage battery or cell with flexible recessed portion | |
CN103098292A (en) | Non-aqueous electrolyte secondary battery and method for producing same | |
WO2015001411A1 (en) | Non-aqueous electrolyte secondary battery | |
WO2009157158A1 (en) | Nonaqueous electrolyte secondary battery | |
KR20200131791A (en) | Nonaqueous electrolyte secondary battery | |
US20110136015A1 (en) | Method of producing negative electrode for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery using the same | |
US9406924B2 (en) | Nonaqueous electrolyte secondary battery | |
CN110021782B (en) | Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery | |
JP2011008929A (en) | Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using this | |
JP2010108679A (en) | Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same | |
JP2013089441A (en) | Electrode group for battery and battery using the same | |
JP6287186B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2011048769A1 (en) | Flat secondary battery electrode group, method for manufacturing same, and flat secondary battery with flat secondary battery electrode group | |
JP5699890B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2010033869A (en) | Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same | |
JPH11273743A (en) | Cylindrical nonaqueous electrolyte secondary battery | |
JP2003282143A (en) | Nonaqueous electrolyte secondary battery |