JP3409861B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3409861B2
JP3409861B2 JP32482091A JP32482091A JP3409861B2 JP 3409861 B2 JP3409861 B2 JP 3409861B2 JP 32482091 A JP32482091 A JP 32482091A JP 32482091 A JP32482091 A JP 32482091A JP 3409861 B2 JP3409861 B2 JP 3409861B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
separator
battery
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32482091A
Other languages
Japanese (ja)
Other versions
JPH05159766A (en
Inventor
秀 越名
博美 奥野
公一 河野
耕太郎 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32482091A priority Critical patent/JP3409861B2/en
Publication of JPH05159766A publication Critical patent/JPH05159766A/en
Application granted granted Critical
Publication of JP3409861B2 publication Critical patent/JP3409861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は非水電解液二次電池、特
に多孔性ポリエチレン薄膜をセパレータに用いた電池の
特性改良に関するものである。 【0002】 【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形、軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。 【0003】非水電解液電池を二次電池化する場合、既
に市場には優れた性能を有するニッケル−カドミウム蓄
電池(ニカド電池)や鉛蓄電池が存在する関係上、上記
の非水電解液二次電池の正極活物質には高エネルギー密
度、すなわち高容量かつ高電圧のものが望まれる。この
要望を満たすものとしてLiCoO2やLiMn2 4
系のおよそ4Vの高電圧を示す材料が挙げられる。 【0004】一方、負極としては金属リチウムをはじめ
リチウム合金やリチウムイオンを吸蔵・放出できる炭素
材などが検討されているが、金属リチウムには充放電に
伴う樹枝状生成物(デンドライト)による短絡の問題
が、リチウム合金には充放電に伴う電極の崩れなどの問
題がそれぞれあり、最近ではこれらの問題の生じない炭
素材がリチウム二次電池の負極として有望視されてい
る。 【0005】 【発明が解決しようとする課題】非水電解液を用いる電
池、たとえばリチウム二次電池などは非水電解液の電導
度が水溶液系の電解液の電導度の1/10程度しかないた
め、一般に電流が取り出しにくい。さらに非水電解液二
次電池の極板は水溶液系の二次電池と同等の電流特性を
持たせるため、薄くかつ長く作られ、電極面積を大きく
している。そうした場合に安全性に問題点を生じる。非
水電解液の溶媒には有機溶媒がよく用いられるため、電
池がなんらかのはずみで短絡状態に陥ったとき、電池内
部は大きな短絡電流によるジュール熱で熱せられ、その
溶媒の引火点に達し、発火さらには爆発といった事態に
までなることがある。 【0006】特に正極活物質にLiCoO2 やLiMn
2 4 系のおよそ4Vの高電圧を示す材料を用いると、
電位差が大きいためさらに短絡電流が大きくなり、安全
性がさらに低下する。 【0007】これらの問題点を解決するため、150℃
近くの温度で熱溶融により自ら微孔を閉じて多孔性を消
失し、電流を遮断する(いわゆるシャットダウン機能を
持った)ポリプロピレン製の多孔質膜がセパレータとし
てよく用いられている。しかし、このポリプロピレン製
セパレータでは、引火点の低い低粘性の有機溶媒を電解
液に用いた場合は、セパレータの熱溶融により微孔を閉
じて多孔性を消失し電流を遮断する温度が高すぎるた
め、それ以前に有機溶媒に引火して、やはり発火、もし
くは爆発を起こす。そのために最近ではセパレータの材
質は電流を遮断できる温度がおよそ110〜120℃で
あり、ポリプロピレンよりもさらに低いポリエチレンに
移行する傾向にある。ただしポリエチレン製セパレータ
でも孔径、多孔度さらには通気度などが変化することに
よって発火、爆発などを起こす危険性がある。 【0008】本発明は、従来の非水電解液二次電池と比
較し、高エネルギー密度を維持し、かつ短絡時に発火、
爆発がなく安全性に優れ、従来の電池の電流特性と同等
以上の性能を有する非水電解液二次電池を提供すること
を目的とする。 【0009】 【課題を解決するための手段】前記課題を解決するため
本発明の非水電解液二次電池は、一般式Li1-X MO 2
(但し、MはCo、Ni、Mn、Feからなる群から選
ばれた少なくとも1種の元素を表し、Xは0≦X<1の
数を表す。)からなる正極、炭素質材料からなる負極、
非水電解液を含浸保持したセパレータを備え、前記セパ
レータは多孔性ポリエチレン膜からなり、膜厚が20〜
30μm、ASTMのD726の方法Aによる通気度が
200〜1000sec/100cc空気、平均孔径が
0.02〜0.05μmであることを特徴とする。 【0010】なお、ここでの通気度は、ASTMのD7
26、方法Aに基き膜面積6.4cm2 、圧力124m
mH2 Oにおける100ccの空気が通過するに要する
時間(sec)で計測したものである。 【0011】 【作用】本発明の非水電解液二次電池は、一般式Li
1-X MO2 (但し、MはCo、Ni、Mn、Feからな
る群から選ばれた少なくとも1種の元素を表し、Xは0
≦X<1の数を表す。)からなる正極、炭素質材料から
なる負極、非水電解液を含浸保持したセパレータを備
え、前記セパレータは多孔性ポリエチレン膜からなり、
膜厚が20〜30μm、ASTMのD726の方法Aに
よる通気度が200〜1000sec/100cc空
気、平均孔径が0.02〜0.05μmであるので、本
発明の特定のセパレータを用いることにより、単極電位
が4Vと高電圧を示すLiCoO2 やLiMn2 4
の材料を正極活物質として利用できるようになり、高エ
ネルギー密度を維持し、かつ短絡時に発火、爆発がなく
安全性に優れ、さらに放電容量も大きく、電流特性にも
優れた非水電解液二次電池が提供できる。 【0012】 【実施例】以下、本発明の一実施例を図1〜図3に基づ
き説明する。図1は本発明における一実施例の非水電解
液電池二次電池の一部縦断面図であり、例えば直径が1
5mm、高さが50mmの円筒形電池である。 【0013】図1中、1 は炭素質材料からなる負極、2
はセパレータ、3 は正極であり、この正極はガスケット
12にかしめられたリベット11にチタン製リード7 で結線
されたチタン製正極集電体5 に活物質を塗着または充填
して形成されている。2 のセパレータは、有機溶媒(以
下溶媒という)に例えばジエチルカーボネイト(以下D
ECという)とエチレンカーボネイト(以下ECとい
う)との体積比1:1の混合溶媒を用い、これに無機の
支持電解質例えばLiPF6 を溶解させたものをしみこ
ませて保持させた多孔性のポリエチレン(以下PEとい
う)膜からなる。 【0014】このセパレータ2 は負極1 と正極3 との間
に挟まれ、全体が渦巻き状に巻かれて極板群を形成して
いる。負極の炭素質材料はニッケルメッキした鉄製ケー
ス10にニッケル製リード6 で結線されたニッケル製負極
集電体4 に塗着または充填されている。この負極1 、セ
パレータ2 ,正極3 で構成された極板群は、その上部に
上部絶縁板8 が、下部に底部絶縁板9 がそれぞれ当てが
われてケース10に挿入されている。12はポリプロピレン
製ガスケット、13は正極端子をなすキャップ状端子であ
る。 【0015】なお、正極3 を構成する主要素の正極合剤
は、例えば重量比で正極活物質100に対し、カーボン
ブラック7、フッ素樹脂系結着剤4の組成とし、集電体
5 への充填容量が1400mAhとなるようにされてい
る。 【0016】また、負極1 の炭素質材料主体の合剤もそ
の充填容量が(300mAh/gカーボンの利用率で)
800mAhとなるようにされている。上記の構成の電
池を用いて、正極活物質にLi1-X MO2 (但し、Mは
Co、Ni、Mn、Feからなる群から選ばれた少なく
とも1種の元素を表し、Xは0≦X<1の数を表す。)
の一例であるLiCoO2 を使用し、本発明のセパレー
タを用いた電池の短絡試験結果を図2に示した。 【0017】短絡試験に用いた電池は充電が電流70m
Aで4.2Vまで、放電が70mAで3.0Vまでの充
放電条件で20サイクル繰り返し充放電させた後、充電
状態であった。 【0018】また、正極活物質にLiCoO2 を使用
し、本発明のセパレータを用いた電池の1C(700m
A)での電流曲線を図3に示した。充電条件は70mA
で4.2Vまで行った。 【0019】特性比較を行ったセパレータの種々の物性
値を表1に示した。尚、表1中、PEはポリエチレン、
PPはポリプロピレンを示す。また、多孔度はセパレー
タのある面積(A)における孔の面積(B)の比率B/
A(%)である。尚、通気度は前記通気度の定義から明
らかなように通気度の値が小さいものほどガスを通し易
い。 【0020】 【表1】 【0021】図2は上記表1に示した各種のセパレータ
を用いた非水電解液二次電池のうち、No.A、B、
D、F、Hのものについての短絡試験結果を示すもので
あり、図2中、A1 、B1 、D1 、F1 、H1 について
はそれぞれNo.A、B、D、F、Hのものについての
電流値を示し、A2 、B2 、D2 、F2 、H2 について
はそれぞれNo.A、B、D、F、Hのものについての
電池外壁温度を示す。 【0022】図2からわかるようにPP製のセパレータ
A、Bを用いたものは電流の遮断温度が150℃で偏極
点を持っているので、電池温度が下降するように予想さ
れたが、実際には、低粘性溶媒であるDECの引火点に
達しているため、その後も温度が上昇し、爆発した。P
E製品セパレータHを用いたものもA、Bと同様の挙動
を示した。 【0023】これはセパレータとして通気性が大きす
ぎ、かつ多孔度も大きいため短絡電流が大きく流れす
ぎ、電池の温度が急上昇したため、溶媒の引火点に達し
たものである。これより通気度が200sec/100
cc空気以上でなければ、短絡時の安全性が保たれない
ことがわかった。 それに対し、通気度が200〜60
0sec/100cc空気の範囲のセパレータD、Fを
用いたものは短絡電流も抑えられ、電池の温度が110
℃程度で抑えられるため、溶媒の引火点に達せず爆発も
発火も起こらず、安全性に優れていることがわかった。 【0024】また、通気度は多孔度、孔径と一次相関の
関係があるため、多孔度、孔径が大きくなれば、通気度
は小さくなる。さらに付け加えるとその膜厚が20μm 未
満のPE製セパレータは引張り強度が弱く、電池の極板
群構成機にセットした際、強度が弱く切断されてしま
い、好ましくないことがわかった。また、PE製セパレ
ータの膜厚が30μmをこえるものは電池の内容積が限
られているため、極板体積の縮小を招き、高エネルギー
密度の電池ができないと言う欠点があり好ましくない。 【0025】図3は表1のNo.C、D、E、F、Gの
非水電解液二次電池の1C放電時の放電曲線を示す図で
ある。すなわちポリエチレン製セパレータに限り、1C
(700mA)の放電を行った場合の放電曲線である。 【0026】図3からわかるように通気度が1000s
ec/100cc空気を越える1200sec/100
cc空気のGは、他の200〜600sec/100c
c空気の範囲のセパレータC、D、E、Fを用いたもの
より放電電圧が低く、高率放電に弱いことがわかった。 【0027】さらに放電電圧は通気度が小さい程高く出
ることがわかった。通気度が200〜600sec/1
00cc空気の範囲のセパレータC、D、E、Fを用い
たものは1C放電時の容量も95%以上と、従来の電池
に対し同等以上の電流特性を示した。 【0028】また、表1には示さなかったが本発明で用
いたPE製セパレータの通気度は、600sec/10
0cc空気以上1000sec/100cc空気まで
は、ほぼ同様の良好な結果が得られた。 【0029】以上からわかるようにセパレータの材質と
してはポリプロピレンよりもポリエチレンの方が電流遮
断の温度が低く、特に引火点の低い低粘性溶媒を電解液
として用いる場合は安全性が大きく向上する。 【0030】また安全性と電流特性の両面から、ポリエ
チレンのセパレータでも通気度が200〜1000se
c/100cc空気のものが安全でかつ電流特性に優れ
ていることがわかった。 【0031】他にセパレータの微孔の孔径は平均孔径で
0.02μm以上がイオンの円滑な拡散から必要であ
り、平均孔径は大きいほうが電流特性からは好ましい。
しかし、平均孔径が0.05μmを越えるものは、電池
の微小内部短絡が多くなり、活物質の脱落等の影響を食
い止められないことがわかっている。 【0032】なお、ここでは正極活物質にLiCoO2
を使用したが、高電圧を呈するLi 1-X MO2 (但し、
MはNi、Mn、Feからなる群から選ばれた少なくと
も1種の元素を表し、Xは0≦X<1の数を表す。)な
どのリチウム遷移金属複合酸化物も使用できる。 【0033】 【発明の効果】以上の説明から明らかなように本発明
は、従来の非水電解液二次電池と比較し、高エネルギー
密度を維持し、かつ短絡時に発火、爆発がなく安全性に
優れ、従来の電池の電流特性と同等以上の性能を有する
非水電解液二次電池を提供できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a non-aqueous electrolyte secondary battery,
Battery using a porous polyethylene thin film for the separator
It relates to improvement of characteristics. [0002] 2. Description of the Related Art In recent years, portable electronic devices and cords have been developed.
Are rapidly progressing, and these driving power supplies
Small, lightweight, high energy density secondary batteries
High demand. In this respect, non-aqueous secondary batteries, especially lithium batteries
Secondary batteries have high voltage and high energy density
There is great expectation as a battery that does. [0003] When a non-aqueous electrolyte battery is converted to a secondary battery, it is already used.
In the market, nickel-cadmium storage with excellent performance
Due to the existence of batteries (Ni-Cd batteries) and lead-acid batteries,
High energy density is required for the positive electrode active material of non-aqueous electrolyte secondary batteries
That is, a capacitor having a high capacity and a high voltage is desired. this
LiCoO to satisfy the demandTwoAnd LiMnTwoO Four
Materials that exhibit a high voltage of approximately 4V in the system are included. On the other hand, as the negative electrode, metal
Carbon that can store and release lithium alloys and lithium ions
Materials are being considered, but lithium metal can be charged and discharged.
Of short-circuit due to dendrites
However, lithium alloys have problems such as collapse of electrodes due to charging and discharging.
Each of these problems has been
The material is promising as a negative electrode for lithium secondary batteries
You. [0005] SUMMARY OF THE INVENTION A battery using a non-aqueous electrolyte
Batteries, such as lithium secondary batteries, use non-aqueous electrolyte
The degree of conductivity is only about 1/10 of the conductivity of the aqueous electrolyte
Therefore, it is generally difficult to extract current. Non-aqueous electrolyte
The electrode plate of the secondary battery has the same current characteristics as an aqueous secondary battery.
It is made thin and long so that it has a large electrode area.
are doing. In such a case, a problem occurs in security. Non
Since an organic solvent is often used as a solvent for the water electrolyte,
When the pond falls into a short circuit due to some kind of momentum,
The part is heated by Joule heat due to a large short-circuit current,
Solvent flash point reached, causing ignition or even explosion
May be up to. In particular, LiCoO is used as a positive electrode active material.TwoAnd LiMn
TwoOFourUsing a material that exhibits a high voltage of about 4 V in the system,
Large potential difference further increases short-circuit current, ensuring safety
Is further reduced. [0007] To solve these problems, 150 ° C
Closes micropores by thermal melting at near temperature to eliminate porosity
And shut off the current (so-called shutdown function
The porous membrane made of polypropylene is used as a separator.
It is often used. But made of this polypropylene
The separator electrolyzes a low-viscosity organic solvent with a low flash point.
When used for liquids, pores are closed by thermal melting of the separator.
The temperature at which the porosity is lost and the current is cut off is too high
Before igniting the organic solvent and igniting,
Cause an explosion. For that reason, recently, materials for separators
Quality is about 110-120 ℃
Yes, even lower polyethylene than polypropylene
There is a tendency to move. However, polyethylene separator
However, the pore size, porosity, and air permeability change
Therefore, there is a danger of ignition or explosion. [0008] The present invention is compared with a conventional non-aqueous electrolyte secondary battery.
In comparison, it maintains a high energy density and ignites during a short circuit,
Excellent safety without explosion, equivalent to current characteristics of conventional batteries
To provide a non-aqueous electrolyte secondary battery having the above performance
With the goal. [0009] [MEANS FOR SOLVING THE PROBLEMS]
The non-aqueous electrolyte secondary battery of the present invention has the general formula Li1-XMO Two
(However, M is selected from the group consisting of Co, Ni, Mn, and Fe.
X represents at least one element, wherein X is 0 ≦ X <1
Represents a number. ), A negative electrode made of a carbonaceous material,
A separator impregnated and held with a non-aqueous electrolyte;
The rotator is made of a porous polyethylene membrane and has a thickness of 20 to
30 μm, air permeability according to method A of ASTM D726
200-1000sec / 100cc air, average pore size
0.02 to 0.05 μm. [0010] The air permeability here is based on ASTM D7.
26, membrane area 6.4cm based on method ATwo, Pressure 124m
mHTwoRequired for 100cc of air in O to pass
It is measured in time (sec). [0011] The non-aqueous electrolyte secondary battery of the present invention has the general formula Li
1-XMOTwo(However, M is Co, Ni, Mn, Fe
Represents at least one element selected from the group consisting of
≤X <1. ) Consisting of positive electrode, carbonaceous material
Negative electrode and a separator impregnated with non-aqueous electrolyte
The separator is made of a porous polyethylene membrane,
The film thickness is 20 to 30 μm, according to the method A of ASTM D726.
Air permeability is 200 ~ 1000sec / 100cc empty
The average pore size is 0.02 to 0.05 μm.
By using the specific separator of the invention, the unipolar potential
Shows high voltage of 4V as LiCoOTwoAnd LiMnTwoOFoursystem
Material can be used as a positive electrode active material,
Maintains energy density and does not ignite or explode when short circuit occurs
Excellent safety, large discharge capacity and good current characteristics
An excellent non-aqueous electrolyte secondary battery can be provided. [0012] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
I will explain. FIG. 1 shows a non-aqueous electrolysis of one embodiment of the present invention.
FIG. 2 is a partial vertical sectional view of a liquid battery secondary battery, for example, having a diameter of 1;
It is a cylindrical battery with a height of 5 mm and a height of 50 mm. In FIG. 1, reference numeral 1 denotes a negative electrode made of a carbonaceous material;
Is a separator, 3 is a positive electrode, and this positive electrode is a gasket.
Connected to rivet 11 caulked to 12 with titanium lead 7
Active material is applied or filled on the titanium positive electrode current collector 5
It is formed. Separator 2 is an organic solvent
For example, diethyl carbonate (hereinafter referred to as D)
EC) and ethylene carbonate (hereinafter referred to as EC)
A mixed solvent having a volume ratio of 1: 1 with an inorganic solvent.
Supporting electrolyte such as LiPF6Dissolve the thing
Porous polyethylene (hereinafter referred to as PE)
U) consisting of a membrane. The separator 2 is located between the negative electrode 1 and the positive electrode 3.
And the whole is spirally wound to form a group of electrodes
I have. The carbonaceous material of the negative electrode is a nickel-plated iron case.
Nickel negative electrode connected to nickel lead 6 by nickel lead 6
The current collector 4 is coated or filled. This negative electrode 1
The electrode group consisting of the parator 2 and the positive electrode 3 has an upper part
The top insulating plate 8 is applied to the bottom, and the bottom insulating plate 9 is applied to the bottom.
We are inserted in case 10. 12 is polypropylene
Gasket 13 is a cap-shaped terminal that forms the positive terminal.
You. The main component of the positive electrode 3 is a positive electrode mixture.
Is, for example, 100 parts by weight of the positive electrode active material,
A current collector having a composition of black 7 and a fluororesin binder 4
5 so that the filling capacity is 1400 mAh.
You. The mixture mainly composed of carbonaceous material of the negative electrode 1 is also
Filling capacity (at 300 mAh / g carbon utilization)
It is set to be 800 mAh. The above configuration
Using a pond, Li1-XMOTwo(However, M is
At least one selected from the group consisting of Co, Ni, Mn, and Fe
Each represents one type of element, and X represents a number satisfying 0 ≦ X <1. )
LiCoO which is an example ofTwoUsing the separation of the present invention
FIG. 2 shows the results of a short-circuit test of the battery using the battery. The battery used in the short-circuit test has a charging current of 70 m.
A up to 4.2 V and discharge at 70 mA up to 3.0 V
Charge and discharge after repeated 20 cycles under discharge conditions
Condition. Further, LiCoO is used as a positive electrode active material.Twouse
Then, 1C (700 m) of a battery using the separator of the present invention is used.
The current curve in A) is shown in FIG. Charging condition is 70mA
To 4.2V. Various physical properties of the separator whose characteristics were compared
The values are shown in Table 1. In Table 1, PE is polyethylene,
PP indicates polypropylene. Also, the porosity is separated
Ratio of the area (B) of the hole in the area (A) with
A (%). The air permeability is clear from the definition of the air permeability.
As is clear, the smaller the value of the air permeability, the easier it is to pass gas
No. [0020] [Table 1] FIG. 2 shows various separators shown in Table 1 above.
Among the non-aqueous electrolyte secondary batteries using A, B,
Shows the results of short circuit test for D, F and H
Yes, in FIG. 2, A1, B1, D1, F1, H1about
Are No. A, B, D, F, H
Indicates the current value, ATwo, BTwo, DTwo, FTwo, HTwoabout
Are No. A, B, D, F, H
Indicates the battery outer wall temperature. As can be seen from FIG. 2, a separator made of PP
A and B are polarized when the current cutoff temperature is 150 ° C
Has a point, so the battery temperature is expected to fall
However, the flash point of DEC, which is a low-viscosity solvent, is actually
Temperature and subsequently exploded. P
The behavior using product E separator H is the same as A and B
showed that. This has high permeability as a separator.
Large porosity and short circuit current flow
The flash point of the solvent has been reached due to
It is a thing. From this, the air permeability is 200 sec / 100
If it is not more than cc air, safety in case of short circuit cannot be maintained
I understand. In contrast, the air permeability is 200-60
Separators D and F in the range of 0 sec / 100 cc air
The one used also has a reduced short circuit current and a battery temperature of 110
Explosion without reaching the flash point of solvent
No ignition occurred and the safety was found to be excellent. The permeability is a linear correlation between the porosity and the pore size.
Due to the relationship, if the porosity and pore size increase, the air permeability
Becomes smaller. In addition, the film thickness is less than 20 μm
Full PE separators have low tensile strength and are used in battery plates.
When set on a group machine, the strength is weak and it is cut.
It turned out to be undesirable. Also, PE Separee
If the thickness of the battery exceeds 30 μm, the internal volume of the battery is limited.
Is used to reduce the volume of the electrode plate,
There is a disadvantage that a battery having a high density cannot be obtained, which is not preferable. FIG. C, D, E, F, G
FIG. 4 is a diagram showing a discharge curve at the time of 1C discharge of a nonaqueous electrolyte secondary battery.
is there. In other words, only for polyethylene separators, 1C
It is a discharge curve at the time of performing (700 mA) discharge. As can be seen from FIG. 3, the air permeability is 1000 s.
1200 sec / 100 exceeding ec / 100cc air
G of cc air is 200-600 sec / 100c
c using separators C, D, E and F in the range of air
It was found that the discharge voltage was lower and weaker to high-rate discharge. Further, the discharge voltage increases as the air permeability decreases.
I found out. Air permeability is 200 to 600 sec / 1
Using separators C, D, E, F in the range of 00cc air
The conventional battery has a capacity of 95% or more at the time of 1C discharge.
Showed equivalent or better current characteristics. Although not shown in Table 1, it is used in the present invention.
The permeability of the PE separator was 600 sec / 10
From 0cc air to 1000sec / 100cc air
Showed almost the same good results. As can be seen from the above, the material of the separator and
Is better for polyethylene than for polypropylene.
Use a low-viscosity solvent with a low
When used as, the safety is greatly improved. Also, from the viewpoint of both safety and current characteristics,
Air permeability of 200-1000 sec even with a separator of styrene
c / 100cc air is safe and has excellent current characteristics
I understood that. In addition, the pore size of the micropores of the separator is an average pore size.
0.02 μm or more is necessary for smooth diffusion of ions.
Therefore, it is preferable that the average pore diameter is large from the viewpoint of current characteristics.
However, if the average pore size exceeds 0.05 μm,
Increase the number of minute internal short circuits,
I know it ca n’t be stopped. Here, LiCoO is used as the positive electrode active material.Two
Was used, but Li exhibiting a high voltage was used. 1-XMOTwo(However,
M is at least selected from the group consisting of Ni, Mn and Fe
Also represents one type of element, and X represents a number satisfying 0 ≦ X <1. )
Any lithium transition metal composite oxide can be used. [0033] As is clear from the above description, the present invention
Has higher energy than conventional non-aqueous electrolyte secondary batteries.
Maintains the density and ensures safety without ignition or explosion in the event of a short circuit
Excellent, with performance equal to or better than current characteristics of conventional batteries
A non-aqueous electrolyte secondary battery can be provided.

【図面の簡単な説明】 【図1】本発明の一実施例における非水電解液二次電池
の一部断面図。 【図2】本発明の一実施例および比較例の非水電解液二
次電池の短絡試験結果を示す図。 【図3】本発明の一実施例および比較例における非水電
解液二次電池の1C放電時の放電曲線を示した図。 【符号の説明】 1 負極 2 セパレータ 3 正極 4 負極集電体 5 正極集電体 6 負極リード 7 正極リード 8 上部絶縁板 9 底部絶縁板 10 ケース 11 リベット 12 ガスケット 13 キャップ状端子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional view of a non-aqueous electrolyte secondary battery in one embodiment of the present invention. FIG. 2 is a diagram showing the results of a short-circuit test of non-aqueous electrolyte secondary batteries of one example of the present invention and a comparative example. FIG. 3 is a diagram showing a discharge curve at the time of 1C discharge of the non-aqueous electrolyte secondary batteries according to one embodiment of the present invention and a comparative example. [Description of Signs] 1 negative electrode 2 separator 3 positive electrode 4 negative electrode current collector 5 positive electrode current collector 6 negative electrode lead 7 positive electrode lead 8 upper insulating plate 9 bottom insulating plate 10 case 11 rivet 12 gasket 13 cap-shaped terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 公一 神奈川県川崎市川崎区千鳥町3番1号 東燃化学株式会社 技術開発センター内 (72)発明者 滝田 耕太郎 神奈川県川崎市川崎区千鳥町3番1号 東燃化学株式会社 技術開発センター内 (56)参考文献 特開 平3−105851(JP,A) 特開 昭63−121260(JP,A) 特開 平3−245458(JP,A) 特開 昭63−276868(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Kono 3-1 Chidori-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Tonen Chemical Co., Ltd. Technology Development Center (72) Inventor Kotaro Takida Chidori-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 3-1 Tonen Chemical Co., Ltd. Technology Development Center (56) References JP-A-3-105585 (JP, A) JP-A-63-121260 (JP, A) JP-A-3-245458 (JP, A) JP-A-63-276868 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2/16 H01M 10/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一般式Li1-X MO2 (但し、MはC
o、Ni、Mn、Feからなる群から選ばれた少なくと
も1種の元素を表し、Xは0≦X<1の数を表す。)か
らなる正極、炭素質材料からなる負極、非水電解液を含
浸保持したセパレータを備え、前記セパレータは多孔性
ポリエチレン膜からなり、膜厚が20〜30μm、通気
度(ASTMのD726、方法Aによる)が200〜1
000sec/100cc空気、平均孔径が0.02〜
0.05μmであることを特徴とする非水電解液二次電
池。
(57) [Claims] [Claim 1] The general formula Li 1-X MO 2 (where M is C
X represents at least one element selected from the group consisting of o, Ni, Mn, and Fe, and X represents a number satisfying 0 ≦ X <1. ), A negative electrode made of a carbonaceous material, and a separator impregnated with a non-aqueous electrolyte. The separator is made of a porous polyethylene film, has a thickness of 20 to 30 μm, and has an air permeability (ASTM D726, Method A). 200-1)
000sec / 100cc air, average pore size is 0.02-
A non-aqueous electrolyte secondary battery having a thickness of 0.05 μm.
JP32482091A 1991-12-09 1991-12-09 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3409861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32482091A JP3409861B2 (en) 1991-12-09 1991-12-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32482091A JP3409861B2 (en) 1991-12-09 1991-12-09 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05159766A JPH05159766A (en) 1993-06-25
JP3409861B2 true JP3409861B2 (en) 2003-05-26

Family

ID=18170042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32482091A Expired - Fee Related JP3409861B2 (en) 1991-12-09 1991-12-09 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3409861B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805452B2 (en) * 1996-12-27 2006-08-02 日立マクセル株式会社 Method for producing non-aqueous electrolyte secondary battery
JP4149543B2 (en) * 1997-11-19 2008-09-10 株式会社東芝 Non-aqueous electrolyte battery
JP2008251218A (en) 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH05159766A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
EP0878861A1 (en) Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
KR19980024955A (en) Battery electrode and battery containing same
US7402360B2 (en) Non-aqueous electrolyte battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JPH05258741A (en) Separator for nonaqueous electrolyte secondary cell
JP3409861B2 (en) Non-aqueous electrolyte secondary battery
JP2007073212A (en) Lithium-ion secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
KR102440243B1 (en) Electrode assembly
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
JP2004296325A (en) Nonaqueous secondary battery
JP2730641B2 (en) Lithium secondary battery
KR100679662B1 (en) Electrochemical cell with two separator system
JPH07272764A (en) Nonaqueous electrolytic secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JP3307231B2 (en) Non-aqueous electrolyte secondary battery
JPH05190208A (en) Lithium secondary battery
JP2003059477A (en) Battery
JP2002367587A (en) Nonaqueous electrolyte battery
JPH06290774A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees