JPH03261075A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03261075A
JPH03261075A JP2058992A JP5899290A JPH03261075A JP H03261075 A JPH03261075 A JP H03261075A JP 2058992 A JP2058992 A JP 2058992A JP 5899290 A JP5899290 A JP 5899290A JP H03261075 A JPH03261075 A JP H03261075A
Authority
JP
Japan
Prior art keywords
positive electrode
thickness
battery
electrode sheet
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058992A
Other languages
Japanese (ja)
Inventor
Yoshitomo Masuda
善友 増田
Takao Ogino
隆夫 荻野
Tadaaki Miyazaki
忠昭 宮崎
Hiroaki Wada
宏明 和田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2058992A priority Critical patent/JPH03261075A/en
Publication of JPH03261075A publication Critical patent/JPH03261075A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a battery of excellent safety and cycle characteristic by varying the thickness of a spirally wound positive electrode sheet in such a manner that the sheet is thinner at its upper and lower portions than at its center portion. CONSTITUTION:A positive electrode sheet having LiV3O8 fixed on a current collector of aluminium foil is fabricated. The positive electrode sheet is 40mm in width and 230mum in thickness at its center portion and 210mum in thickness at a portion 7mm-long from the upper side and 210mum in thickness at a portion 7mm-long from the lower side thereof. A negative electrode of lithium is wound around the positive electrode sheet using a separator comprising a porous film made from polypropylene. The positive and negative electrodes are then inserted in a can and an electrolyte which is a mixed solution of propylene carbonate having 1mol/l of LiPF6 dissolved therein is added thereto and the can is sealed so that a lithium secondary battery is fabricated. The battery is subjected to cycle tests at 3 to 2V with charging at a constant current of 70mA and discharge at a constant current of 150mA; then the battery yields 723mAh at the first test and about 560mAh after tests are repeated one hundred and fifty times. The safety and cycle characteristic of the battery are thus enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は安全性、サイクル性にすぐれる電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a battery with excellent safety and cycleability.

(従来の技術) 近年、リチウム等のアルカリ金属を活物質に用いた非水
電解質電池は、電圧が高く、容量も大きい事から、パソ
コン、VTR等のメモリーバックアップから、カメラ等
の駆動源までの広い分野において、その需要が急増して
いる。
(Conventional technology) In recent years, non-aqueous electrolyte batteries that use alkali metals such as lithium as active materials have high voltage and large capacity, so they have been used for everything from memory backup for computers and VTRs to drive sources for cameras and other devices. Demand is rapidly increasing in a wide range of fields.

更に、充放電を可能とした二次電池、とりわけ円筒形等
のスパイラル構造タイプは、大電流が取り出せる利点が
あるため、ポータプル機器などのさまざまなエレクトロ
ニクス機器の将来の主電源用途として期待されている。
Furthermore, secondary batteries that can be charged and discharged, especially cylindrical and other spiral structure types, have the advantage of being able to draw large currents, so they are expected to be used as the future main power source for various electronic devices such as portable devices. .

このような主電源用電池には、様々な使用条件下におい
てもその電池性能を十分かつ安定に発揮し、しかも電池
破裂等の危険がない高い安全性が要求される。
Such main power batteries are required to fully and stably exhibit their battery performance under various usage conditions, and to have high safety without the risk of battery explosion.

しかしながら、非水電解質電池、特に二次電池は、サイ
クル使用により突然容量が低下したり、破裂等のおそれ
を有する場合もある。
However, non-aqueous electrolyte batteries, especially secondary batteries, may suddenly experience a decrease in capacity or may explode due to repeated use.

このような不都合は、特にスパイラル構造を有する二次
電池に多く発生する傾向がある。
Such problems tend to occur particularly in secondary batteries having a spiral structure.

(発明が解決しようとする課題) 本発明は上記事情に鑑みなされたもので、正極シートの
厚み分布をコントロールする事により、安全性、サイク
ル特性にすぐれた電池を提供する事を目的とする。
(Problems to be Solved by the Invention) The present invention was made in view of the above circumstances, and aims to provide a battery with excellent safety and cycle characteristics by controlling the thickness distribution of the positive electrode sheet.

(課題を解決するための手段及び作用)本発明者等は、
上記目的を達成するため鋭意検討を重ねた結果、スパイ
ラル構造二次電池の場合には、スパイラル状に巻かれた
正極シートの厚みを、中央部の厚みよりも上部及び下部
の厚みを薄くする事により、安全性及びサイクル特性に
すぐれる電池を提供できる事を見い出し、本発明をなす
に至った。
(Means and effects for solving the problem) The present inventors,
As a result of intensive studies to achieve the above objective, we found that in the case of spiral structure secondary batteries, the thickness of the spirally wound positive electrode sheet is made thinner at the top and bottom than at the center. The inventors have discovered that it is possible to provide a battery with excellent safety and cycle characteristics, and have accomplished the present invention.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

まず、正極シートを作成する。かかる正極シートは正極
活物質のみでも良いが、場合によってはテフロン、ポリ
エチレン等のバインダーや、カーボン、金属粉等の導電
補助剤を混合した複合体でも良く、さらに場合によって
は金網、エキスバンドメタル、金属薄膜等の集電体をそ
れらに併用してもよい。
First, a positive electrode sheet is created. Such a positive electrode sheet may be made of only the positive electrode active material, but in some cases it may be a composite material mixed with a binder such as Teflon or polyethylene, or a conductive agent such as carbon or metal powder, and in some cases it may be a composite material containing wire mesh, expanded metal, etc. A current collector such as a metal thin film may be used in combination with them.

形状は、通常スパイラル構造タイプ電池の場合には、巻
く事を考慮して矩形状のものが多く採用される。ここで
肝要なのは、その矩形状正極シートにおける上部及び下
部の厚みを中央部の厚みよりも薄くする事である。ここ
で述べる上部、下部及び中央部とは、巻き取り方向と直
角方向のおける正極シートの位置関係を示すものであり
、即ちそれはそのまま円筒形電池の上部、下部に対応す
るものである。
In the case of a spiral structure type battery, a rectangular shape is usually adopted in consideration of winding. What is important here is to make the thickness of the upper and lower parts of the rectangular positive electrode sheet thinner than the thickness of the central part. The upper, lower, and central portions mentioned here indicate the positional relationship of the positive electrode sheet in the direction perpendicular to the winding direction, that is, they directly correspond to the upper and lower portions of the cylindrical battery.

また、その厚みの差に関しては、上部及び下部の厚みを
中央部の厚みよりも5%以上、好ましくは10%以上、
さらに好ましくは15%以上薄くする事が適している。
Regarding the difference in thickness, the thickness of the upper and lower parts should be 5% or more, preferably 10% or more, than the thickness of the central part.
More preferably, it is suitable to reduce the thickness by 15% or more.

かかる厚みの差のつけ方は、中央部から上部及び下部に
かけて連続的に傾斜をつけても良いし、又は不連続的に
つまり上部及び下部のある幅部分だけを中央部よりも薄
くしても良く、何れにしろ中央部と差がある事が必要で
ある。
The difference in thickness may be created by creating a continuous slope from the center to the upper and lower parts, or by making only the upper and lower width parts thinner than the central part discontinuously. In any case, it is necessary that there be a difference from the center.

なお、これらの厚みの差は上述した様に正極シートに関
するものであるから、成形した正極活物質そのものに厚
み差がある事は勿論のこと、場合によっては、成形した
正極活物質には厚み差がなくとも、集電体に厚み差を設
ける事によって、結果として正極シートに厚み差を設け
る方法でも可能である。
As mentioned above, these thickness differences are related to the positive electrode sheet, so it goes without saying that there is a thickness difference in the molded positive electrode active material itself, and in some cases, there may be a thickness difference in the molded positive electrode active material. Even without this, it is also possible to provide a thickness difference in the current collector and, as a result, a thickness difference in the positive electrode sheet.

ここで正極シートにおける上部及び下部の厚みを中央部
の厚みよりも薄くすると、なぜ安全性及びサイクル特性
にすぐれるのかという理由は、明確にはなっていないが
次の様に考えられる。
The reason why safety and cycle characteristics are improved when the thickness of the upper and lower parts of the positive electrode sheet is made thinner than the thickness of the central part is not clear, but it is thought to be as follows.

さて、スパイラル構造タイプの二次電池に関して詳細に
観察したところ、以下の様な挙動傾向のある事がわかっ
た。即ち、充放電をくり返すにしたがい、正極シートが
膨張していく傾向にあり、しかも特に上下方向の変化が
激しい。これはおそらく通常スパイラル構造タイプの場
合、巻き終った極材全体を外装缶等につめ込んで電池を
作成するために、正極シートが膨張しようとしても外装
缶に膨張が制限される方向、即ち、正極シートの厚み方
向には自由度がなく膨張できず、比較的自由度のある上
下方向に膨張が集中してしまうためではないかと考えら
れる。
Now, when we closely observed the spiral structure type secondary battery, we found that it tends to behave as follows. That is, as charging and discharging are repeated, the positive electrode sheet tends to expand, and the change is particularly severe in the vertical direction. This is probably due to the fact that in the case of the normal spiral structure type, the entire rolled electrode material is stuffed into an outer can to create a battery, so even if the positive electrode sheet tries to expand, the expansion is restricted by the outer can. This is thought to be because the positive electrode sheet does not have a degree of freedom in the thickness direction and cannot expand, and the expansion concentrates in the vertical direction, which has a relatively high degree of freedom.

そして、この現象は充放電をくり返せばくり返すほどひ
どくなる傾向にあり、事実ひどいものでは正極シートの
上部及び下部に巻き取り方向のひび割れ等が発生してい
る場合があり、比較的空間のある上部及び下部へ膨張し
た正極が逃げたため(5) と考えられる。
This phenomenon tends to get worse the more charging and discharging is repeated, and in fact, in severe cases, cracks may occur in the winding direction at the top and bottom of the positive electrode sheet, and the space is relatively small. This is thought to be due to the positive electrode expanding to a certain upper and lower part escaping (5).

問題はこれだけでは済まず、膨張した正極はセパレータ
ーをも同時に引き延ばしてしまう様であり、例えば、上
述した正極シートのひび割れ部分ではセパレーターが延
伸され、一部では亀裂の発生も確認された。
The problem is not just this, but the expanded positive electrode also seems to stretch the separator at the same time. For example, in the cracked areas of the positive electrode sheet mentioned above, the separator was stretched, and cracks were also observed in some areas.

このセパレーターの亀裂は、内部ショートの弓き金にな
る可能性が高く、従って、放電容量が低下し、サイクル
特性が悪くなったり、場合によっては破裂、発火の危険
性もあり、好ましくないわけである。
Cracks in the separator have a high possibility of becoming a trigger for internal short-circuits, and therefore reduce the discharge capacity, worsen cycle characteristics, and in some cases, pose a risk of rupture or ignition, which is not desirable. be.

しかるに、上述した様な本発明の構成、つまり正極シー
トにおける上部及び下部の厚みを中央部の厚みよりも薄
くすると、正極が膨張してきた場合、若干の余分な空間
を設けているが故に、セパレーターの延伸又は亀裂の発
生を激減できるようである。従って、サイクル特性、安
全性の向上つながるものと思われる。
However, in the configuration of the present invention as described above, that is, when the thickness of the upper and lower parts of the positive electrode sheet is made thinner than the thickness of the central part, when the positive electrode expands, the separator It appears that the occurrence of stretching or cracking can be drastically reduced. Therefore, it is thought that this will lead to improvements in cycle characteristics and safety.

なお、このような膨張現象は、−回の放電のみの一次電
池ではさほど問題にならず、充放電かく(6) り返される二次電池で顕著になるようである。
It should be noted that such an expansion phenomenon is not so much of a problem in primary batteries that are discharged only - times, but seems to become noticeable in secondary batteries that are repeatedly charged and discharged.

以上のように調整した正極シートと、負極シートとセパ
レーターを準備し、巻き、外装缶に挿入し、電解液を注
入後、封口し電池を作成する。
The positive electrode sheet, negative electrode sheet, and separator prepared as described above are prepared, rolled up, inserted into an outer can, filled with electrolyte, and sealed to create a battery.

セパレーターは、正極と負極の短絡を防止し、イオンを
通過させるものであれば何れでも良く、例えば微孔性フ
ィルム、不織布等が挙げられる。
The separator may be any separator as long as it prevents short circuit between the positive electrode and the negative electrode and allows ions to pass through. Examples thereof include a microporous film, a nonwoven fabric, and the like.

又、その厚さも何れでも良いが、通常5〜200ミクロ
ン程度とすることが好ましく、場合によっては2枚以上
、さらに場合によっては種類の異なるセパレーターを重
ね合わせて使用する事もできる。材質も特に制限はない
が、通常はポリプロピレン、ポリエチレンが好適である
Further, the thickness may be any value, but it is usually preferably about 5 to 200 microns, and in some cases, two or more separators, and in some cases, different types of separators may be used in a stacked manner. There are no particular restrictions on the material, but polypropylene and polyethylene are usually preferred.

正極としては、特に制限されるものではなく、例示する
と、Va 0B 、LiVa Oa 、LiC。
The positive electrode is not particularly limited, and examples include Va 0B , LiVa Oa , and LiC.

02 、LiNt02、Va Oa 、Crys % 
Mn0a %CubSCus ’V20+a、Ti0a
、LLMn、04.l−iを含有するM n O□化合
物等の金属酸化物、Ti5z 、FeS、CuCo54
、M o S s等の金属酸化物、セレン化物、グラフ
ァイト質、ポリアセチレン、ポリピリジン、ポリベンゼ
ン、ポリバラフェニレン、ポリトリフェニルアミン、ポ
リピリジン、ポリチオフェン、ポリフラン、ポリピロー
ル等のポリマー等が挙げられるが、これらの中でも、L
 i Va Oa 、L i Co。
02, LiNt02, VaOa, Crys%
Mn0a %CubSCus'V20+a, Ti0a
, LLMn, 04. Metal oxides such as MnO□ compounds containing l-i, Ti5z, FeS, CuCo54
, M o S s and other metal oxides, selenides, graphite, polyacetylene, polypyridine, polybenzene, polyparaphenylene, polytriphenylamine, polypyridine, polythiophene, polyfuran, polypyrrole and other polymers. Among them, L
i Va Oa, L i Co.

2 、 L i N i Oz 、 Mn02%ポリア
ニリンは相性がよく正極活物質として特に好ましい。
2, LiNiOz, and Mn02% polyaniline have good compatibility and are particularly preferable as positive electrode active materials.

負極としては、特に制限されないが、リチウム金属又は
リチウム合金又はリチウムを吸蔵するカーボンが好適に
使用され、リチウム合金として具体的には、リチウムと
アルミニウム、インジウム、錫、鉛、ビスマス、カドミ
ウム、亜鉛等との合金等を挙げることができる。これら
の負極の中でも特にリチウム−アルミニウム合金、カー
ボンが好ましく使用される。
The negative electrode is not particularly limited, but lithium metal, lithium alloy, or carbon that occludes lithium is preferably used. Specifically, lithium alloys include lithium and aluminum, indium, tin, lead, bismuth, cadmium, zinc, etc. Examples include alloys with. Among these negative electrodes, lithium-aluminum alloy and carbon are particularly preferably used.

電解質としては、L i P F a 、L i S 
b F s、LiAsFg 、LiC!20< 、Li
5O3CFa、Li I、LiBr、LiCl2、L 
i BF4 、 LiAIcj2+ % LiHF2、
Li5CN、等のリチウム塩の一種又は2種以上を使用
し得るが、必ずしもこれらのリチウム塩に限定されるも
のではない。これらのリチウム塩の中では、L i C
f204 、LiBF< 、L、t PFa 、L、1
SO3CFaが特に好適である。これらのリチウム塩は
、通常適当に溶解して電解液として用いられる。この場
合、リチウム塩の濃度としては0.01〜10モル /
I2とすることが望ましい。
As electrolytes, L i P Fa , L i S
bFs, LiAsFg, LiC! 20< , Li
5O3CFa, Li I, LiBr, LiCl2, L
iBF4, LiAIcj2+% LiHF2,
One or more types of lithium salts such as Li5CN may be used, but the present invention is not necessarily limited to these lithium salts. Among these lithium salts, L i C
f204 , LiBF< , L, t PFa , L, 1
SO3CFa is particularly preferred. These lithium salts are usually appropriately dissolved and used as an electrolyte. In this case, the concentration of lithium salt is 0.01 to 10 mol/
It is desirable to set it to I2.

またこの場合、有機溶媒としては比較的極性の大きい溶
媒が好適に用いられ、具体的にはプロピレンカーボネー
ト、エチレンカーボネート、ベンゾニトリル、アセトニ
トリル、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、γ−ブチロラクトン、トリエチルホスフェート
、トリエチルフォスファイト、硫酸ジメチル、ジメチル
ホルムアミド、ジメチルアセトアミド、ジメチルスルフ
オキシド、ジオキサン、ジェトキシエタン、ポリエチレ
ングリコール、スルフオラン、ジクロロエタン、クロロ
ベンゼン、ニトロベンゼン等の1種又は2種以上の混合
物を挙げることができるが、これらに限定されるもので
はない。これらのうち(9) では、特にプロピレンカーボネートやプロピレンカーボ
ネートとジメトキシエタン、テトラヒドロフラン、エチ
レンカーボネート及びγ−ブチロラクトンから選ばれた
1種以上の溶媒を混合してなる混合溶媒が好適である。
In this case, a relatively polar solvent is preferably used as the organic solvent, and specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, triethyl phosphate, triethyl Examples include one or a mixture of two or more of phosphite, dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, jetoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, etc. It is not limited. Among these, particularly suitable for (9) are propylene carbonate and a mixed solvent formed by mixing propylene carbonate with one or more solvents selected from dimethoxyethane, tetrahydrofuran, ethylene carbonate, and γ-butyrolactone.

(実施例) 次に実施例及び比較例を示し、本発明を具体的に説明す
るが、本発明は下記に実施例に制限されるものではない
(Example) Next, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

アルミニウム箔集電体上にLiVaOaを固定した正極
シートを作成した。なお、この正極シートの幅は40m
mであり、中央部の厚みを230μmとし、上部から7
mm及び下部から7mmの間の厚みを210μmになる
ようにコントロールした。
A positive electrode sheet was prepared by fixing LiVaOa on an aluminum foil current collector. The width of this positive electrode sheet is 40m.
m, with a thickness of 230 μm at the center and 7 mm from the top.
mm and the thickness between 7 mm from the bottom was controlled to be 210 μm.

これにリチウムの負極、ポリプロピレン製の微孔性フィ
ルムのセパレーターを用いて巻いた。
This was wrapped with a lithium negative electrode and a polypropylene microporous film separator.

次にこれを缶に挿入し、1mo℃/βのLiPF6を溶
解させたプロピレンカーボネートとの混合溶媒である電
解液を加え、封口し、単三サイズ(10) のリチウム二次電池を作成した。
Next, this was inserted into a can, an electrolytic solution which was a mixed solvent with propylene carbonate in which 1mo°C/β LiPF6 had been dissolved was added, and the can was sealed to produce a AA size (10) lithium secondary battery.

充電を70mA定電流、放電を150mA定電流で3〜
2V間のサイクルテストを行なった。
Charging at 70mA constant current, discharging at 150mA constant current, 3~
A cycle test between 2V and 2V was performed.

結果は初回723mAhで、150回経過時点で約56
0mAhであった。
The result was 723mAh the first time, and about 56mAh after 150 times.
It was 0mAh.

(比較例) 正極シートの厚みを、230LLmの厚みにした以外は
実施例と同様に電池を作成し、実施例と同様のサイクル
テストを行なった。
(Comparative Example) A battery was prepared in the same manner as in the example except that the thickness of the positive electrode sheet was changed to 230 LLm, and the same cycle test as in the example was conducted.

初回730mAhで、130回経過時点より突然容量低
下が激しくなったので、分解観察したところ、セパレー
ターの上部及び下部に巻き取り方向の亀裂のある事が確
認された。
At 730 mAh for the first time, after 130 cycles, the capacity suddenly decreased drastically, and when it was disassembled and observed, it was confirmed that there were cracks in the winding direction at the upper and lower parts of the separator.

(効果) 本発明は、以上詳記したように正極の厚みを中央部とそ
の上下部とによって変化を持たせることによって、従来
の二次電池に起こりがちな欠点を改良し、安全性、サイ
クル性にすぐれる特徴のある二次電池が提供できたもの
であって、その効果は著しいものである。
(Effects) As detailed above, the present invention improves the shortcomings that tend to occur in conventional secondary batteries by varying the thickness of the positive electrode depending on the central part and the upper and lower parts, and improves safety and cycle life. A secondary battery with excellent characteristics has been provided, and its effects are remarkable.

(11)(11)

Claims (1)

【特許請求の範囲】[Claims] (1)スパイラル構造電池において、スパイラル状に巻
かれた正極シートの厚みを、中央部の厚みよりも上部及
び下部の厚みを薄くしたことを特徴とする非水電解質二
次電池
(1) In a spiral structure battery, a non-aqueous electrolyte secondary battery characterized in that the thickness of the spirally wound positive electrode sheet is thinner at the upper and lower parts than at the center.
JP2058992A 1990-03-10 1990-03-10 Nonaqueous electrolyte secondary battery Pending JPH03261075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058992A JPH03261075A (en) 1990-03-10 1990-03-10 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058992A JPH03261075A (en) 1990-03-10 1990-03-10 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH03261075A true JPH03261075A (en) 1991-11-20

Family

ID=13100343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058992A Pending JPH03261075A (en) 1990-03-10 1990-03-10 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH03261075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814525A3 (en) * 1996-06-19 2005-11-09 Toshiba Battery Co., Ltd. Electrode plate for nonaqueous electrolyte battery, method of manufacture and apparatus
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814525A3 (en) * 1996-06-19 2005-11-09 Toshiba Battery Co., Ltd. Electrode plate for nonaqueous electrolyte battery, method of manufacture and apparatus
JP2007250537A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it

Similar Documents

Publication Publication Date Title
US8679686B2 (en) Non-aqueous electrolyte for a high-voltage lithium battery
US6274271B1 (en) Non-aqueous electrolyte lithium secondary battery
JP2006092974A (en) Nonaqueous electrolyte battery
US4956247A (en) Nonaqueous electrolyte secondary cell
JP2005243620A (en) Nonaqueous electrolyte battery
KR20040079316A (en) Battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JPH10189043A (en) Lithium secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP2001319688A (en) Nonaqueous-electrolyte lithium secondary battery
US7097938B2 (en) Negative electrode material and battery using the same
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH04109551A (en) Tubular cell
JP2002033117A (en) Nonaqueous electrolyte secondary battery
JPH03261075A (en) Nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JPH11260413A (en) Secondary battery
JPH10189051A (en) Nonaqueous electrolytic battery
JP3409861B2 (en) Non-aqueous electrolyte secondary battery
JPH0574488A (en) Nonaqueous electrolyte secondary battery
JPH03219553A (en) Nonaqueous electrolyte battery
JPH03112070A (en) Lithium secondary battery