JPH09209715A - Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant - Google Patents

Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant

Info

Publication number
JPH09209715A
JPH09209715A JP1735496A JP1735496A JPH09209715A JP H09209715 A JPH09209715 A JP H09209715A JP 1735496 A JP1735496 A JP 1735496A JP 1735496 A JP1735496 A JP 1735496A JP H09209715 A JPH09209715 A JP H09209715A
Authority
JP
Japan
Prior art keywords
low
pressure gas
gas heater
condensate
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1735496A
Other languages
Japanese (ja)
Inventor
Toshikatsu Watanabe
敏克 渡辺
Hiroshi Arase
央 荒瀬
Tetsuzo Kuribayashi
哲三 栗林
Katsumi Ura
勝己 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP1735496A priority Critical patent/JPH09209715A/en
Publication of JPH09209715A publication Critical patent/JPH09209715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To prevent low-temperature corrosion by utilizing the exhaust gas of a gas turbine as boiler combustion air, and providing a heat exchanger utilizing the fluid circulated between a low-pressure gas heater inlet condensate system and a boiler water feed system to transfer heat to the low-pressure gas heater inlet condensate system. SOLUTION: This exhaust gas re-combustion type combined plant is provided with a high-pressure steam turbine 9 driven by the steam from a boiler 5, an intermediate- pressure steam turbine 10 driven by the steam obtained when the exhaust steam is reheated by the boiler 5, and a low-pressure steam turbine 11 driven by the exhaust steam of the intermediate-pressure steam turbine 10. A power generator 12 is driven by these steam turbines 9-11. The combined plant is also provided with a heat exchanger 29 heating condensate on the inlet side of a low-pressure gas heater 7 and a heat exchanger 30 heating feed water at the inlet of a high-pressure gas heater 6. The heat exchangers 29, 30 are connected by a pipe, a heat medium is circulated to increase the inlet condensate temperature of the low-pressure gas heater 7, and the low-temperature corrosion on the heat transfer surface of the low-pressure gas heater 7 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排気再燃型コンバイ
ンドプラントに係り、特に低温腐食防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recombustion type combined plant, and more particularly to a low temperature corrosion prevention device.

【0002】[0002]

【従来の技術】図1は従来の排気再燃型コンバインドプ
ラントの系統図である。
2. Description of the Related Art FIG. 1 is a system diagram of a conventional exhaust gas re-combustion combined plant.

【0003】ボイラへの燃焼用空気供給系統には発電機
4の軸を駆動するガスタービン(圧縮機1,燃焼器2,
タービン3)と押込み通風機20、及び空気予熱器21
を備える。
In the combustion air supply system to the boiler, a gas turbine (compressor 1, combustor 2,
Turbine 3), forced draft fan 20, and air preheater 21
Is provided.

【0004】ボイラ排ガス系には高圧ガスヒータ6,低
圧ガスヒータ7,誘引通風機22、及び煙突8を備え
る。空気予熱器21はボイラ吸気・排気の熱交換器であ
るので、排ガス系統の機器でもある。
The boiler exhaust gas system is equipped with a high pressure gas heater 6, a low pressure gas heater 7, a draft fan 22, and a chimney 8. Since the air preheater 21 is a boiler heat exchanger for intake / exhaust air, it is also an exhaust gas system device.

【0005】蒸気タービン側のサイクルは以下から構成
される。まず、蒸気部分として、給水を蒸気に変換する
ボイラ5,ボイラ5で発生した蒸気により駆動される高
圧蒸気タービン9,高圧蒸気タービン9の排気蒸気をボ
イラ5で再熱した蒸気により駆動される中圧蒸気タービ
ン10、及び中圧蒸気タービン10の排気蒸気により駆
動される低圧蒸気タービン11。なお発電機12はこれ
らの蒸気タービンにより駆動される。次に復水・給水系
統は、低圧蒸気タービン11の排気蒸気を復水化する復
水器13,復水器13の復水を昇圧して復水系統に吐出
する復水ポンプ14,復水ポンプ14から供給された復
水を低圧蒸気タービン11の抽気蒸気により加熱する低
圧給水加熱器15,低圧給水加熱器15に並列に設置さ
れたボイラ排気との熱交換を行う低圧ガスヒータ7,低
圧ガスヒータ7の出口復水温度を脱気器16の器内温度
より低く制御するために、低圧給水加熱器15側に対す
る低圧ガスヒータ7の通過復水流量比を制御する低圧ガ
スヒータ復水流量分配調節弁25,低圧ガスヒータ復水
流量分配調節弁25を全開にしても低圧ガスヒータ7の
出口復水温度を抑えきれない場合に、低圧ガスヒータ7
の出口から復水を復水器13へダンプする復水ダンプ系
統19、及び復水ダンプ流量を調節する復水ダンプ流量
調節弁26,低圧ガスヒータ出口復水を入口側に再循環
させ低圧ガスヒータ入口復水温度を上昇させる低圧ガス
ヒータ再循環系統23,低圧給水加熱器15、及び低圧
ガスヒータ7から供給された復水を中圧蒸気タービン1
0の抽気蒸気で脱気する脱気器16,脱気器16により
脱気された復水を昇圧して給水系統に吐出する給水ポン
プ17と、給水ポンプ17から供給された給水を高圧蒸
気タービン9の抽気蒸気により加熱する高圧給水加熱器
18、及び高圧給水加熱器18に並列に設置されたボイ
ラ排気との熱交換を行う高圧ガスヒータ6。
The steam turbine side cycle is composed of the following: First, as a steam portion, a boiler 5 for converting feed water into steam, a high-pressure steam turbine 9 driven by steam generated in the boiler 5, and an exhaust steam of the high-pressure steam turbine 9 driven by steam reheated in the boiler 5 A low pressure steam turbine 11 driven by the exhaust steam of the pressure steam turbine 10 and the intermediate pressure steam turbine 10. The generator 12 is driven by these steam turbines. Next, in the condensate / water supply system, a condenser 13 for condensing the exhaust steam of the low-pressure steam turbine 11, a condensate pump 14 for boosting the condensate of the condenser 13 and discharging it to the condensate system, a condensate A low-pressure feed water heater 15 that heats the condensate supplied from the pump 14 by the extracted steam of the low-pressure steam turbine 11, a low-pressure gas heater 7 that exchanges heat with the boiler exhaust installed in parallel with the low-pressure feed water heater 15, a low-pressure gas heater In order to control the outlet condensate temperature of No. 7 lower than the internal temperature of the deaerator 16, the low pressure gas heater condensate flow rate distribution control valve 25 for controlling the passing condensate flow rate ratio of the low pressure gas heater 7 to the low pressure feed water heater 15 side. If the outlet condensate temperature of the low pressure gas heater 7 cannot be suppressed even if the low pressure gas heater condensate flow distribution control valve 25 is fully opened, the low pressure gas heater 7
Condensate dump system 19 for dumping condensate from the outlet to the condenser 13, condensate dump flow rate control valve 26 for adjusting the condensate dump flow rate, low pressure gas heater outlet Condensate is recirculated to the inlet side, and low pressure gas heater inlet The low-pressure gas heater recirculation system 23 that raises the condensate temperature, the low-pressure feed water heater 15, and the low-pressure gas heater 7 supply the condensate to the medium-pressure steam turbine 1.
A deaerator 16 that deaerates with 0 extraction steam, a water supply pump 17 that pressurizes condensate deaerated by the deaerator 16 and discharges it to a water supply system, and a water supply supplied from the water supply pump 17 to a high-pressure steam turbine. The high-pressure feed water heater 18 that is heated by the extracted steam of 9 and the high-pressure gas heater 6 that exchanges heat with the boiler exhaust gas that is installed in parallel with the high-pressure feed water heater 18.

【0006】従来技術の排気再燃型コンバインドプラン
トにおけるボイラ5の吸気・排気系統の流れを以下に説
明する。
The flow of the intake / exhaust system of the boiler 5 in the exhaust gas reburn type combined plant of the prior art will be described below.

【0007】ボイラ5への燃焼用空気として、ガスター
ビン3の排ガスと押込み通風機20からの押込空気を供
給する。ガスタービン排ガスは500℃以上の高温ガス
であるため、空気予熱器21出口の200℃以上のボイ
ラ吸込空気と合流させ、ボイラ5へ供給する。一方、ボ
イラ5の排気は出口ガス温度が350℃程度と比較的高
温であるため空気予熱器21でボイラ吸気への熱回収を
図り、高圧ガスヒータ6で給水に熱回収を図り、更に高
圧ガスヒータ6からの排ガスを低圧ガスヒータ7で復水
に熱回収を図る。
Exhaust gas from the gas turbine 3 and forced air from the forced draft fan 20 are supplied to the boiler 5 as combustion air. Since the gas turbine exhaust gas is a high temperature gas of 500 ° C. or higher, it is combined with the boiler suction air of 200 ° C. or higher at the outlet of the air preheater 21 and supplied to the boiler 5. On the other hand, since the exhaust gas temperature of the exhaust gas of the boiler 5 is relatively high at about 350 ° C., the air preheater 21 is used to recover heat to the boiler intake air, the high pressure gas heater 6 is used to recover heat to the feed water, and the high pressure gas heater 6 is also used. The low-pressure gas heater 7 recovers heat from the exhaust gas from the condensate.

【0008】排気再燃型コンバインドプラントにおけ
る、給水・復水とボイラ排ガスの温度勾配線図を図2に
示す。図2で、a〜eはボイラ出口から低圧ガスヒータ
出口までのボイラ排気温度変化曲線を、A〜Fは低圧ガ
スヒータ入口の低圧ガスヒータ再循環系統合流前からボ
イラ入口までの復水・給水温度変化曲線を示す。ボイラ
排気温度変化曲線a〜eで、ボイラ排気はaからeに向
かって流れる。aはボイラ出口、bは高圧ガスヒータ入
口、cは高圧ガスヒータ出口、dは低圧ガスヒータ入
口、eは低圧ガスヒータ出口のボイラ排ガス温度を示
す。復水・給水温度変化曲線A〜Fで、復水・給水はA
からFに向かって流れる。Aは低圧ガスヒータ再循環系
統合流前、Bは低圧ガスヒータ入口、Cは低圧ガスヒー
タ出口、Dは高圧ガスヒータ入口、Eは高圧ガスヒータ
出口、そしてFはボイラ入口給水温度を示す。ここで、
AからBの復水温度上昇は、低圧ガスヒータ入口部に、
低圧ガスヒータ出口部の復水を再循環させることによる
復水温度の上昇を示す。
FIG. 2 shows a temperature gradient diagram of feed water / condensate and boiler exhaust gas in an exhaust gas re-combustion combined plant. In FIG. 2, a to e are boiler exhaust temperature change curves from the boiler outlet to the low pressure gas heater outlet, and A to F are condensate / feed water temperature change curves from before the low pressure gas heater recirculation system integrated flow at the low pressure gas heater inlet to the boiler inlet. Indicates. In the boiler exhaust temperature change curves a to e, the boiler exhaust flows from a to e. a is a boiler outlet, b is a high pressure gas heater inlet, c is a high pressure gas heater outlet, d is a low pressure gas heater inlet, and e is a boiler exhaust gas temperature at a low pressure gas heater outlet. Condensate / Water Supply Temperature Change Curves A to F
Flows from F to F. A is the low pressure gas heater recirculation system integrated flow, B is the low pressure gas heater inlet, C is the low pressure gas heater outlet, D is the high pressure gas heater inlet, E is the high pressure gas heater outlet, and F is the boiler inlet feed water temperature. here,
The condensate temperature rise from A to B occurs at the low pressure gas heater inlet.
The increase in the condensate temperature due to recirculation of the condensate at the outlet of the low-pressure gas heater is shown.

【0009】これは、低圧ガスヒータ伝熱管外面部の温
度をイオウ分の酸露点温度以上に維持し、排ガス中のイ
オウ分が凝縮水分として付着することによる腐食を防止
するために、低圧ガスヒータの入口復水温度を上昇させ
るものであるが、従来技術の排気再燃型コンバインドプ
ラントではその方法として、低圧ガスヒータ出口から復
水を取り出し低圧ガスヒータ再循環ポンプを運転し、低
圧ガスヒータ再循環流量調節弁で再循環流量を調節する
ことが行われている。
This is to maintain the temperature of the outer surface of the heat transfer tube of the low-pressure gas heater above the acid dew point temperature of the sulfur component and prevent corrosion due to the sulfur component in the exhaust gas adhering as condensed water to the inlet of the low-pressure gas heater. Although it raises the condensate temperature, in the conventional exhaust gas reburn type combined plant, the condensate is taken out from the low pressure gas heater outlet, the low pressure gas heater recirculation pump is operated, and the low pressure gas heater recirculation flow rate control valve Circulating flow rates are being adjusted.

【0010】なお、排気再燃型コンバインドプラントに
関連するものとして、特開平4−209904号及び特開平4−
234506 号公報がある。
As related to the exhaust gas re-combustion type combined plant, JP-A-4-209904 and JP-A-4-209904
There is 234506 publication.

【0011】[0011]

【発明が解決しようとする課題】従来技術の排気再燃型
コンバインドプラントでは、低圧ガスヒータ入口復水温
度を上げ、低圧ガスヒータ7での低温腐食を防止する手
段として、再循環ポンプ27により低圧ガスヒータ7の
復水を再循環することにより温度制御していたが、この
制御手段のみで低圧ガスヒータ入口復水温度を上げ低温
腐食を防止するには、以下の問題がある。
In the exhaust gas re-combustion type combined plant of the prior art, as a means for raising the low pressure gas heater inlet condensate temperature and preventing low temperature corrosion in the low pressure gas heater 7, the low pressure gas heater 7 is cooled by the recirculation pump 27. The temperature was controlled by recirculating the condensate, but there are the following problems to raise the condensate temperature of the low-pressure gas heater inlet to prevent low temperature corrosion only by this control means.

【0012】(a)高圧ガスヒータと高圧給水加熱器間
の給水分配制御代を大きくとる必要があり、同一の蒸気
タービン負荷に対する給水系統の圧力変動幅が大きくな
り、ボイラ給水流量制御系が複雑化する。
(A) It is necessary to take a large amount of water distribution control between the high-pressure gas heater and the high-pressure feed water heater, the pressure fluctuation range of the water supply system for the same steam turbine load becomes large, and the boiler feed water flow rate control system becomes complicated. To do.

【0013】(b)低圧ガスヒータと低圧給水加熱器間
の復水分配制御代を大きくとる必要があり、同一の蒸気
タービン負荷に対する復水系統の圧力変動幅が大きくな
り、脱気器水位制御系が複雑化する。
(B) A large amount of condensate distribution control is required between the low-pressure gas heater and the low-pressure feed water heater, and the pressure fluctuation range of the condensate system with respect to the same steam turbine load becomes large. Becomes complicated.

【0014】(c)低圧ガスヒータ復水再循環流量制御
を行う場合、同一の蒸気タービン負荷に対する復水系統
の圧力変動幅が大きくなり、低圧ガスヒータと低圧給水
加熱器間の復水分配制御,脱気器水位制御系が複雑化す
る。
(C) When the low pressure gas heater condensate recirculation flow rate control is performed, the pressure fluctuation width of the condensate system with respect to the same steam turbine load becomes large, and the condensate distribution control between the low pressure gas heater and the low pressure feed water heater and the dewatering control are performed. The air level control system becomes complicated.

【0015】(d)蒸気タービンからの抽気蒸気を加熱
源とする高圧給水加熱器、及び低圧給水加熱器側の給水
・復水流量比率が小さくなり過ぎると、抽気蒸気系統に
設置されている抽気逆止弁でチャタリング現象が発生す
るため、給水分配制御,復水分配制御範囲が制限され
る。
(D) If the feed water / condensate flow rate ratio on the high pressure feed water heater and the low pressure feed water heater side using the extracted steam from the steam turbine as a heating source becomes too small, the extraction steam installed in the extracted steam system. Since the chattering phenomenon occurs in the check valve, the feed water distribution control and condensate distribution control ranges are limited.

【0016】本発明の目的は、ガスタービンの排ガスを
ボイラ燃焼用空気として利用する排気再燃型コンバイン
ドプラントで、低圧ガスヒータ入口復水系統とボイラ給
水系統,低圧ガスヒータ出口復水系統のいずれか、又は
二つの系統の組合せで、密閉サイクルを循環する流体に
より系統間の熱移動を行う熱交換器を設け、低圧ガスヒ
ータ入口復水系統への熱交換をし低圧ガスヒータ入口復
水温度をイオウ分の酸露点温度以上に上げることによ
り、低圧ガスヒータでの低温腐食を防止する排気再燃型
コンバインドプラントの低温腐食防止装置を提供するこ
とにある。
An object of the present invention is an exhaust gas re-combustion type combined plant that uses the exhaust gas of a gas turbine as boiler combustion air, and either a low pressure gas heater inlet condensate system, a boiler feed water system, or a low pressure gas heater outlet condensate system, or A combination of the two systems is equipped with a heat exchanger that transfers heat between the systems using a fluid that circulates in a closed cycle, exchanges heat with the low pressure gas heater inlet condensate system, and changes the condensate temperature of the low pressure gas heater inlet with the sulfur content of acid. An object of the present invention is to provide a low-temperature corrosion prevention device for an exhaust gas re-combustion combined plant, which prevents low-temperature corrosion in a low-pressure gas heater by raising the dew-point temperature or higher.

【0017】[0017]

【課題を解決するための手段】本発明は、低圧ガスヒー
タ入口復水系統とボイラ給水系統,低圧ガスヒータ出口
復水系統のいずれか、又は二つの系統に熱交換器を設
け、各熱交換器間を密閉サイクルで結び熱移動媒体とな
る流体を循環させることにより、低圧ガスヒータ入口復
水温度を上げ、低温腐食を防止するものであるが、低圧
ガスヒータ入口復水温度を上げ、低温腐食を防止する手
段として再循環ポンプ27による低圧ガスヒータ7の復
水再循環流量の制御のみを行う場合に指摘される各種の
問題点が克服される。
According to the present invention, a heat exchanger is provided in any one of a low pressure gas heater inlet condensate system and a boiler feed water system, a low pressure gas heater outlet condensate system or between two heat exchangers. The low pressure gas heater inlet condensate temperature is raised and low temperature corrosion is prevented by circulating a fluid that serves as a heat transfer medium in a closed cycle, but the low pressure gas heater inlet condensate temperature is raised to prevent low temperature corrosion. Various problems pointed out when only the condensate recirculation flow rate of the low pressure gas heater 7 is controlled by the recirculation pump 27 as means are overcome.

【0018】以上のことから創作した本発明の構成、及
び手段は次のようである。
The structure and means of the present invention created from the above are as follows.

【0019】(a)排気再燃型コンバインドプラントの
低温腐食防止装置として低圧ガスヒータ入口復水系統と
ボイラ給水系統,低圧ガスヒータ出口復水系統のいずれ
か、又は二つの系統に熱交換器を設ける。
(A) As a low temperature corrosion prevention device for an exhaust gas reburn type combined plant, a heat exchanger is provided in either the low pressure gas heater inlet condensate system, the boiler feed water system, the low pressure gas heater outlet condensate system, or in two systems.

【0020】(b)設置した交換器間を密閉サイクルで
結び熱移動媒体となる流体を循環させる。
(B) A fluid serving as a heat transfer medium is circulated by connecting the installed exchangers in a closed cycle.

【0021】(c)熱交換器間を循環する流体の流量を
変化させることにより設定した熱交換器の交換熱量を制
御する。
(C) The set heat exchange amount of the heat exchanger is controlled by changing the flow rate of the fluid circulating between the heat exchangers.

【0022】従来の排気再燃型コンバインドプラントで
は低圧ガスヒータ入口復水温度を上げ、低温腐食を防止
する手段として低圧ガスヒータ7の復水の再循環により
低圧ガスヒータ入口復水温度を酸露点温度以上にしてい
たが、本発明では各系統に熱交換器を設け、各熱交換器
間を密閉サイクルで結び熱移動媒体となる流体を循環さ
せることにより、低圧ガスヒータ入口復水温度を上げる
低温腐食防止装置を設ける。すなわち、独立した密閉サ
イクル内の流体により熱交換を行うため各ヒータ,ガス
ヒータでの回収熱量比に幅ができ制御性がよくなる。
In the conventional exhaust gas re-combustion combined plant, the condensate temperature of the low pressure gas heater is set to be equal to or higher than the acid dew point temperature by increasing the condensate temperature of the low pressure gas heater and recirculating the condensate of the low pressure gas heater 7 as a means for preventing low temperature corrosion. However, in the present invention, a low-temperature corrosion prevention device for raising the low-pressure gas heater inlet condensate temperature is provided by providing a heat exchanger in each system and circulating a fluid serving as a heat transfer medium by connecting the heat exchangers in a closed cycle. Set up. That is, since the heat exchange is performed by the fluid in the independent closed cycle, the recovered heat quantity ratio in each heater and the gas heater can be varied, and the controllability is improved.

【0023】[0023]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0024】図3は本発明の一実施例に係る排気再燃型
コンバインドプラントに低温腐食防止装置を設けた構成
図である。
FIG. 3 is a configuration diagram in which an exhaust gas reburning type combined plant according to an embodiment of the present invention is provided with a low temperature corrosion prevention device.

【0025】ボイラへの燃焼用空気供給系統には発電機
4の軸を駆動するガスタービン(圧縮機1,燃焼器2,
タービン3)と押込み通風機20、及び空気予熱器21
を備える。
In the combustion air supply system to the boiler, a gas turbine (compressor 1, combustor 2,
Turbine 3), forced draft fan 20, and air preheater 21
Is provided.

【0026】ボイラ排ガス系には高圧ガスヒータ6,低
圧ガスヒータ7,誘引通風機22、及び煙突8を備え
る。空気予熱器21はボイラ吸気・排気の熱交換器であ
るので、排ガス系統の機器でもある。
The boiler exhaust gas system is provided with a high pressure gas heater 6, a low pressure gas heater 7, an induced draft fan 22, and a chimney 8. Since the air preheater 21 is a boiler heat exchanger for intake / exhaust air, it is also an exhaust gas system device.

【0027】蒸気タービン側のサイクルは以下から構成
される。まず、蒸気部分として、給水を蒸気に変換する
ボイラ5,ボイラ5で発生した蒸気により駆動される高
圧蒸気タービン9,高圧蒸気タービン9の排気蒸気をボ
イラ5で再熱した蒸気により駆動される中圧蒸気タービ
ン10、及び中圧蒸気タービン10の排気蒸気により駆
動される低圧蒸気タービン11。なお発電機12はこれ
らの蒸気タービンにより駆動される。次に復水・給水系
統は、低圧蒸気タービン11の排気蒸気を復水化する復
水器13,復水器13の復水を昇圧して復水系統に吐出
する復水ポンプ14,復水ポンプ14から供給された復
水を低圧蒸気タービン11の抽気蒸気により加熱する低
圧給水加熱器15,低圧給水加熱器15に並列に設置さ
れたボイラ排気との熱交換を行う低圧ガスヒータ7,蒸
気タービン部分負荷での低圧ガスヒータ7の通過復水流
量を確保するための復水ダンプ系統19,低圧ガスヒー
タ7入口側で復水を加熱する熱交換器29,低圧給水加
熱器15、及び低圧ガスヒータ7から供給された復水を
中圧蒸気タービン10の抽気蒸気で脱気する脱気器1
6,脱気器16により脱気された復水を昇圧して給水系
統に吐出する給水ポンプ17と、給水ポンプ17から供
給された給水を高圧蒸気タービン9の抽気蒸気により加
熱する高圧給水加熱器18、及び高圧給水加熱器18に
並列に設置されたボイラ排気との熱交換を行う高圧ガス
ヒータ6,高圧ガスヒータ6入口で給水を加熱する熱交
換器30。
The cycle on the steam turbine side is composed of the following. First, as a steam portion, a boiler 5 for converting feed water into steam, a high-pressure steam turbine 9 driven by steam generated in the boiler 5, and an exhaust steam of the high-pressure steam turbine 9 driven by steam reheated in the boiler 5 A low pressure steam turbine 11 driven by the exhaust steam of the pressure steam turbine 10 and the intermediate pressure steam turbine 10. The generator 12 is driven by these steam turbines. Next, in the condensate / water supply system, a condenser 13 for condensing the exhaust steam of the low-pressure steam turbine 11, a condensate pump 14 for boosting the condensate of the condenser 13 and discharging it to the condensate system, a condensate Low-pressure feed water heater 15 that heats the condensate supplied from the pump 14 by the extracted steam of the low-pressure steam turbine 11, low-pressure gas heater 7 that performs heat exchange with the boiler exhaust installed in parallel with the low-pressure feed water heater 15, steam turbine From the condensate dump system 19 for securing the condensate flow rate of the low-pressure gas heater 7 under partial load, the heat exchanger 29 for heating the condensate at the inlet side of the low-pressure gas heater 7, the low-pressure feed water heater 15, and the low-pressure gas heater 7. A deaerator 1 for deaerating the supplied condensate with the extracted steam of the medium-pressure steam turbine 10.
6, a feed water pump 17 that pressurizes the condensate deaerated by the deaerator 16 and discharges it to the water supply system, and a high-pressure feed water heater that heats the feed water supplied from the feed water pump 17 by the extraction steam of the high-pressure steam turbine 9. 18, and a high-pressure gas heater 6 installed in parallel with the high-pressure feed water heater 18 for exchanging heat with the boiler exhaust gas 6, and a heat exchanger 30 for heating the feed water at the inlet of the high-pressure gas heater 6.

【0028】本実施例による低温腐食防止装置は以下か
ら構成される。低圧ガスヒータ7入口側で復水を加熱す
る熱交換器29,高圧ガスヒータ6入口で給水熱量を密
閉サイクル内に取り込む熱交換器30,各熱交換器2
9,30を連結する熱媒体の液体を循環させるための管
路,循環用ポンプ31,流量調節弁32、及び循環ポン
プミニマムフロー系統33。
The low-temperature corrosion prevention device according to this embodiment is composed of: A heat exchanger 29 that heats the condensate at the inlet side of the low-pressure gas heater 7, a heat exchanger 30 that takes in the heat quantity of the feed water into the closed cycle at the inlet side of the high-pressure gas heater 6, each heat exchanger 2
A pipe line for circulating the liquid of the heat medium that connects 9, 30 and 30, a circulation pump 31, a flow rate control valve 32, and a circulation pump minimum flow system 33.

【0029】本実施例の排気再燃型コンバインドプラン
トにおける給水・復水とボイラ排気ガス温度の関係を図
4の温度勾配線図に示す。
The relationship between the feed water / condensed water and the boiler exhaust gas temperature in the exhaust gas re-combustion combined plant of this embodiment is shown in the temperature gradient diagram of FIG.

【0030】図4で、a〜eは高圧ガスヒータ6入口か
ら低圧ガスヒータ7出口までのボイラ排気温度変化曲線
を、A〜Gは低圧ガスヒータ7の復水入口部に設置の本
発明による熱交換器29入口から高圧ガスヒータ6出口
までの復水・給水温度変化曲線を示す。ボイラ排気温度
変化曲線a〜eで、ボイラ排気はaからeに向かって流
れる。aはボイラ5出口、b〜cは高圧ガスヒータ6、
d〜eは低圧ガスヒータ7でのボイラ排気温度変化を示
す。復水・給水温度変化曲線A〜Gで、復水・給水はA
からGに向かって流れる。A〜Bは低圧ガスヒータ復水
入口部に設置の熱交換器29、B〜Cは低圧ガスヒータ
7、C〜D間の温度上昇は脱気器16、及び給水ポンプ
17、D〜Eは高圧ガスヒータ6給水入口部に設置の熱
交換器30、E〜Fは高圧ガスヒータ6でのボイラ排気
温度変化を示す。
In FIGS. 4A to 4E, a to e are boiler exhaust temperature change curves from the inlet of the high pressure gas heater 6 to the outlet of the low pressure gas heater 7, and A to G are heat exchangers according to the present invention installed at the condensate inlet of the low pressure gas heater 7. The condensate / feed water temperature change curve from the 29 inlet to the high pressure gas heater 6 outlet is shown. In the boiler exhaust temperature change curves a to e, the boiler exhaust flows from a to e. a is an outlet of the boiler 5, b to c are high-pressure gas heaters 6,
d to e show changes in boiler exhaust gas temperature in the low-pressure gas heater 7. Condensation / supply water temperature change curves A to G
To G. A to B are heat exchangers 29 installed at the condensate inlet of the low pressure gas heater, B to C are low pressure gas heaters 7, a temperature rise between C to D is a deaerator 16, and a water supply pump 17, and D to E are high pressure gas heaters. The heat exchangers 30 and E to F installed at the 6 feed water inlet indicate changes in the boiler exhaust gas temperature in the high-pressure gas heater 6.

【0031】図4に示す各温度のうち、発電プラントの
安定運用上、及び性能確保のために温度制限が必要であ
る項目として以下が挙げられる。まずプラントの安定運
用上の温度制限項目として、ボイラ5内部の節炭器での
スチーミング現象発生回避のためのボイラ節炭器入口給
水温度(すなわち、高圧ガスヒータ6出口給水温度F)、
脱気器16での脱気性能確保のための脱気器入口復水温
度(すなわち、低圧ガスヒータ7出口復水温度C)、及
び低圧ガスヒータ7の伝熱管表面部の低温腐食防止温度
(すなわち低圧ガスヒータ7入口復水温度B)。通常プ
ラント定格負荷運転でF点は約250〜280℃以下、
C点は脱気器々内飽和温度より10〜20℃程度低い温
度、B点はプラントの燃料種別によって異なるが、ガス
燃料を使用のプラントの場合、約60℃となる。次にプ
ラント性能確保のために制限される温度項目として、煙
突入口ボイラ排ガス温度(すなわち低圧ガスヒータ7出
口ガス温度e)があるが、通常プラント定格負荷運転で
e点は約100〜110℃程度である。
Among the respective temperatures shown in FIG. 4, the following items are listed as items that need temperature limitation for stable operation of the power generation plant and for ensuring performance. First, as a temperature limit item for stable operation of the plant, a boiler economizer inlet feed water temperature (that is, high-pressure gas heater 6 outlet feed water temperature F) for avoiding the steaming phenomenon in the economizer inside the boiler 5,
Degasifier inlet condensate temperature (that is, low pressure gas heater 7 outlet condensate temperature C) for ensuring degassing performance in the deaerator 16, and low temperature corrosion prevention temperature (that is, low pressure) of the heat transfer tube surface portion of the low pressure gas heater 7. Gas heater 7 inlet condensate temperature B). In normal plant rated load operation, F point is about 250-280 ° C or less,
The point C is about 10 to 20 ° C. lower than the saturation temperature in the deaerator, and the point B is about 60 ° C. in the case of a plant using gas fuel, although it depends on the fuel type of the plant. Next, there is a chimney inlet boiler exhaust gas temperature (that is, the low-pressure gas heater 7 outlet gas temperature e) as a temperature item that is limited to ensure plant performance. However, in normal plant rated load operation, the point e is about 100 to 110 ° C. is there.

【0032】本実施例ではこれらの温度制限のうち、低
圧ガスヒータ7の伝熱管表面部の低温腐食防止制御を低
圧ガスヒータ7における復水の再循環制御によって行う
のではなく、熱交換器30,29間に密閉された流体の
熱移動によって制御する方法を取っている。すなわち熱
交換器30で高圧ガスヒータ6入口給水熱量の一部を取
り込み、熱交換器29で、低圧ガスヒータ入口復水に放
熱する。このような給水から、低圧ガスヒータ7入口復
水への熱の移動を行うにもかかわらず、独立系統による
熱移動であるため、給水・復水系統における高圧ガスヒ
ータ6,低圧ガスヒータ7での流量分配制御の外乱要因
とはならない。
In the present embodiment, among these temperature restrictions, the low temperature corrosion prevention control of the heat transfer tube surface of the low pressure gas heater 7 is not performed by the recirculation control of the condensate in the low pressure gas heater 7, but the heat exchangers 30, 29 are used. The method is controlled by the heat transfer of the fluid sealed in between. That is, the heat exchanger 30 takes in a part of the heat supply amount of the inlet water of the high-pressure gas heater 6, and the heat exchanger 29 radiates the heat to the inlet water of the low-pressure gas heater. Even though heat is transferred from such water supply to the low pressure gas heater 7 inlet condensate, since heat is transferred by an independent system, the flow rate distribution in the high pressure gas heater 6 and the low pressure gas heater 7 in the water supply / condensation system is performed. It does not become a control disturbance factor.

【0033】また、図3の実施例以外にも、本発明の実
施例に係わる排気再燃型コンバインドプラントに低温腐
食防止装置を設けた構成として、図5,図6がある。
In addition to the embodiment of FIG. 3, there are FIGS. 5 and 6 as a structure in which the low temperature corrosion prevention device is provided in the exhaust gas re-combustion combined plant according to the embodiment of the present invention.

【0034】図5における実施例では、熱交換器34,
29に密閉された流体の熱移動によって制御する方法で
ある。すなわち熱交換器34で低圧ガスヒータ7出口復
水熱量の一部を取り込み、熱交換器29で、低圧ガスヒ
ータ入口復水に放熱する。このように低圧ガスヒータ7
出口復水から、低圧ガスヒータ7入口復水への熱の移動
を行うにもかかわらず、独立系統による熱移動であるた
め、復水系統における低圧ガスヒータ7での流量分配制
御の外乱要因とはならない。
In the embodiment shown in FIG. 5, the heat exchanger 34,
It is a method of controlling by heat transfer of the fluid sealed in 29. That is, the heat exchanger 34 takes in a part of the heat of condensate at the outlet of the low-pressure gas heater 7, and the heat exchanger 29 radiates heat to the condensate at the inlet of the low-pressure gas heater. In this way, the low-pressure gas heater 7
Although the heat is transferred from the outlet condensate to the inlet condensate of the low-pressure gas heater 7, it is a heat transfer by an independent system, so it does not become a disturbance factor of the flow rate distribution control in the low-pressure gas heater 7 in the condensate system. .

【0035】図6の実施例では、熱交換器34,30、
及び29に密閉された流体の熱移動によって制御する方
法である。すなわち熱交換器34で低圧ガスヒータ7出
口復水熱量の一部を取り込む、一方、熱交換器30では
高圧ガスヒータ6入口給水熱量の一部を取り込み、熱交
換器29で、低圧ガスヒータ入口復水に放熱する。この
ように低圧ガスヒータ7出口復水及び高圧ガスヒータ入
口給水から、低圧ガスヒータ7入口復水への熱の移動を
行うにもかかわらず、独立系統による熱移動であるた
め、給水・復水系統における高圧ガスヒータ6,低圧ガ
スヒータ7での流量分配制御の外乱要因とはならない。
In the embodiment of FIG. 6, the heat exchangers 34, 30,
And 29, the method is controlled by the heat transfer of the fluid. That is, the heat exchanger 34 takes in a part of the low pressure gas heater 7 outlet condensate heat amount, while the heat exchanger 30 takes in a part of the high pressure gas heater 6 inlet feed water heat amount and the heat exchanger 29 takes it to the low pressure gas heater inlet condensate water. Dissipate heat. Although heat is transferred from the low pressure gas heater 7 outlet condensate water and the high pressure gas heater inlet condensate water to the low pressure gas heater 7 inlet condensate in this way, since heat is transferred by an independent system, the high pressure in the water supply / condensation system is high. It does not become a disturbance factor of the flow rate distribution control in the gas heater 6 and the low pressure gas heater 7.

【0036】[0036]

【発明の効果】排気再燃型コンバインドプラントに本発
明による低温腐食防止装置を設けることにより、密閉サ
イクルの熱移動により低圧ガスヒータ入口復水系統への
熱移動が可能となるため、低圧ガスヒータ入口復水温度
を上げることにより低圧ガスヒータ伝熱面での低温腐食
防止ができる。また、従来の技術である低圧ガスヒータ
復水再循環系統による方法では、その再循環量により復
水系統の圧力変動が大きいため低圧ガスヒータ復水分配
制御への大きな外乱要素となっていたが、本発明によ
り、低圧ガスヒータ復水再循環自体を省略可能であり、
復水系統の流量制御の安定化が図れる。
By providing the low temperature corrosion preventive device according to the present invention in the exhaust gas reburn type combined plant, heat transfer to the low pressure gas heater inlet condensate system is made possible by heat transfer in the closed cycle, and therefore low pressure gas heater inlet condensate. By raising the temperature, it is possible to prevent low temperature corrosion on the heat transfer surface of the low pressure gas heater. Further, in the conventional method using the low pressure gas heater condensate recirculation system, the pressure fluctuation in the condensate system is large due to the amount of recirculation, which is a major disturbance factor to the low pressure gas heater condensate distribution control. According to the invention, the low pressure gas heater condensate recirculation itself can be omitted,
The flow control of the condensate system can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の排気再燃型コンバインドプラントの系統
図。
FIG. 1 is a system diagram of a conventional exhaust gas reburn type combined plant.

【図2】従来の排気再燃型コンバインドプラントにおけ
る給水・復水と排気ガスの温度勾配線図。
FIG. 2 is a temperature gradient diagram of water supply / condensate and exhaust gas in a conventional exhaust gas re-combustion combined plant.

【図3】本発明による排気再燃型コンバインドプラント
の実施例を示す系統図。
FIG. 3 is a system diagram showing an embodiment of an exhaust gas reburn type combined plant according to the present invention.

【図4】本発明の実施例である排気再燃型コンバインド
プラントにおける給水・復水と排気ガスの温度勾配線
図。
FIG. 4 is a temperature gradient diagram of water supply / condensate and exhaust gas in an exhaust gas re-combustion combined plant according to an embodiment of the present invention.

【図5】本発明による排気再燃型コンバインドプラント
の実施例を示す系統図。
FIG. 5 is a system diagram showing an embodiment of an exhaust gas reburn type combined plant according to the present invention.

【図6】本発明による排気再燃型コンバインドプラント
の実施例を示す系統図。
FIG. 6 is a system diagram showing an embodiment of an exhaust gas re-combustion combined plant according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…燃焼器、3…ガスタービン、4,12
…発電機、5…ボイラ、6…高圧ガスヒータ、7…低圧
ガスヒータ、8…煙突、9…高圧蒸気タービン、10…
中圧蒸気タービン、11…低圧蒸気タービン、13…復
水器、14…復水ポンプ、15…低圧給水加熱器、16
…脱気器、17…給水ポンプ、18…高圧給水加熱器、
19…復水ダンプ系統、21…空気予熱器、22…誘引
通風機、24…高圧ガスヒータ給水流量分配調節弁、2
5…低圧ガスヒータ復水流量分配調節弁、26…復水ダ
ンプ流量調節弁、29…低圧ガスヒータ復水入口側の復
水加熱器、30…高圧ガスヒータ給水入口側の給水冷却
器、31…循環ポンプ、32…流量調節弁、33…再循
環ポンプミニマムフロー系統。
1 ... Compressor, 2 ... Combustor, 3 ... Gas turbine, 4, 12
... Generator, 5 ... Boiler, 6 ... High pressure gas heater, 7 ... Low pressure gas heater, 8 ... Chimney, 9 ... High pressure steam turbine, 10 ...
Medium-pressure steam turbine, 11 ... Low-pressure steam turbine, 13 ... Condenser, 14 ... Condensate pump, 15 ... Low-pressure feed water heater, 16
… Deaerator, 17… Water pump, 18… High-pressure water heater,
19 ... Condensate dump system, 21 ... Air preheater, 22 ... Induction draft fan, 24 ... High pressure gas heater feed water flow distribution control valve, 2
5 ... Low pressure gas heater condensate flow distribution control valve, 26 ... Condensate dump flow rate control valve, 29 ... Low pressure gas heater condensate heater on the inlet side, 30 ... High pressure gas heater feed water cooler on the inlet side, 31 ... Circulation pump , 32 ... flow control valve, 33 ... recirculation pump minimum flow system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗林 哲三 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 浦 勝己 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuzo Kuribayashi 3-2-1, Saiwaicho, Hitachi, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor Katsumi Ura 3-1-1, Saiwaicho, Hitachi, Ibaraki No. 1 Stock company Hitachi Ltd. Hitachi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンの排ガスをボイラ燃焼用空気
として利用する排気再燃型コンバインドプラントにおい
て、低圧ガスヒータ入口復水系統とボイラ給水系統の間
で密閉サイクルを循環する流体により前記低圧ガスヒー
タ入口復水系統への熱移動を行う熱交換器を設け、前記
低圧ガスヒータの入口復水温度を上げることを特徴とす
る排気再燃型コンバインドプラントの低温腐食防止装
置。
1. A low-pressure gas heater inlet condensate by a fluid that circulates in a closed cycle between a low-pressure gas heater inlet condensate system and a boiler feed water system in an exhaust gas re-combustion combined plant that uses the exhaust gas of a gas turbine as boiler combustion air. A low-temperature corrosion prevention device for an exhaust gas re-combustion combined plant, which is provided with a heat exchanger for transferring heat to a system and increases an inlet condensate temperature of the low-pressure gas heater.
【請求項2】ガスタービンの排ガスをボイラ燃焼用空気
として利用する排気再燃型コンバインドプラントにおい
て、低圧ガスヒータ入口復水系統と低圧ガスヒータ出口
復水系統の間で密閉サイクルを循環する流体により前記
低圧ガスヒータ入口復水系統への熱移動を行う熱交換器
を設け、前記低圧ガスヒータの入口復水温度を上げるこ
とを特徴とする排気再燃型コンバインドプラントの低温
腐食防止装置。
2. In an exhaust gas recombustion type combined plant which uses the exhaust gas of a gas turbine as boiler combustion air, the low pressure gas heater is circulated in a closed cycle between a low pressure gas heater inlet condensate system and a low pressure gas heater outlet condensate system. A low-temperature corrosion prevention device for an exhaust gas re-combustion combined plant, comprising a heat exchanger for transferring heat to an inlet condensate system to raise an inlet condensate temperature of the low-pressure gas heater.
【請求項3】ガスタービンの排ガスをボイラ燃焼用空気
として利用する排気再燃型コンバインドプラントにおい
て、低圧ガスヒータ入口復水系統とボイラ給水系統及び
低圧ガスヒータ出口復水系統の間で密閉サイクルを循環
する流体により前記低圧ガスヒータ入口復水系統への熱
移動を行う熱交換器を設け、前記低圧ガスヒータの入口
復水温度を上げることを特徴とする排気再燃型コンバイ
ンドプラントの低温腐食防止装置。
3. A fluid which circulates in a closed cycle between a low pressure gas heater inlet condensate system and a boiler feed water system and a low pressure gas heater outlet condensate system in an exhaust gas re-combustion combined plant which uses the exhaust gas of a gas turbine as boiler combustion air. A low-temperature corrosion prevention device for an exhaust gas re-combustion combined plant, wherein a heat exchanger for transferring heat to the low pressure gas heater inlet condensate system is provided to raise the inlet condensate temperature of the low pressure gas heater.
JP1735496A 1996-02-02 1996-02-02 Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant Pending JPH09209715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1735496A JPH09209715A (en) 1996-02-02 1996-02-02 Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1735496A JPH09209715A (en) 1996-02-02 1996-02-02 Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant

Publications (1)

Publication Number Publication Date
JPH09209715A true JPH09209715A (en) 1997-08-12

Family

ID=11941721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1735496A Pending JPH09209715A (en) 1996-02-02 1996-02-02 Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant

Country Status (1)

Country Link
JP (1) JPH09209715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248017A (en) * 2006-03-18 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Temperature controller for fuel economizer of reheat boiler
JP2009008365A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Steam power plant
JP2015215156A (en) * 2014-05-08 2015-12-03 アルストム テクノロジー リミテッドALSTOM Technology Ltd Coal fired oxygen plant with heat integration
CN108318549A (en) * 2018-03-08 2018-07-24 西南石油大学 A kind of condenser type on-line corrosion monitoring device and method
KR20190008736A (en) * 2017-07-17 2019-01-25 두산중공업 주식회사 Supercritical CO2 power generating system for cold-end corrosion
CN109268094A (en) * 2017-07-17 2019-01-25 斗山重工业建设有限公司 Prevent the supercritical carbon dioxide electricity generation system of low-temperature corrosion
CN109937288A (en) * 2016-05-23 2019-06-25 西门子能源有限公司 Combined-cycle power plant with the condensate liquid recirculation pump using Venturi effect
CN113375185A (en) * 2021-06-08 2021-09-10 连云港万达电站辅机有限公司 Efficient and energy-saving primary air preheating method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248017A (en) * 2006-03-18 2007-09-27 Mitsui Eng & Shipbuild Co Ltd Temperature controller for fuel economizer of reheat boiler
JP2009008365A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Steam power plant
JP2015215156A (en) * 2014-05-08 2015-12-03 アルストム テクノロジー リミテッドALSTOM Technology Ltd Coal fired oxygen plant with heat integration
CN109937288A (en) * 2016-05-23 2019-06-25 西门子能源有限公司 Combined-cycle power plant with the condensate liquid recirculation pump using Venturi effect
KR20190008736A (en) * 2017-07-17 2019-01-25 두산중공업 주식회사 Supercritical CO2 power generating system for cold-end corrosion
CN109268094A (en) * 2017-07-17 2019-01-25 斗山重工业建设有限公司 Prevent the supercritical carbon dioxide electricity generation system of low-temperature corrosion
US10641132B2 (en) 2017-07-17 2020-05-05 DOOSAN Heavy Industries Construction Co., LTD Supercritical CO2 power generating system for preventing cold-end corrosion
CN109268094B (en) * 2017-07-17 2022-04-12 斗山重工业建设有限公司 Supercritical carbon dioxide power generation system capable of preventing low-temperature corrosion
CN108318549A (en) * 2018-03-08 2018-07-24 西南石油大学 A kind of condenser type on-line corrosion monitoring device and method
CN108318549B (en) * 2018-03-08 2023-09-26 西南石油大学 Capacitive corrosion on-line monitoring device and method
CN113375185A (en) * 2021-06-08 2021-09-10 连云港万达电站辅机有限公司 Efficient and energy-saving primary air preheating method

Similar Documents

Publication Publication Date Title
US4391101A (en) Attemperator-deaerator condenser
JP4554527B2 (en) Energy-saving equipment using waste heat
US9927117B2 (en) Fossil-fuel power plant and fossil-fuel power plant operation method
US20080034757A1 (en) Method and system integrating solar heat into a regenerative rankine cycle
US11022005B2 (en) Steam turbine power plant utilizing industrial heat pumps to preheat boiler feed-water
JPH09177508A (en) Exhaust heat recovery type steam generator and method for operating gas turbo system combined with steam consumer
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
EP3633272B1 (en) Method for recovering heat from flue gas of boiler, and arrangement
CN106051805A (en) Waste heat recovery system and method with discharged smoke waste heat as heat source of air heater
CN207813667U (en) Low pressure cylinder cooling system based on different steam ports
JP2003161164A (en) Combined-cycle power generation plant
JPH09209715A (en) Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
RU2107826C1 (en) Steam-gas plant with deaerator-evaporator
JP3047194B2 (en) Gas turbine cogeneration system
JP2994109B2 (en) Exhaust heat recovery method of pressurized fluidized bed combined cycle system
CN219264351U (en) Condensed water air heater
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
CN206319917U (en) Combined-cycle power plant's carbonated drink backheat and fuel heating integrated put forward effect system
JPS59147907A (en) Feedwater heating system of steam turbine plant
CN110578931A (en) System and method for adjusting temperature of primary air and secondary air by utilizing condensed water to improve air heater
JP2000018010A (en) Combined power generation plant for exhaust re- combustion
JPH08312905A (en) Combined cycle power generating facility
JPH0227282Y2 (en)
JPH09112807A (en) Deaerator protection device for exhaust gas recombustion system