JP2012057860A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2012057860A
JP2012057860A JP2010201537A JP2010201537A JP2012057860A JP 2012057860 A JP2012057860 A JP 2012057860A JP 2010201537 A JP2010201537 A JP 2010201537A JP 2010201537 A JP2010201537 A JP 2010201537A JP 2012057860 A JP2012057860 A JP 2012057860A
Authority
JP
Japan
Prior art keywords
economizer
dry
exhaust gas
condensation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010201537A
Other languages
Japanese (ja)
Inventor
Tadahachi Goshima
忠八 五島
Taro Ichihara
太郎 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010201537A priority Critical patent/JP2012057860A/en
Publication of JP2012057860A publication Critical patent/JP2012057860A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device capable suppressing the occurrence of problems such as the corrosion of a heat transfer tube caused by the alternate wetting and drying of an economizer by the load fluctuation of a burning appliance.SOLUTION: In the exhaust heat recovery device 10 in which the dry-type economizer 11 for heating supply water by utilizing the sensible heat of an exhaust gas and a condensation economizer 12 disposed at a downstream side in the exhaust gas flowing direction with respect to the dry-type economizer for heating the supply water by utilizing the condensation latent heat of the exhaust gas are disposed in a duct 5 in which the exhaust gas is circulated, and which is constituted to guide the supply water to the dry-type economizer 11 through the condensation economizer 12, an exhaust gas temperature changing means 20 for changing the temperature of the exhaust gas is disposed between the dry-type economizer 11 and the condensation-type economizer 12, and the exhaust gas temperature changing means 20 is a means for changing an exhaust gas temperature so that an exhaust gas temperature at an outlet of the dry-type economizer reaches a water dew point or higher, or a means for changing the exhaust gas temperature so that the exhaust gas temperature at an inlet of the condensation economizer reaches the water dew point or lower.

Description

本発明は、排ガスの余熱により給水を加熱するエコノマイザを含む排熱回収装置に係り、特に、排ガスダクト上に乾式エコノマイザと凝縮エコノマイザとが直列に配置された排熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus including an economizer that heats feed water by residual heat of exhaust gas, and more particularly to an exhaust heat recovery apparatus in which a dry economizer and a condensation economizer are arranged in series on an exhaust gas duct.

従来、ボイラ等の燃焼機器においては、熱効率向上のために排熱回収装置が設けられている。排熱回収装置の一つとして、排ガスダクトに設けられ、ダクト内を流通する排ガスの余熱により給水を加熱するエコノマイザが広く知られている。このエコノマイザは、排ガスの顕熱のみを回収する乾式エコノマイザが一般的であるが、熱回収率をより一層向上させる装置構成として、排ガス中の水蒸気を凝縮させて潜熱回収する凝縮エコノマイザを乾式エコノマイザと併用した排熱回収装置が提案、実用化されている。   Conventionally, in a combustion device such as a boiler, an exhaust heat recovery device is provided to improve thermal efficiency. As one of the exhaust heat recovery devices, an economizer that is provided in an exhaust gas duct and heats feed water by the residual heat of the exhaust gas flowing through the duct is widely known. This economizer is generally a dry economizer that recovers only the sensible heat of exhaust gas, but as a device configuration that further improves the heat recovery rate, a condensing economizer that condenses water vapor in exhaust gas and recovers latent heat is called a dry economizer. A combined waste heat recovery device has been proposed and put into practical use.

ボイラの場合、例えば、燃焼室で生成された約300℃の燃焼排ガスは、まず乾式エコノマイザに流入してここで顕熱が回収され、その後凝縮エコノマイザへ流入して主として凝縮潜熱が回収され、40℃程度の排ガスとして煙突から排出される。
ここで凝縮エコノマイザは、一般に多段の伝熱管群で構成され、管外に燃焼排ガス、管内に給水が供給され、排ガスからの顕熱(対流伝熱)と伝熱管表面での水分凝縮に伴う潜熱を回収する。周知のように、石炭や重油、ガス等の炭化水素を燃料とする燃焼機器で燃焼が行われると、炭化水素を構成する水素が酸素と反応して水蒸気が発生し、この水蒸気が排ガスに大量に含まれる。したがって、排ガス中の水蒸気を凝縮させて潜熱回収する凝縮エコノマイザは熱効率向上において極めて有効な手段である。
In the case of a boiler, for example, about 300 ° C. combustion exhaust gas generated in the combustion chamber first flows into a dry economizer, where sensible heat is recovered, and then flows into a condensing economizer to mainly recover condensing latent heat. It is discharged from the chimney as an exhaust gas of about ℃.
The condensation economizer is generally composed of a multi-stage heat transfer tube group. Combustion exhaust gas is supplied to the outside of the tube, and feed water is supplied to the inside of the tube. Sensible heat from the exhaust gas (convection heat transfer) and latent heat accompanying moisture condensation on the surface of the heat transfer tube Recover. As is well known, when combustion is performed in a combustion device using hydrocarbons such as coal, heavy oil, and gas as fuel, hydrogen constituting the hydrocarbons reacts with oxygen to generate water vapor, which is a large amount in the exhaust gas. include. Therefore, a condensation economizer that condenses water vapor in exhaust gas and recovers latent heat is an extremely effective means for improving thermal efficiency.

乾式エコノマイザと凝縮エコノマイザとを併用した排熱回収装置として、特許文献1(特開昭60−213757号公報)には、燃焼室の下部に主熱交換部と潜熱回収用熱交換部とが一体化して配置された熱交換器の構成が開示されている。この熱交換器では、給水が潜熱回収用熱交換部を通って主熱交換部に導入されるようになっており、一方燃焼排ガスは、まず主熱交換部で顕熱回収された後に、潜熱回収用熱交換部で排ガス中の水蒸気を積極的に凝縮させ蒸気潜熱を回収するようになっている。   As an exhaust heat recovery device using both a dry economizer and a condensing economizer, Patent Document 1 (Japanese Patent Laid-Open No. 60-213757) has a main heat exchange part and a latent heat recovery heat exchange part integrated in the lower part of the combustion chamber. The structure of the heat exchanger arranged in the form is disclosed. In this heat exchanger, the feed water is introduced into the main heat exchange section through the latent heat recovery heat exchange section, while the combustion exhaust gas is first subjected to sensible heat recovery in the main heat exchange section and then the latent heat. The steam in the exhaust gas is actively condensed in the heat exchanger for recovery to recover the latent heat of steam.

また別の装置構成として、特許文献2(特開平11−118104号公報)には、ボイラ出口ダクトに続いて乾式エコノマイザを配置し、その後流に空気予熱器と凝縮形エコノマイザを順次直列に配置したボイラの構成が開示されている。このボイラは、乾式エコノマイザの出口の排ガス中に含まれて残留する熱量を、該排ガス中に含まれる水蒸気の保有する熱量とともに空気予熱器と凝縮形エコノマイザにより効果的に回収し熱効率向上を図ったものである。   As another device configuration, in Patent Document 2 (Japanese Patent Laid-Open No. 11-118104), a dry economizer is arranged following the boiler outlet duct, and an air preheater and a condensing economizer are sequentially arranged in series on the downstream side thereof. A boiler configuration is disclosed. In this boiler, the amount of heat remaining in the exhaust gas at the outlet of the dry economizer is effectively recovered by the air preheater and the condensing economizer together with the amount of heat held by the water vapor contained in the exhaust gas to improve the thermal efficiency. Is.

特開昭60−213757号公報JP 60-213757 A 特開平11−118104号公報JP 11-118104 A

しかしながら、特許文献1、2に開示されるように、乾式エコノマイザと凝縮エコノマイザが直列に配置された排熱回収装置では、排ガス中の水分の凝縮はガス側主流が水露点に達していなくとも、伝熱管温度が水露点になっていると凝縮が生じるため、乾式エコノマイザ内でも伝熱管温度によっては部分的に凝縮が発生することがある。凝縮が生じることにより伝熱管に部分的な湿潤域が形成され、一つのエコノマイザ内で伝熱管が湿潤域及び乾燥域を有するようになる。   However, as disclosed in Patent Documents 1 and 2, in the exhaust heat recovery device in which the dry economizer and the condensing economizer are arranged in series, the condensation of moisture in the exhaust gas can be performed even if the gas side mainstream does not reach the water dew point. Since condensation occurs when the heat transfer tube temperature is at the water dew point, condensation may partially occur in the dry economizer depending on the heat transfer tube temperature. As a result of the condensation, a partial wet region is formed in the heat transfer tube, and the heat transfer tube has a wet region and a dry region in one economizer.

この湿潤域と乾燥域は、燃焼機器の負荷変動に伴って位置が変動する。すなわち、燃焼機器の負荷が変動すると、乾式エコノマイザや凝縮エコノマイザを通過する排ガス温度が変動するので、排ガスが凝縮温度に達する位置が変動することで、湿潤域と乾燥域との境界位置が変動する。
これにより、伝熱管に乾湿を繰り返す領域が生じてしまう。伝熱管は主に金属で形成されており、乾湿を繰り返すことにより伝熱管が応力腐食割れを引き起こしやすくなる。また、伝熱管表面が乾湿を繰り返すことにより、煤塵やスケールが付着、固化しやすくなり、熱交換効率の低下を招くおそれもある。
The positions of the wet area and the dry area vary as the load of the combustion device varies. In other words, when the load on the combustion equipment fluctuates, the exhaust gas temperature that passes through the dry economizer or the condensation economizer fluctuates, so the position where the exhaust gas reaches the condensing temperature fluctuates, and the boundary position between the wet and dry regions fluctuates .
Thereby, the area | region which repeats wet and dry will arise in a heat exchanger tube. The heat transfer tube is mainly made of metal, and the heat transfer tube is likely to cause stress corrosion cracking by repeated drying and wetting. Moreover, when the surface of the heat transfer tube repeats drying and wetting, dust and scale are likely to adhere and solidify, which may cause a decrease in heat exchange efficiency.

したがって、本発明はかかる従来技術の問題に鑑み、燃焼機器の負荷変動によりエコノマイザが乾湿を繰り返して伝熱管の腐食等の不具合が発生することを抑制できる排熱回収装置を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention has an object to provide an exhaust heat recovery device capable of suppressing the occurrence of problems such as corrosion of a heat transfer tube due to the economizer repeatedly drying and wetting due to load fluctuations of combustion equipment. To do.

上記の課題を解決するために、本発明に係る排熱回収装置は、排ガスが流通するダクトに、前記排ガスの顕熱を利用して給水を加熱する乾式エコノマイザと、前記乾式エコノマイザより排ガス流れ方向下流側に配置され前記排ガスの凝縮潜熱を利用して給水を加熱する凝縮エコノマイザとが設けられ、前記給水が前記凝縮エコノマイザを通って前記乾式エコノマイザに導入するように構成された排熱回収装置において、前記乾式エコノマイザと前記凝縮エコノマイザの間に、前記排ガスの温度を変化させる排ガス温度変化手段を介装し、前記排ガス温度変化手段は、前記乾式エコノマイザ出口の排ガス温度が水露点以上となるように排ガス温度を変化させる手段、若しくは前記凝縮エコノマイザ入口の排ガス温度が水露点以下となるように排ガス温度を変化させる手段であることを特徴とする。   In order to solve the above problems, an exhaust heat recovery apparatus according to the present invention includes a dry economizer that heats feed water using sensible heat of the exhaust gas in a duct through which the exhaust gas circulates, and an exhaust gas flow direction from the dry economizer. In the exhaust heat recovery apparatus, which is provided on the downstream side and is provided with a condensation economizer configured to heat feed water using the condensation latent heat of the exhaust gas, and configured to introduce the feed water to the dry economizer through the condensation economizer An exhaust gas temperature changing means for changing the temperature of the exhaust gas is interposed between the dry economizer and the condensation economizer so that the exhaust gas temperature changing means has an exhaust gas temperature at the outlet of the dry economizer equal to or higher than a water dew point. Means for changing the exhaust gas temperature, or exhaust gas so that the exhaust gas temperature at the condenser economizer inlet is below the water dew point. Characterized in that it is a means for changing the scan temperature.

本発明によれば、乾式エコノマイザと凝縮エコノマイザの間に排ガス温度変化手段を介装し、この排ガス温度変化手段により乾式エコノマイザ出口の排ガス温度が水露点以上となるように、若しくは凝縮エコノマイザ入口の排ガス温度が水露点以下となるように排ガス温度を変化させる構成としたため、乾式エコノマイザ若しくは凝縮エコノマイザにて乾湿を繰り返す伝熱管ができることを防止し、伝熱管の腐食や伝熱管へのスケール等の付着を抑制することが可能となる。   According to the present invention, the exhaust gas temperature changing means is interposed between the dry economizer and the condensation economizer so that the exhaust gas temperature changing means causes the exhaust gas temperature at the outlet of the dry economizer to be equal to or higher than the water dew point, or the exhaust gas at the condensing economizer inlet. Since the exhaust gas temperature is changed so that the temperature is below the water dew point, it is possible to prevent heat transfer tubes that repeat drying and wetting with a dry economizer or condensation economizer, and to prevent corrosion of the heat transfer tubes and adhesion of scales to the heat transfer tubes. It becomes possible to suppress.

具体的には、排ガス温度変化手段が、乾式エコノマイザ出口の排ガス温度が水露点以上となるように排ガス温度を変化させる手段である場合、乾式エコノマイザ内で排ガス中の水分が凝縮することがなく、乾式エコノマイザのほぼ全ての伝熱管表面を常時乾燥状態に保つことができる。一方、排ガス温度変化手段が、凝縮エコノマイザ入口の排ガス温度が水露点以下となるように排ガス温度を変化させる手段である場合、凝縮エコノマイザ内で確実に凝縮が発生するようになり、凝縮エコノマイザのほぼ全ての伝熱管表面を常時湿潤状態に保つことができる。ここで、排ガス温度変化手段は、上記した前者と後者を兼ね備えた構成であってもよく、その場合は乾式エコノマイザを常時乾燥状態に且つ凝縮エコノマイザを常時湿潤状態に、確実に維持することが可能となる。
なお、乾式エコノマイザ出口の排ガス温度とは、乾式エコノマイザの排ガス出口側の伝熱管メタル温度であることが好ましく、また凝縮エコノマイザ入口の排ガス温度とは、凝縮エコノマイザの排ガス入口側の伝熱管メタル温度であることが好ましい。これにより、伝熱管表面における凝縮発生の有無を適切に管理することが可能である。
Specifically, when the exhaust gas temperature changing means is a means for changing the exhaust gas temperature so that the exhaust gas temperature at the outlet of the dry economizer is equal to or higher than the water dew point, moisture in the exhaust gas does not condense in the dry economizer, Almost all heat transfer tube surfaces of the dry economizer can be kept dry at all times. On the other hand, if the exhaust gas temperature changing means is a means for changing the exhaust gas temperature so that the exhaust gas temperature at the inlet of the condensing economizer is lower than the water dew point, condensation will surely occur in the condensing economizer, All heat transfer tube surfaces can be kept wet all the time. Here, the exhaust gas temperature changing means may be configured to have both the former and the latter, and in that case, it is possible to reliably maintain the dry economizer in a constantly dry state and the condensation economizer in a constantly wet state. It becomes.
The exhaust gas temperature at the dry economizer outlet is preferably the heat transfer tube metal temperature at the exhaust gas outlet side of the dry economizer, and the exhaust gas temperature at the condensation economizer inlet is the heat transfer tube metal temperature at the exhaust gas inlet side of the condensation economizer. Preferably there is. Thereby, it is possible to appropriately manage the presence or absence of condensation on the heat transfer tube surface.

また、前記排ガス温度変化手段が、前記乾式エコノマイザの上流側から前記排ガスの一部を分岐させた分岐ガスを前記乾式エコノマイザと前記凝縮エコノマイザの間に導入する分岐ガス導入部であり、前記乾式エコノマイザの給水入口温度又は前記乾式エコノマイザの排ガス出口側の伝熱管メタル温度を検出する第1の温度検出手段と、前記第1の温度検出手段で検出した温度に基づいて前記分岐ガス導入部から前記ダクト内に導入する分岐ガス導入量を調整する分岐ガス量調整手段とをさらに備え、前記第1の温度検出手段で検出された温度が水露点以下となったら前記分岐ガス量調整手段により前記分岐ガス導入量を増加させることが好ましい。   Further, the exhaust gas temperature changing means is a branch gas introduction section for introducing a branch gas obtained by branching a part of the exhaust gas from the upstream side of the dry economizer between the dry economizer and the condensation economizer, and the dry economizer A first temperature detection means for detecting a feed water inlet temperature or a heat transfer tube metal temperature on the exhaust gas outlet side of the dry economizer, and the duct from the branch gas introduction part based on the temperature detected by the first temperature detection means A branch gas amount adjusting means for adjusting the amount of branch gas introduced into the branch gas amount adjusting means, and when the temperature detected by the first temperature detecting means falls below a water dew point, the branch gas amount adjusting means adjusts the branch gas. It is preferable to increase the introduction amount.

本構成では、乾式エコノマイザ上流側から排ガスの一部を分岐させて、この分岐ガスを乾式エコノマイザと凝縮エコノマイザの間に設けた分岐ガス導入部より導入している。この分岐ガスは、乾式エコノマイザを通過しないため保有熱量が大きく、これを直接凝縮エコノマイザに供給することで凝縮エコノマイザでの交換熱量を増加させ給水温度を上昇させる。したがって、分岐ガス導入量を調整することで乾式エコノマイザに流入する給水温度の調整、ひいては乾式エコノマイザの伝熱管メタル温度の調整が可能となる。ここで、伝熱管メタル温度は、排ガス温度と給水温度との両方に依存するが、排ガスの伝熱係数は給水の伝熱係数に比べて極めて小さいため、伝熱管メタル温度は給水温度の影響を大きく受ける。よって、本構成では、伝熱管表面の凝縮発生の有無を給水温度で調整可能としている。
そして、乾式エコノマイザの給水入口温度又は乾式エコノマイザの排ガス出口側の伝熱管メタル温度に基づいて分岐ガス導入量を調整することで、乾式エコノマイザの伝熱管メタル温度を水露点以上に維持でき、これにより伝熱管表面を常時乾燥状態に保持し、乾式エコノマイザの伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。
In this configuration, a part of the exhaust gas is branched from the upstream side of the dry economizer, and this branch gas is introduced from a branch gas introduction section provided between the dry economizer and the condensation economizer. Since this branch gas does not pass through the dry economizer, it has a large amount of heat, and by supplying this directly to the condensing economizer, the exchange heat amount in the condensing economizer is increased and the feed water temperature is raised. Therefore, by adjusting the branch gas introduction amount, it is possible to adjust the temperature of the feed water flowing into the dry economizer, and thus the heat transfer tube metal temperature of the dry economizer. Here, the heat transfer tube metal temperature depends on both the exhaust gas temperature and the feed water temperature, but the heat transfer coefficient of the exhaust gas is extremely small compared to the heat transfer coefficient of the feed water. Receive a lot. Therefore, in this structure, the presence or absence of condensation on the surface of the heat transfer tube can be adjusted by the feed water temperature.
And by adjusting the amount of branch gas introduction based on the feed water inlet temperature of the dry economizer or the heat transfer pipe metal temperature on the exhaust gas outlet side of the dry economizer, the heat transfer pipe metal temperature of the dry economizer can be maintained above the water dew point. The surface of the heat transfer tube is always kept in a dry state, and corrosion of the heat transfer tube of the dry economizer and adhesion of scales to the heat transfer tube can be suppressed.

また、前記凝縮エコノマイザの給水出口温度又は前記凝縮エコノマイザの排ガス入口側の伝熱管メタル温度を検出する第2の温度検出手段と、前記凝縮エコノマイザの入口側に水分を供給する水分供給手段とをさらに備え、前記第2の温度検出手段で検出された温度が水露点以上となったら前記水分供給手段により前記凝縮エコノマイザの入口側に水又は蒸気を噴霧するか、若しくは前記凝縮エコノマイザに直接散水することが好ましい。   Further, a second temperature detection means for detecting a feed water outlet temperature of the condensation economizer or a heat transfer pipe metal temperature on an exhaust gas inlet side of the condensation economizer, and a moisture supply means for supplying moisture to the inlet side of the condensation economizer And when the temperature detected by the second temperature detection means is equal to or higher than the water dew point, the water supply means sprays water or steam on the inlet side of the condensation economizer, or directly sprays the condensation economizer. Is preferred.

このように、凝縮エコノマイザの給水出口温度又は凝縮エコノマイザの排ガス入口側の伝熱管メタル温度を検出し、検出温度が水露点以上となったら水分供給手段により凝縮エコノマイザに水を供給することで、凝縮エコノマイザの伝熱管表面を湿潤状態にすることができる。具体的には、凝縮エコノマイザの入口側に水又は蒸気を噴霧することで、排ガスの湿度を上昇させ凝縮を促進させることができる。または、凝縮エコノマイザに直接散水することで伝熱管を強制的に湿潤させることができる。   In this way, the water supply outlet temperature of the condensing economizer or the heat transfer pipe metal temperature on the exhaust gas inlet side of the condensing economizer is detected, and when the detected temperature exceeds the water dew point, water is supplied to the condensing economizer by the water supply means. The heat transfer tube surface of the economizer can be wetted. Specifically, by spraying water or steam on the inlet side of the condensation economizer, it is possible to increase the humidity of the exhaust gas and promote condensation. Alternatively, the heat transfer tube can be forcibly moistened by spraying water directly onto the condensation economizer.

さらに、前記排ガス温度変化手段が、前記乾式エコノマイザと前記凝縮エコノマイザの間に着脱自在に介装され、前記排ガスの顕熱と凝縮潜熱とを利用して前記給水を加熱する乾式・凝縮エコノマイザであり、前記凝縮エコノマイザを通って排出された前記給水が前記乾式・凝縮エコノマイザを通って前記乾式エコノマイザに導入されるように構成するとともに、前記乾式・凝縮エコノマイザの入口側から、該乾式・凝縮エコノマイザをバイパスしてその出口側に接続され前記給水が流通するバイパス管を配設する構成とすることが好ましい。   Further, the exhaust gas temperature changing means is a dry / condensation economizer that is detachably interposed between the dry economizer and the condensation economizer, and heats the feed water using sensible heat and latent heat of condensation of the exhaust gas. The feed water discharged through the condensation economizer is introduced into the dry economizer through the dry / condensation economizer, and the dry / condensation economizer is disposed from the inlet side of the dry / condensation economizer. It is preferable to provide a bypass pipe that bypasses and is connected to the outlet side and through which the water supply flows.

このように、乾式エコノマイザと前記凝縮エコノマイザの間に乾式・凝縮エコノマイザを配置し、この乾式・凝縮エコノマイザで確実に凝縮が開始するように構成することで、乾式エコノマイザは常時乾燥状態に、凝縮エコノマイザは常時湿潤状態に維持され、これにより各エコノマイザにおける伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。好適には、乾式エコノマイザから湿式エコノマイザに至るダクト上で、排ガスの凝縮開始点を含む乾湿混在領域を予め推定しておき、この乾湿混在領域に乾式・凝縮エコノマイザを配置する。なお、乾湿混在領域の推定方法としては、排ガス温度と給水温度とから算出したメタル温度に基づいて凝縮開始点が推定でき、この凝縮開始点と運転変動幅(負荷変動幅)とに基づいて乾湿混在領域を推定することができる。運転変動幅は、経験値(過去の実測データを含む)又は実験データ、あるいはシミュレーションから求められる。   In this way, by arranging the dry / condensation economizer between the dry economizer and the condensing economizer, and by configuring the dry / condensing economizer to reliably start condensation, the dry economizer is always in a dry state and the condensing economizer. Is always maintained in a wet state, whereby corrosion of the heat transfer tubes in each economizer and adhesion of scales to the heat transfer tubes can be suppressed. Preferably, on the duct extending from the dry economizer to the wet economizer, a wet / dry mixed area including the condensation start point of the exhaust gas is estimated in advance, and the dry / condensed economizer is disposed in the dry / humid mixed area. As a method for estimating the wet and dry mixed area, the condensation start point can be estimated based on the metal temperature calculated from the exhaust gas temperature and the feed water temperature, and the wet and dry based on the condensation start point and the operation fluctuation range (load fluctuation width). The mixed area can be estimated. The driving fluctuation range is obtained from experience values (including past actual measurement data), experimental data, or simulation.

また、本構成では、乾式・凝縮エコノマイザの伝熱管は部分的に乾燥状態と湿潤状態を繰り返すこととなるが、この乾式・凝縮エコノマイザを着脱自在としているため、腐食やスケール付着等が発生した際には乾式・凝縮エコノマイザのみを取り外して補修や交換を行うことができる。さらに乾式・凝縮エコノマイザをバイパスして給水が流通するバイパス管を配設したため、乾式・凝縮エコノマイザに不具合が発生した場合には、一時的に乾式・凝縮エコノマイザを停止し、バイパス管を開放して給水を流通させることにより定常運転を続行することが可能である。   In this configuration, the heat transfer tube of the dry / condensation economizer partially repeats a dry state and a wet state. However, since this dry / condensation economizer is detachable, corrosion or scale adhesion occurs. Only a dry / condensing economizer can be removed and repaired or replaced. In addition, a bypass pipe is provided that bypasses the dry / condensation economizer to distribute the water supply.If a problem occurs in the dry / condensation economizer, the dry / condensation economizer is temporarily stopped and the bypass pipe is opened. It is possible to continue the steady operation by circulating the water supply.

さらにまた、前記排ガス温度変化手段が、前記乾式エコノマイザと前記凝縮エコノマイザの間に着脱自在に介装され、前記排ガスの顕熱と凝縮潜熱とを利用して前記給水を加熱する乾式・凝縮エコノマイザであり、前記乾式・凝縮エコノマイザに導入される給水は、前記乾式エコノマイザ及び前記凝縮エコノマイザに導入される給水とは独立した給水系統を流通するように構成し、且つ前記乾式・凝縮エコノマイザ入口の給水温度が水露点以下であることが好ましい。   Furthermore, the exhaust gas temperature changing means is a dry / condensation economizer that is detachably interposed between the dry economizer and the condensation economizer, and that heats the feed water using sensible heat and latent heat of condensation of the exhaust gas. The feed water introduced into the dry / condensation economizer is configured to circulate through a feed water system independent of the dry economizer and the feed water introduced into the condensation economizer, and the feed water temperature at the dry / condensation economizer inlet Is preferably below the water dew point.

このように、乾式エコノマイザと凝縮エコノマイザの間に乾式・凝縮エコノマイザを配置することで、上記した作用効果と同様に、乾式エコノマイザは常時乾燥状態に、凝縮エコノマイザは常時湿潤状態に維持され、これにより各エコノマイザにおける伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。また、本構成においても、排ガスの凝縮開始点を含む乾湿混在領域を予め推定しておき、この乾湿混在領域に乾式・凝縮エコノマイザを配置することが好適である。
さらに、乾式・凝縮エコノマイザの給水系統を独立して構成し、且つ乾式・凝縮エコノマイザ入口の給水温度を水露点以下とすることにより、乾式・凝縮エコノマイザ内で確実に凝縮を発生させることができる。
In this way, by placing the dry / condensation economizer between the dry economizer and the condensing economizer, the dry economizer is always kept in the dry state and the condensing economizer is always in the moist state as described above. Corrosion of heat transfer tubes and adhesion of scales to the heat transfer tubes in each economizer can be suppressed. Also in this configuration, it is preferable to preliminarily estimate the dry and wet mixed region including the exhaust gas condensation start point, and arrange the dry / condensation economizer in this dry and wet mixed region.
Furthermore, the water supply system of the dry / condensation economizer is configured independently, and the water supply temperature at the inlet of the dry / condensation economizer is set to be equal to or lower than the water dew point, whereby condensation can be reliably generated in the dry / condensation economizer.

以上記載のように本発明では、乾式エコノマイザと凝縮エコノマイザの間に排ガス温度変化手段を介装し、この排ガス温度変化手段により乾式エコノマイザ出口の排ガス温度が水露点以上となるように、若しくは凝縮エコノマイザ入口の排ガス温度が水露点以下となるように排ガス温度を変化させる構成としたため、乾式エコノマイザ若しくは凝縮エコノマイザにて乾湿を繰り返す伝熱管ができることを防止し、伝熱管の腐食や伝熱管へのスケール等の付着を抑制することが可能となる。   As described above, in the present invention, the exhaust gas temperature changing means is interposed between the dry economizer and the condensing economizer so that the exhaust gas temperature at the outlet of the dry economizer becomes higher than the water dew point by the exhaust gas temperature changing means, or the condensing economizer. Since the exhaust gas temperature is changed so that the exhaust gas temperature at the inlet is below the water dew point, it is possible to prevent heat transfer tubes that repeat drying and wetting with a dry economizer or a condensation economizer, and corrosion of the heat transfer tubes, scale to the heat transfer tubes, etc. Can be suppressed.

本発明の実施形態が適用されるボイラの全体構成図である。1 is an overall configuration diagram of a boiler to which an embodiment of the present invention is applied. 本発明の第1実施形態に係る排熱回収装置の構成図である。It is a lineblock diagram of the exhaust heat recovery device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る排熱回収装置の構成図である。It is a block diagram of the waste heat recovery apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る排熱回収装置の構成図である。It is a block diagram of the waste heat recovery apparatus which concerns on 3rd Embodiment of this invention.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本発明の実施形態に係る排熱回収装置は、ボイラ、ディーゼルエンジン、ガスタービン、焼却炉、加熱炉などの燃焼機器で発生した排ガスから排熱を回収する装置である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
An exhaust heat recovery apparatus according to an embodiment of the present invention is an apparatus that recovers exhaust heat from exhaust gas generated in combustion equipment such as a boiler, a diesel engine, a gas turbine, an incinerator, and a heating furnace.

まず最初に、図1を参照して、本発明の実施形態に係る排熱回収装置が適用されるボイラの構成を説明する。ボイラ1は、主に、バーナ3が設けられた燃焼室2と、燃焼ガスを用いて蒸気を生成する伝熱管4と、燃焼室2の出口から延設されたダクト5と、ダクト5上に配設された排熱回収装置10と、ダクト5に接続された煙突6とを備える。
ボイラ1の燃焼室2では、バーナ3から供給される燃料と燃焼空気を燃焼させて高温の燃焼ガスを生成する。燃焼ガスは伝熱管4で熱交換されて管内の水を加熱し、蒸気を発生させる。この過程で発生した排ガスは、燃焼室2の出口から延設されたダクト5を通って排熱回収装置10で余熱回収された後、煙突6より排出される。
First, a configuration of a boiler to which an exhaust heat recovery apparatus according to an embodiment of the present invention is applied will be described with reference to FIG. The boiler 1 mainly includes a combustion chamber 2 in which a burner 3 is provided, a heat transfer tube 4 that generates steam using combustion gas, a duct 5 that extends from the outlet of the combustion chamber 2, and a duct 5. An exhaust heat recovery apparatus 10 disposed and a chimney 6 connected to the duct 5 are provided.
In the combustion chamber 2 of the boiler 1, the fuel and combustion air supplied from the burner 3 are combusted to generate high-temperature combustion gas. The combustion gas is heat-exchanged in the heat transfer tube 4 to heat the water in the tube and generate steam. The exhaust gas generated in this process passes through the duct 5 extended from the outlet of the combustion chamber 2 and is recovered by the exhaust heat recovery device 10 and then discharged from the chimney 6.

排熱回収装置10は、ダクト5上に直列に配置された複数の熱交換器を有する。この熱交換器として本実施形態では、排ガス流れ方向上流側から順に、少なくとも乾式エコノマイザ11と湿式エコノマイザ12とが設けられている。
乾式エコノマイザ11は、多段の伝熱管群から構成され、管内を流通する給水と管外を流通する排ガスとを熱交換し、排ガスの顕熱を利用して給水を加熱する熱交換器である。
凝縮エコノマイザ12は、多段の伝熱管群から構成され、管内を流通する給水と管外を流通する排ガスとを熱交換し、排ガスの凝縮潜熱を利用して給水を加熱する熱交換器である。
The exhaust heat recovery apparatus 10 has a plurality of heat exchangers arranged in series on the duct 5. In this embodiment, at least a dry economizer 11 and a wet economizer 12 are provided in this embodiment as the heat exchanger in order from the upstream side in the exhaust gas flow direction.
The dry economizer 11 is a heat exchanger that is composed of a multi-stage heat transfer tube group, heat-exchanges the feed water flowing through the pipe and the exhaust gas flowing outside the pipe, and heats the feed water using the sensible heat of the exhaust gas.
The condensation economizer 12 is composed of a multi-stage heat transfer tube group, and is a heat exchanger that exchanges heat between the feed water flowing inside the tube and the exhaust gas flowing outside the tube, and heats the feed water using the condensation latent heat of the exhaust gas.

これらのエコノマイザの第1の給水系統14として、ポンプ13から圧送される給水は、凝縮エコノマイザ12の排ガス流れ方向下流側から伝熱管内に導入され、該凝縮エコノマイザ12を通って排ガス流れ方向上流側から排出され、次いで乾式エコノマイザ11の排ガス流れ方向下流側から伝熱管内に導入され、該乾式エコノマイザ11を通って排ガス流れ方向上流側から排出される構成となっている。   As the first water supply system 14 of these economizers, the feed water pumped from the pump 13 is introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the condensation economizer 12, and passes through the condensation economizer 12 in the upstream side in the exhaust gas flow direction. Then, it is introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the dry economizer 11 and is discharged from the upstream side in the exhaust gas flow direction through the dry economizer 11.

なお、図1には一例として、鉛直方向に延設されたダクト5の上方から下方に向けて排ガス流れが形成され、このダクト部位の上方に乾式エコノマイザ11を配置し、下方に凝縮エコノマイザ12を配置した構成について示したが、これに限定されるものではなく、下方から上方に向けて排ガス流れが形成されるダクト部位に各エコノマイザを配置してもよいし、水平方向に排ガス流れが形成されるダクト部位に各エコノマイザを配置してもよい。   In FIG. 1, as an example, an exhaust gas flow is formed from the upper side to the lower side of the duct 5 extending in the vertical direction, a dry economizer 11 is disposed above the duct portion, and a condensing economizer 12 is disposed below. Although the arrangement is shown, the present invention is not limited to this, and each economizer may be arranged in a duct portion where the exhaust gas flow is formed from below to above, or the exhaust gas flow is formed in the horizontal direction. Each economizer may be arranged in a duct part.

さらに、本実施形態では、乾式エコノマイザ11と凝縮エコノマイザ12の間に、排ガスの温度を変化させる排ガス温度変化手段を介装した構成となっている。
この排ガス温度変化手段は、乾式エコノマイザ出口11aの排ガス温度が水露点以上となるように排ガス温度を変化させる手段、若しくは凝縮エコノマイザ入口12aの排ガス温度が水露点以下となるように排ガス温度を変化させる手段である。
これにより、乾式エコノマイザ11若しくは凝縮エコノマイザ12にて乾湿を繰り返す伝熱管ができることを防止し、伝熱管の腐食や伝熱管へのスケール等の付着を抑制することが可能となる。
Further, in the present embodiment, an exhaust gas temperature changing means for changing the temperature of the exhaust gas is interposed between the dry economizer 11 and the condensation economizer 12.
The exhaust gas temperature changing means changes the exhaust gas temperature so that the exhaust gas temperature at the dry economizer outlet 11a is higher than the water dew point, or changes the exhaust gas temperature so that the exhaust gas temperature at the condensed economizer inlet 12a is lower than the water dew point. Means.
Thereby, it is possible to prevent a heat transfer tube that repeats drying and wetting with the dry economizer 11 or the condensation economizer 12, and to suppress corrosion of the heat transfer tube and adhesion of scales to the heat transfer tube.

具体的には、排ガス温度変化手段が、乾式エコノマイザ出口11aの排ガス温度が水露点以上となるように排ガス温度を変化させる手段である場合、乾式エコノマイザ11内で排ガス中の水分が凝縮することがなく、乾式エコノマイザ11のほぼ全ての伝熱管表面を常時乾燥状態に保つことができる。
一方、排ガス温度変化手段が、凝縮エコノマイザ入口12aの排ガス温度が水露点以下となるように排ガス温度を変化させる手段である場合、凝縮エコノマイザ12内で確実に凝縮が発生するようになり、凝縮エコノマイザ12のほぼ全ての伝熱管表面を常時湿潤状態に保つことができる。
Specifically, when the exhaust gas temperature changing means is a means for changing the exhaust gas temperature so that the exhaust gas temperature at the dry economizer outlet 11a becomes equal to or higher than the water dew point, moisture in the exhaust gas may be condensed in the dry economizer 11. In addition, almost all the heat transfer tube surfaces of the dry economizer 11 can be kept dry at all times.
On the other hand, when the exhaust gas temperature changing means is a means for changing the exhaust gas temperature so that the exhaust gas temperature at the condensing economizer inlet 12a is equal to or lower than the water dew point, condensation is reliably generated in the condensing economizer 12, and the condensing economizer Almost all twelve heat transfer tube surfaces can be kept moist at all times.

排ガス温度変化手段は、上記した前者と後者を兼ね備えた構成であってもよく、その場合は乾式エコノマイザ11を常時乾燥状態に、且つ凝縮エコノマイザ12を常時湿潤状態に、確実に維持することが可能となる。
なお、乾式エコノマイザ出口11aの排ガス温度とは、乾式エコノマイザ11の排ガス出口11a側の伝熱管メタル温度であることが好ましく、また凝縮エコノマイザ入口12aの排ガス温度とは、凝縮エコノマイザ12の排ガス入口12a側の伝熱管メタル温度であることが好ましい。これにより、伝熱管表面における凝縮発生の有無を適切に管理することが可能である。
次いで、以下の第1実施形態〜第3実施形態にて、排熱回収装置10の具体的構成を説明する。
The exhaust gas temperature changing means may be configured to have both the former and the latter, and in that case, the dry economizer 11 can be always kept in a dry state and the condensing economizer 12 can be always kept in a wet state. It becomes.
The exhaust gas temperature at the dry economizer outlet 11a is preferably the heat transfer tube metal temperature on the exhaust gas outlet 11a side of the dry economizer 11, and the exhaust gas temperature at the condensation economizer inlet 12a is the exhaust gas inlet 12a side of the condensation economizer 12 The heat transfer tube metal temperature is preferred. Thereby, it is possible to appropriately manage the presence or absence of condensation on the heat transfer tube surface.
Next, a specific configuration of the exhaust heat recovery apparatus 10 will be described in the following first to third embodiments.

(第1実施形態)
図2は本発明の第1実施形態に係る排熱回収装置の構成図である。
第1実施形態に係る排熱回収装置10は、排ガスが流通するダクト5に配置された乾式エコノマイザ11と、その排ガス流れ方向下流側に配置された凝縮エコノマイザ12と、排ガス温度変化手段として、乾式エコノマイザ11と凝縮エコノマイザ12の間に介装された分岐ガス導入部20と、乾式エコノマイザ11の給水温度又は伝熱管メタル温度を検出する第1の温度検出手段23を有する。
(First embodiment)
FIG. 2 is a configuration diagram of the exhaust heat recovery apparatus according to the first embodiment of the present invention.
The exhaust heat recovery apparatus 10 according to the first embodiment includes a dry economizer 11 disposed in a duct 5 through which exhaust gas flows, a condensing economizer 12 disposed downstream in the exhaust gas flow direction, and a dry type as an exhaust gas temperature changing means. A branch gas introducing unit 20 interposed between the economizer 11 and the condensing economizer 12 and a first temperature detecting means 23 for detecting a water supply temperature or a heat transfer tube metal temperature of the dry economizer 11 are provided.

分岐ガス導入部20は、乾式エコノマイザ11の上流側から排ガスの一部を分岐させた分岐ガスが、該乾式エコノマイザ11をバイパスして乾式エコノマイザ11と凝縮エコノマイザ12の間に導入されるようになっている。具体的には、一端側が乾式エコノマイザ11の上流側のダクト5に接続され、他端側が乾式エコノマイザ11と凝縮エコノマイザ12の間のダクト5に接続された分岐管21を設け、さらに分岐ガス導入部20より導入される分岐ガス導入量を調整する分岐ガス量調整手段を設けている。   The branch gas introduction unit 20 is configured such that a branch gas obtained by branching a part of the exhaust gas from the upstream side of the dry economizer 11 is introduced between the dry economizer 11 and the condensation economizer 12 by bypassing the dry economizer 11. ing. Specifically, a branch pipe 21 having one end connected to the duct 5 on the upstream side of the dry economizer 11 and the other end connected to the duct 5 between the dry economizer 11 and the condensation economizer 12 is provided. A branch gas amount adjusting means for adjusting the amount of branch gas introduced from 20 is provided.

分岐ガス量調整手段は、図2では一例として、分岐管21と乾式エコノマイザ11の上流側のダクト5との接続部に配置した三方弁22である。この三方弁22により、ダクト5から所定流量の排ガスが分岐し、分岐ガスとして分岐ガス導入部20より導入される。なお、分岐管21の弁配置はこれに限定されるものではなく、分岐管21上に配置した開閉弁としてもよい。   The branch gas amount adjusting means is, as an example in FIG. 2, a three-way valve 22 disposed at a connection portion between the branch pipe 21 and the duct 5 on the upstream side of the dry economizer 11. By this three-way valve 22, a predetermined flow rate of the exhaust gas branches from the duct 5 and is introduced from the branch gas introduction unit 20 as a branch gas. The valve arrangement of the branch pipe 21 is not limited to this, and may be an on-off valve arranged on the branch pipe 21.

第1の温度検出手段23は、乾式エコノマイザ11の給水入口温度又は乾式エコノマイザ11の排ガス出口側11aの伝熱管メタル温度を検出する。
そして、第1の温度検出手段23で検出された温度に基づいて、分岐ガス量調整手段により分岐ガス導入量を調整する。このとき、制御手段25を設けてもよい。この場合、制御手段25は、第1の温度検出手段23から入力された温度検出信号に基づいて三方弁22の開度を求め、この開度となるように三方弁22に開度制御信号を送信する。
なお、伝熱管メタル温度は、排ガス温度と給水温度との両方に依存するが、排ガスの伝熱係数は給水の伝熱係数に比べて極めて小さいため、伝熱管メタル温度は給水温度の影響を大きく受ける。よって、本実施形態では、伝熱管表面の凝縮発生の有無を給水温度で調整可能としている。
The first temperature detection means 23 detects the feed water inlet temperature of the dry economizer 11 or the heat transfer tube metal temperature on the exhaust gas outlet side 11 a of the dry economizer 11.
Based on the temperature detected by the first temperature detecting means 23, the branch gas introduction amount is adjusted by the branch gas amount adjusting means. At this time, the control means 25 may be provided. In this case, the control means 25 obtains the opening degree of the three-way valve 22 based on the temperature detection signal input from the first temperature detection means 23, and sends an opening degree control signal to the three-way valve 22 so as to be this opening degree. Send.
The heat transfer tube metal temperature depends on both the exhaust gas temperature and the feed water temperature, but the heat transfer coefficient of the exhaust gas is extremely small compared to the heat transfer coefficient of the feed water, so the heat transfer tube metal temperature greatly affects the feed water temperature. receive. Therefore, in this embodiment, the presence or absence of condensation on the heat transfer tube surface can be adjusted by the feed water temperature.

ここで、上記した第1実施形態に係る排熱回収装置10の作用を説明する。
定常運転では、ダクト5を流通する排ガスはまず乾式エコノマイザ11に導入され、該乾式エコノマイザ11にて排ガスの顕熱を利用して給水を加熱する。乾式エコノマイザ11より排出された排ガスは、次いで凝縮エコノマイザ12に導入され、該凝縮エコノマイザ12にて主に排ガスの凝縮潜熱を利用して給水を加熱する。
Here, the operation of the exhaust heat recovery apparatus 10 according to the first embodiment will be described.
In the steady operation, the exhaust gas flowing through the duct 5 is first introduced into the dry economizer 11, and the dry economizer 11 uses the sensible heat of the exhaust gas to heat the feed water. The exhaust gas discharged from the dry economizer 11 is then introduced into the condensing economizer 12, and the condensing economizer 12 heats the feed water mainly using the condensing latent heat of the exhaust gas.

排熱回収装置10の運転中、常時又は断続的に、第1の温度検出手段23で乾式エコノマイザ11の給水入口温度又は乾式エコノマイザ11の排ガス出口側11aの伝熱管メタル温度を検出し、検出した温度に基づいて制御手段25により三方弁22を制御し、分岐ガス導入部20からの分岐ガス導入量を調整する。具体的には、第1の温度検出手段23で検出した温度が水露点以下となったら制御手段25により三方弁22を制御し、分岐ガス導入量を増加させる。   During operation of the exhaust heat recovery device 10, the first temperature detection means 23 detects the feed water inlet temperature of the dry economizer 11 or the heat transfer pipe metal temperature on the exhaust gas outlet side 11 a of the dry economizer 11 and detects it. Based on the temperature, the control means 25 controls the three-way valve 22 to adjust the amount of branch gas introduced from the branch gas introduction section 20. Specifically, when the temperature detected by the first temperature detection means 23 is equal to or lower than the water dew point, the control means 25 controls the three-way valve 22 to increase the branch gas introduction amount.

このように第1実施形態によれば、乾式エコノマイザ上流側から排ガスの一部を分岐させて、この分岐ガスを乾式エコノマイザ11と凝縮エコノマイザ12の間に設けた分岐ガス導入部20より導入している。この分岐ガスは、乾式エコノマイザ11を通過しないため保有熱量が大きく、これを直接凝縮エコノマイザ12に供給することで凝縮エコノマイザ12での交換熱量を増加させ給水温度を上昇させる。したがって、分岐ガス導入量を調整することで乾式エコノマイザ11に流入する給水温度の調整、ひいては乾式エコノマイザ11の伝熱管メタル温度の調整が可能となる。   As described above, according to the first embodiment, a part of the exhaust gas is branched from the upstream side of the dry economizer, and this branch gas is introduced from the branch gas introduction unit 20 provided between the dry economizer 11 and the condensation economizer 12. Yes. Since this branch gas does not pass through the dry economizer 11, it has a large amount of heat. By supplying this directly to the condensing economizer 12, the amount of exchange heat in the condensing economizer 12 is increased and the feed water temperature is raised. Therefore, by adjusting the branch gas introduction amount, it is possible to adjust the temperature of the feed water flowing into the dry economizer 11, and consequently the heat transfer tube metal temperature of the dry economizer 11.

そして、乾式エコノマイザ11の給水入口温度又は乾式エコノマイザの排ガス出口側の伝熱管メタル温度に基づいて分岐ガス導入量を調整することで、乾式エコノマイザ11の伝熱管表面温度を水露点以上に維持でき、これにより伝熱管表面を常時乾燥状態に保持し、乾式エコノマイザ11の伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。   And by adjusting the amount of branch gas introduction based on the feed water inlet temperature of the dry economizer 11 or the heat transfer pipe metal temperature on the exhaust gas outlet side of the dry economizer, the heat transfer pipe surface temperature of the dry economizer 11 can be maintained above the water dew point, As a result, the heat transfer tube surface can be kept dry at all times, and corrosion of the heat transfer tube of the dry economizer 11 and adhesion of scales to the heat transfer tube can be suppressed.

また、第1実施形態では、凝縮エコノマイザ12の給水出口温度又は凝縮エコノマイザ12の排ガス入口側12aの伝熱管メタル温度を検出する第2の温度検出手段26と、凝縮エコノマイザ12の入口側12aに水分を供給する水分供給手段27とを有していることが好ましい。
水分供給手段27は、凝縮エコノマイザ12の入口側12aに水又は蒸気を噴霧する手段、若しくは凝縮エコノマイザ12に直接散水する手段を用いることができる。
これらの構成により、第2の温度検出手段26で検出された温度が水露点以上となったら、水分供給手段27により凝縮エコノマイザ12の入口側12aに水又は蒸気を噴霧するか、若しくは凝縮エコノマイザ11に直接散水する。制御手段25を有する場合は、第2の温度検出手段26から入力された温度検出信号に基づいて制御手段25により水分供給手段27を作動させる制御信号を送信する。
In the first embodiment, the water supply outlet temperature of the condensation economizer 12 or the heat transfer pipe metal temperature on the exhaust gas inlet side 12a of the condensation economizer 12 and the moisture on the inlet side 12a of the condensation economizer 12 It is preferable to have a water supply means 27 for supplying water.
As the water supply means 27, means for spraying water or steam on the inlet side 12 a of the condensation economizer 12 or means for spraying water directly on the condensation economizer 12 can be used.
With these configurations, when the temperature detected by the second temperature detection means 26 is equal to or higher than the water dew point, the water supply means 27 sprays water or steam on the inlet side 12a of the condensation economizer 12, or the condensation economizer 11 Water directly. When the control means 25 is provided, the control means 25 transmits a control signal for operating the water supply means 27 based on the temperature detection signal input from the second temperature detection means 26.

このように、凝縮エコノマイザ12の給水出口温度又は凝縮エコノマイザ12の排ガス入口側12aの伝熱管メタル温度を検出し、検出温度が水露点以上となったら水分供給手段27により凝縮エコノマイザ12に水を供給することで、凝縮エコノマイザ12の伝熱管表面を湿潤状態にすることができる。具体的には、凝縮エコノマイザ12の入口側12aに水又は蒸気を噴霧することで、排ガスの湿度を上昇させ凝縮を促進させることができる。または、凝縮エコノマイザ12に直接散水することで伝熱管表面を強制的に湿潤させることができる。   Thus, the water supply outlet temperature of the condensing economizer 12 or the heat transfer pipe metal temperature on the exhaust gas inlet side 12a of the condensing economizer 12 is detected, and water is supplied to the condensing economizer 12 by the water supply means 27 when the detected temperature becomes equal to or higher than the water dew point. By doing so, the heat transfer tube surface of the condensation economizer 12 can be wetted. Specifically, by spraying water or steam on the inlet side 12a of the condensation economizer 12, the humidity of the exhaust gas can be increased to promote condensation. Alternatively, the heat transfer tube surface can be forcibly moistened by directly spraying the condensation economizer 12 with water.

次に、上記した第1実施形態の応用例を説明する。以下に示す構成は、いずれも乾式エコノマイザ11内での凝縮発生を防止するものであり、既に説明した第1実施形態の構成と組み合わせて用いることが好ましい。   Next, an application example of the first embodiment will be described. All of the configurations shown below prevent condensation from occurring in the dry economizer 11 and are preferably used in combination with the configuration of the first embodiment already described.

第1の応用例として、分岐管21を途中からさらに分岐させた補助分岐管30を設け、この補助分岐管30の下流端を乾式エコノマイザ11の中段に接続する。分岐管21と補助分岐管30の接続部には三方弁31を設ける。そして、第1の温度検出手段23で検出した温度に基づいて三方弁31を制御し、補助分岐管30を通って乾式エコノマイザ11の中段に導入される分岐ガス導入量を調整する。具体的には、第1の温度検出手段23で検出した温度が水露点以下となったら、補助分岐管30が開放されるように三方弁31を制御し、補助分岐管30を介して分岐ガスを乾式エコノマイザ11の中段に導入する。   As a first application example, an auxiliary branch pipe 30 in which the branch pipe 21 is further branched from the middle is provided, and the downstream end of the auxiliary branch pipe 30 is connected to the middle stage of the dry economizer 11. A three-way valve 31 is provided at the connection between the branch pipe 21 and the auxiliary branch pipe 30. Then, the three-way valve 31 is controlled based on the temperature detected by the first temperature detecting means 23, and the branch gas introduction amount introduced into the middle stage of the dry economizer 11 through the auxiliary branch pipe 30 is adjusted. Specifically, when the temperature detected by the first temperature detection means 23 is equal to or lower than the water dew point, the three-way valve 31 is controlled so that the auxiliary branch pipe 30 is opened, and the branch gas is passed through the auxiliary branch pipe 30. Is introduced into the middle of the dry economizer 11.

このように、乾式エコノマイザ11の給水入口温度又は乾式エコノマイザ11の排ガス出口側11aの伝熱管メタル温度が水露点以下となったら、補助分岐管30を介して分岐ガスを乾式エコノマイザ11の中段に導入することによって乾式エコノマイザ11内の排ガス温度を上昇させ、これにより排ガス中の湿度を低下させて凝縮を抑制することが可能となる。   In this way, when the feed water inlet temperature of the dry economizer 11 or the heat transfer pipe metal temperature on the exhaust gas outlet side 11a of the dry economizer 11 becomes below the water dew point, the branch gas is introduced into the middle stage of the dry economizer 11 via the auxiliary branch pipe 30. By doing so, the exhaust gas temperature in the dry economizer 11 is raised, thereby reducing the humidity in the exhaust gas and suppressing condensation.

第2の応用例として、分岐管21を途中からさらに分岐させた補助分岐管32を設け、この補助分岐管32の下流端を凝縮エコノマイザ12の下流側ダクトに接続する。分岐管21と補助分岐管32の接続部には三方弁33を設ける。そして、第1の温度検出手段23で検出した温度に基づいて三方弁33を制御し、補助分岐管32を通って凝縮エコノマイザ12の下流側に導入される分岐ガス導入量を調整する。具体的には、第1の温度検出手段23で検出した温度が水露点以下となったら、補助分岐管32を流通する分岐ガス量が低減するように三方弁33を制御し、乾式エコノマイザ11に導入される排ガス量を増加させる。これにより、乾式エコノマイザ11内の排ガス温度が上昇し、排ガス中の湿度が低下することにより排ガス中の水分の凝縮を抑制可能となる。   As a second application example, an auxiliary branch pipe 32 in which the branch pipe 21 is further branched from the middle is provided, and the downstream end of the auxiliary branch pipe 32 is connected to the downstream duct of the condensation economizer 12. A three-way valve 33 is provided at the connection between the branch pipe 21 and the auxiliary branch pipe 32. Then, the three-way valve 33 is controlled based on the temperature detected by the first temperature detecting means 23, and the branch gas introduction amount introduced into the downstream side of the condensation economizer 12 through the auxiliary branch pipe 32 is adjusted. Specifically, when the temperature detected by the first temperature detection means 23 is equal to or lower than the water dew point, the three-way valve 33 is controlled so that the amount of branch gas flowing through the auxiliary branch pipe 32 is reduced, and the dry economizer 11 is controlled. Increase the amount of exhaust gas introduced. As a result, the exhaust gas temperature in the dry economizer 11 rises and the humidity in the exhaust gas decreases, so that condensation of moisture in the exhaust gas can be suppressed.

なお、補助分岐管32は、白煙防止用に従来から用いられているものであってもよい。通常、排ガスは煙突6(図1参照)から大気中に放出されると、排ガス中の水蒸気が冷却されて白煙が生じてしまうため、大気放出された時に白煙が生じない温度まで排ガスを加温した後に放出している。加温には、排熱回収装置10より上流側の排ガスが用いられる。すなわち、乾式エコノマイザ11の上流側の排ガスを一部分岐させ、この分岐ガスを煙突の手前で合流させている。この補助分岐管32から分岐される分岐ガス量を低減することにより、乾式エコノマイザ11への排ガス導入量を増加させ、乾式エコノマイザ11内での水分凝縮を抑制する。   The auxiliary branch pipe 32 may be one conventionally used for white smoke prevention. Normally, when the exhaust gas is released from the chimney 6 (see FIG. 1) into the atmosphere, the water vapor in the exhaust gas is cooled and white smoke is generated. Released after heating. For heating, exhaust gas upstream from the exhaust heat recovery device 10 is used. That is, the exhaust gas upstream of the dry economizer 11 is partially branched, and this branched gas is merged before the chimney. By reducing the amount of branch gas branched from the auxiliary branch pipe 32, the amount of exhaust gas introduced into the dry economizer 11 is increased, and moisture condensation in the dry economizer 11 is suppressed.

(第2実施形態)
図3は本発明の第2実施形態に係る排熱回収装置の構成図である。
第2実施形態に係る排熱回収装置10は、排ガスが流通するダクト5に配置された乾式エコノマイザ11と、その排ガス流れ方向下流側に配置された凝縮エコノマイザ12と、排ガス温度変化手段として、乾式エコノマイザ11と凝縮エコノマイザ12の間に介装された乾式・凝縮エコノマイザ35を有する。
(Second Embodiment)
FIG. 3 is a configuration diagram of the exhaust heat recovery apparatus according to the second embodiment of the present invention.
The exhaust heat recovery apparatus 10 according to the second embodiment includes a dry economizer 11 disposed in a duct 5 through which exhaust gas flows, a condensing economizer 12 disposed downstream in the exhaust gas flow direction, and an exhaust gas temperature changing means as a dry type. A dry / condensation economizer 35 is interposed between the economizer 11 and the condensing economizer 12.

乾式・凝縮エコノマイザ35は、排ガスの顕熱と凝縮潜熱とを利用して給水を加熱する熱交換器で、ダクト5に対して着脱自在に配設されている。
好適には、乾式エコノマイザ11から湿式エコノマイザ12に至るダクト5上で、排ガスの凝縮開始点を含む乾湿混在領域を予め推定しておき、この乾湿混在領域に乾式・凝縮エコノマイザ35を配置する。乾湿混在領域の推定方法としては、排ガス温度と給水温度とから算出したメタル温度に基づいて凝縮開始点が推定でき、この凝縮開始点とボイラの運転変動幅(負荷変動幅)とに基づいて乾湿混在領域を推定することができる。運転変動幅は、経験値(過去の実測データを含む)又は実験データ、あるいはシミュレーションから求められる。
The dry / condensation economizer 35 is a heat exchanger that heats feed water using sensible heat of exhaust gas and latent heat of condensation, and is detachably attached to the duct 5.
Preferably, on the duct 5 extending from the dry economizer 11 to the wet economizer 12, a wet / dry mixed area including the condensation start point of the exhaust gas is estimated in advance, and the dry / condensed economizer 35 is disposed in the dry / humid mixed area. As a method of estimating the wet and dry mixed area, the condensation start point can be estimated based on the metal temperature calculated from the exhaust gas temperature and the feed water temperature, and the wet and dry based on the condensation start point and the operation fluctuation range (load fluctuation range) of the boiler. The mixed area can be estimated. The driving fluctuation range is obtained from experience values (including past actual measurement data), experimental data, or simulation.

これらのエコノマイザ11、35、12の第1の給水系統14として、ポンプ13(図1参照)から圧送される給水は、凝縮エコノマイザ12の排ガス流れ方向下流側から伝熱管内に導入され、該凝縮エコノマイザ12を通って排ガス流れ方向上流側から排出され、次いで乾式・凝縮エコノマイザ35の排ガス流れ方向下流側から伝熱管内に導入され、該乾式・凝縮エコノマイザ35を通って排ガス流れ方向上流側から排出され、さらに乾式エコノマイザ11の排ガス流れ方向下流側から伝熱管内に導入され、該乾式エコノマイザ11を通って排ガス流れ方向上流側から排出される構成となっている。   As the first water supply system 14 of these economizers 11, 35, and 12, the feed water pumped from the pump 13 (see FIG. 1) is introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the condensation economizer 12, and the condensation is performed. It is discharged from the upstream side in the exhaust gas flow direction through the economizer 12, then introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the dry / condensation economizer 35, and discharged from the upstream side in the exhaust gas flow direction through the dry / condensation economizer 35 Furthermore, it is introduced into the heat transfer pipe from the downstream side of the exhaust gas flow direction of the dry economizer 11 and discharged from the upstream side of the exhaust gas flow direction through the dry economizer 11.

また第1の給水系統14は、乾式・凝縮エコノマイザ35の入口側から、該乾式・凝縮エコノマイザ35をバイパスしてその出口側に接続され、給水が流通するバイパス管36を有している。乾式・凝縮エコノマイザ35の入口側とバイパス管36の接続部には三方弁37が設けられている。   In addition, the first water supply system 14 has a bypass pipe 36 that bypasses the dry / condensation economizer 35 from the inlet side of the dry / condensation economizer 35 and is connected to the outlet side of the dry / condensation economizer 35. A three-way valve 37 is provided at the connection portion between the inlet side of the dry / condensation economizer 35 and the bypass pipe 36.

ここで、上記した第2実施形態に係る排熱回収装置10の作用を説明する。
ダクト5を流通する排ガスはまず乾式エコノマイザ11に導入され、該乾式エコノマイザ11にて排ガスの顕熱を利用して給水を加熱する。乾式エコノマイザ11より排出された排ガスは、次いで乾式・凝縮エコノマイザ35に導入され、ここで排ガスの顕熱と凝縮潜熱を利用して給水を加熱する。乾式・凝縮エコノマイザ35では、確実に凝縮が発生するように、水分供給手段38により水分を供給してもよい。この水分供給手段38は、図2に示した水分供給手段27と同様の構成を有する。乾式・凝縮エコノマイザ35より排出された排ガスは、さらに凝縮エコノマイザ12に導入され、該凝縮エコノマイザ12にて主に排ガスの凝縮潜熱を利用して給水を加熱する。
Here, the operation of the exhaust heat recovery apparatus 10 according to the second embodiment will be described.
The exhaust gas flowing through the duct 5 is first introduced into the dry economizer 11, and the dry economizer 11 uses the sensible heat of the exhaust gas to heat the feed water. The exhaust gas discharged from the dry economizer 11 is then introduced into the dry / condensation economizer 35, where the feed water is heated using the sensible heat and latent heat of condensation of the exhaust gas. In the dry / condensation economizer 35, moisture may be supplied by the moisture supply means 38 so that condensation occurs reliably. The moisture supply means 38 has the same configuration as the moisture supply means 27 shown in FIG. The exhaust gas discharged from the dry / condensation economizer 35 is further introduced into the condensing economizer 12, and the condensing economizer 12 mainly heats the feed water using the condensing latent heat of the exhaust gas.

このように、乾式エコノマイザ11と凝縮エコノマイザ12の間に乾式・凝縮エコノマイザ35を配置し、この乾式・凝縮エコノマイザ35で確実に凝縮が開始するように構成することで、乾式エコノマイザ11は常時乾燥状態に、凝縮エコノマイザ12は常時湿潤状態に維持され、これにより各エコノマイザにおける伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。   In this way, by arranging the dry / condensation economizer 35 between the dry economizer 11 and the condensing economizer 12, and by configuring the dry / condensing economizer 35 to reliably start condensing, the dry economizer 11 is always in a dry state. In addition, the condensation economizer 12 is always maintained in a wet state, whereby corrosion of the heat transfer tubes in each economizer and adhesion of scales to the heat transfer tubes can be suppressed.

また、上記した第2実施形態では、乾式・凝縮エコノマイザ35の伝熱管は部分的に乾燥状態と湿潤状態を繰り返すこととなるが、この乾式・凝縮エコノマイザ35を着脱自在としているため、腐食やスケール付着等が発生した際には乾式・凝縮エコノマイザ35のみを取り外して補修や交換を行うことができる。さらに乾式・凝縮エコノマイザ35をバイパスして給水が流通するバイパス管36を配設したため、乾式・凝縮エコノマイザ35に不具合が発生した場合には、三方弁37を制御してバイパス管36のみに給水が流通するようにし、一時的に乾式・凝縮エコノマイザ35を停止して定常運転を続行してもよい。そして、定期メンテナンス時に乾式・凝縮エコノマイザ35を補修、交換する。   In the second embodiment described above, the heat transfer tube of the dry / condensation economizer 35 partially repeats a dry state and a wet state. However, since the dry / condensation economizer 35 is detachable, corrosion and scale can be removed. When adhesion or the like occurs, only the dry / condensation economizer 35 can be removed and repaired or replaced. Further, since the bypass pipe 36 through which the feed water flows is arranged by bypassing the dry / condensation economizer 35, when a problem occurs in the dry / condensation economizer 35, the three-way valve 37 is controlled to supply water only to the bypass pipe 36. The dry / condensing economizer 35 may be temporarily stopped and the steady operation may be continued. The dry / condensation economizer 35 is repaired and replaced during regular maintenance.

(第3実施形態)
図4は本発明の第3実施形態に係る排熱回収装置の構成図である。
第3実施形態に係る排熱回収装置10は、排ガスが流通するダクト5に配置された乾式エコノマイザ11と、その排ガス流れ方向下流側に配置された凝縮エコノマイザ12と、排ガス温度変化手段として、乾式エコノマイザ11と凝縮エコノマイザ12の間に介装された乾式・凝縮エコノマイザ40を有する。
(Third embodiment)
FIG. 4 is a configuration diagram of an exhaust heat recovery apparatus according to the third embodiment of the present invention.
The exhaust heat recovery apparatus 10 according to the third embodiment includes a dry economizer 11 disposed in a duct 5 through which exhaust gas flows, a condensing economizer 12 disposed downstream in the exhaust gas flow direction, and a dry type as an exhaust gas temperature changing means. A dry / condensation economizer 40 is interposed between the economizer 11 and the condensing economizer 12.

これらのエコノマイザの第1の給水系統14として、ポンプ13(図1参照)から圧送される給水は、凝縮エコノマイザ12の排ガス流れ方向下流側から伝熱管内に導入され、該凝縮エコノマイザ12を通って排ガス流れ方向上流側から排出され、次いで乾式エコノマイザ11の排ガス流れ方向下流側から伝熱管内に導入され、該乾式エコノマイザ11を通って排ガス流れ方向上流側から排出される構成となっている。
さらに、第1の給水系統14とは独立して設けられた第2の給水系統41として、乾式・凝縮エコノマイザ40の排ガス流れ方向下流側から伝熱管内に導入され、該乾式・凝縮エコノマイザ40を通って排ガス流れ方向上流側から排出される給水系統を有する。この第2の給水系統41には、乾式・凝縮エコノマイザ入口の給水温度が水露点以下となるような給水が供給される。
As the first water supply system 14 of these economizers, water supplied by pump 13 (see FIG. 1) is introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the condensing economizer 12 and passes through the condensing economizer 12. It is discharged from the upstream side in the exhaust gas flow direction, then introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the dry economizer 11, and discharged from the upstream side in the exhaust gas flow direction through the dry economizer 11.
Further, as a second water supply system 41 provided independently of the first water supply system 14, the dry / condensation economizer 40 is introduced into the heat transfer pipe from the downstream side in the exhaust gas flow direction of the dry / condensation economizer 40. It has a water supply system that is discharged from the upstream side in the exhaust gas flow direction. The second feed water system 41 is supplied with feed water such that the feed water temperature at the dry / condensation economizer inlet is equal to or lower than the water dew point.

このように、乾式エコノマイザ11と凝縮エコノマイザ12の間に乾式・凝縮エコノマイザ40を配置することで、第2実施形態に記載した作用効果と同様に、乾式エコノマイザ11は常時乾燥状態に、凝縮エコノマイザ12は常時湿潤状態に維持され、これにより各エコノマイザにおける伝熱管の腐食や伝熱管へのスケール等の付着を抑制することができる。
また、乾式・凝縮エコノマイザ40の給水系統を独立した第2の給水系統41として構成し、且つ乾式・凝縮エコノマイザ入口の給水温度を水露点以下とすることにより、乾式・凝縮エコノマイザ40内で確実に凝縮を発生させることができる。
As described above, by arranging the dry / condensation economizer 40 between the dry economizer 11 and the condensing economizer 12, the dry economizer 11 is always in a dry state and the condensing economizer 12 is the same as the operation effect described in the second embodiment. Is always maintained in a wet state, whereby corrosion of the heat transfer tubes in each economizer and adhesion of scales to the heat transfer tubes can be suppressed.
In addition, the water supply system of the dry / condensation economizer 40 is configured as an independent second water supply system 41, and the water supply temperature at the dry / condensation economizer inlet is set to a water dew point or less, so that the dry / condensation economizer 40 can reliably Condensation can occur.

1 ボイラ
5 ダクト
10 排熱回収装置
11 乾式エコノマイザ
12 凝縮エコノマイザ
14 第1の給水系統
20 分岐ガス導入部
21 分岐管
22 三方弁
23 第1の温度検出手段
25 制御手段
26 第2の温度検出手段
27 水分供給手段
30、32 補助分岐管
31、33 三方弁
35 乾式・凝縮エコノマイザ
37 三方弁
38 水分供給手段
40 乾式・凝縮エコノマイザ
41 第2の給水系統
DESCRIPTION OF SYMBOLS 1 Boiler 5 Duct 10 Waste heat recovery apparatus 11 Dry type economizer 12 Condensation economizer 14 1st water supply system 20 Branch gas introduction part 21 Branch pipe 22 Three-way valve 23 1st temperature detection means 25 Control means 26 2nd temperature detection means 27 Water supply means 30, 32 Auxiliary branch pipes 31, 33 Three-way valve 35 Dry / condensation economizer 37 Three-way valve 38 Water supply means 40 Dry / condensation economizer 41 Second water supply system

Claims (5)

排ガスが流通するダクトに、前記排ガスの顕熱を利用して給水を加熱する乾式エコノマイザと、前記乾式エコノマイザより排ガス流れ方向下流側に配置され前記排ガスの凝縮潜熱を利用して給水を加熱する凝縮エコノマイザとが設けられ、前記給水が前記凝縮エコノマイザを通って前記乾式エコノマイザに導入するように構成された排熱回収装置において、
前記乾式エコノマイザと前記凝縮エコノマイザの間に、前記排ガスの温度を変化させる排ガス温度変化手段を介装し、
前記排ガス温度変化手段は、前記乾式エコノマイザ出口の排ガス温度が水露点以上となるように排ガス温度を変化させる手段、若しくは前記凝縮エコノマイザ入口の排ガス温度が水露点以下となるように排ガス温度を変化させる手段であることを特徴とする排熱回収装置。
A dry economizer that heats feed water using sensible heat of the exhaust gas in a duct through which the exhaust gas circulates, and a condenser that is disposed downstream of the dry economizer in the direction of exhaust gas flow and heats the feed water using latent heat of condensation of the exhaust gas In an exhaust heat recovery apparatus provided with an economizer and configured to introduce the water supply to the dry economizer through the condensation economizer,
An exhaust gas temperature changing means for changing the temperature of the exhaust gas is interposed between the dry economizer and the condensation economizer,
The exhaust gas temperature changing means changes the exhaust gas temperature so that the exhaust gas temperature at the dry economizer outlet becomes equal to or higher than the water dew point, or changes the exhaust gas temperature so that the exhaust gas temperature at the condensed economizer inlet becomes equal to or lower than the water dew point. An exhaust heat recovery apparatus characterized by being a means.
前記排ガス温度変化手段が、前記乾式エコノマイザの上流側から前記排ガスの一部を分岐させた分岐ガスを前記乾式エコノマイザと前記凝縮エコノマイザの間に導入する分岐ガス導入部であり、
前記乾式エコノマイザの給水入口温度又は前記乾式エコノマイザの排ガス出口側の伝熱管メタル温度を検出する第1の温度検出手段と、前記第1の温度検出手段で検出した温度に基づいて前記分岐ガス導入部から前記ダクト内に導入する分岐ガス導入量を調整する分岐ガス量調整手段とをさらに備え、
前記第1の温度検出手段で検出された温度が水露点以下となったら前記分岐ガス量調整手段により前記分岐ガス導入量を増加させることを特徴とする請求項1に記載の排熱回収装置。
The exhaust gas temperature changing means is a branch gas introduction section for introducing a branch gas obtained by branching a part of the exhaust gas from the upstream side of the dry economizer between the dry economizer and the condensation economizer;
First temperature detecting means for detecting a feed water inlet temperature of the dry economizer or a heat transfer pipe metal temperature on an exhaust gas outlet side of the dry economizer, and the branch gas introducing section based on the temperature detected by the first temperature detecting means And further comprising a branch gas amount adjusting means for adjusting the amount of branch gas introduced into the duct.
2. The exhaust heat recovery apparatus according to claim 1, wherein when the temperature detected by the first temperature detection unit becomes equal to or lower than a water dew point, the branch gas introduction amount is increased by the branch gas amount adjustment unit.
前記凝縮エコノマイザの給水出口温度又は前記凝縮エコノマイザの排ガス入口側の伝熱管メタル温度を検出する第2の温度検出手段と、前記凝縮エコノマイザの入口側に水分を供給する水分供給手段とをさらに備え、
前記第2の温度検出手段で検出された温度が水露点以上となったら前記水分供給手段により前記凝縮エコノマイザの入口側に水又は蒸気を噴霧するか、若しくは前記凝縮エコノマイザに直接散水することを特徴とする請求項2に記載の排熱回収装置。
A second temperature detection means for detecting a feed water outlet temperature of the condensation economizer or a heat transfer pipe metal temperature on an exhaust gas inlet side of the condensation economizer; and a water supply means for supplying moisture to the inlet side of the condensation economizer,
When the temperature detected by the second temperature detection means becomes equal to or higher than the water dew point, water or steam is sprayed on the inlet side of the condensation economizer by the moisture supply means, or water is sprayed directly on the condensation economizer. The exhaust heat recovery apparatus according to claim 2.
前記排ガス温度変化手段が、前記乾式エコノマイザと前記凝縮エコノマイザの間に着脱自在に介装され、前記排ガスの顕熱と凝縮潜熱とを利用して前記給水を加熱する乾式・凝縮エコノマイザであり、
前記凝縮エコノマイザを通って排出された前記給水が前記乾式・凝縮エコノマイザを通って前記乾式エコノマイザに導入されるように構成するとともに、前記乾式・凝縮エコノマイザの入口側から、該乾式・凝縮エコノマイザをバイパスしてその出口側に接続され前記給水が流通するバイパス管を配設したことを特徴とする請求項1乃至3のいずれか一項に記載の排熱回収装置。
The exhaust gas temperature changing means is a dry / condensation economizer that is detachably interposed between the dry economizer and the condensation economizer and heats the feed water using sensible heat and latent heat of condensation of the exhaust gas,
The feed water discharged through the condensing economizer is configured to be introduced into the dry economizer through the dry / condensing economizer, and bypassing the dry / condensing economizer from the inlet side of the dry / condensing economizer The exhaust heat recovery apparatus according to any one of claims 1 to 3, further comprising a bypass pipe connected to the outlet side through which the water supply flows.
前記排ガス温度変化手段が、前記乾式エコノマイザと前記凝縮エコノマイザの間に着脱自在に介装され、前記排ガスの顕熱と凝縮潜熱とを利用して前記給水を加熱する乾式・凝縮エコノマイザであり、
前記乾式・凝縮エコノマイザに導入される給水は、前記乾式エコノマイザ及び前記凝縮エコノマイザに導入される給水とは独立した給水系統を流通するように構成し、且つ前記乾式・凝縮エコノマイザ入口の給水温度が水露点以下であることを特徴とする請求項1乃至3のいずれか一項に記載の排熱回収装置。
The exhaust gas temperature changing means is a dry / condensation economizer that is detachably interposed between the dry economizer and the condensation economizer and heats the feed water using sensible heat and latent heat of condensation of the exhaust gas,
The feed water introduced into the dry / condensation economizer is configured to circulate through a water supply system independent of the dry economizer and the feed water introduced into the condensation economizer, and the feed water temperature at the dry / condensation economizer inlet is water. The exhaust heat recovery apparatus according to any one of claims 1 to 3, wherein the exhaust heat recovery apparatus has a dew point or less.
JP2010201537A 2010-09-09 2010-09-09 Exhaust heat recovery device Withdrawn JP2012057860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201537A JP2012057860A (en) 2010-09-09 2010-09-09 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201537A JP2012057860A (en) 2010-09-09 2010-09-09 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2012057860A true JP2012057860A (en) 2012-03-22

Family

ID=46055180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201537A Withdrawn JP2012057860A (en) 2010-09-09 2010-09-09 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2012057860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158561A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Boiler, steam-generating plant provided with same, and method for operating boiler
WO2017018253A1 (en) * 2015-07-29 2017-02-02 三菱日立パワーシステムズ株式会社 Exhaust gas latent heat recovery device
JP2019525114A (en) * 2016-07-08 2019-09-05 アルヴォス ユングストローム エルエルシー Method and system for improving boiler efficiency

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041026B1 (en) * 2015-03-31 2019-11-05 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, steam generating plant having the same, and operating method of boiler
US10844753B2 (en) 2015-03-31 2020-11-24 Mitsubishi Hitachi Power Systems, Ltd. Boiler, steam-generating plant provided with same, and method for operating boiler
KR102142849B1 (en) * 2015-03-31 2020-08-10 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, steam-generating plant provided with same, and method for operating boiler
KR20170118889A (en) * 2015-03-31 2017-10-25 미츠비시 히타치 파워 시스템즈 가부시키가이샤 A boiler, a steam generating plant having the same, and a method of operating a boiler
JPWO2016158561A1 (en) * 2015-03-31 2018-01-25 三菱日立パワーシステムズ株式会社 Boiler, steam generating plant equipped with the same, and boiler operating method
CN107683390A (en) * 2015-03-31 2018-02-09 三菱日立电力系统株式会社 Boiler, the steam for possessing the boiler produce equipment and the method for operation of boiler
WO2016158561A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Boiler, steam-generating plant provided with same, and method for operating boiler
KR20190124821A (en) * 2015-03-31 2019-11-05 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, steam-generating plant provided with same, and method for operating boiler
US10514183B2 (en) 2015-07-29 2019-12-24 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas latent heat recovery device
JP2017032166A (en) * 2015-07-29 2017-02-09 三菱日立パワーシステムズ株式会社 Latent heat recovery device for exhaust gas
WO2017018253A1 (en) * 2015-07-29 2017-02-02 三菱日立パワーシステムズ株式会社 Exhaust gas latent heat recovery device
JP2019525114A (en) * 2016-07-08 2019-09-05 アルヴォス ユングストローム エルエルシー Method and system for improving boiler efficiency
JP7152121B2 (en) 2016-07-08 2022-10-12 アルヴォス ユングストローム エルエルシー Method and system for improving boiler efficiency

Similar Documents

Publication Publication Date Title
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP5351840B2 (en) Waste heat recovery system for exhaust gas
JP5523810B2 (en) Combined cycle power generation facility and its feed water heating method
JP2007205187A (en) Heat recovery system attached to boiler-steam turbine system
CN102016241A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
CN208660405U (en) A kind of coal-fired power station boiler flue gas white-smoke-removing system tower-coupled with cooling
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
JP6632198B2 (en) Heat exchanger and heat exchanger control method
JP2014009877A (en) Flue gas treatment equipment and method
US20130192541A1 (en) Method and device for controlling the temperature of steam in a boiler
US20130247845A1 (en) Heat recovery and utilization system
US9151185B2 (en) Steam power plant with steam turbine extraction control
JP6813286B2 (en) Steam recovery system in generated exhaust gas, thermal power generation system, and steam recovery method in generated exhaust gas
JP2012057860A (en) Exhaust heat recovery device
JP2007248018A (en) Control system for supply water preheater of reheat boiler
CN103032881B (en) System using extraction steam of boiler unit to heat clean smoke after desulfurization
RU2323384C1 (en) Heat waste recover
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP2019090559A (en) Temperature controller of heat exchanger for boiler exhaust gas
CN208878231U (en) A kind of coal-fired power station boiler flue gas white-smoke-removing system of frozen-free heat exchange equipment
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP3783122B2 (en) Smoke removal equipment
CN105318343A (en) Flue-gas treatment apparatus and operating method thereof
CN204165066U (en) Exhaust smoke processing device
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203