JP2007248017A - Temperature controller for fuel economizer of reheat boiler - Google Patents

Temperature controller for fuel economizer of reheat boiler Download PDF

Info

Publication number
JP2007248017A
JP2007248017A JP2006075760A JP2006075760A JP2007248017A JP 2007248017 A JP2007248017 A JP 2007248017A JP 2006075760 A JP2006075760 A JP 2006075760A JP 2006075760 A JP2006075760 A JP 2006075760A JP 2007248017 A JP2007248017 A JP 2007248017A
Authority
JP
Japan
Prior art keywords
economizer
water
feed water
temperature
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006075760A
Other languages
Japanese (ja)
Inventor
Tetsuo Komoda
哲男 薦田
Suminao Tomoyasu
純直 友保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006075760A priority Critical patent/JP2007248017A/en
Publication of JP2007248017A publication Critical patent/JP2007248017A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the corrosion of heat transfer tubes in a fuel economizer caused by the dew condensation of acidic moisture in exhaust gas, particularly to carry out energy saving and the reduction of facility cost, and to prevent a water hammer phenomenon in water supply piping. <P>SOLUTION: A recirculation passage 28 provided with the reheat boiler 2, an evaporator 10, the fuel economizer 12, and a water supply pump 24 is formed for recirculating supply water heated by the fuel economizer from the outlet side of the fuel economizer to the inlet side of the water supply pump. A heat exchanger 26 provided for carrying out heat exchange between supply water flowing in a water supply passage, and the supply water flowing in the recirculation passage and heated by the fuel economizer is interposed in each of the recirculation passage and the water supply passage between the water supply pump and the fuel economizer. A circulation water flow control means 30 provided for carrying out the flow control of the supply water flowing in the recirculation passage is interposed in the recirculation passage at the downstream side of the heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガスエンジンやガスタービンなどの内燃機関の排気ガスを燃焼空気として使用する、再燃ボイラの節炭器の温度制御装置に関する。   The present invention relates to a temperature control device for a refueling boiler economizer that uses exhaust gas of an internal combustion engine such as a gas engine or a gas turbine as combustion air.

ガスエンジンやガスタービンなどの内燃機関は、その排気ガス温度が300〜600℃あり、また、この排気ガス中には残存酸素が通常は10%以上も含まれている。この内燃機関の排気ガスを、ボイラの燃料を燃焼するための酸素供給源として使用することにより、内燃機関とボイラとを合わせた排気ガス総量を低減することができ、窒素酸化物などの環境負荷要因を低減することができる。   An internal combustion engine such as a gas engine or a gas turbine has an exhaust gas temperature of 300 to 600 ° C., and the exhaust gas usually contains 10% or more of residual oxygen. By using the exhaust gas of the internal combustion engine as an oxygen supply source for burning the fuel of the boiler, the total amount of exhaust gas combined with the internal combustion engine and the boiler can be reduced, and environmental loads such as nitrogen oxides can be reduced. Factors can be reduced.

さらに、排気ガスのもつ300〜600℃の温度を利用することによって、ボイラの燃料消費量を少なくし、これにより総合エネルギ効率を高めることができる。近年、このような燃焼システムを採用したボイラが増加しつつある。ここでは、このような燃焼システムを備えたボイラを、排気再燃ボイラと呼ぶことにする。   Furthermore, by utilizing the temperature of 300 to 600 ° C. of the exhaust gas, the fuel consumption of the boiler can be reduced, thereby improving the overall energy efficiency. In recent years, the number of boilers employing such a combustion system is increasing. Here, a boiler equipped with such a combustion system is called an exhaust gas refired boiler.

通常のボイラでは、燃焼空気と排気ガスとの間で熱交換を行って排気ガスの温度を下げ、それにより熱効率を高めるため、ガス式の空気予熱器が用いられることが多い。しかしながら、排気再燃ボイラにおいては、もともとボイラに入ってくる内燃機関の排気ガスの温度が高いため、ガス式の空気予熱器を用いることができず、それに代わって節炭器が用いられる。   In a normal boiler, a gas-type air preheater is often used to perform heat exchange between the combustion air and the exhaust gas to lower the temperature of the exhaust gas and thereby increase the thermal efficiency. However, since the exhaust gas temperature of the internal combustion engine that originally enters the boiler is high in the exhaust gas reburning boiler, a gas-type air preheater cannot be used, and a economizer is used instead.

ここで、この節炭器を用いる場合には、節炭器の伝熱管の表面に排気ガス中の酸性の水分が結露して伝熱管が腐食するという問題があり、この腐食を引き起さないように、節炭器入口の給水温度を排気ガスの露点温度以上に高めてから、給水を節炭器へ供給している。しかしながら、多くのプラントでは、ボイラに供給される給水が上述の排気ガスの露点温度以下の温度で供給される場合が多い。この場合、低温の給水を、節炭器の伝熱管の周りで結露が発生しない温度にまで高めるための装置が必要となる。   Here, when this economizer is used, there is a problem that acidic moisture in the exhaust gas is condensed on the surface of the heat exchanger tube of the economizer and the heat exchanger tube is corroded, so that this corrosion is not caused. The feed water is supplied to the economizer after the feed water temperature at the economizer entrance is raised above the dew point temperature of the exhaust gas. However, in many plants, the feed water supplied to the boiler is often supplied at a temperature lower than the above-described exhaust gas dew point temperature. In this case, a device for raising the low temperature water supply to a temperature at which no condensation occurs around the heat transfer tube of the economizer is necessary.

従来の再燃ボイラの節炭器の温度制御装置としては、図3に示されるように、過熱器100から出た過熱蒸気などの高温熱源を用いて、給水ポンプ102よりも下流側の給水を加熱する装置や、図4に示されるように、節炭器104の出口側の高温高圧の給水の一部を節炭器循環ポンプ106により節炭器104の入口側へ再循環して、節炭器104の入口の給水温度を高める装置や、節炭器の出口側の高温高圧の給水の一部を給水ポンプの上流側に再循環して、節炭器入口の給水温度を高める装置(例えば、特許文献1参照)等がある。   As shown in FIG. 3, as a temperature control device for a conventional economizer for a refired boiler, the feed water on the downstream side of the feed water pump 102 is heated using a high-temperature heat source such as superheated steam emitted from the superheater 100. As shown in FIG. 4, a part of the high-temperature and high-pressure water supply at the outlet side of the economizer 104 is recirculated to the inlet side of the economizer 104 by the economizer circulation pump 106 to save the economizer. A device for increasing the feed water temperature at the inlet of the water saver 104 or a device for increasing the feed water temperature at the inlet of the economizer (for example, by recirculating a part of the high-temperature high-pressure feed water at the outlet side of the economizer to the upstream side of the feed water pump) , See Patent Document 1).

しかしながら、図3に示す従来の、過熱器100から出た過熱蒸気などの高温熱源を用いて加熱する装置においては、折角高い温度になった蒸気を給水の温度上昇に使用するため、ボイラ効率が低下し、省エネルギの観点から好ましくないという問題がある。また、図4に示す従来の、節炭器104で加熱された高温の給水の一部を節炭器循環ポンプ106により節炭器104の入口側に再循環させる装置は、節炭器循環ポンプ106として高温水用ポンプが必要であり、設備面でコスト高になるという問題がある。   However, in the conventional apparatus shown in FIG. 3 for heating using a high-temperature heat source such as superheated steam emitted from the superheater 100, the steam efficiency is increased in order to increase the temperature of the feed water. There is a problem that it is not preferable from the viewpoint of energy saving. Further, the conventional apparatus shown in FIG. 4 for recirculating a part of the high-temperature water heated by the economizer 104 to the inlet side of the economizer 104 by the economizer circulation pump 106 is an economizer circulation pump. A high-temperature water pump is required as 106, and there is a problem that the cost is high in terms of equipment.

さらに、特許文献1に記載の従来の、節炭器の出口側の高温高圧の給水の一部を給水ポンプの上流側に再循環して、節炭器入口の給水温度を高める装置においては、節炭器出口の給水温度が給水ポンプ入口の給水圧力の飽和温度よりも高い場合が多い。このため、再
循環水流量を制御するための流量制御弁の出口でフラッシングを起こし、これを給水ポンプの上流側の給水配管中にそのまま合流させると、給水配管中でウォータハンマ現象を起こすという問題がある。
特開2000−154904号公報(図1)
Furthermore, in the conventional apparatus described in Patent Document 1, a part of the high-temperature and high-pressure feed water on the outlet side of the economizer is recirculated to the upstream side of the feed water pump to increase the feed water temperature at the economizer inlet. In many cases, the feed water temperature at the economizer outlet is higher than the saturation temperature of the feed water pressure at the feed water pump inlet. For this reason, if flushing occurs at the outlet of the flow control valve for controlling the flow rate of the recirculated water, and this is joined as it is in the water supply pipe upstream of the water supply pump, a water hammer phenomenon occurs in the water supply pipe. There is.
JP 2000-154904 A (FIG. 1)

本発明はこのような問題を解決するためになされたもので、排気ガス中の酸性水分の結露による節炭器の伝熱管の腐食を防止するものであって、特に省エネルギ化及び設備コストの削減を図ることができると共に、給水配管中でのウォータハンマ現象を防止することができる、再燃ボイラの節炭器の温度制御装置を提供することを課題とする。   The present invention has been made to solve such a problem, and is intended to prevent corrosion of the heat transfer tube of the economizer due to condensation of acidic moisture in the exhaust gas. It is an object of the present invention to provide a temperature control device for a economizer of a refired boiler that can be reduced and can prevent a water hammer phenomenon in a water supply pipe.

上記の課題を解決するために、本発明が採用する手段は、内燃機関の排気ガスを燃焼空気として使用する再燃ボイラと、再燃ボイラの排気ガス路内に配設されて給水を蒸気化する蒸発器と、排気ガス路内に蒸発器の下流側に配設されて蒸発器へ供給する給水を加熱する節炭器と、給水を節炭器へ給水路を通して加圧供給する給水ポンプとを備えた再燃ボイラの節炭器の温度制御装置において、節炭器で加熱された給水を節炭器の出口側から給水ポンプの入口側へ再循環させる再循環路と、この再循環路及び給水ポンプと節炭器との間の給水路にそれぞれ介挿されて、給水路内を流れる給水と再循環路内を流れる上記節炭器で加熱された給水との間で熱交換を行なう熱交換器と、熱交換器の下流側の再循環路に介挿されて、この再循環路内を流れる給水の流量調節を行なう循環水流量調節手段とを備えたことにある。   In order to solve the above problems, the means employed by the present invention includes a recombustion boiler that uses the exhaust gas of the internal combustion engine as combustion air, and an evaporation that is disposed in the exhaust gas passage of the recombustion boiler and vaporizes the feed water. And a water-saving device that is disposed in the exhaust gas path downstream of the evaporator and heats the feed water supplied to the evaporator, and a feed water pump that pressurizes and supplies the feed water to the economizer through the water supply path A recirculation path for recirculating feed water heated by the economizer from the outlet side of the economizer to the inlet side of the feed water pump, and the recirculation path and the feed pump Heat exchanger that is inserted into a water supply channel between the water saving unit and the water saving unit, and exchanges heat between the water supplied through the water supply channel and the water supplied by the above economizer through the recirculation channel And inserted in the recirculation path on the downstream side of the heat exchanger. In that it comprises water in a circulating water flow rate adjusting means for a flow control that.

本発明の再燃ボイラの節炭器の温度制御装置によれば、熱交換器が、給水路内を流れる給水を、再循環路内を流れる節炭器で加熱された給水によって加熱するから、節炭器に供給される給水温度が高くなり、排気ガス中の酸性水分の結露による節炭器の伝熱管の腐食を防止することができる。   According to the temperature control device for the economizer of the refired boiler of the present invention, the heat exchanger heats the feedwater flowing in the feedwater channel with the feedwater heated by the economizer flowing in the recirculation channel. The temperature of the feed water supplied to the charcoal increases, and corrosion of the heat transfer tubes of the economizer due to condensation of acidic moisture in the exhaust gas can be prevented.

また、節炭器から出た給水の一部を利用して節炭器へ供給される給水を加熱するから、過熱蒸気などの高温熱源を用いて加熱する従来の装置に比べて、ボイラ効率が低下することなく、省エネルギ化を図ることができる。   In addition, since the feed water supplied to the economizer is heated using a part of the feedwater from the economizer, the boiler efficiency is higher than that of a conventional device that uses a high-temperature heat source such as superheated steam. Energy saving can be achieved without lowering.

さらに、節炭器で加熱された給水が、高圧の状態が維持された状態で熱交換器によって温度低下し、その後に、給水ポンプの入口側の低圧の給水路内へ再循環されるから、従来の装置において必要とされた高温水用の節炭器循環ポンプが不要となり、設備面でのコスト削減を図ることができる。   Furthermore, the temperature of the feed water heated by the economizer is lowered by the heat exchanger while maintaining the high pressure state, and then recirculated into the low pressure feed channel on the inlet side of the feed water pump. The economizer circulation pump for high temperature water required in the conventional apparatus becomes unnecessary, and the cost in terms of equipment can be reduced.

これと共に、節炭器で加熱された給水を、熱交換器の上流側でフラッシングを起こさずに熱交換器によって冷却することができるので、従来の装置で発生する給水配管中でのウォータハンマ現象を防止することができる。また、節炭器で加熱された給水が、循環水流量調節手段によって適切に流量調節されて再循環されるから、節炭器へ供給される給水を最適に加熱することができる。   At the same time, the water supply heated by the economizer can be cooled by the heat exchanger without causing flushing upstream of the heat exchanger, so that the water hammer phenomenon in the water supply pipe generated in the conventional device Can be prevented. Moreover, since the feed water heated by the economizer is appropriately flow-regulated by the circulating water flow rate adjusting means and recirculated, the feed water supplied to the economizer can be optimally heated.

好ましくは、節炭器の入口の給水温度を検出する給水温度検出センサと、給水温度検出センサが検出した給水温度に基づいて循環水流量調節手段の作動を制御するコントローラとを備える。これにより、節炭器の入口の給水温度を自動調節することができる。   Preferably, a feed water temperature detection sensor for detecting a feed water temperature at the inlet of the economizer and a controller for controlling the operation of the circulating water flow rate adjusting means based on the feed water temperature detected by the feed water temperature detection sensor. Thereby, the feed water temperature at the entrance of the economizer can be automatically adjusted.

さらに好ましくは、コントローラは、給水温度検出センサが検出した給水温度が所定温度以上となるように上記循環水流量調節手段の作動を制御する。これにより、節炭器の入
口の給水温度を常に一定温度以上に維持することができる。
More preferably, the controller controls the operation of the circulating water flow rate adjusting means so that the feed water temperature detected by the feed water temperature detection sensor is equal to or higher than a predetermined temperature. Thereby, the feed water temperature of the entrance of a economizer can always be maintained above a certain temperature.

また、さらに好ましくは、上記所定温度は、節炭器の伝熱管での結露を防止するために設定された下限温度である。これにより、節炭器の伝熱管での結露及びそれによる腐食を確実に防止することができる。   More preferably, the predetermined temperature is a lower limit temperature set in order to prevent dew condensation in the heat transfer tube of the economizer. Thereby, the dew condensation by the heat exchanger tube of a economizer and corrosion by it can be prevented reliably.

本発明の再燃ボイラの節炭器の温度制御装置は、内燃機関の排気ガスを燃焼空気として使用する再燃ボイラと、再燃ボイラの排気ガス路内に配設されて給水を蒸気化する蒸発器と、排気ガス路内に蒸発器の下流側に配設されて蒸発器へ供給する給水を加熱する節炭器と、給水を節炭器へ給水路を通して加圧供給する給水ポンプとを備えた再燃ボイラの節炭器の温度制御装置において、節炭器で加熱された給水を節炭器の出口側から給水ポンプの入口側へ再循環させる再循環路と、この再循環路及び給水ポンプと節炭器との間の給水路にそれぞれ介挿されて、給水路内を流れる給水と再循環路内を流れる上記節炭器で加熱された給水との間で熱交換を行なう熱交換器と、熱交換器の下流側の再循環路に介挿されて、この再循環路内を流れる給水の流量調節を行なう循環水流量調節手段とを備えるから、排気ガス中の酸性水分の結露による節炭器の伝熱管の腐食を防止するものであって、特に省エネルギ化及び設備コストの削減を図ることができると共に、給水配管中でのウォータハンマ現象を防止することができるという格別の効果を奏する。   A temperature control device for a refueling boiler economizer according to the present invention includes a reburning boiler that uses exhaust gas of an internal combustion engine as combustion air, an evaporator that is disposed in an exhaust gas passage of the reburning boiler and vaporizes feed water, and A reburning system comprising a economizer that heats feed water that is disposed in the exhaust gas path downstream of the evaporator and that supplies water to the evaporator, and a feed pump that pressurizes and supplies the feedwater to the economizer through the feed path In a temperature control device for a boiler economizer, a recirculation path for recirculating feed water heated by the economizer from the outlet side of the economizer to the inlet side of the feed water pump, and the recirculation path and the feed water pump and the economizer A heat exchanger that is inserted into a water supply channel between the charcoal unit and performs heat exchange between the water supply flowing through the water supply channel and the water supply heated by the economizer flowing through the recirculation channel; Water that is inserted into the recirculation path downstream of the heat exchanger and flows through this recirculation path Since it is equipped with circulating water flow rate adjusting means for adjusting the flow rate, it prevents corrosion of the heat transfer tubes of the economizer due to condensation of acidic moisture in the exhaust gas, and in particular, saves energy and reduces equipment costs. In addition, the water hammer phenomenon in the water supply pipe can be prevented.

図1は、一実施の形態としての再燃ボイラによる蒸気発生システムを示し、再燃ボイラ2は、内燃機関の排気ガスを燃焼空気として使用して追焚燃料を燃焼させる燃焼室4と、この燃焼室4で燃焼した燃焼ガス(排気ガス)を排気させる排気ガス路6とを有する。排気ガス路6内には、過熱蒸気を発生させるための過熱器8、飽和蒸気を発生させるための蒸発器10、蒸発器10へ供給する給水を加熱するための節炭器12とが、上流側から下流側へこの順に配設される。   FIG. 1 shows a steam generation system using a recombustion boiler as an embodiment. A recombustion boiler 2 uses a combustion chamber 4 for combusting additional fuel using exhaust gas from an internal combustion engine as combustion air, and the combustion chamber. 4 and an exhaust gas passage 6 for exhausting the combustion gas (exhaust gas) burned in 4. In the exhaust gas passage 6, a superheater 8 for generating superheated steam, an evaporator 10 for generating saturated steam, and a economizer 12 for heating feed water supplied to the evaporator 10 are upstream. They are arranged in this order from the side to the downstream side.

節炭器12で加熱された給水は、給水路14を通り、流量調節弁16を介して蒸発器10に導かれて飽和蒸気となる。蒸発器10で発生した飽和蒸気は、蒸気路18を通して過熱器8に導かれて過熱蒸気となった後に、蒸気路20を通して工場に送気される。   The feed water heated by the economizer 12 passes through the feed channel 14 and is led to the evaporator 10 via the flow rate control valve 16 to become saturated steam. The saturated steam generated in the evaporator 10 is led to the superheater 8 through the steam path 18 to become superheated steam, and then sent to the factory through the steam path 20.

ボイラ2の給水は、外部の給水源に通じる給水路22によって給水ポンプ24に導かれる。給水ポンプ24は給水を節炭器12へ給水路22を通して加圧供給する。給水ポンプ24の出口と節炭器12の入口との間の給水路22には、熱交換器26が介挿される。また、節炭器12の出口側から分岐して上述の給水ポンプ24の入口側に導かれる再循環路28が配設され、この再循環路28には上述の熱交換器26及び循環水流量調節弁(循環水流量調節手段)30が、節炭器12の出口側から給水ポンプ24の入口側へこの順にそれぞれ介挿される。   The water supply of the boiler 2 is guided to the water supply pump 24 through a water supply path 22 that leads to an external water supply source. The water supply pump 24 pressurizes and supplies water to the economizer 12 through the water supply path 22. A heat exchanger 26 is interposed in the water supply path 22 between the outlet of the water supply pump 24 and the inlet of the economizer 12. A recirculation path 28 branched from the outlet side of the economizer 12 and led to the inlet side of the water supply pump 24 is disposed. The recirculation path 28 includes the heat exchanger 26 and the circulating water flow rate. A control valve (circulating water flow rate adjusting means) 30 is inserted in this order from the outlet side of the economizer 12 to the inlet side of the feed water pump 24.

すなわち、再循環路は節炭器12で加熱された給水を節炭器12の出口側から給水ポンプの入口側へ再循環させ、熱交換器26は給水路22内を流れる給水と再循環路28内を流れる節炭器12で加熱された給水との間の熱交換を行なうと共に、循環水流量調節弁30が再循環路28内を流れる節炭器12で加熱された給水の流量を調節する。   That is, the recirculation path recirculates the feed water heated by the economizer 12 from the outlet side of the economizer 12 to the inlet side of the feed water pump, and the heat exchanger 26 supplies the feed water and the recirculation path flowing in the feed water path 22. While performing heat exchange with the feed water heated by the economizer 12 flowing in the interior 28, the circulating water flow rate adjustment valve 30 adjusts the flow rate of the feed water heated by the economizer 12 flowing in the recirculation path 28. To do.

熱交換器26の出口と節炭器12の入口との間の給水路22には、節炭器12の入口給水温度Twを検出するための給水温度検出センサ32が配設される。この給水温度検出センサ32はコントローラ34と電気的に接続され、コントローラ34はこの給水温度検出センサ32が検出した給水温度Twに基づいて、上述の循環水流量調節弁30の作動を制御する。   A water supply temperature detection sensor 32 for detecting the inlet water supply temperature Tw of the economizer 12 is disposed in the water supply path 22 between the outlet of the heat exchanger 26 and the inlet of the economizer 12. The feed water temperature detection sensor 32 is electrically connected to the controller 34, and the controller 34 controls the operation of the circulating water flow rate adjustment valve 30 based on the feed water temperature Tw detected by the feed water temperature detection sensor 32.

次に、上述の再燃ボイラによる蒸気発生システムの作動について、図2を追加参照して説明する。   Next, the operation of the steam generation system using the above-described refired boiler will be described with additional reference to FIG.

コントローラ34は、給水温度検出センサ32が検出した節炭器12の入口給水温度Twを読み込み(ステップS2)、この節炭器12の入口給水温度Twが所定温度T1以上であるか否かを判定する(ステップS4)。ここで、この所定温度T1は、節炭器12の伝熱管での結露を防止するために設定された下限温度である。   The controller 34 reads the inlet water supply temperature Tw of the economizer 12 detected by the feedwater temperature detection sensor 32 (step S2), and determines whether the inlet water supply temperature Tw of the economizer 12 is equal to or higher than a predetermined temperature T1. (Step S4). Here, the predetermined temperature T1 is a lower limit temperature set in order to prevent condensation in the heat transfer tube of the economizer 12.

ステップS4の判定結果が肯定(Yes)の場合、すなわち、節炭器12の入口給水温度Twが所定温度T1以上であり、節炭器12の伝熱管での結露発生の可能性がない場合には、上述のステップS2及びS4を繰り返す。一方、ステップS4の判定結果が否定(No)の場合、すなわち、節炭器12の入口給水温度Twが所定温度T1未満であり、節炭器12の伝熱管での結露発生の可能性がある場合には、節炭器12の入口給水温度Twが所定温度T1となるように、循環水流量調節弁30の調節量ΔVを決定する(ステップS6)。   When the determination result of step S4 is affirmative (Yes), that is, when the inlet water supply temperature Tw of the economizer 12 is equal to or higher than the predetermined temperature T1, and there is no possibility of occurrence of condensation in the heat transfer pipe of the economizer 12. Repeats steps S2 and S4 described above. On the other hand, when the determination result of step S4 is negative (No), that is, the inlet water supply temperature Tw of the economizer 12 is lower than the predetermined temperature T1, and there is a possibility that condensation occurs in the heat transfer tube of the economizer 12. In this case, the adjustment amount ΔV of the circulating water flow rate adjustment valve 30 is determined so that the inlet water supply temperature Tw of the economizer 12 becomes the predetermined temperature T1 (step S6).

コントローラ34は、この調節量ΔVに基づいて循環水流量調節弁30を調節する。すなわち、コントローラ34は、節炭器12の入口の給水温度Twが常に節炭器12の伝熱管での結露を防止するための所定温度T1以上となるように自動調節する。そして、再び上述のステップS2以下を繰り返す。   The controller 34 adjusts the circulating water flow rate adjustment valve 30 based on the adjustment amount ΔV. That is, the controller 34 automatically adjusts so that the feed water temperature Tw at the inlet of the economizer 12 is always equal to or higher than a predetermined temperature T1 for preventing condensation in the heat transfer tube of the economizer 12. And the above-mentioned step S2 and subsequent steps are repeated again.

上述の再燃ボイラの節炭器の温度制御装置によれば、熱交換器26が、給水路22内を流れる給水を再循環路28内を流れる節炭器12で加熱された給水により加熱するから、節炭器12に供給される給水温度Twは高くなり、すなわち、節炭器12の伝熱管での結露を防止するために設定された下限温度T1以上となる。したがって、排気ガス中の酸性水分の結露による節炭器12の伝熱管の腐食を確実に防止することができる。   According to the temperature control device for the economizer of the refired boiler described above, the heat exchanger 26 heats the feed water flowing in the feed water path 22 by the feed water heated by the economizer 12 flowing in the recirculation path 28. The feed water temperature Tw supplied to the economizer 12 becomes high, that is, the temperature becomes equal to or higher than the lower limit temperature T1 set to prevent condensation in the heat transfer tube of the economizer 12. Therefore, corrosion of the heat transfer tube of the economizer 12 due to condensation of acidic moisture in the exhaust gas can be reliably prevented.

また、節炭器12から出た給水の一部を利用して節炭器12へ供給される給水を加熱しているが、この加熱による給水の昇温は排気ガスからの回収熱量の増加分によるものなので、従来の過熱蒸気などの高温熱源を用いて加熱する装置に比べ、ボイラ効率が低下することなく、省エネルギ化を図ることができる。さらに、再循環路28内を流れる節炭器12で加熱された給水は熱交換器26で冷却されて温度低下した後に、給水ポンプ24の入口側の低圧の給水路22内へ再循環されるから、従来の装置において必要とされた高温水用の節炭器循環ポンプが不要となり、設備面でのコスト削減を図ることができると共に、従来の装置で発生する給水配管中でのウォータハンマ現象を確実に防止することができる。   Moreover, although the feed water supplied to the economizer 12 is heated using a part of the feedwater discharged from the economizer 12, the temperature rise of the feedwater due to this heating is an increase in the amount of recovered heat from the exhaust gas. Therefore, it is possible to save energy without lowering the boiler efficiency as compared with a conventional apparatus that uses a high-temperature heat source such as superheated steam. Further, the feed water heated by the economizer 12 flowing in the recirculation path 28 is cooled by the heat exchanger 26 and the temperature is lowered, and then recirculated into the low-pressure feed path 22 on the inlet side of the feed water pump 24. Therefore, the economizer circulation pump for high-temperature water required in the conventional device is no longer necessary, and the cost of the equipment can be reduced, and the water hammer phenomenon in the water supply pipe that occurs in the conventional device Can be reliably prevented.

本発明は、上述の一実施の形態に制約されるものではない。例えば、上述の所定温度は、必ずしも節炭器の伝熱管での結露を防止するためだけの温度として設定する必要はない。給水予熱器などのその他の要素について、又はその他の要素も含めて設定することができる。   The present invention is not limited to the above-described embodiment. For example, the above-mentioned predetermined temperature does not necessarily need to be set as a temperature only for preventing condensation in the heat transfer tube of the economizer. It can be set about other elements, such as a feed water preheater, or including other elements.

本発明の再燃ボイラの節炭器の温度制御装置を、下記の条件下で実施した場合の効果について検討した。   The effect at the time of implementing the temperature control apparatus of the economizer of the refired boiler of this invention on the following conditions was examined.

(検討条件)
ボイラ排気ガス流量:10,000m3 N/h
節炭器入口ガス温度:200°C
ボイラ給水流量:4.0t/h
ボイラ給水温度:20°C
節炭器入口給水温度:60°C
節炭器出口給水温度:120°C
ボイラ給水ポンプ入口給水圧力:0.1MPa(G)
ボイラ給水ポンプ出口給水圧力:1.0MPa(G)
(Consideration conditions)
Boiler exhaust gas flow rate: 10,000 m 3 N / h
Gas saver inlet gas temperature: 200 ° C
Boiler feed water flow rate: 4.0t / h
Boiler feed water temperature: 20 ° C
Water saver inlet water supply temperature: 60 ° C
Water saving outlet water supply temperature: 120 ° C
Boiler feed pump inlet feed water pressure: 0.1 MPa (G)
Boiler feed pump outlet feed water pressure: 1.0 MPa (G)

(検討結果)
上記の検討条件を満たす節炭器について、図1に示す本発明の再燃ボイラの節炭器の温度制御装置を実施した場合、ボイラ給水ポンプ入口給水圧力は0.1MPa(G)であるから、飽和温度は約100°Cである。また、ボイラ給水ポンプ出口給水圧力は1.0MPa(G)であるから、飽和温度は184°Cである。
(Study results)
For the economizer that satisfies the above consideration conditions, when the temperature control device of the economizer of the refired boiler of the present invention shown in FIG. 1 is implemented, the boiler feed pump inlet feed water pressure is 0.1 MPa (G). The saturation temperature is about 100 ° C. Moreover, since the boiler feed pump outlet feed water pressure is 1.0 MPa (G), the saturation temperature is 184 ° C.

一方、節炭器出口給水温度は120°Cであり、蒸気は発生しない。しかしながら、この給水をボイラ給水ポンプの入口側へ戻すと、ボイラ給水ポンプ入口の飽和温度である100°Cよりも高温の水が入ってくるため、循環水流量調節弁の下流で必ずフラッシングを起こし、この蒸気と飽和水の混合物が20°Cのボイラ給水と混合する部分においては、発生した蒸気が凝縮して水になるときに激しいウォータハンマ現象を起こす。   On the other hand, the economizer outlet feed water temperature is 120 ° C., and no steam is generated. However, if this feed water is returned to the boiler feed pump inlet side, water that is hotter than 100 ° C, which is the saturation temperature of the boiler feed pump inlet, will enter, so flushing will always occur downstream of the circulating water flow control valve. In a portion where the mixture of steam and saturated water is mixed with boiler feed water at 20 ° C., a severe water hammer phenomenon occurs when the generated steam condenses into water.

図1に示すように、これを避けるために循環水を給水ポンプ24の入口水に混合する前に、低温のボイラ給水によって冷却するための熱交換器26を設け、この熱交換器26によって循環水を高圧の状態で100°Cよりも低い温度に冷却する。これによって、熱交換器26の出口側に設けた循環水流量調節弁30により1.0MPa(G)から0.1MPa(G)に減圧しても、蒸気は発生しない。   As shown in FIG. 1, in order to avoid this, a heat exchanger 26 for cooling by low-temperature boiler feed water is provided before circulating water is mixed with the inlet water of the feed water pump 24, and is circulated by the heat exchanger 26. Cool the water under high pressure to a temperature below 100 ° C. Thus, no steam is generated even if the pressure is reduced from 1.0 MPa (G) to 0.1 MPa (G) by the circulating water flow rate adjustment valve 30 provided on the outlet side of the heat exchanger 26.

したがって、この冷却された循環水を給水ポンプ24の入口水に混合しても、ウォータハンマ現象を起こすことは無い。また、この温度制御装置により、節炭器入口給水温度を60°Cに昇温することができる。したがって、排気ガス中の酸性水分の結露による節炭器12の伝熱管の腐食を確実に防止することができる。   Therefore, even if this cooled circulating water is mixed with the inlet water of the feed water pump 24, the water hammer phenomenon does not occur. Further, the temperature control device can raise the feed water temperature of the economizer to 60 ° C. Therefore, corrosion of the heat transfer tube of the economizer 12 due to condensation of acidic moisture in the exhaust gas can be reliably prevented.

また、120°Cの節炭器出口水の循環水流量は2.4t/hであり、このときの節炭器出口の排気ガス温度は87°Cとなる。これに対し、外部熱源として1.0MPa(G)で飽和温度の加熱蒸気を用いた場合には、加熱蒸気の消費量は270kg/h程度となり、この熱量分だけ排気ガスから回収できなくなるので、排気ガス温度は100°C程度となる。   The circulating water flow rate of the economizer outlet water at 120 ° C is 2.4 t / h, and the exhaust gas temperature at the economizer outlet at this time is 87 ° C. On the other hand, when heating steam having a saturation temperature of 1.0 MPa (G) is used as an external heat source, the consumption amount of heating steam is about 270 kg / h, and this amount of heat cannot be recovered from the exhaust gas. The exhaust gas temperature is about 100 ° C.

すなわち、この排気ガスの温度上昇分(13°C)だけ排気ガス損失が増加したにことなり、再燃ボイラの熱効率はそれだけ低下する。このように、本発明の再燃ボイラの節炭器の温度制御装置は、省エネルギの観点からも極めて有効である。   That is, the exhaust gas loss is increased by the temperature rise (13 ° C.) of the exhaust gas, and the thermal efficiency of the reburning boiler is reduced accordingly. Thus, the temperature control device for the economizer of the refired boiler of the present invention is extremely effective from the viewpoint of energy saving.

一実施の形態としての再燃ボイラのシステムを示した概略図である。It is the schematic which showed the system of the recombustion boiler as one embodiment. 図1の再燃ボイラの節炭器の温度制御装置の作動を示すフローチャートである。It is a flowchart which shows the action | operation of the temperature control apparatus of the economizer of the recombustion boiler of FIG. 従来の再燃ボイラの節炭器の温度制御装置を示す概略図である。It is the schematic which shows the temperature control apparatus of the conventional economizer of a refired boiler. 別の従来の再燃ボイラの節炭器の温度制御装置を示す概略図である。It is the schematic which shows the temperature control apparatus of the economizer of another conventional refired boiler.

符号の説明Explanation of symbols

2 再燃ボイラ
4 燃焼室
6 排気ガス路
8 過熱器
10 蒸発器
12 節炭器
14 給水路
16 流量調節弁
18,20 蒸気路
22 給水路
24 給水ポンプ
26 熱交換器
28 再循環路
30 循環水流量調節弁(循環水流量調節手段)
32 給水温度検出センサ
34 コントローラ
100 過熱器
102 給水ポンプ
104 節炭器
106 節炭器循環ポンプ
Tw 給水温度
T1 所定温度
ΔV 調節量
2 Recombustion boiler 4 Combustion chamber 6 Exhaust gas path 8 Superheater 10 Evaporator 12 Carburizer 14 Water supply path 16 Flow control valve 18, 20 Steam path 22 Water supply path 24 Water supply pump 26 Heat exchanger 28 Recirculation path 30 Circulating water flow rate Control valve (circulating water flow rate adjusting means)
32 Feedwater temperature detection sensor 34 Controller 100 Superheater 102 Feedwater pump 104 Saver 106 Saver circulation pump Tw Feedwater temperature T1 Predetermined temperature ΔV Adjustment amount

Claims (4)

内燃機関の排気ガスを燃焼空気として使用する再燃ボイラ(2)と、前記再燃ボイラの排気ガス路(6)内に配設されて給水を蒸気化する蒸発器(10)と、前記排気ガス路(6)内に前記蒸発器の下流側に配設されて前記蒸発器へ供給する給水を加熱する節炭器(12)と、前記給水を前記節炭器へ給水路(22)を通して加圧供給する給水ポンプ(24)とを備えた再燃ボイラの節炭器の温度制御装置において、前記節炭器で加熱された前記給水を前記節炭器の出口側から前記給水ポンプの入口側へ再循環させる再循環路(28)と、前記再循環路及び前記給水ポンプと前記節炭器との間の前記給水路にそれぞれ介挿されて前記給水路内を流れる前記給水と前記再循環路内を流れる前記節炭器で加熱された給水との間で熱交換を行なう熱交換器(26)と、前記熱交換器の下流側の前記再循環路に介挿されて前記再循環路内を流れる前記給水の流量調節を行なう循環水流量調節手段(30)とを備えたことを特徴とする再燃ボイラの節炭器の温度制御装置。   A recombustion boiler (2) that uses exhaust gas of an internal combustion engine as combustion air, an evaporator (10) that is disposed in an exhaust gas passage (6) of the recombustion boiler and vaporizes feed water, and the exhaust gas passage (6) A economizer (12) which is disposed downstream of the evaporator and heats the feed water supplied to the evaporator, and pressurizes the feed water through the feed channel (22) to the economizer In a temperature control device for a economizer of a refired boiler having a feed water pump (24) to be fed, the feed water heated by the economizer is recirculated from an outlet side of the economizer to an inlet side of the feed pump. A recirculation path (28) to be circulated, and the water supply and the recirculation path that are inserted in the recirculation path and the water supply path between the water supply pump and the economizer, respectively, and flow in the water supply path. Heat exchanging heat with the feed water heated by the economizer And a circulation water flow rate adjusting means (30) for adjusting the flow rate of the feed water that is inserted in the recirculation channel on the downstream side of the heat exchanger and flows in the recirculation channel. A temperature control device for a economizer for a refired boiler. 前記節炭器(12)の入口の給水温度(Tw)を検出する給水温度検出センサ(32)と、前記給水温度検出センサが検出した前記給水温度に基づいて前記循環水流量調節手段(30)の作動を制御するコントローラ(34)とを備えたことを特徴とする請求項1に記載の再燃ボイラの節炭器の温度制御装置。   A feed water temperature detection sensor (32) for detecting the feed water temperature (Tw) at the inlet of the economizer (12), and the circulating water flow rate adjusting means (30) based on the feed water temperature detected by the feed water temperature detection sensor The temperature control device for a refueling boiler economizer according to claim 1, further comprising a controller (34) for controlling the operation of the reburning boiler. 前記コントローラ(34)は、前記給水温度検出センサ(32)が検出した前記給水温度(Tw)が所定温度(T1)以上となるように前記循環水流量調節手段(30)の作動を制御することを特徴とする請求項2に記載の再燃ボイラの節炭器の温度制御装置。   The controller (34) controls the operation of the circulating water flow rate adjusting means (30) so that the feed water temperature (Tw) detected by the feed water temperature detection sensor (32) is equal to or higher than a predetermined temperature (T1). The temperature control device of the economizer of the refired boiler according to claim 2 characterized by these. 前記所定温度(T1)は、前記節炭器(12)の伝熱管での結露を防止するために設定された下限温度であることを特徴とする請求項3に記載の再燃ボイラの節炭器の温度制御装置。
The said predetermined temperature (T1) is a minimum temperature set in order to prevent the dew condensation in the heat exchanger tube of the said economizer (12), The economizer of the refired boiler of Claim 3 characterized by the above-mentioned. Temperature control device.
JP2006075760A 2006-03-18 2006-03-18 Temperature controller for fuel economizer of reheat boiler Pending JP2007248017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075760A JP2007248017A (en) 2006-03-18 2006-03-18 Temperature controller for fuel economizer of reheat boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075760A JP2007248017A (en) 2006-03-18 2006-03-18 Temperature controller for fuel economizer of reheat boiler

Publications (1)

Publication Number Publication Date
JP2007248017A true JP2007248017A (en) 2007-09-27

Family

ID=38592521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075760A Pending JP2007248017A (en) 2006-03-18 2006-03-18 Temperature controller for fuel economizer of reheat boiler

Country Status (1)

Country Link
JP (1) JP2007248017A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228222A (en) * 2013-05-24 2014-12-08 株式会社サムソン Boiler with water supply preheater
CN109458611A (en) * 2018-12-03 2019-03-12 西安热工研究院有限公司 A kind of device preventing low-temperature coal economizer of boiler dew point corrosion
JP2021135037A (en) * 2020-02-27 2021-09-13 Jfeスチール株式会社 Exhaust heat recovery boiler and operation method therefor
CN113513745A (en) * 2021-06-02 2021-10-19 华北电力科学研究院有限责任公司 Low-temperature economizer system with low-temperature corrosion self-blocking function and operation method
US11333348B2 (en) 2018-03-01 2022-05-17 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas cooler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225003A (en) * 1994-02-14 1995-08-22 Toshiba Corp Feed water apparatus for duplex pressure type waste heat boiler
JPH09209715A (en) * 1996-02-02 1997-08-12 Hitachi Ltd Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
JPH09257209A (en) * 1996-03-22 1997-09-30 Toshiba Corp Control device of combined cycle power generation cycle
JPH10281407A (en) * 1997-04-01 1998-10-23 Mitsubishi Heavy Ind Ltd Condensate preheater for exhaust heat recovery plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225003A (en) * 1994-02-14 1995-08-22 Toshiba Corp Feed water apparatus for duplex pressure type waste heat boiler
JPH09209715A (en) * 1996-02-02 1997-08-12 Hitachi Ltd Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
JPH09257209A (en) * 1996-03-22 1997-09-30 Toshiba Corp Control device of combined cycle power generation cycle
JPH10281407A (en) * 1997-04-01 1998-10-23 Mitsubishi Heavy Ind Ltd Condensate preheater for exhaust heat recovery plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228222A (en) * 2013-05-24 2014-12-08 株式会社サムソン Boiler with water supply preheater
US11333348B2 (en) 2018-03-01 2022-05-17 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas cooler
CN109458611A (en) * 2018-12-03 2019-03-12 西安热工研究院有限公司 A kind of device preventing low-temperature coal economizer of boiler dew point corrosion
JP2021135037A (en) * 2020-02-27 2021-09-13 Jfeスチール株式会社 Exhaust heat recovery boiler and operation method therefor
JP7184103B2 (en) 2020-02-27 2022-12-06 Jfeスチール株式会社 Exhaust heat recovery boiler and its operation method
CN113513745A (en) * 2021-06-02 2021-10-19 华北电力科学研究院有限责任公司 Low-temperature economizer system with low-temperature corrosion self-blocking function and operation method

Similar Documents

Publication Publication Date Title
JP5832102B2 (en) Boiler plant and operation method thereof
JP2010038537A (en) System and method for controlling stack temperature
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP5523810B2 (en) Combined cycle power generation facility and its feed water heating method
JP5130145B2 (en) Boiler plant, boiler plant control device and control method thereof
JP2010107128A (en) Oxygen burning boiler plant and method of controlling the same
CN103380329B (en) Boiler plant
JP6163994B2 (en) Oxygen combustion boiler exhaust gas cooler steam generation prevention device
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP2010084765A (en) Peak load management through combined cycle power generation augmentation using peaking cycle exhaust heat recovery
JP2007248018A (en) Control system for supply water preheater of reheat boiler
JP2007187352A (en) Starting method of boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JP6526763B2 (en) Boiler plant and boiler plant operation method
JP2007285553A (en) Control method of combustion boiler
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2006125760A (en) Exhaust heat recovery boiler and its control system
JP6103347B2 (en) Boiler forced cooling method after fire extinguishing of boiler in power generation equipment
JP2012057860A (en) Exhaust heat recovery device
WO2010036849A2 (en) Oxy-fuel combustion system having combined convective section and radiant section
KR101657877B1 (en) Industrial vapor boiler system
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method
JP4381242B2 (en) Marine steam turbine plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109