JP2007250047A - 磁気記録媒体およびその製造方法 - Google Patents

磁気記録媒体およびその製造方法 Download PDF

Info

Publication number
JP2007250047A
JP2007250047A JP2006070000A JP2006070000A JP2007250047A JP 2007250047 A JP2007250047 A JP 2007250047A JP 2006070000 A JP2006070000 A JP 2006070000A JP 2006070000 A JP2006070000 A JP 2006070000A JP 2007250047 A JP2007250047 A JP 2007250047A
Authority
JP
Japan
Prior art keywords
magnetic
layer
hard
magnetic part
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006070000A
Other languages
English (en)
Other versions
JP4637040B2 (ja
Inventor
Katsuya Oikawa
克哉 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006070000A priority Critical patent/JP4637040B2/ja
Priority to US11/680,838 priority patent/US7531249B2/en
Publication of JP2007250047A publication Critical patent/JP2007250047A/ja
Application granted granted Critical
Publication of JP4637040B2 publication Critical patent/JP4637040B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Abstract

【課題】ノイズが小さく、「熱揺らぎ」による記録劣化が少ない磁気記録媒体を提供する。
【解決手段】非磁性領域21中に磁性領域22が分散している磁気記録膜5を有する磁気記録媒体であって、該磁性領域22は保磁力を有する硬磁性材料からなる第1の磁性部である硬磁性層24と、該第1の磁性部の保磁力よりも弱い保磁力を有する軟磁性材料からなる第2の磁性部である軟磁性層23を有し、該硬磁性層24と軟磁性層23は膜の膜面に対して平行方向に積層して設けられている磁気記録媒体。
【選択図】図2

Description

本発明は、高密度磁気記録が可能な磁気記録媒体およびその製造方法に関するものである。
近年、記録媒体として垂直磁気記録媒体が注目を浴びている。また、情報量の増大化に伴いハードディスクドライブ(以下、「HDD」という。)等の磁気記録媒体の面記録密度の向上が期待されており、磁気記録媒体上の各記録ビットサイズは数10nm程度の極めて微細なものになってきている。
しかしながら、記録ビットの微細化は、1ビットあたりの磁化量を小さくし、「熱揺らぎ」による磁化反転で、磁化情報の消失という問題を生じる。
一般に、この「熱揺らぎ」は、Ku・V/kT(ここで、Ku:異方性定数、V:磁化最小単位体積、k:ボルツマン定数、T:絶対温度)の値が小さい程影響が大きくなる。そして、経験的には、Ku・V/kTが100未満になると、「熱揺らぎ」による磁化の反転が生じると言われている。
「熱揺らぎ」に対する耐性を持ちながら記録感度を低下させる磁気記録媒体として、非特許文献1に膜厚方向に硬磁性(ハード)と軟磁性(ソフト)を構成している垂直磁気記録媒体が提案されている。図4は、非特許文献1に於けるに磁気記録膜の概略を示す図である。結晶成長の種となるシード層401上にCoCrPt−SiO2からなる硬磁性層402を成膜し、さらにNiFe−SiO2からなる軟磁性層403を成膜してなる。この技術は、磁化領域の微細化に伴う熱的安定性を確保しつつ、記録するための磁界を低く維持できるように、ハード層とソフト層の積層構造を用いていることを特徴としている。
日本応用磁気学会"日本応用磁気学会誌"第29巻、2005年、p.239−242
しかし、膜厚方向の積層構成では、必然的に膜厚が厚くなってしまうことが懸念される。膜厚の増加は、記録膜の下部側(記録ヘッドと反対側)で記録磁界の膜面方向への発散が生じ易くなるため、記録密度向上させる場合には、好ましくない。
一方で、硬磁性と軟磁性を利用する構成は、記録密度の増大に伴い、今後重要になってくる。
そこで、本発明者らは、磁気記録媒体の磁気記録膜の面内方向(膜面方向)に硬磁性と軟磁性を有する新規な磁気記録媒体につき、鋭意検討を進め、本発明を成すに至った。
即ち、本発明は、前述の新規な構造を有するノイズが小さく、「熱揺らぎ」による記録劣化が少ない磁気記録媒体およびその製造方法を提供することを目的とする。
上記課題を解決するための磁気記録媒体は、
非磁性領域中に磁性領域が分散している磁気記録膜を有する磁気記録媒体であって、該磁性領域は保磁力を有する第1の磁性部と、
該第1の磁性部の保磁力よりも弱い保磁力を有する第2の磁性部を有し、
該第1の磁性部と第2の磁性部は磁気記録膜の膜面に対して平行方向に積層して設けられていることを特徴とする。
前記第1の磁性部は硬磁性材料からなり、前記第2の磁性部は軟磁性材料からなることが好ましい。
前記磁性領域は、前記第1の磁性部の周囲を被覆するように前記第2の磁性部が設けられていることが好ましい。
前記磁性領域は、前記第2の磁性部の周囲を被覆するように前記第1の磁性部が設けられていることが好ましい。
前記軟磁性材料からなる第2の磁性部の平均磁気異方性エネルギー密度が、前記硬磁性材料からなる第1の磁性部の平均磁気異方性エネルギー密度の二分の一以下であることが好ましい。
前記硬磁性材料からなる第1の磁性部の平均磁気異方性エネルギー密度Ku1と、前記軟磁性材料からなる第2の磁性部の平均磁気異方性エネルギー密度Ku2の比κ=Ku2/Ku1が、
該第1の磁性部の平均飽和磁化Ms1と、該第2の磁性部の平均飽和磁化Ms2の比μ=Ms2/Ms1よりも小さいことが好ましい。
前記磁性領域は、硬磁性材料からなる第1の磁性部の周囲を被覆するように軟磁性材料からなる第2の磁性部が設けられており、前記硬磁性材料からなる第1の磁性部の膜の膜面に対して平行方向の断面の半径は、下記の(1)式で表される臨界半径Rh以下であり
Figure 2007250047
(式中、硬磁性材料からなる第1の磁性部において、Rhは臨界半径(cm)、Ahは交換結合定数(erg/cm)、Khは磁気異方性定数(erg/cc)、Mshは飽和磁化(emu/cc)を表す。)
、かつ軟磁性材料からなる第2の磁性部の膜の膜面に対して平行方向の断面の厚みは下記の(2)式で表される臨界半径Rsの二倍以下であることが好ましい。
Figure 2007250047
(式中、軟磁性材料からなる第2の磁性部において、Rsは臨界半径(cm)、Cは形状による係数で1.44、Asは交換結合定数(erg/cm)、Mssは飽和磁化(emu/cc)を表す。)
前記磁性領域は、軟磁性材料からなる第2の磁性部の周囲を被覆するように硬磁性材料からなる第1の磁性部が設けられており、前記軟磁性材料からなる第2の磁性部の膜の膜面に対して平行方向の断面の半径は、下記の(2)式で表される臨界半径Rs以下であり
Figure 2007250047
(式中、軟磁性材料からなる第2の磁性部において、Rsは臨界半径(cm)、Cは形状による係数で1.44、Asは交換結合定数(erg/cm)、Mssは飽和磁化(emu/cc)を表す。)
、かつ硬磁性材料からなる第1の磁性部の膜の膜面に対して平行方向の断面の厚みは下記の(1)式で表される臨界半径Rhの二倍以下であることが好ましい。
Figure 2007250047
(式中、硬磁性材料からなる第1の磁性部において、Rhは臨界半径(cm)、Ahは交換結合定数(erg/cm)、Khは磁気異方性定数(erg/cc)、Mshは飽和磁化(emu/cc)を表す。)
前記硬磁性材料からなる第1の磁性部は、磁気記録膜の膜面に対して垂直方向に磁気異方性容易軸を有することが好ましい。
前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の違いによることが好ましい。
前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の組成比及び/または結晶構造の違いによることが好ましい。
前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の違いと、構成元素の組成比及び/または結晶構造の違いの組み合わせによることが好ましい。
前記硬磁性材料からなる第1の磁性部は、L10規則化構造をもつFePt、FePd、CoPt、CoPdの何いずれかを含むことが好ましい。
前記軟磁性材料からなる第2の磁性部は、Fe、Ni、Coのいずれかを含むことが好ましい。
上記課題を解決するための磁気記録媒体の製造方法は、
多孔質母材の複数の孔に硬磁性材料を充填して第1の磁性部を形成する工程と、該多孔質母材の一部あるいは全部を除去して第1の磁性部を露出する工程と、
該露出した第1の磁性部を軟磁性材料で被覆して第2の磁性部を形成する工程と、
該第2の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする。
また、上記課題を解決するための磁気記録媒体の製造方法は、多孔質母材の複数の孔にPtおよびPdの少なくとも一つからなる第一の金属を充填する工程と、
該多孔質母材の一部あるいは全部を除去して第一の金属を露出する工程と、
該露出した第一の金属をFeおよびCoの少なくとも一つを含有する第二の金属で被覆する工程と、
該第一の金属および第二の金属を加熱処理して、
L10規則化構造をもつFePt、FePd、CoPt、CoPdの何れかを含む硬磁性材料からなる第1の磁性部と、第1の磁性部を被覆したFe、Coいずれかを含む軟磁性材料からなる第2の磁性部を形成する工程と、
該第2の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することが好ましい。
上記課題を解決するための磁気記録媒体の製造方法は、
多孔質母材の複数の孔に軟磁性材料を充填して第2の磁性部を形成する工程と、該多孔質母材の一部あるいは全部を除去して第2の磁性部を露出する工程と、
該露出した第2の磁性部を硬磁性材料で被覆して第1の磁性部を形成する工程と、該第1の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする。
また、上記課題を解決するための磁気記録媒体の製造方法は、
多孔質母材の複数の孔にFeおよびCoの少なくとも一つからなる第二の金属を充填する工程と、該多孔質母材の一部あるいは全部を除去して第二の金属を露出する工程と、
該露出した第二の金属をPtおよびPdの少なくとも一つを含有する第一の金属で被覆する工程と、
該第一の金属および第二の金属を加熱処理してFe、Coのいずれかを含む軟磁性材料からなる第2の磁性部と、
該第2の磁性部を被覆したL10規則化構造をもつFePt、FePd、CoPt、CoPdの何れかを含む硬磁性材料からなる第1の磁性部を形成する工程と、
該第1の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することが好ましい。
本発明により、ノイズが小さく、「熱揺らぎ」による記録劣化が少ない磁気記録媒体を、磁気記録膜の膜厚を増加させることなく提供できる。特に磁気記録膜の膜厚の増加を伴わずに、高磁気異方性磁性材料磁性を用いた磁気記録膜の記録感度向上が図れる。そのため、従来の磁気ヘッドでも印加磁界を効率的に磁気記録膜内に印加できるため、更なる記録感度向上と記録時ノイズが低い磁気記録媒体が提供できる。
以下、本発明を詳細に説明する。
磁気記録媒体は、非磁性領域中に磁性領域が分散している磁気記録膜を有する磁気記録媒体であって、
該磁性領域は保磁力を有する硬磁性材料からなる第1の磁性部と、該第1の磁性部の保磁力よりも弱い保磁力を有する軟磁性材料からなる第2の磁性部を有し、該第1の磁性部と第2の磁性部は磁気記録膜の膜面に対して平行方向に積層して設けられていることを特徴とする。
図1および図2を用いて本発明の実施形態について説明する。図1は本発明に関わる磁気記録媒体の一実施態様を示す断面の構成図である。図中1は基板、2は下地層、3は軟磁性下地層、4は非磁性層、5は磁気記録膜、6は保護層、7は潤滑層である。
ここでは本発明をHDDのディスク状媒体に適用した構成について説明する。図8に示すように、上記磁気記録媒体81を読み取り書き込み用磁気ヘッド83、磁気ヘッドを所望の記録位置へ移動させる磁気ヘッド駆動部84、
モーターなどによりディスク状磁気記録媒体81を回転駆動する磁気記録媒体駆動部82、信号処理部85等からなるHDD装置に組み込むことができる。しかしながら、本発明の主要な構成は一般の磁気記録媒体の磁気記録膜に適用が可能であり、固形基板上に垂直磁気記録膜を有する媒体に対して使用でき、本発明の適用範囲をディスク状回転媒体に限るものではない。
基板1はガラス、アルミニウム、カーボン基板やプラスチック基板、Si基板などからなり、磁気記録膜5への信号の記録、磁気記録膜5からの磁気信号の再生が良好に行える機械特性を備えるものであれば他の材質を用いても良い。
下地層2は、基板1の表面あれ等の影響を除去するため、酸素・水分などから上層の各層を保護するため、基板1の硬度補強、上層との密着性向上のために設けられる。一般にはNiPなどをめっき法などで基板1上に数ナノメートル乃至数百ナノメートル厚で製造される。さらに軟磁性下地層13の磁気特性を制御する効果をもたせてもよい。
軟磁性下地層3は本磁気記録媒体へ記録磁気ヘッドより発生する磁界で情報書き込みを行う際に、磁気記録膜5内で磁束が収斂し磁界強度を強めるとともに記録膜面垂直方向へ磁界の方向が揃う目的で設けられる。特に垂直磁気記録用のモノポール記録磁気ヘッドを用いて、記録磁気ヘッドの記録用モノポール、軟磁性下地層3、記録磁気ヘッドのトレーディングポールで磁束の還流を生じ閉磁回路を構成することで良好な磁気記録がなされる。磁束を収斂するために高透磁率な材料例えばNiFe合金(パーマロイ)などやFeTaC、CoZrNbなどのアモルファス軟磁性材料が使用できるが、上層の膜材料との成膜上の整合から他の高透磁率材料を用いてもよい。また軟磁性下地層3内での磁壁の移動によるスパイクノイズの防止を目的に多層構成、反強磁性磁性材の利用、配向制御などを行ってもよい。膜厚はほぼ100ナノメートル以下になると磁束収斂の効果が低下するが、厚すぎると生産性や媒体耐久性が劣化するため、数百ナノメートル乃至数ミクロン程度をとることが好ましい。
非磁性層4は軟磁性下地層3と磁気記録膜5の磁気的結合を制御する目的と、磁気記録膜5成膜時の配向制御などの目的で設けられる。
磁気記録膜5は膜面垂直方向に記録情報信号に応じて磁化の方向を記録する記録膜である。本発明の特徴は磁気記録膜5の構成にあるため、後に磁気記録膜5の構成に関して図2を用いて説明する。
保護層6は磁気記録膜5保護する目的で設けられ、カーボン、特にダイヤモンドライクカーボン(DLC)を成膜して形成される。
潤滑層7は浮上磁気ヘッドによる記録再生のため、媒体表面と浮上磁気ヘッドの潤滑性向上のためのもので通常のHDD媒体で利用される。たとえばPFPE(パーフルオロポリエーテル)等が使用できる。
記録時には潤滑層7の表面上の浮上型磁気記録ヘッドより磁気記録媒体へほぼ媒体面垂直方向の記録磁界を印加する。磁気記録ヘッドはモノポール型ヘッドが記録磁界が収斂し記録磁界を効率的に磁気記録膜5へ印加できるため好ましい。浮上型磁気記録ヘッドは潤滑層7表面上を十数ナノメートルのフライングハイトで浮上滑走し、モノポールより本垂直磁気媒体ほぼ垂直方向に磁界を発生する。発生する磁界は磁気記録ヘッド−潤滑層7表面間の間隔、潤滑層7、保護層6を通過し磁気記録膜5内の記録部の磁化を所定の記録方向(媒体面垂直の上下方向の何れか)に反転させ、非磁性層4を通って軟磁性下地層3へ達する。軟磁性下地層3の高透磁率のため膜面に平行となった磁界は、磁気記録ヘッドヘッド後方で非磁性層4、磁気記録膜5、保護層6、潤滑層7を横断して磁気記録ヘッドのモノポール後方のトレーディングポールへ達する。
磁気記録ヘッドのモノポール磁極より発生後の磁界は、磁気記録ヘッド−潤滑層7表面間の間隔、潤滑層7、保護層6、磁気記録膜5で発散し軟磁性下地層3でその高透磁率のため収斂する。そのため、磁気記録膜5内で強い磁界強度を得るためにはこの発散する距離が短いほど好ましい。特に磁気記録膜5内では膜厚方向に印加磁界が均一にかかることにより、磁化反転による記録が安定におこなえるため、磁気記録膜5の厚みは再生時の出力が確保できる限りで薄いことが望ましい。
図2は磁気記録媒体の磁気記録膜の実施形態を示す概略図であり、図2(a)は第一の実施形態、図2(b)は第二の実施形態の磁気記録膜の構成を表す。
図2中5は図1と同様に磁気記録膜を表す。22は磁性領域、21は各磁性領域22を磁気的に分離する非磁性材、23は磁性領域22を構成する軟磁性材料からなる第2の磁性部(以降、軟磁性層と記す)、24は磁性領域22を構成する硬磁性材料からなる第1の磁性部(以降、硬磁性層と記す)である。
磁性領域22の特徴は、第1の磁性部と第2の磁性部は磁気記録膜の膜面に対して平行方向に内・外に渡って二層以上が積層して設けられている構成からなり、それぞれに軟磁性層23、硬磁性層24から構成されるところにある。また本発明に関わる磁性領域22の特徴は磁気記録膜の膜面に対して平行方向に磁気的に分断されて存在するところにある。
これによって記録感度を向上するために軟磁性層23を具備するに関わらず磁性粒子の磁気記録膜5の膜厚方向サイズが増大せず、従来例にくらべ磁気記録膜5の厚みを薄く構成することができる。
本発明の第一の形態は硬磁性層24を内径とする円柱の磁性体構造の外径に沿って磁気記録膜の膜面に対して平行方向8に軟磁性層23を有するものである(図2(a))。また本発明の第二の形態は軟磁性層23を内径とする円柱の磁性体構造の外径に沿って磁気記録膜の膜面に対して平行方向に硬磁性層24を有するものである(図2(b))。
但し本発明に関わる磁性領域22の磁気記録膜方向の層構成は二層に限ることものではなく軟磁性の磁気特性をもつ層群と硬磁性の磁気特性を持つ層群からなる多層構成をとることも可能であるが、説明の簡便のため本実施形態に沿って説明する。
軟磁性層23、硬磁性層24の違いは平均磁気異方性エネルギー密度の大きさによる。軟磁性層とは平均磁気異方性エネルギー密度が硬磁性層の平均磁気異方性エネルギーよりも小さいものをいう。さらに詳しく言えば、本発明による硬磁性層と軟磁性層は、硬磁性層の平均磁気異方性エネルギー密度Ku1と軟磁性層の平均磁気異方性エネルギー密度Ku2の比κ
Figure 2007250047
が、硬磁性層の平均飽和磁化Ms1と軟磁性層の平均飽和磁化Ms2の比μ
Figure 2007250047
よりも小さい(κ<μ)ものをいう。
本発明を軟磁性の磁気特性をもつ層群と硬磁性の磁気特性を持つ層群からなる多層構成とする際には、硬磁性層の平均飽和磁化、平均磁気異方性エネルギー密度として硬磁性層群全体の平均飽和磁化、平均磁気異方性エネルギー密度とする。軟磁性層の平均飽和磁化、平均磁気異方性エネルギー密度として軟磁性層群全体の平均飽和磁化、平均磁気異方性エネルギー密度とする。
平均磁気異方性エネルギー密度、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の構成元素の違いによってもよい。また平均磁気異方性エネルギー密度、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の構成元素の組成比の違いによってもよい。また平均磁気異方性エネルギー、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の結晶構造の違いによってもよい。さらに平均磁気異方性エネルギー密度、平均飽和磁化の違いは以上の組み合わせによって軟磁性層、硬磁性層間に生じせしめてもよい。
軟磁性層、硬磁性層の磁気異方性エネルギー密度、飽和磁化は各層内で場所による分布をもっても良い。
磁性領域22は磁気記録膜5の構成要素として、磁気記録膜5上に磁気的記録情報パターンを形成する要素となる。情報記録パターンは従来のグラニュラ媒体と同様に複数の磁性領域22から構成されてもよい。この場合磁性領域22の磁気記録膜5の配列は不規則的であってもよく、磁性領域22の磁気記録膜5断面形状サイズは或る程度のバラツキが許容されるが、磁性領域22の断面サイズ自体は記録密度向上のため小さいことが望ましい。この場合磁性領域22間の結合が大きいと記録パターンの乱れが生じ記録ノイズが発生するが、本発明に於いては磁性領域22間が非磁性材21により磁気的に分断されているためノイズの発生が抑えられる。
またパターンド媒体のように情報記録パターンの単位を1つの磁性領域22から構成されてもよい。この場合は上記の複数の磁性領域22から構成される場合より同等の記録密度をとるときにも磁性領域22の断面サイズは大きく取ることもできる。なお、磁性領域22の磁気記録膜5の配列は規則化されていること、磁性領域22の断面サイズが揃っていることが好ましい。
本実施形態に於いて磁性領域22内の磁化は磁気記録膜5が垂直磁気膜となるように膜面にほぼ垂直な上下2方向の何れかを取る。これは磁性領域22内の硬磁性層24の磁気異方性の磁気容易軸を磁気記録膜5の膜面に垂直にとることと、軟磁性層23の膜厚を薄くとることで達成される。但し、軟磁性層23の平均磁気異方性エネルギー密度が硬磁性層24の平均磁気異方性エネルギー密度に比べ左程小さくないときには軟磁性層23の磁気異方性の磁気容易軸を磁気記録膜5の膜面に垂直にとることが好ましい。
また磁性領域22内の磁化の向き保持は、軟磁性層23の膜厚を薄くとることでほぼ硬磁性層24の平均磁気異方性エネルギー密度の大きさで決まる。硬磁性層24の平均磁気異方性エネルギー密度の大きさを大きくとることで磁化方向の保持特性が向上する。特に「熱揺らぎ」に関しては硬磁性層24の平均磁気異方性エネルギー密度の大きさKu1とその体積V1との積(Ku1・V1)で決定される。このためKu1を大きな材料ととることで硬磁性層24、ひいては磁性領域22を小さくとれ、媒体の解像度が向上するため高記録密度化や媒体ノイズの低減の意味で好ましい。
硬磁性層24を構成する材料として平均磁気異方性エネルギー密度の大きさの大きい磁性材料、特にL10規則化構造をとるFePt、FePd、CoPt、CoPdが層内の一部を占めていることが望ましい。ただし硬磁性層24に平均磁気異方性エネルギー密度をもたらすものであれば上記材料に限ない。特に層内の一部に他の結晶構造を有したり、Fe、Co、Pt、Pdの組み合わせ或いは以外の元素を含んだ合金が一部、或いは全部に含まれるものでもよい。
一般に「熱揺らぎ」に対してはKu・V/kTの値が100以上あれば実用上の記録保持に問題がないとされる。上記磁性材を硬磁性層24に用いることで平均磁気異方性エネルギー密度は製造条件にもよるが1×107erg/cc程度が得られるため、硬磁性層24の体積として400nm3程度以上あればよい。硬磁性層24の体積の上限は、高記録密度化や媒体ノイズの観点からは小さいほど好ましく、また硬磁性層24内に磁壁が生じる大きさとなると磁化保持特性の劣化や記録特性の劣化を生じるため、磁壁が生じないサイズが好ましい。このサイズは硬磁性層24の平均磁気異方性エネルギー密度、飽和磁化などによるが、式1で示された硬磁性材料の単一磁区の臨界サイズ半径Rhの二倍程度の大きさまでが許容でき、数十ナノメートル乃至数百メートルとなる。
記録時の磁気記録ヘッドからの磁界の収斂性より磁気記録膜5は薄いほうがよい。現在の記録磁気ヘッドの能力からほぼ100nm以下、好ましくは50nm以下、さらに好適には20nm以下である。本実施形態でも硬磁性層24の磁気記録膜厚方向サイズはほぼ100nm以下、好ましくは50nm以下、さらに好適には30nm以下であり、製造上の利点から1nm以上が好ましい。1nm未満では製造上の困難の他に上記の「熱揺らぎ」による記録劣化を防止するための体積を得るために磁気記録膜面方向の面積が大きくなりすぎ、記録密度や媒体ノイズの面で不利となる。より好適には5nm以上30nm以下が好ましい。ただし1nm未満であっても本発明の効果が消失するものでない。
硬磁性層24の磁気記録膜5面断面形状は任意でかまわないが、極端に異方的である場合には軟磁性層23との接合が劣化したり磁化保持特性に異方性を生じたり、また磁性領域22の形状が異方的になり媒体ノイズ発生のもととなるため好ましくない。図2では断面形状は略円形であるが、断面外周のアスペクトが極端値(好ましくは10以下)でなけば略楕円、略多角形、涙滴形状などでもよい。断面のサイズ(直径または外接円の直径)は、磁気記録膜厚方向サイズ、硬磁性層24の平均磁気異方性エネルギー密度の大きさKu1との兼ね合いで、Ku1・V/kTが100以上となればよい。断面のサイズが大きくなると記録密度、媒体ノイズが不利となるため、直径1nm以上100nm以下、好ましくは2nm以上30nm以下である。
例えば断面円形の場合、平均磁気異方性エネルギー密度1×107erg/ccで、磁気記録膜厚方向のサイズ5nmで直径約10nm以上、磁気記録膜厚方向のサイズ30nmで直径約4nm以上で上記条件を満足する。また記録密度1テラビット毎平方インチを満たすピット間隔が25nmとなることから、高密度化のためには直径約15nm以下程度が好ましいが、これをこえても有効である。平均磁気異方性エネルギー密度がさらに向上すればより小さなサイズが可能である。
軟磁性層23の厚みは厚いほど軟磁性層23の体積が増加し、記録時に弱い記録磁界で反転するため記録感度を高くできる。一方で厚みが厚くなると磁壁が発生したり、軟磁性層23内に磁化方向の分布が生じ、反転時にも磁化の一斉回転を取らなくなる。一般に軟磁性層23内の磁化の方向が一斉にそろうサイズの目安として軟磁性材料の単一磁区の臨界半径Rsの二倍を用いることができ、Rsは軟磁性層23の磁気特性であるAs,Mssによるが式2を用いて概算できる。式2より得られる軟磁性層23の厚みの上限は軟磁性層23の材質にもよるが10nm乃至100nmとなる。また軟磁性層23の厚みが大きくなると磁性領域22の径が大きくなり、媒体ノイズや高密度化の観点から好ましくない。これらの観点から軟磁性層23の厚みは10nm以下、好ましくは5nm以下が望ましい。
一方軟磁性層23の厚みの下限は主に製造条件によって決まり、0.1nm以上が好ましい。記録感度向上の効果は軟磁性層23の厚みは薄くなるほどその効果が減少するが、軟磁性層23の材料にもよるが後述の計算によれば条件によって0.2nm程度の膜厚でもほぼ10%程度の記録感度向上が期待できる。
軟磁性層23の材質は平均磁気異方性エネルギー密度が小さいほど、また飽和磁化が大きいほど記録感度向上の効果があるが、硬磁性層24の平均磁気異方性エネルギー密度の1/2以下程度であればよく、1/10以下であることが好ましい。軟磁性層23の材質は硬磁性層24の材質と異なるものでもよい。さらにいえば軟磁性層23を構成する元素の全てあるいは一部は硬磁性層24を構成する元素と異なるものとすることができる。或いは軟磁性層23を構成する元素の組成比は硬磁性層24を構成する元素と異なるものとすることができる。或いは軟磁性層23の主たる結晶構造を硬磁性層24のものと異なるものとすることができる。以上の何れか、或いは何れかの組み合わせで軟磁性層23の平均磁気異方性エネルギーさらに飽和磁化を硬磁性層24のそれと異なるものにすることができる。
たとえば硬磁性層24にL10規則化構造をとるFePt、FePd、CoPt、CoPdを用いた場合、軟磁性層23をNiFe合金(パーマロイ)、CoFe合金などの軟磁性材料とすることができる。また、硬磁性層24にL10規則化構造をとるFePtを、軟磁性層23を構成元素が同じである、FePt、Fe3Pt、FePt3合金とすることができる。さらに例えば硬磁性層24にL10規則化構造をとるFePtを、軟磁性層23を同FePtの非規則化構造とすることができる。
上記のような磁性領域22の構成をとることで以下のような効果が生じる。
始めに「熱揺らぎ」に関しては、磁性領域22はその小さなサイズからほぼ一斉回転する単一磁区粒子として振舞う。軟磁性層23は磁気異方性エネルギー密度が小さいため、主に硬磁性層24の体積V1と平均磁気異方性エネルギー密度により決定されるが、「熱揺らぎ」に関する耐久性Ku1・V1/kTは100以上の指標をとることができる。
記録に関しては、同様に磁性領域22はほぼ一斉回転する単一磁区粒子として振舞うが、そのとき一斉回転の反転を生じる記録磁界の最小値Hmin
Figure 2007250047
となる。
ただし、Ku1は硬磁性層23の磁気異方性エネルギー密度(単位erg/cc)、Ku2は軟磁性層24の磁気異方性エネルギー密度(単位erg/cc)である。Ms1は硬磁性層23の飽和磁化(単位emu/cc)、Ms2は軟磁性層24の飽和磁化(単位emu/cc)である。
V1は硬磁性層23の体積(単位cm3)、V2は軟磁性層24の体積(単位cm3)、κは前記式(3)の磁気異方性エネルギー密度の比である。μは前記式(4)の飽和磁化の比を示す。
一方、軟磁性層23だけの場合の記録磁界の最小値Hmin0は
Figure 2007250047
である。
このため、κ<μであれば Hmin<Hmin0となり記録最小磁界の大きさが小さくなり記録感度が向上する。またκ/μの値が同じ時には感度上昇は軟磁性層23と硬磁性層24の体積比V2/V1が大きいほどその効果は大きい。
表1にκ<μとなる種々の、κ、μに対して軟磁性層23と硬磁性層24の体積比V2/V1を変えたときの Hmin/Hmin0の値を示す。平均飽和磁化の比μが0.5程度あれば、平均磁気異方性エネルギー密度が1/4程度でも効果が得られることが判る。また平均飽和磁化の比が小さくても、κの比を小さくとれば効果が得られることが判る。
Figure 2007250047
図2(a)に示した第一の実施形態、硬磁性層24を内側とし、軟磁性層23を外側としたときに表1に示した軟磁性層23と硬磁性層24の体積比V2/V1を得るための軟磁性層23の厚みと硬磁性層24の半径の比を表2に示す。参考のため従来例のスタック構成をとった場合に同様の体積比を得るための軟磁性層膜厚と硬磁性層膜厚の比を併記する。硬磁性層24の体積を同じとし、同等の「熱揺らぎ」の耐久性を得られるものとして比較した。
Figure 2007250047
但し、硬磁性層および軟磁性層の径の単位はnm、硬磁性層および軟磁性層の厚さの単位はnmである。
図2(b)に示した第二の実施形態、軟磁性層23を内側とし、硬磁性層24を外側としたときに表1に示した軟磁性層23と硬磁性層24の体積比V2/V1を得るための軟磁性層23の径と硬磁性層24の厚みを表3に示す。数値は硬磁性層のみで同等の体積となる磁性領域を構成するときの体積を1として、硬磁性層24の体積を同じとし、同等の「熱揺らぎ」の耐久性を得られるものとして比較した。表2と同様に参考のため従来例のスタック構成をとった場合に同様の体積比を得るための軟磁性層膜厚と硬磁性層膜厚の比を併記する。
Figure 2007250047
表1,2から第一の実施形態に於いては、軟磁性層23と硬磁性層24との平均磁気異方性エネルギー密度を1/10から1/2程度、飽和磁界を同程度から1/2程度にする。そして、軟磁性層23の層厚を半径の1/2程度(直径の1/4程度)とすることで必要記録磁界を50%乃至30%減少させられることがわかる。また表3より第二の実施形態に於いても同等の効果が得られることが判る。
より具体的な例として、直径8nm、高さ10nmのシリンダ形状の硬磁性層24に従来例の膜厚方向に軟磁性層を設けた場合と、本発明の第一の実施形態に従って磁気記録膜面方向に軟磁性層23を設けた場合の記録感度の計算値のグラフを図10に示す。軟磁性層の磁気異方性エネルギー密度は零とした。グラフ上段目盛りは従来例の場合に硬磁性層24上に軟磁性層をつんだ高さで、これが磁気記録膜膜厚になる。グラフ下段目盛りは本発明の第一の実施形態の場合の硬磁性層24の外周に軟磁性層23を設けた時の直径で、これが磁性領域22の直径にあたる。
例として与えた直径8nm、高さ10nmは非特許文献1に示された実験例に準拠したものであるが、これにより製造される磁気記録膜厚10nmは記録ヘッド性能から充分好ましい値である。またほぼ10nm以下の磁性領域も記録ノイズの観点から好ましい数値であり本例は実施形態として充分実用的な値である。
図10のグラフより、従来例では記録層厚を10nmから19nmに、約2倍程度にすることで約40%程度の磁界感度向上が得られるが、本発明に関わる第一の実施形態では同等の効果を直径を8nmから10.5nmにすることで得られる。このとき軟磁性層23の厚みは1.25nmとなる。硬磁性層24の外周に軟磁性層23をほぼ1nm程度加えることで、従来例では磁気記録膜膜厚を2倍程度増加させねばならなかったのと同程度の効果が得られることを示している。
以上のように本発明では、従来例の如く記録層膜厚を大きく増加させることなく、ほぼ1nm程度の厚みの軟磁性層を付加することで従来例と同程度の効果を得ることができる。
次に本発明の磁気記録媒体の製造方法について述べる。
本発明は主に磁気記録膜5の構成に関するものであり、磁気記録膜5の下部構造である基板1から軟磁性下地層3まで、および上部構造の保護層6、潤滑層7は従来のHDD用垂直記録媒体と同様の製造方法で製造できるため詳しい説明は省略する。また磁気記録膜5の製造に関しては非磁性層4を磁気記録膜5に対する下地として使用する場合があるため、以下の説明は主に磁気記録膜5と非磁性層4に関して行う。
本実施形態の磁気記録膜5は非磁性材21、軟磁性層23、硬磁性層24からなる構造体である。磁気記録膜5面上に展開されたこのような構造体は、半導体プロセスで用いられるレジスト露光を用いたパターニングで製造することも可能ではある。また、特開2004−237429号公報、特開2002−175621号公報で開示されたナノホール製造方法を利用し、以下に述べる方法で所望の構造を製造することが望ましい。
図6は本発明の磁気記録媒体の第一の実施形態の磁気記録膜5を製造する第一の製造方法の工程図を示す。
図7は本発明の磁気記録媒体の第一の実施形態の磁気記録膜5を製造する第二の製造方法の工程図を示す。
始めに図6に示した第一の製造方法の概要を説明する。軟磁性下地層3上に非磁性層4と後に磁気記録膜5を構成する多孔質部材を作成する。(多孔質部材作成工程61)次に多孔質部材の孔中に硬磁性層24を構成する硬磁性材料を充填する。(硬磁性材充填工程62)次に多孔質部材の母材部分の一部を除去し硬磁性材料部分を露出させる。(多孔質母材除去工程64)次に露出した硬磁性材部分の上に軟磁性層23を構成する軟磁性材を被覆する。(軟磁性材被覆工程65)さらに磁性領域を構成する軟磁性材で包まれた硬磁性材料部分を非磁性材で埋め込む。(非磁性材への埋め込み工程66)最後に表面部分を整形し磁気記録膜5とする。(磁気記録膜表面整形工程67)
上記硬磁性材は磁気異方性エネルギー密度が高い一般の硬磁性材料であればよいが、特にL10規則化構造をとるFePt、FePd、CoPt、CoPdを用いることで高い磁気異方性エネルギー密度を確保することができる。この場合には多孔質部材の孔中に該材料を充填後、熱処理により該材料にL10規則化を進行させる工程を含むことが好ましい。(規則化工程63)
また上記軟磁性材は磁気異方性エネルギーが低く、飽和磁化Msが高い一般の軟磁性材料であればよく、NiFe合金(パーマロイ)などを用いることもできる。また硬磁性層24との材料結合性を考えて、FeまたはCo、PtまたはPdの成分をもち規則化せれていない金属材料を用いることで小さい磁気異方性エネルギー密度をもつ軟磁性層23を構成することもできる。
図7に示した第二の製造方法では、第一の製造方法と同様に軟磁性下地層3上に非磁性層4と後に磁気記録膜5を構成する多孔質部材を形成する。(多孔質部材形成工程71)多孔質部材の孔中に、後の規則化工程でL10規則化構造のFePt、FePd、CoPt、CoPdを生成し硬磁性層24となる第一の金属Xを充填する。(金属X充填工程72)次に多孔質部材の母材部分の一部あるいは全部を除去し第一の金属Xを露出させる。(多孔質母材除去工程73)次に露出した金属Xの上に軟磁性層23を構成する第二の金属Yを積層する。(金属Y被覆工程74)その後熱処理により主として硬磁性層24部分にL10規則化を進行させ、主として硬磁性層24部分の磁気異方性エネルギー密度を相対的に上げるとともに、軟磁性層23部分の飽和磁化を相対的に高く保つ。(規則化工程75)これにより硬磁性層24の平均磁気異方性エネルギー密度Ku1と軟磁性層23の平均磁気異方性エネルギー密度Ku2の比κが、硬磁性層24の平均飽和磁化Ms1と軟磁性層23の平均飽和磁化Ms2の比μよりも小さなものとなる。最後に第一の製造方法と同様に磁性領域を構成する軟磁性層23で包まれた硬磁性層24を非磁性材で埋め込み(非磁性材への埋め込み工程76)、表面部分を整形し磁気記録膜5とする。(磁気記録膜表面整形工程77)
特に第二の製造方法ではPt・Pdのいずれかを主成分とする金属Xからなる、膜面に対して垂直な多数の柱状部材と、該柱状部材を取り囲む母材から成る薄膜を用意する工程と、
該母材の上部または全部を除去する工程と、該母材除去により表面の露出した該金属Xの周囲にFe、Co、Ni、のいずれかより成る金属Yを被覆する工程と、
熱処理により該金属X及び該記金属Yを含むL10規則合金相を形成する工程とから成る。
以下に図3を用いて、各工程について具体的に説明する。図3は本発明に関わる磁気記録媒体の磁気記録膜の製造方法の一例を示す工程図である。
始めに軟磁性下地層3上に非磁性層4を形成する。非磁性層4は磁気記録膜5が垂直磁気記録膜となるように配向制御の機能をもつことが好ましい。また第一の製造方法の軟磁性材被覆工程65において電解メッキ法を用いるため、また第二の製造方法の金属Y被覆工程74において電解メッキ法を用いる場合には電極の一部として使用するため導電性が必要となる。第二の製造方法の金属Y被覆工程74において無電解メッキ法を用いる場合には導電性を持たせる必要はない。
一方で該被覆過程で非磁性層4に直接軟磁性材が付着すると後に磁性領域間が磁気的結合を生じてしまい磁気記録膜5の記録特性にとって好ましくない。このため非磁性層4に導電性をもたせ、軟磁性材被覆工程65、あるいは金属Y被覆工程74で電解メッキ法を用いる場合にはあらかじめ多孔質母材除去工程64での母材の除去に際して磁気記録膜5付近の一部母材を残す必要がある。
配向制御のためには非磁性層4に(001)配向したMgOなどの配向制御層を挿入し、更に配向制御層の上にめっきのための電極層などを設ける。また、配向制御及び電極層の両者の役割を果たすZnO等を用いる事も可能である。ここで、孔に充填する磁性材料の配向を制御するために下地電極層の配向を(001)することが好ましい。
特に硬磁性材として磁気異方性エネルギー密度が大きいL10規則化合金を用いる場合には、磁性体におけるL10規則合金層のc軸を基板垂直方向に配向させるためには下地電極層が基板面に対して平行に正方状の結晶配列を有していることが好ましい。特に、fcc構造の(001)配向を利用することが好ましい。
例えば非磁性層4を(001)配向したMgOなどの配向制御層とすることができる。また非磁性層4の最下層を配向したMgOなどの配向制御層とし、該配向制御層に基づき、(001)配向を有するPtやPb膜をエピタキシャル成長させたものを非磁性層4とすることも好ましい形態である。但し、後述するように第二の製造方法ではPt、PdとFe、Coの熱拡散を用いて合金を製造することを目的としているため、非磁性層4のPtやPdが規則合金形成に寄与することを防ぐためには、非磁性層4にCuやAg等の材料を用いることも可能である。配向制御のためにはc軸配向したZnO等を用いる事も可能である。ここで、孔に充填する磁性材料の配向を制御するために下地にはfcc構造を有する材料を用い、且つ(111)または(001)配向させることが好ましく、最も好適なのは(001)配向である。
また非磁性層4にPtやPdを含む場合に軟磁性下地層3へこれら金属が拡散するのを防ぐため、非磁性層4の下層部分を下引き層としてTiなどからなる保護層を構成することもできる。
(1)多孔質部材作成工程
始めに非磁性層4上に、磁気記録膜5を構成する膜を成膜し、その膜面内に複数の孔を作成する。本工程は上記第一の製造方法、第二の製造方法に共通の工程であるので両製造方法に共通のものとして説明する。(各々図6の61、図7の71)
図3(a)に、複数の孔を有する多孔質部材300を示す。多孔質部材300の厚みは磁気記録膜5と同等或いはそれ以上とする。磁気記録膜5はほぼ100nm以下、好ましくは50nm以下、さらに好適には30nm以下であり、より好適には5nm以上30nm以下が好ましい。そのため、それ以上に成膜し、製造された構造体表面を後工程としてエッチングなどで膜厚の調整を行うこともできるが、好ましくは磁気記録膜5膜厚程度とする。
部材を孔上面側から見ると、孔が図5のように分散した状態である。図3、図5において、301は孔、302は孔間に介在する孔壁である。この孔壁部を孔が分散配置されており、母材(あるいはマトリックス部)と表現する場合がある。図3の孔301は非磁性層4上に貫通している。
前記多孔質部材300において、多孔質部材300の孔301は、柱状の孔であるが、この複数の孔の平均直径は前記の硬磁性層24の径程度とする。「熱揺らぎ」効果の低減と記録密度化の観点から直径2nm以上30nm以下が好ましい。
さらに詳しく説明すれば、特に第一の製造方法によれば硬磁性層24となる硬磁性材料を多孔質部材300の孔301に充填するため、孔301の直径は所望の硬磁性層24の直径と同じにとればよい。一方第二の製造方法に於いては多孔質部材300の孔301に充填した第一の金属Xとその周囲に構成した第二の金属Yとを後述の熱処理によってL10規則化することで硬磁性層24を作成する。その際後述のように元素間の拡散等が生じ磁気異方性エネルギー密度が高い部分は当初の第一の金属Xの充填した直径よりやや外側に広がることがある。これを見越して第二の製造方法に於いては孔301の直径は所望の硬磁性層24の直径よりやや小さくとることもできる。この差分は孔301の直径、所望の硬磁性層24の直径、軟磁性層の厚みや熱処理条件によるが1nmから5nm程度にとることが望ましい。
前記多孔質部材300は、例えば特開2004−237429号公報に記載されているように、アルミニウムやアルミニウムを含む合金を、シュウ酸やリン酸等の溶液中で陽極酸化処理して孔を形成することで得られる。当該方法によれば、酸化物であるアルミナを孔壁に有する多孔質体が形成される。
また、例えば、特開2002−175621号公報に記載されているように、相分離構造を形成する材料を用いて、柱状の部材がそれを取り囲む領域に分散した構造を形成し、当該柱状の部材を除去することにより多孔質層を得ることができる。
これらの方法で得られる孔径は1nm以上100nm以下、特に本実施形態で利用する形態の直径1nm以上30nm以下が好適である。
更に直径1nm以上15nm以下で、且つ孔間の平均間隔20nm以下であるような鋳型を用いて、磁性体を充填した構造体を製造するためには有用な手法である。
またこれらの方法で得られる孔の深さ(孔の長手方向の厚さ)は、5nm以上100nm以下、特に50nm以下、更に好ましくは30nm以下の深さである。
以下に、特に特開2002−175621号公報に記載されている方法に基づいた例についてより詳しく説明を加える。
具体的には、柱状の部材の周囲が別な材料により構成される領域に取り囲まれている構造物を用意し、柱状部材を選択的に除去する。該構造物には前記領域を構成する材料が、前記柱状の部材を構成する材料と前記領域を構成する材料の全量に対して20atomic%以上70atomic%以下の割合で含まれている構造物である。上記割合の範囲であれば、実質的に柱状の部材がそれを取り囲むマトリックス領域に分散した構造体が実現される。ここで柱状の部材の構成材料としては、AlやMgなどが挙げられる。前記柱状の部材を取り囲む領域を構成する材料としては、Si、Ge、SiとGeの混合物(以降、SixGe1-x(0<x<1)と記載することがある。)などが挙げられる。
このような柱状の部材がそれらを取り囲む領域に分散した構造体を得るには、前記柱状の部材及びそれを取り囲む領域を構成する材料の両方を含むターゲットを用いたスパッタリング法などの非平衡成膜法により実現される。
成膜後、柱状部材を選択的に除去する。例えば、柱状部材がAlの場合、2.8%に希釈したアンモニア水に浸漬することにより、Al部分が溶出し多孔質材料が形成される。その他、各種酸溶液等も使用することが可能である。マトリックッス部はAl柱状部材の溶解後酸化されてSiO2またはGeO2、及びSiO2とGeO2の混合物となる。
(2)充填工程
多孔質部材300の複数の孔内に、第一の製造方法では硬磁性材料を充填し(図6中62)、第二の製造方法では後にL10規則化して硬磁性材料となる第一の金属Xを充填する。(図7中72)
図3(b)に、孔301内に内包充填物303を充填し余剰な充填材料を研磨等により除去した構造を示す。
第一の製造方法では内包充填物303は磁気異方性エネルギー密度が大きい硬磁性材料である。例えばCoCrPtなどをスパッタ法、CVD法、蒸着法等のドライプロセスやメッキ法により充填することもできるが、磁気異方性エネルギー密度がより大きなL10規則化合金のFePt、FePd、CoPt、CoPdを充填することが好ましい。
このとき最も充填性に優れる手法はメッキ法である。非磁性層4にPt又はPd、その他の導電性金属成分を含有させるることで非磁性層4を電極とする。Pt,Pd原料としてヘキサクロロ白金(IV)酸塩、ヘキサクロロPd酸塩を、Fe、Coの原料としてそれぞれの塩化塩、硫酸塩を含んだメッキ液を用いて電解メッキを行えばよい。
なお、めっき浴中のFeイオンは比較的不安定であり沈殿物を形成しやすいので、Feイオンの安定化のために、錯化剤を添加することもできる。錯化剤には酒石酸、クエン酸、コハク酸、マロン酸、リンゴ酸、グルコン酸や、これらの塩から適宜選択される。特に酒石酸もしくはその塩および/またはクエン酸もしくはその塩、更には、酒石酸ナトリウムおよび/または酒石酸アンモニウムを用いることが好ましい。
また、ヘキサクロロ白金(IV)酸塩の経時変化を抑制するために、NaClなどのCl−イオンを過剰に含む溶液とすることも効果的である。また、必要に応じてアンモニウムイオンを添加することによりヘキサクロロ白金(IV)酸アンモニウムの錯体を形成し溶液中での安定化を更に促進することも可能である。
めっき液中に加える原料の割合、及びめっき電位の制御を行い、Fe、またはCo組成とPt、Pd組成がほぼ同等となりL10規則化組成と同等になるようにする。充填直後のFePt、FePd、CoPt、CoPdは一般にL10規則化されていないのでこの段階で400℃乃至650℃で数十分から数時間の熱処理を行いL10規則化を進行させる熱処理過程63を行うことが好ましい。(規則化工程63)またこの熱処理は後述の第二の製造方法における熱処理工程75と同様に還元雰囲気下、真空下または水素雰囲気下で行なう事が好ましい。特に水素雰囲気下で熱処理を行なう事が好ましい。
第二の製造方法では充填物303はPt又はPd、或いはPt、Pdを主成分としてFe、Co、Niを少なくとも1種類以上含んでいる第一の金属Xである。この場合は後の(5)熱処理工程で硬磁性層24をL10規則合金化し外皮の軟磁性層を被覆する際に、充填物部分をL10規則合金化する組成を得るために前もって組成制御しておくことが可能である。但しこれらの金属の組成比が大きくなると後の(3)母材除去工程において母材302の除去と同時に充填物303も酸に犯され易くなるため、これらの金属の組成比は総体でPt又はPdの組成比を超えないことが好ましい。
特にPt、Pdを充填する場合には無電解メッキが好ましい手法であるが、孔底部に触媒層を必要とする。このため、非磁性層4にもPtやPd等を用いることが好ましい。また非磁性層4の導電性を利用して電解メッキ法を行うこともできる。
また、非磁性層4にPtやPd等を用いずに、多孔質部材300製造後に孔301の底部のみにPt層やPd層を製造してもよい。この場合は多孔質部材300製造スパッタリングなどにより孔301底部および非孔部の母材302の表面にPt層或いはPd層を成膜し、非孔部の母材302の表面のPt層或いはPd層研磨などで除去すればよい。
メッキ法により充填された内包充填物303のPt及びPdは非磁性層4の配向の影響を受けて成長するが、メッキ中の不純物等の影響を受ける可能性がある。このような場合はメッキ後、不純物除去並びに結晶成長を促進させるために熱処理を行なうことも可能である。例えば、非磁性層4にPtまたはPd(001)膜を用いた場合は、充填するPt,Pdの配向を制御する事が容易となる。
一方、第一の製造方法、第二の製造方法ともに充填にスパッタ法、CVD法、蒸着法等のドライプロセスを用いることも可能である。特に、アークプラズマガンは、イオン化された金属粒子を成膜するイオンプレーティングに近い手法であり、ダマシン等の配線形成において埋め込み性能に優れる成膜手法であることが証明されている。また、基板バイアスをかけることにより充填性が良好となる。
この他、堆積する粒子が基板に対して直進性良く飛散する、例えばイオンビームスパッタ等も孔内への埋め込みに適した手法である。しかしながら、ドライプロセスを用いる場合、孔内のみならず孔壁上へも成膜されるため、充填性が悪化する可能性がある。故に、第一の実勢形態の充填工程にドライプロセスを用いるに際して、硬磁性層24の直径が50nm以下の場合には(磁気記録膜厚)/(硬磁性層)で示されるアスペクト比が2以下のものに適用することが好ましい。より好ましくははアスペクト比が1以下のものにドライプロセスが好適に適用できる。また、必要に応じて、孔壁上の堆積物をエッチングプロセスにより取り除く工程と、充填工程とを交互に行なう事で充填性を改善する事も可能である。
後の(5)熱処理工程に於いては、得られる規則合金の結晶配向は、充填物303を形成している金属の結晶構造に強く影響される。例えばc軸が面直方向をとるFePt(001)配向を有する構造体を形成するためには、fcc結晶構造を有し(001)配向をもつPtを用意することが好ましい。何れの場合にも非磁性層4を配向制御膜として使用することで、充填されるPtまたはPdはfcc結晶構造を有し(001)配向を持つようにすることができる。充填工程にて溢れ出た部分は研磨等の手法により除去するのが好ましい。
(3)母材除去工程
図3(c)に第一の製造方法及び第二の製造方法に於けるに多孔質母材除去工程64または73で母材の一部を除去した構造を示す。
後の被覆工程で電解メッキを行うため非磁性層4を電極の一部として導電性を持たせた場合、あるいは前記充填工程でメッキ触媒として非磁性層4にPtまたはPd等を用いる場合は、図3(c)に示すように母材302を残す。即ち、鋳型である母材302を残す事により、後述の軟磁性材や第二の金属Yの被覆時に、非磁性層4への被覆を防ぐ必要がある。溶液の種類、濃度及び温度などを制御することにより、母材材料の溶解速度及び溶解量を制御することが可能となり、図3(c)のように母材の一部を残すことが可能である。
一方、第二の製造方法に於いて、充填物303としてPt又はPdを主成分とする第一の金属Xを用い、これを触媒として後に金属Y被覆工程74に無電解メッキを用いる場合は、図3(d)に示すように母材302を全部除去しても構わない。この場合は軟磁性層4に導電性や触媒特性をもたせずに構成できるため、直接軟磁性層4に金属Yが被覆せず、後に軟磁性材が磁性領域間を磁気的に接合するのを防げる。
母材302は図3(a)の工程でアルミの陽極酸化を用いる場合はアルミナであり、相分離構造を用いた場合はSiまたはGe、またはSi,Geの酸化物であるためNaOH等のアルカリ溶液またはフッ化水素などで除去が可能である。
一方、第二の製造方法で充填するPtやPdは耐食性が強い材料であり、また第一の製造方法で充填するFePt、FePd、CoPt、CoPdはL10規則化するために強度が向上し、王水等特殊な酸以外には耐性を有する。故に、NaOH等のアルカリ溶液またはフッ化水素等への浸漬、または水酸化テトラメチルアンモニウム(TMAH)溶液に浸漬することにより選択的にマトリックス材料302を溶解し、PtまたはPdが上に凸な構造303を製造することが可能である。
(4)被覆工程
上記工程(3)により、上に凸な突起状構造体305が形成される。第一の製造方法では突起状構造体305は硬磁性体材、特に好ましくはL1規則化したFePt、FePd、CoPt、CoPd合金である。また第二の製造方法では突起状構造体305は主としてPt、Pdよりなる第一の金属Xである。
この突起状構造体305の表面に、第一の製造方法ではパーマロイなどの軟磁性材料を、第二の製造方法ではFe、Co、Niを少なくとも1種類以上含む第二の金属Yを、被覆することにより図3(e)のような外皮304を有する構造体を作製する。
この被覆は突起状構造体305を電極とした電解めっき法を用いることにより電極となる突起状構造体305上に軟磁性材料、または金属Yからなる外皮304で覆うことで形成できる。
例として第一の製造方法にそってL10規則化合金の硬磁性体材からなる突起状構造体305にパーマロイからなる軟磁性材料を被覆する場合には、以下のように行う。
メッキ液としてたとえば硫酸ニッケル、塩化ニッケル、硫酸鉄の混合液に緩衝剤として硼酸、添加剤としてサッカリンナトリウム、界面活性剤としてラウリル酸ソーダなどを添加したメッキ液で電解メッキを行う。これにより、突起状構造体305上にパーマロイを積層させることができる。パーマロイのFeとNiの組成比は主に電圧とメッキ液中の硫酸鉄の成分でコントロールできる。
第一の製造方法ではメッキされる軟磁性材の厚みがほぼそのまま軟磁性層23膜厚になるため、前記好適な軟磁性層23の厚みに応じてメッキ時間を調整することで所望の厚みの軟磁性層23が製造できる。
このとき非磁性層4を各突起状構造体305へ電圧を印加する電極として使用する。その場合に図3(c)で非磁性層4自体は除去されていない母材302に被覆され直接メッキ液に接触することがない。従って、母材302にパーマロイからなる軟磁性材が付着することはなく、各突起状構造体305、外皮304は後にも磁気的に接続されることはない。
その他の軟磁性材を用いるときにも、その組成に合わせたメッキ液を用いることで同様に被覆することが可能である。特に突起状構造体305をなす材料との接続の整合をとるため同元素を含む異なる組成、結晶構造となる材料を用いてもよい。たとえば突起状構造体305をL10規則化合金のFePt,CoPt,FePd,CoPdなどとし、軟磁性材としてFePd3、Fe3Pd、Fe3Pt、FePt3、CoPt3、Co3Pt等のL12規則化合金や規則していない合金とすることができる。これらは一般にL10規則化合金より磁気異方性エネルギー密度が小さく、突起状構造体305と同等の元素を含むため、積層面での接続が良好に行われやすい。これらの材料もメッキ液の成分を調整することで電解メッキで突起状構造体305上に積層できる。
同様に第二の製造方法にそって第一の金属Xからなる突起状構造体305に第二の金属Yからなる外皮304を皮膜することができるが、この場合金属XがPt、Pdなどの触媒効果をもつ金属を主成分とするため無電解メッキ法を用いることも可能である。
例えば硬磁性層24をFePtのL10規則合金が主成分となるように構成する場合について説明する。この場合上記工程(3)により、上に凸なPtから成る突起状構造体305を形成する。次に金属YとしてFeを主成分とするために、塩化鉄、硫酸鉄、スルファミン酸等を含有したメッキ液によりメッキ処理を行い、金属Yからなる外皮304を突起状構造体305上に積層する。めっき浴中では、Feイオンが不安定であり、沈殿物を形成しやすいので、Feイオンの安定化のために、錯化剤を添加することもできる。錯化剤には酒石酸、クエン酸、コハク酸、マロン酸、リンゴ酸、グルコン酸や、これらの塩から適宜選択される。特に酒石酸もしくはその塩および/またはクエン酸もしくはその塩、更には、酒石酸ナトリウムおよび/または酒石酸アンモニウムを用いることが好ましい。金属イオンを錯体化することにより、浴のpH濃度を高くすることも可能になり、被覆時に障害となる水素発生を抑制する事が可能となる。
被覆に無電解メッキ法を用いる場合には突起状構造体305に通電する必要がないため、非磁性層4に導電性を必要としない。特に突起状構造体305をドライプロセスによる多孔質部材300への充填で製造する場合には非磁性層4をMgOなどの酸化物で構成できる。その場合は多孔質母材除去工程73で図3(d)のように母材302を全て、非磁性層4へ貫通するまで除去することができる。図3(d)の構造に上記の無電解メッキを施すことで図3(f)のごとき被覆された構造が得られる。このようなプロセスでは多孔質母材除去工程73で母材除去の調整が簡単になるという製造上の利点がある。
或いは金属YとしてPt成分を含むこともできる。その場合にはPt成分としてたとえばヘキサクロロ白金(IV)酸塩をメッキ液に含めばよい。但し金属YにはFeとPtの量論比が1:1近傍でL10規則合金が形成するため、突起状構造体305を形成するPtに応じた組成比よりFe成分が多く構成されている必要があり、これにより後に外側にFeの成分が主体をなる軟磁性層23が形成される。
その他のL10規則化合金を硬磁性層24の主成分として構成するときにも、同様に硬磁性層24の主成分に応じて突起状構造体305としてPtまたはPdを形成する。その後、Fe、Co、Niを少なくとも1種類以上含む金属Yからなる外皮304をメッキ法により形成すればよい。
メッキされる外皮304の厚みは所望の軟磁性層23の厚み同等にとることができる。ただし第二の製造方法においては、硬磁性層24は突起状構造体305をなす第一の金属Xと外皮304をなす第二の金属Yとから後の熱処理工程でL10規則化によって製造される。その際に後述のように第一の金属X、第二の金属Yの元素の拡散を伴い、L10規則化は第一の金属X、第二の金属Yの境界から進行し、磁気異方性エネルギーの高い部分は第一の金属X、第二の金属Yの境界を中心に突起状構造体305の径より外側まで広がる。このため硬磁性層24の所望の径に対して前述のように多孔質部材300の孔301径を小さくすることが望ましい。この場合には外皮304の厚みは磁気異方性エネルギーの高い部分の外周がわへの移動を見越して所望の軟磁性層23の厚みより厚くとることが好ましい。この増分は多孔質部材300の孔301の径の減分に対応して1nmから5nm程度にとればよい。
(5)熱処理工程
第二の製造方法では、第一の金属Xからなる突起状構造体305に第二の金属Yを被覆後に熱処理による熱処理(規則化)工程75を含む。
図3(g)、(h)に示す構造体は、図3(e)、(f)で示す凸構造体が金属Yからなる外皮304で覆われた構造体を熱処理したものである。
熱処理により、突起状構造体305のPtまたはPdとその表面を覆った金属Y(Fe,Co,Ni及びその合金)との界面よりそれぞれの原子が熱拡散し合金化が始まり、径内部ではL10規則合金構造を形成する。一方外皮部の外周部分では金属Yが残り、軟磁性特性が保持される。結果的に、主に突起状構造体305部分では第一の金属Xと第二の金属Yより規則化した、磁気異方性エネルギー密度が大きいL10規則合金を多く含む硬磁性層24が、外周の外皮304部分には第二の金属Yが規則化せずに残った軟磁性層23が形成される。
例として前記のように突起状構造体305をPtを主成分とし外皮304をFeを主成分とし、硬磁性層24をFePtのL10規則合金が主成分となるように構成する場合について説明する。
FeとPtの積層構造におけるFePt規則合金の形成プロセスにおいて、熱処理初期にはPt側にFe原子が置換し、FePt3合金が形成され、その後更に熱拡散が進行することによりFePt規則合金が形成されることが報告されている。本工程においても、同様に突起状構造体305のPtにFe原子が置換しFePt3合金を経由してFePt規則合金が形成される。その結果突起状構造体305と外皮304の界面付近よりFePt規則合金が形成され、熱拡散によりL10規則が進み、Fe原子がPt原子側に置換するようにして規則合金化が進んでいく。このため当初は突起状構造体305と外皮304の界面付近よりの磁気異方性エネルギー密度が大きくなる。時間の経過とともに拡散によりL10規則化が進み磁気異方性エネルギー密度な部分の領域が広がっていき突起状構造体305全体の磁気異方性エネルギー密度が大きくなる。同時に外皮304側も界面付近よりの磁気異方性エネルギー密度が大きくなるが、外周側ではPt量が少ないため磁気異方性エネルギー密度の上昇は少ない。突起状構造体305の径を所望の硬磁性膜24の径より小さめにとっている場合は磁気異方性エネルギー密度の分布にずれ分を吸収する。そして、硬磁性膜24のほぼ所望の径内で磁気異方性エネルギー密度の平均値が高くその外周を構成する軟磁性層膜23では磁気異方性エネルギー密度の平均値が低くなる。
一方突起状構造体305は当初非磁性のPtの成分が磁性のFe成分より多いため平均飽和磁化が小さく、外皮304は平均的には磁性のFe成分が非磁性のPtの成分より多いため飽和磁化が大きくなっている。規則化によりFe原子がPt原子側に置換され突起状構造体305部分の平均飽和磁化は大きく、外皮304の平均飽和磁化は小さくなる。但し、初期のFe、Ptの比が大きく異なるために、突起状構造体305付近の平均飽和磁化は外皮304部分の平均飽和磁化より大きなものとなる。
その結果、突起状構造体305を中心として平均磁気異方性エネルギー密度が相対的に高く平均飽和磁化が相対的に小さい硬磁性層24が、外皮304部分より平均磁気異方性エネルギー密度が相対的に低く平均飽和磁化が相対的に大きい軟磁性層23が製造される。
その結果、以下のようになる。
硬磁性層24の平均磁気異方性エネルギー密度Ku1と軟磁性層23の平均磁気異方性エネルギー密度Ku2の比κが、硬磁性層24の平均飽和磁化Ms1と軟磁性層23の平均飽和磁化Ms2の比μよりも小さなものとなる。そして、前記硬磁性層24と軟磁性層23の条件をみたす層が製造される。
本熱処理工程では、還元雰囲気下で行なう事が好ましく、真空下または水素雰囲気下で行なう事が好ましい。特に水素雰囲気下で熱処理を行なう事により、金属中に含まれる酸化物及び水酸化物を除去することが可能であり熱拡散も促進される。また、熱処理前または同時に水素プラズマ照射すことにより還元効果が高まる。予めFeとPtの量論比を1:1近傍にした場合は、熱処理温度は600℃程度が好ましいが、磁気記録媒体の応用には500℃以下、更に好ましくは4050℃以下とすると良い。また、昇温速度の速いRTA(rapid thermal annealing)をも用いることも好ましい熱処理方法である。
また熱処理時間を調整することで、拡散、規則化の具合を調整し、κ、及び硬磁性層24の平均飽和磁化Ms1と軟磁性層23の平均飽和磁化Ms2の比μを同時に調整できる。
ここで、κとは、硬磁性層24の平均磁気異方性エネルギー密度Ku1と軟磁性層23の平均磁気異方性エネルギー密度Ku2の比である。
第一の製造方法を用いた場合には、当初から突起状構造体305を硬磁性材、外皮304を軟磁性材で形成しているので、突起状構造体305部分がそのまま硬磁性層24、外皮304部分がそのまま軟磁性層23として前記の条件を満たす構造が製造されている。
(6)非磁性体への埋め込み工程および磁気記録膜表面整形工程
次に、第一の製造方法、第二の製造方法ともに非磁性材21を埋め込む埋め込み工程66,76と表面を研磨することで最終的に磁気記録膜5に仕上げる磁気記録膜表面整形工程67、77を行う。埋め込む非磁性材21は非磁性で、接触する軟磁性層23を劣化させないものであればよいが、例えばSiO2やSiN2をスパッタ、CVD、蒸着などにより埋め込めばよい。埋め込み後磁気記録膜5の表面を平坦化するために研磨、エッチングなどの磁気記録膜表面整形工程67、77を行うこうが好ましい。
図3(i)、(j)に磁気記録膜表面整形工程67、77後の磁気記録膜5を示す。突起状構造体305よりL10規則化により形成された硬磁性層24を囲み、外皮304より形成された軟磁性層23が構成されている。これらの間を非磁性材21で充填し、磁気記録膜5が構成される。
本製造例では磁気記録膜5表面で硬磁性層24、軟磁性層23が露出するように研磨、エッチングなどを行っている。この時点で磁気記録膜5の厚みを所望の厚みに調整することも可能である。
特に図9(a)、(b)に示したように硬磁性層24上層にも軟磁性層23を有する構成をとることも可能である。
図9には本発明の第三の実施形態を示した図であり、本図での符合は図2、図3と同じである。本構成では被覆工程(4)で突起状構造体の上層に積層されることで生じる軟磁性層23の部分を磁気記録膜表面整形工程67、77で除去せずに残すことで形成される。磁気記録膜5表面には軟磁性層23が露出することとなる。
但し、軟磁性層23の膜厚が前記の如く薄く構成されているために相対的におおきな磁気交換結合の大きさにより、軟磁性層23の磁気記録膜5表面部分では硬磁性層24の磁化と同じ方向の磁化が誘起される。そのため、再生時に読み取る磁気記録膜5表面の磁化は図3(i)(j)の硬磁性層24が磁気記録膜5表面に露出する場合と変わらない。
このような構成では、硬磁性層24の側面のみに軟磁性層23を設ける場合にくらべ、同じ軟磁性層23膜厚でも、軟磁性層23部分の体積と硬磁性層24の体積の比を大きくとることで記録感度が向上する。一方従来例に比べれば側面の軟磁性層23の体積により磁性層膜厚を極端に大きくしなくとも記録感度を向上させることができる。また磁気記録膜表面整形工程67、77で研磨などを行う厚みが少なくてすむという製造上の利点も有する。
最終的に記録媒体とするためには、上記のように製造された磁気記録膜5上に、この後通常の成膜プロセスを用いて保護層6、潤滑層7を製造すればよい。
本発明の第二の実施形態に関わる磁気記録膜5の製造に関しては、第一の実施形態に関わる第二の製造方法と同等の工程を利用することができる。主な相違は第一の金属Xと第二の金属Yの組成構成にある。
多孔質部材300に充填する金属材料X’として磁性を有するFe、Coなどの元素比率がPt、Pdなどの元素比率よりも多く含まれるようにして突起状構造体305を製造する。その上にPt、Pdなどの元素を主成分とする金属Y’を外皮304として被覆する。
熱処理工程75では外皮304部分へ突起状構造体305のFeなどが拡散することでL10規則化が起こり、主に外皮304部分の磁気異方性エネルギー密度が増加する。一方突起状構造体305部分では熱処理工程75にもFeなどの磁性元素が相対的に多く残っているために平均飽和磁化が外皮304部分に比べ大きくなる。
これによりκが、外径の硬磁性層24の平均飽和磁化Ms1と内径の軟磁性層23の平均飽和磁化Ms2の比μよりも小さな、軟磁性層23を包んで硬磁性層24を形成できる。
ここで、κとは、外径の硬磁性層24の平均磁気異方性エネルギー密度Ku1と内径の軟磁性層23の平均磁気異方性エネルギー密度Ku2の比である。
製造工程としては図3に示した第一の実施形態に関わる第二の製造方法と同じであり、各工程でも類似点が多いため以下に、特に異なる部分のみ述べる。
(1’)多孔質部材製造工程
第一の実施形態に関わる第二の製造方法と同様に特開2002−175621号公報に記載されている方法に基づいて製造される。第二の実施形態に於いて内部を構成する軟磁性層23の体積は外部を構成する硬磁性層24の体積より小さくした方が磁気記録膜5全体の性能バランスを好適にする場合がおおい。
一方後述の熱処理工程におけるL10規則化では中心の突起状構造体305を形成する第一の金属X’と周囲の外皮304を形成する金属Y’との境界付近からL10規則化が開始する。磁気異方性エネルギー密度が高い領域はこの境界部分を中心として形成されるため、製造される中心付近の軟磁性層の半径は突起状構造体305の径よりやや小さくなることがある。これを算定にいれ突起状構造体305の半径は第二の実施形態のおける所望の軟磁性層23の半径よりやや大きめに製造することが望ましい。
これらの結果、突起状構造体305の径は一般に第一の実施形態におけるものとほぼ同程度のものとなり、好適には直径1nm以上10nm以下程度の孔径をもつ多孔質部材300を製造する。前述のようにこのような孔も特開2002−175621号公報に記載されている方法を利用することで製造できる。
(2’)第一の金属X’充填工程
突起状構造体305となる第一の金属X’を多孔質部材300内の複数の孔に充填する。第一の実施形態に関わる第二の製造方法との差異は第一の金属X’の組成である。
軟磁性の特性的にはFe、Coなどを第一の金属X’として充填することが好ましいが、後の母材除去過程において突起状構造体305が酸によって劣化を起こすのを防ぐため、該金属を主成分とし相対的に少量のPt、Pdを含ませておくことが好ましい。
充填は前述のメッキ法を用い、メッキ液成分をFe、またはCoイオンの成分を大きくとることで所望の金属X’を突起状構造体305として製造できる。また、アークプラズマガンなどによるドライプロセスによる埋め込みも有効な方法である。
(3’)母材除去工程
フッ化水素等への浸漬により母材302の一部或いは全部を除去する。
(4’)被覆工程
第一の金属X’からなる突起状構造体305上に第二の金属Y’を被覆する。第二の実施形態の製造おいては第二の金属YはPt、Pdを主成分にした金属とする。
被覆は第一の実施形態に関わる第二の製造方法と同等にメッキ法を用いて行うことができる。特に第二の実施形態の場合は積層する第二の金属Y’が貴金属であるPt、Pdを主成分とするため、無電解メッキによる被覆が効果的である。このような場合には非磁性層4を酸化物とし充填工程をドライプロセスで行い、母材除去は非磁性層4まで貫通させてもよい。
特に第二の金属Y’をPt、Pdとした場合には、これら元素自体は強い磁気特性を示さない。このためこれらを、磁性領域22間を分断する非磁性材21として流用することも可能である。この場合には本工程で突起状構造体305上で外皮304として皮膜のように被覆するのでなく各突起状構造体305全体を埋め込んでもよい。これにより後の非磁性体への埋め込み工程を省略することができる。
この場合には後に硬磁性層24の外径は後の熱処理(規則化)工程でFe等が拡散してL10規則化する拡散距離によるため、磁性領域22間の磁気的分断を確保するためには熱処理過程での規則化する範囲の調節が必要となる。
(5’)熱処理工程
熱処理により、突起状構造体305のFe、Coとその表面を覆ったPtあるいはPdを主成分とする金属Y’との界面よりそれぞれの原子が熱拡散し合金化が始まり、L10規則合金構造を形成する。L10規則化は突起状構造体305と周囲のPtあるいはPdの界面付近より始まる。このため規則化時間を調節することで、突起状構造体305中心付近では規則化が進まず、Fe、Coなどの磁性を持つ元素の成分が多いため平均飽和磁化が大きいままにすることができる。このとき突起状構造体305と周囲のPtあるいはPdの界面付近より外側はL10規則化するとともにFe、Coなどの磁性を持つ元素が拡散し磁性膜の特性をもつ。その外側は主にPtあるいはPdであり非磁性材料となる。
このため中心の軟磁性層23の径は突起状構造体305の径よりやや小さく、硬磁性層24の厚みは外皮304の厚みよりやや厚く製造され傾向がある。これを見越して突起状構造体305の直径を所望の軟磁性層23より大きめに、被覆する外皮304の厚みを所望の硬磁性層24の厚みより薄めに設定することもできる。
一般に軟磁性層23の体積より硬磁性層24の体積の方が小さいほうが磁気記録膜5の「熱揺らぎ」耐性や記録感度、記録密度などの性能バランスが取りやすい。そのため、上記の効果を見越した場合にも、形成する突起状構造体305の径や外皮304の厚みは第一の実施例での製造条件と大きくずれることはなく製造可能な範囲になる。
熱処理工程の時間調節によって突起状構造体305中心付近で相対的に小さな磁気異方性エネルギー密度と相対的に大きな飽和磁化を持つ。
そして、突起状構造体305と周囲のPtあるいはPdの界面付近で相対的に大きな磁気異方性エネルギー密度と相対的に小さな飽和磁化を持つようにする。また時間調節によってFe、Coなどの磁性を持つ元素の拡散を隣接する突起状構造体305間の距離の半分以下とすることで磁性領域22間を分断することができる。
このようにして突起状構造体305中心付近に軟磁性層23を、その外周に硬磁性層24を、さらに外周にはPtあるいはPdを、磁性領域22間を分断する非磁性材21として流用した構成の第二の実施形態の磁気記録膜5が構成できる。
但し磁性領域22間を分断する効果をより確実にするためにはPtあるいはPdの外皮304を皮膜として構成し、熱処理工程の後全体をSiO2、SiN2などの非磁性材料へスパッタなどで埋めむ第一の実施例の製造方法と同様に工程を設けてもよい。またこのとき磁気記録膜表面整形工程で軟磁性層23に製造された硬磁性層24部分を除去せずに磁気記録膜表面に露出させておくことも可能である。
最後に磁気記録膜表面整形工程を行って第二の実施形態の磁気記録膜5を完成させ、その後保護層6、潤滑層7を成膜して第二の実施形態に基づく記録媒体とする。
以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
実施例1として上記第一の実施形態を第一の製造方法で製造する例について説明する。特に本発明の主要部分は磁気記録膜の構成にあるため、説明は主に磁気記録膜の製造方法について行う。
ディスク状のガラス基板にNiPメッキをした上にCoZrNbからなる軟磁性下地層を500nm厚で製造し、以下の方法で磁気記録膜を製造する。
(1)膜面内に複数の孔を作成する工程
基板上に(001)配向MgO50nm、その上に(001)配向Pt10nmをスパッタ法にて成膜する。更に、Al56Si44組成のスパッタリングターゲットから成膜されたAlSi構造体20nmを順次成膜する。ここで用いたAlSi構造体は、円柱状のアルミニウム部分とそれを取り囲むSi母材から形成される。このAlSi構造体のアルミニウム部分を除去して微細な孔を形成するために室温で2.8mol%のアンモニア水に10分浸漬する。ここでは、孔の平均直径は6nmであり、孔間の間隔は平均12nmとなる。Si部分はアンモニア水浸漬により酸化されて、SiO2となっている。これにより多孔質層が形成される。

(2)充填工程
孔の底部に下地のPt表面が露出した多孔質層中にめっき法を用いてFePt合金を充填する。ここで用いるめっき浴は、以下からなる。
ヘキサクロロ白金(IV)酸塩0.011mol/L、塩化アンモニウム0.022mol/L、硫酸鉄0.02mol/L、酒石酸アンモニウムを0.02mol/L、塩化ナトリウム0.1mol/Lからなる。浴温度を50℃としてpH8に調整する。界面活性剤としてドデシル硫酸ナトリウム0.0001mol/Lを加えることも可能である。上記めっき浴を用いてめっきを施す事により、孔内へFePt合金を充填する。めっきされるFePt合金組成は、製造条件、特に印加電圧により選択することが可能あり、50atomic%−FePtを作製する。
(3)熱処理工程
上記工程により作製される構造体を500℃に熱処理し、熱処理後FePt薄膜部分を研磨により除去し、柱状構造体上部を露出させる。孔内に充填されている合金材料によるL10規則合金相が形成されているか否かは、L10規則構造に伴うx線回折のピークが観測されるかどうかにより分かる。
(4)母材除去工程
製造した構造体を水酸化テトラメチルアンモニウム(TMAH)20%溶液に浸漬させることにより、母材のSiO2を除去する。エネルギー分散型X線分析(EDS)により組成分析を行なうとSiピークが観察され、断面TEM観察によりSiO2が下地近傍に5nm程度残っていることが確認できる。
(5)軟磁性層被覆工程
NiSiO4・7H2O(300g/l)、
NiCl2・6H2O(25g/l)、
FeSO4・7H2O(10g/l)、
3BO3(15g/l)、サッカリンナトリウム(0.5g/l)、
ラウリル硫酸ナトリウム(0.2g/l)からなるメッキ液で電流密度10〜15mA/cm2でメッキを行い、厚さ2nm程度のパーマライト膜を上記工程で露出したFePtに被覆する。
(6)埋め込み工程
スパッタリングによりSiO2の埋め込みを行い表面を研磨して磁気記録膜とする。その後保護層、潤滑層を製造し磁気記録媒体とする。
比較のため上記(4)母材除去工程以降を省いた軟磁性層を設けない磁気記録膜を持つ磁気記録媒体を製造する。
そして、上記記録媒体をスピンスタンドに設置し、SPT記録ヘッドを用いて記録、MR再生ヘッドを用いて再生を行う記録再生試験を行うことで記録感度が向上していることが確認できる。例えばトラック幅0.15μmのSPT記録ヘッドで、ピット長50nm相当の単一トーン信号を異なる記録印加磁界強度で記録、同時にMR再生ヘッドを用いて再生し再生信号が観察できる下限の記録印加磁界を最小記録磁界とする。同時に上記(5)の軟磁性層被覆工程を除いて作成された参照用磁気記録媒体を製造する。そして、この媒体に対し上記と同じ記録再生試験を行う。これにより、本実施例の磁気記録媒体の最小記録磁界が参照用磁気記録媒体の最小記録磁界より小さく記録感度が向上したことが確認できる。
実施例2
実施例2として上記第一の実施形態を第二の製造方法で製造する例について説明する。特に本発明の主要部分は磁気記録膜の構成にあるため、説明は主に磁気記録膜の製造方法について行う。
ディスク状のガラス基板にNiPメッキをした上にCoZrNbからなる軟磁性下地層を500nm厚で製造し、以下の方法で磁気記録膜を製造する。
(1)膜面内に複数の孔を製造する工程
基板上に(001)配向MgO50nm、その上に(001)配向Pt10nmをスパッタ法にて成膜する。更に、Al56Si44組成のスパッタリングターゲットから成膜されたAlSi構造体20nmを順次成膜する。ここで用いたAlSi構造体は、円柱状のアルミニウム部分とそれを取り囲むSi母材から形成されることが特徴である。このAlSi構造体のアルミニウム部分を除去して微細な孔を形成するために室温で2.8mol%のアンモニア水に10分浸漬する。ここでは、孔の平均直径は6nmであり、孔間の間隔は平均12nmとなる。Si部分はアンモニア水浸漬により酸化されて、SiO2となっている。これにより多孔質層が形成される。
(2)充填工程
孔内に無電解めっき法を用いてPtを充填する。Pt無電解めっき液は、以下からなる。
レクトロレスPt100基本液100ml(日本エレクトロプレイティング・エンジニヤース(株)、28%アンモニア水10ml、レクトロレスPt100還元剤2mL(日本エレクトロプレイティング・エンジニヤース(株))、純水88mLを混合して調整しためっき液である。60℃の前記めっき液中に前記多孔質層を10分間浸すことによりPtを充填する。FE−SEMで観察した結果、前記多孔質層中に直径5nm、高さは20nm程度のPtが充填される。
(3)母材除去工程
製造した構造体を水酸化テトラメチルアンモニウム(TMAH)20%溶液に浸漬させることにより、母材のSiO2を除去する。エネルギー分散型X線分析(EDS)により組成分析を行なうとSiピークが観察され、断面TEM観察によりSiO2が下地近傍に5nm程度残っていることが確認できる。
(4)被覆工程
突起状構造体を有するPtにメッキ法にてFeを被覆する。突起状Ptが電極となり、Ptを覆うようにしてFeメッキする。Feメッキ浴はメッキレートを制御するために、塩化鉄に酒石酸アンモニウムを添加し錯体構造を含むメッキ浴を用い1nm乃至2nm程度の厚みのFeが付着する。
(5)熱処理工程
上記メッキ後、水素雰囲気中にてRTA法を用いて500℃の熱処理を行なう。熱処理後、XRDにて合金化されたFePtの強い(001)回折ピークが観察され、c軸配向したFePtが製造されていることが分かる。
(6)埋め込み、表面整形工程
スパッタリングによりSiO2の埋め込みを行い表面を研磨して磁気記録膜とする。その後保護層、潤滑層を製造し磁気記録媒体とする。
実施例3
実施例3として上記第二の実施形態製造する例について説明する。第二の実施例と重複する部分が多いため特に異なる部分についてのみ記載する。
第二の実施例と同様に、ディスク状のガラス基板にNiPメッキをした上にCoZrNbからなる軟磁性下地層を500nm厚で製造し、上記第二の実施例の(1)膜面内に複数の孔を製造する工程を行ってこれにより多孔質層を作成する。
次に多孔質層下のPt層を電極として電解めっき法を用いて多孔質層へFeリッチなFePt合金を充填する。
ここで用いるめっき浴は第一の実施例のFePt充填工程で用いたものと同様である。ヘキサクロロ白金(IV)酸塩0.011mol/L、塩化アンモニウム0.022mol/L、硫酸鉄0.02mol/L、酒石酸アンモニウムを0.02mol/L、塩化ナトリウム0.1mol/Lからなる。浴温度を50℃としてpH8に調整する。但し印加電圧をよりマイナス側にすることでFe組成を増加させる。界面活性剤としてドデシル硫酸ナトリウム0.0001mol/Lを加えることも可能である。上記めっき浴を用いてめっきを施す事により、孔内へFePt合金を充填する。
その後第二の実施例の母材除去過程と同様の母材除去過程を行い母材を除去する。
さらに無電解めっきによりPtを被覆する。Pt無電解めっき液は、以下からなる。
レクトロレスPt100基本液100ml(日本エレクトロプレイティング・エンジニヤース(株)、28%アンモニア水10ml、レクトロレスPt100還元剤2mL(日本エレクトロプレイティング・エンジニヤース(株))、純水88mLを混合して調整しためっき液であり、60℃の前記めっき液中に10分間浸すことによりPtを充填する。
そして、この状態で規則化のための加熱処理を行う。最後にスパッタリングによりSiO2の埋め込みを行い表面を研磨して磁気記録膜とする。その後保護層、潤滑層を製造し磁気記録媒体とする。
本発明に係る垂直磁気媒体はHDD装置などの高密度磁気記録装置、及びそれら装置を含む情報処理装置、画像記録装置などに利用が可能である。
本発明に関わる磁気記録媒体の一実施態様を示す断面の構成図である。 磁気記録媒体の磁気記録膜の一実施形態を示す概略図である。 本発明に関わる磁気記録媒体の磁気記録膜の製造方法の一例を示す工程図である。 従来例に於ける垂直磁気記録媒体の磁気記録膜の構成を示す図である。 本発明に関わる磁気記録膜の製造方法における多孔質部材を示す図である。 本発明の磁気記録媒体の第一の実施形態の磁気記録膜を製造する第一の製造方法の工程図である。 本発明の磁気記録媒体の第一の実施形態の磁気記録膜を製造する第二の製造方法の工程図である。 本発明に関わる磁気記録媒体を利用した磁気記録装置の構成を示す図である。 本発明に関わる磁気記録媒体の作成方法を説明する図である。 本発明に関わる磁気記録媒体の具体的構成における従来例との差異を示すグラフである。
符号の説明
1 基板
2 下地層
3 軟磁性下地層
4 非磁性層
5 磁気記録膜
6 保護層
7 潤滑層
8 膜面に対して平行方向
21 非磁性材
22 磁性領域
23 軟磁性層
24 硬磁性層
300 多孔質部材
301 孔
302 母材
303 内包充填物
304 外皮
305 突起状構造体
401 シード層
402 硬磁性層
403 軟磁性層
404 結晶粒
405 CoCrPt結晶
406 NiFe結晶
407 磁気的粒子

Claims (18)

  1. 非磁性領域中に磁性領域が分散している磁気記録膜を有する磁気記録媒体であって、該磁性領域は保磁力を有する第1の磁性部と、該第1の磁性部の保磁力よりも弱い保磁力を有する第2の磁性部を有し、該第1の磁性部と第2の磁性部は磁気記録膜の膜面に対して平行方向に積層して設けられていることを特徴とする磁気記録媒体。
  2. 前記第1の磁性部は硬磁性材料からなり、前記第2の磁性部は軟磁性材料からなることを特徴とする請求項1記載の磁気記録媒体。
  3. 前記磁性領域は、前記第1の磁性部の周囲を被覆するように前記第2の磁性部が設けられていることを特徴とする請求項1または2記載の磁気記録媒体。
  4. 前記磁性領域は、前記第2の磁性部の周囲を被覆するように前記第1の磁性部が設けられていることを特徴とする請求項1または2記載の磁気記録媒体。
  5. 前記軟磁性材料からなる第2の磁性部の平均磁気異方性エネルギー密度が、前記硬磁性材料からなる第1の磁性部の平均磁気異方性エネルギー密度の二分の一以下であることを特徴とする請求項1乃至4のいずれかの項に記載の磁気記録媒体。
  6. 前記硬磁性材料からなる第1の磁性部の平均磁気異方性エネルギー密度Ku1と、前記軟磁性材料からなる第2の磁性部の平均磁気異方性エネルギー密度Ku2の比κ=Ku2/Ku1が、該第1の磁性部の平均飽和磁化Ms1と、該第2の磁性部の平均飽和磁化Ms2の比μ=Ms2/Ms1よりも小さいことを特徴とする請求項1乃至5のいずれかの項に記載の磁気記録媒体。
  7. 前記磁性領域は、硬磁性材料からなる第1の磁性部の周囲を被覆するように軟磁性材料からなる第2の磁性部が設けられており、前記硬磁性材料からなる第1の磁性部の膜の膜面に対して平行方向の断面の半径は、下記の(1)式で表される臨界半径Rh以下であり
    Figure 2007250047
    (式中、硬磁性材料からなる第1の磁性部において、Rhは臨界半径(cm)、Ahは交換結合定数(erg/cm)、Khは磁気異方性定数(erg/cc)、Mshは飽和磁化(emu/cc)を表す。)
    、かつ軟磁性材料からなる第2の磁性部の膜の膜面に対して平行方向の断面の厚みは下記の(2)式で表される臨界半径Rsの二倍以下であることを特徴とする請求項3記載の磁気記録媒体。
    Figure 2007250047
    (式中、軟磁性材料からなる第2の磁性部において、Rsは臨界半径(cm)、Cは形状による係数で1.44、Asは交換結合定数(erg/cm)、Mssは飽和磁化(emu/cc)を表す。)
  8. 前記磁性領域は、軟磁性材料からなる第2の磁性部の周囲を被覆するように硬磁性材料からなる第1の磁性部が設けられており、前記軟磁性材料からなる第2の磁性部の膜の膜面に対して平行方向の断面の半径は、下記の(2)式で表される臨界半径Rs以下であり
    Figure 2007250047
    (式中、軟磁性材料からなる第2の磁性部において、Rsは臨界半径(cm)、Cは形状による係数で1.44、Asは交換結合定数(erg/cm)、Mssは飽和磁化(emu/cc)を表す。)
    、かつ硬磁性材料からなる第1の磁性部の膜の膜面に対して平行方向の断面の厚みは下記の(1)式で表される臨界半径Rhの二倍以下であることを特徴とする請求項4記載の磁気記録媒体。
    Figure 2007250047
    (式中、硬磁性材料からなる第1の磁性部において、Rhは臨界半径(cm)、Ahは交換結合定数(erg/cm)、Khは磁気異方性定数(erg/cc)、Mshは飽和磁化(emu/cc)を表す。)
  9. 前記硬磁性材料からなる第1の磁性部は、磁気記録膜の膜面に対して垂直方向に磁気異方性容易軸を有することを特徴とする請求項1乃至8のいずれかの項に記載の磁気記録媒体。
  10. 前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の違いによることを特徴とする請求項1乃至9のいずれかの項に記載の磁気記録媒体。
  11. 前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の組成比及び/または結晶構造の違いによることを特徴とする請求項1乃至10のいずれかの項に記載の磁気記録媒体。
  12. 前記平均磁気異方性エネルギー密度、平均飽和磁化の違いは、第1の磁性部および第2の磁性部を構成する構成元素の違いと、構成元素の組成比及び/または結晶構造の違いの組み合わせによることを特徴とする請求項1乃至11のいずれかの項に記載の磁気記録媒体。
  13. 前記硬磁性材料からなる第1の磁性部は、L10規則化構造をもつFePt、FePd、CoPt、CoPdのいずれかを含むことを特徴とする請求項1乃至12のいずれかの項に記載の磁気記録媒体。
  14. 前記軟磁性材料からなる第2の磁性部は、Fe、Ni、Coのいずれかを含むことを特徴とする請求項1乃至12のいずれかの項に記載の磁気記録媒体。
  15. 多孔質母材の複数の孔に硬磁性材料を充填して第1の磁性部を形成する工程と、該多孔質母材の一部あるいは全部を除去して第1の磁性部を露出する工程と、該露出した第1の磁性部を軟磁性材料で被覆して第2の磁性部を形成する工程と、該第2の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする磁気記録媒体の製造方法。
  16. 多孔質母材の複数の孔にPtおよびPdの少なくとも一つからなる第一の金属を充填する工程と、該多孔質母材の一部あるいは全部を除去して第一の金属を露出する工程と、該露出した第一の金属をFeおよびCoの少なくとも一つを含有する第二の金属で被覆する工程と、該第一の金属および第二の金属を加熱処理してL10規則化構造をもつFePt、FePd、CoPt、CoPdの何れかを含む硬磁性材料からなる第1の磁性部と、該第1の磁性部を被覆したFe、Coいずれかを含む軟磁性材料からなる第2の磁性部を形成する工程と、該第2の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする請求項15に記載の磁気記録媒体の製造方法。
  17. 多孔質母材の複数の孔に軟磁性材料を充填して第2の磁性部を形成する工程と、該多孔質母材の一部あるいは全部を除去して第2の磁性部を露出する工程と、該露出した第2の磁性部を硬磁性材料で被覆して第1の磁性部を形成する工程と、該第1の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする磁気記録媒体の製造方法。
  18. 多孔質母材の複数の孔にFeおよびCoの少なくとも一つからなる第二の金属を充填する工程と、該多孔質母材の一部あるいは全部を除去して第二の金属を露出する工程と、該露出した第二の金属をPtおよびPdの少なくとも一つを含有する第一の金属で被覆する工程と、該第一の金属および第二の金属を加熱処理してFe、Coのいずれかを含む軟磁性材料からなる第2の磁性部と、該第2の磁性部を被覆したL10規則化構造をもつFePt、FePd、CoPt、CoPdの何れかを含む硬磁性材料からなる第1の磁性部を形成する工程と、該第1の磁性部の周囲に非磁性材料を充填して第1の磁性部および第2の磁性部を非磁性材料で埋め込む工程を有することを特徴とする請求項17に記載の磁気記録媒体の製造方法。
JP2006070000A 2006-03-14 2006-03-14 磁気記録媒体およびその製造方法 Expired - Fee Related JP4637040B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006070000A JP4637040B2 (ja) 2006-03-14 2006-03-14 磁気記録媒体およびその製造方法
US11/680,838 US7531249B2 (en) 2006-03-14 2007-03-01 Magnetic recording medium and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070000A JP4637040B2 (ja) 2006-03-14 2006-03-14 磁気記録媒体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2007250047A true JP2007250047A (ja) 2007-09-27
JP4637040B2 JP4637040B2 (ja) 2011-02-23

Family

ID=38517533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070000A Expired - Fee Related JP4637040B2 (ja) 2006-03-14 2006-03-14 磁気記録媒体およびその製造方法

Country Status (2)

Country Link
US (1) US7531249B2 (ja)
JP (1) JP4637040B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123007A1 (ja) * 2008-04-04 2009-10-08 コニカミノルタホールディングス株式会社 磁気記録媒体の製造方法、及び磁気記録媒体
JP2010067335A (ja) * 2008-09-12 2010-03-25 Showa Denko Kk 磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置
JP2012212496A (ja) * 2011-03-18 2012-11-01 Seiko Instruments Inc 磁気記録媒体
JP2013242961A (ja) * 2007-11-23 2013-12-05 Seagate Technology Internatl 磁気記録メディアおよびその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202635B2 (en) * 2005-01-24 2012-06-19 Nxp B.V. Magnetic rom information carrier with additional stabilizing layer
US8076013B2 (en) * 2007-02-13 2011-12-13 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium, magnetic recording medium manufacturing method, and magnetic disk
JP4381444B2 (ja) * 2007-11-22 2009-12-09 株式会社東芝 磁気記録媒体、磁気記録媒体の製造方法、および磁気記録装置
JP4292226B1 (ja) * 2007-12-20 2009-07-08 株式会社東芝 垂直磁気記録媒体、及びこれを用いた磁気記録再生装置
JP2009187608A (ja) * 2008-02-05 2009-08-20 Toshiba Corp 垂直磁気記録パターンド媒体および磁気記録再生装置
JP2010218610A (ja) * 2009-03-16 2010-09-30 Hitachi Ltd 磁気記録媒体及び磁気記憶装置
US8449730B2 (en) * 2009-07-20 2013-05-28 Carnegie Mellon University Buffer layers for L10 thin film perpendicular media
US9447513B2 (en) * 2010-10-21 2016-09-20 Hewlett-Packard Development Company, L.P. Nano-scale structures
JP5575172B2 (ja) * 2012-03-28 2014-08-20 株式会社東芝 磁気記録媒体,磁気記録再生装置,および磁気記録媒体の製造方法
JP5535293B2 (ja) * 2012-10-12 2014-07-02 株式会社東芝 磁気記録媒体の製造方法
US9190093B2 (en) * 2013-02-06 2015-11-17 HGST Netherlands, B.V. Reduced adjacent track errors in bit-patterned media

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176049A (ja) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd 磁気記録媒体
JP2004164692A (ja) * 2002-11-08 2004-06-10 Toshiba Corp 磁気記録媒体及びその製造方法
JP2004259306A (ja) * 2003-02-24 2004-09-16 Hitachi Ltd 磁気記録媒体および磁気記録媒体の製造方法
JP2006247795A (ja) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The ナノ構造体及びそれを用いた磁気記憶材料、配線基板、アンテナ基材
JP2007208144A (ja) * 2006-02-03 2007-08-16 Canon Inc 構造体の製造法、構造体、磁気記録媒体および永久磁石

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686071B2 (en) * 2000-06-06 2004-02-03 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and magnetic recording apparatus using the same
JP3762277B2 (ja) * 2000-09-29 2006-04-05 キヤノン株式会社 磁気記録媒体及びその製造方法
JP2003162807A (ja) * 2001-11-27 2003-06-06 Toshiba Corp 垂直磁気記録媒体及びこれを用いた磁気記録再生装置
AU2003221347A1 (en) 2002-03-15 2003-09-29 Canon Kabushiki Kaisha Functional device and method of manufacturing the device, vertical magnetic recording medium, magnetic recording and reproducing device, and information processing device
WO2003078687A1 (fr) 2002-03-15 2003-09-25 Canon Kabushiki Kaisha Materiau poreux et son procede de production
JP4035457B2 (ja) 2002-03-15 2008-01-23 キヤノン株式会社 機能デバイスの製造方法
WO2003078688A1 (en) 2002-03-15 2003-09-25 Canon Kabushiki Kaisha Porous material and process for producing the same
JP4073002B2 (ja) * 2002-03-27 2008-04-09 キヤノン株式会社 磁気記録媒体の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176049A (ja) * 1999-12-20 2001-06-29 Fuji Electric Co Ltd 磁気記録媒体
JP2004164692A (ja) * 2002-11-08 2004-06-10 Toshiba Corp 磁気記録媒体及びその製造方法
JP2004259306A (ja) * 2003-02-24 2004-09-16 Hitachi Ltd 磁気記録媒体および磁気記録媒体の製造方法
JP2006247795A (ja) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The ナノ構造体及びそれを用いた磁気記憶材料、配線基板、アンテナ基材
JP2007208144A (ja) * 2006-02-03 2007-08-16 Canon Inc 構造体の製造法、構造体、磁気記録媒体および永久磁石

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242961A (ja) * 2007-11-23 2013-12-05 Seagate Technology Internatl 磁気記録メディアおよびその製造方法
WO2009123007A1 (ja) * 2008-04-04 2009-10-08 コニカミノルタホールディングス株式会社 磁気記録媒体の製造方法、及び磁気記録媒体
JP2010067335A (ja) * 2008-09-12 2010-03-25 Showa Denko Kk 磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置
US8355223B2 (en) 2008-09-12 2013-01-15 Showa Denko K.K. Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2012212496A (ja) * 2011-03-18 2012-11-01 Seiko Instruments Inc 磁気記録媒体

Also Published As

Publication number Publication date
JP4637040B2 (ja) 2011-02-23
US20070217072A1 (en) 2007-09-20
US7531249B2 (en) 2009-05-12

Similar Documents

Publication Publication Date Title
JP4637040B2 (ja) 磁気記録媒体およびその製造方法
JP3762277B2 (ja) 磁気記録媒体及びその製造方法
US7067207B2 (en) Magnetic recording medium having a patterned soft magnetic layer
JP2006286105A (ja) 磁気記録媒体および磁気記憶装置
JP4213076B2 (ja) 磁気記録媒体の製造方法
CN104303230B (zh) 磁记录介质和磁记录再生装置
WO2003078685A1 (fr) Dispositif fonctionnel et procede de fabrication du dispositif, support d'enregistrement magnetique vertical, dispositif d'enregistrement et de lecture magnetique, et dispositif de traitement d'information
JP2004311607A (ja) 磁性体、磁気記録媒体、磁気記録再生装置、情報処理装置及びその製造方法
JP5845297B2 (ja) ポリマー材料中に埋め込まれたナノ粒子から形成されたテンプレート層を備えた垂直磁気記録ディスク
JP5575172B2 (ja) 磁気記録媒体,磁気記録再生装置,および磁気記録媒体の製造方法
JP5845296B2 (ja) ポリマー材料中に埋め込まれたナノ粒子から形成されたテンプレート層を備えた垂直磁気記録ディスクの製造方法
JP2006127681A (ja) 磁気記録媒体及びその製造方法、磁気記録再生装置
JP2923791B2 (ja) 磁気記録媒体
US8277874B2 (en) Manufacturing method of magnetic recording medium, the magnetic recording medium, and magnetic recording and reproducing apparatus
JP2007335788A (ja) 磁気シールド及びその製造方法、薄膜磁気ヘッド
JP2007208144A (ja) 構造体の製造法、構造体、磁気記録媒体および永久磁石
US20090244777A1 (en) Manufacturing method of magnetic recording medium
US8877360B2 (en) Magnetic recording medium with a plurality of pinning portions in the magnetic layer
JP4220475B2 (ja) 磁気記録媒体及びその製造方法、並びに、磁気記録装置及び磁気記録方法
JP2000195036A (ja) 磁気記録媒体とその製造方法
JPWO2004061829A1 (ja) 垂直磁気記録媒体
US6794063B2 (en) Thin film magnetic head and method of fabricating the head
US9214179B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
KR100846505B1 (ko) 패턴화된 자기 기록 매체 및 그 제조방법
JP2012230732A (ja) 垂直磁気記録媒体、その製造方法、及び磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees