JP5523810B2 - Combined cycle power generation facility and its feed water heating method - Google Patents

Combined cycle power generation facility and its feed water heating method Download PDF

Info

Publication number
JP5523810B2
JP5523810B2 JP2009284043A JP2009284043A JP5523810B2 JP 5523810 B2 JP5523810 B2 JP 5523810B2 JP 2009284043 A JP2009284043 A JP 2009284043A JP 2009284043 A JP2009284043 A JP 2009284043A JP 5523810 B2 JP5523810 B2 JP 5523810B2
Authority
JP
Japan
Prior art keywords
feed water
dew point
heat recovery
recovery boiler
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009284043A
Other languages
Japanese (ja)
Other versions
JP2011127786A (en
Inventor
敦夫 木下
尚毅 持田
丈彦 松下
祐太 服部
啓一 中村
信彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009284043A priority Critical patent/JP5523810B2/en
Publication of JP2011127786A publication Critical patent/JP2011127786A/en
Application granted granted Critical
Publication of JP5523810B2 publication Critical patent/JP5523810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

本発明は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、ガスタービンにて発電を行い、このガスタービンからの排ガスを排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気をガスタービンに導いて発電を行うコンバインドサイクル発電設備及びその給水加熱方法に関する。   The present invention includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine. Electric power is generated by the gas turbine, exhaust gas from the gas turbine is guided to an exhaust heat recovery boiler, and feed water is heated to form steam. The present invention relates to a combined cycle power generation facility for generating power by guiding it to a gas turbine and a method for heating the feed water.

一般的なコンバインドサイクル発電設備では、ガスタービンからの排ガスが排熱回収ボイラの最下段における低圧節炭器の配管外側を通過する際に、排ガス中に含まれる水分が、この配管内を流れる給水との温度差によって結露して、配管が腐食する恐れがある。特に硫黄分を含む燃料を使用した場合には、低圧節炭器の配管外表面に硫酸が生成されてしまい、この配管の腐食が甚だしくなる。   In a general combined cycle power generation facility, when exhaust gas from a gas turbine passes outside the piping of a low-pressure economizer at the bottom of the exhaust heat recovery boiler, water contained in the exhaust gas flows through the piping. Condensation may occur due to the temperature difference between the pipe and the pipe. In particular, when a fuel containing sulfur is used, sulfuric acid is generated on the outer surface of the pipe of the low-pressure economizer, and corrosion of this pipe becomes serious.

これを防止するため、従来のコンバインドサイクル発電設備では、低圧節炭器の配管内を流れる給水温度を排ガスの露点よりも高く設定することを目的に、蒸気タービンへ流入する低圧蒸気の一部、または蒸気タービンからの抽気の一部を給水加熱用の蒸気として使用する機能(例えば、特許文献1または2参照)、又は排熱回収ボイラの低圧節炭器からの給水を再循環させる機能(例えば、特許文献3参照)を有するものが開示されている。   In order to prevent this, in the conventional combined cycle power generation facility, a part of the low-pressure steam flowing into the steam turbine for the purpose of setting the feed water temperature flowing in the pipe of the low-pressure economizer higher than the dew point of the exhaust gas, Or the function (for example, refer to patent documents 1 or 2) which uses a part of extraction from a steam turbine as steam for heating feed water, or the function to recirculate feed water from the low-pressure economizer of a waste heat recovery boiler (for example, And Patent Document 3).

特開昭55−109708号公報JP-A-55-109708 特開昭59−101512号公報JP 59-101512 A 特開平11−200889号公報Japanese Patent Laid-Open No. 11-2000889

一般的なコンバインドサイクル発電設備では、特に大気温度が低い状態において、排ガスが煙突から大気中へ放出されるときに、この排ガス中に含まれる水分が凝縮して白煙が発生することがある。特に、特許文献1〜3に記載のように、コンバインドサイクル発電設備において給水を加熱する機能を有する場合には、排ガス温度が低くならないため、白煙が発生しやすい状況になりやすく、この白煙発生をどのように抑えるかが課題であった。   In a general combined cycle power generation facility, when exhaust gas is discharged from a chimney into the atmosphere, particularly in a state where the atmospheric temperature is low, moisture contained in the exhaust gas may be condensed to generate white smoke. In particular, as described in Patent Documents 1 to 3, when the combined cycle power generation facility has a function of heating the feed water, since the exhaust gas temperature does not decrease, white smoke is likely to be generated. The issue was how to control the occurrence.

本発明の目的は、上述の事情を考慮してなされたものであり、排熱回収ボイラ内配管の腐食を防止できると共に、排熱回収ボイラの煙突からの白煙の発生を抑制できるコンバインドサイクル発電設備及びその給水加熱方法を提供することにある。   The object of the present invention has been made in consideration of the above circumstances, and is capable of preventing corrosion of piping in the exhaust heat recovery boiler, and combined cycle power generation capable of suppressing the generation of white smoke from the chimney of the exhaust heat recovery boiler. The object is to provide a facility and its feed water heating method.

本発明に係るコンバインドサイクル発電設備は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系と、この給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインと、この給水加熱器バイパスラインに設けられ、この給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を制御する流量調節弁と、前記給水系における前記給水加熱器の下流側で、且つ前記給水加熱器バイパスラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、大気温度を計測する大気温度計と、大気湿度を計測する大気湿度計と、前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするものである。 A combined cycle power generation facility according to the present invention includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine, and guides exhaust gas from the gas turbine to the exhaust heat recovery boiler to heat feed water to form steam, which is used as the steam. In a combined cycle power generation facility that conducts power generation by guiding to a steam turbine, a feed water system that includes a feed water heater that guides extraction from the steam turbine and heats the feed water, and supplies the heated feed water to the exhaust heat recovery boiler And a feed water heater bypass line that is connected to the feed water system and bypasses the feed water heater, and provided in the feed water heater bypass line, and by adjusting a bypass flow rate that flows through the feed water heater bypass line, a flow control valve for controlling the feed water temperature at the outlet of the feed water heater, downstream of the feed water heater in the water supply system, A feed water thermometer that is provided downstream of the connection point of the feed water heater bypass line and measures the feed water temperature, an atmospheric thermometer that measures the atmospheric temperature, an atmospheric hygrometer that measures the atmospheric humidity, and the exhaust heat An exhaust gas dew point meter for measuring the dew point of the exhaust gas discharged from the recovery boiler; and a target value of the feed water temperature is calculated from the atmospheric dew point obtained from the atmospheric temperature and the atmospheric humidity and the dew point of the exhaust gas, and the feed water thermometer And a control device that adjusts the opening degree of the flow rate control valve so as to control the feed water temperature measured in step 1 to the target value of the feed water temperature .

また、本発明に係るコンバインドサイクル発電設備の給水加熱方法は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系を有し、前記給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするものである。   In addition, the feed water heating method for the combined cycle power generation facility according to the present invention includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine. The exhaust gas from the gas turbine is guided to the exhaust heat recovery boiler to heat the feed water to generate steam. In the feed water heating method of the combined cycle power generation facility that conducts power generation by introducing the steam to the steam turbine, the feed water heater that guides the bleed air from the steam turbine and heats the feed water is provided. A water supply system that supplies the exhaust heat recovery boiler, and is connected to the water supply system to adjust a bypass flow rate that flows through a water supply heater bypass line that bypasses the water supply heater; The feed water temperature is controlled to a target value of the feed water temperature obtained from the dew point of the atmosphere and the dew point of the exhaust gas.

更に、本発明に係るコンバインドサイクル発電設備は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインと、この給水再循環ラインに設けられ、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を制御する流量調節弁と、前記給水系における前記給水再循環ラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、大気温度を計測する大気温度計と、大気湿度を計測する大気湿度計と、前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするものである。   Furthermore, the combined cycle power generation facility according to the present invention includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine. The exhaust gas from the gas turbine is guided to the exhaust heat recovery boiler to heat the feed water to form steam. In a combined cycle power generation facility for generating power by introducing the steam to the steam turbine, a part of the water supply heated by the exhaust heat recovery boiler is recirculated by being connected to a water supply system for supplying water to the exhaust heat recovery boiler The feed water recirculation line and the feed water recirculation line provided to control the feed water temperature supplied from the feed water system to the exhaust heat recovery boiler by adjusting the feed water recirculation flow rate flowing through the feed water recirculation line A flow rate control valve, a feed water thermometer for measuring a feed water temperature provided downstream of a connection point of the feed water recirculation line in the feed water system, and an atmospheric temperature An atmospheric thermometer to measure, an atmospheric hygrometer to measure atmospheric humidity, an exhaust gas dew point meter to measure the dew point of exhaust gas discharged from the exhaust heat recovery boiler, and an atmospheric dew point determined from the atmospheric temperature and atmospheric humidity And a control device for calculating the target value of the feed water temperature from the dew point of the exhaust gas and adjusting the opening of the flow rate control valve to control the feed water temperature measured by the feed water thermometer to the target value of the feed water temperature It is characterized by having.

また、本発明に係るコンバインドサイクル発電設備の給水加熱方法は、ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインを有し、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするものである。   In addition, the feed water heating method for the combined cycle power generation facility according to the present invention includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine. The exhaust gas from the gas turbine is guided to the exhaust heat recovery boiler to heat the feed water to generate steam. In the feed water heating method of the combined cycle power generation facility that conducts power generation by introducing the steam to the steam turbine, the steam is connected to a water supply system that supplies water to the exhaust heat recovery boiler and is heated by the exhaust heat recovery boiler. A feed water recirculation line for recirculating a part of the feed water, and adjusting a feed water recirculation flow rate flowing through the feed water recirculation line to control a feed water temperature supplied from the feed water system to the exhaust heat recovery boiler. Control is made to a target value of the feed water temperature obtained from the dew point of the atmosphere and the dew point of the exhaust gas.

本発明に係るコンバインドサイクル発電設備及びその給水加熱方法によれば、給水加熱器により加熱された給水を排熱回収ボイラへ供給することから、排熱回収ボイラ内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。また、給水加熱器バイパスラインを流れる給水の流量を調節することで給水加熱器の出口の給水温度を制御するので、排熱回収ボイラから排出される排ガスの温度低下が促進されて、排熱回収ボイラの煙突からの白煙の発生を抑制できる。   According to the combined cycle power generation facility and the feed water heating method according to the present invention, the feed water heated by the feed water heater is supplied to the exhaust heat recovery boiler. The temperature difference between the pipes can be reduced, the occurrence of condensation on the outer surface of the pipe can be prevented, and corrosion of the pipe can be prevented. Moreover, since the feed water temperature at the outlet of the feed water heater is controlled by adjusting the flow rate of the feed water flowing through the feed water heater bypass line, the temperature reduction of the exhaust gas discharged from the waste heat recovery boiler is promoted, and the exhaust heat recovery The generation of white smoke from the boiler chimney can be suppressed.

更に、本発明に係るコンバインドサイクル発電設備及びその給水加熱方法によれば、給水再循環ラインからの加熱された給水を排熱回収ボイラへ供給することから、排熱回収ボイラ内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。また、給水再循環ラインを流れる給水再循環流量を調節することで排熱回収ボイラへ供給される給水温度を制御するので、排熱回収ボイラから排出される排ガスの温度低下が促進されて、排熱回収ボイラの煙突からの白煙の発生を抑制できる。   Furthermore, according to the combined cycle power generation facility and its feed water heating method according to the present invention, the heated feed water from the feed water recirculation line is supplied to the waste heat recovery boiler, so The temperature difference between the flowing water supply and the exhaust gas can be reduced, the occurrence of condensation on the outer surface of the pipe can be prevented, and the corrosion of the pipe can be prevented. In addition, since the feed water temperature supplied to the exhaust heat recovery boiler is controlled by adjusting the feed water recirculation flow rate through the feed water recirculation line, the temperature reduction of the exhaust gas discharged from the exhaust heat recovery boiler is promoted, Generation of white smoke from the chimney of the heat recovery boiler can be suppressed.

本発明に係るコンバインドサイクル発電設備における第1の実施の形態を示す系統図。The systematic diagram which shows 1st Embodiment in the combined cycle power generation equipment which concerns on this invention. 本発明に係るコンバインドサイクル発電設備における第2の実施の形態を示す系統図。The systematic diagram which shows 2nd Embodiment in the combined cycle power generation equipment which concerns on this invention.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1)
図1に示すコンバインドサイクル発電設備10は、ガスタービン11、排熱回収ボイラ12、蒸気タービン13及び給水加熱システム14を有して構成される。後に詳説するが、このコンバインドサイクル発電設備10は、ガスタービン11にて発電を行い、このガスタービン11からの排ガスを排熱回収ボイラ12に導き給水を加熱して蒸気とし、この蒸気を蒸気タービン13へ導いて発電を行う。
[A] First embodiment (FIG. 1)
A combined cycle power generation facility 10 illustrated in FIG. 1 includes a gas turbine 11, an exhaust heat recovery boiler 12, a steam turbine 13, and a feed water heating system 14. As will be described in detail later, the combined cycle power generation facility 10 generates power with a gas turbine 11, and exhaust gas from the gas turbine 11 is led to an exhaust heat recovery boiler 12 to heat feed water into steam, which is used as a steam turbine. 13 to generate electricity.

給水加熱システム14は、給水加熱器15を備えた給水系16、給水加熱器15をバイパスする給水加熱器バイパスライン17、この給水加熱器バイパスライン17に設けられた流量調節弁18、更に給水温度計19、大気温度計20a、大気湿度計20b、排ガス露点計21及び制御装置22を有して構成される。   The feed water heating system 14 includes a feed water system 16 provided with a feed water heater 15, a feed water heater bypass line 17 that bypasses the feed water heater 15, a flow rate adjusting valve 18 provided in the feed water heater bypass line 17, and a feed water temperature. It comprises a total meter 19, an atmospheric thermometer 20a, an atmospheric hygrometer 20b, an exhaust gas dew point meter 21 and a control device 22.

前記ガスタービン11は、吸気室23、圧縮機24、燃焼器25及びタービン26を有して構成され、発電機27を駆動する。このガスタービン11において、燃焼器25へ供給される燃料ガスは、吸気室23を経て圧縮機24により圧縮される空気と燃焼器25にて混合されて燃焼し、高温高圧ガスとなってタービン26へ導入され、このタービン26で膨張して仕事をし、発電機27を駆動する。   The gas turbine 11 includes an intake chamber 23, a compressor 24, a combustor 25, and a turbine 26, and drives a generator 27. In the gas turbine 11, the fuel gas supplied to the combustor 25 is mixed with the air compressed by the compressor 24 through the intake chamber 23 and combusted in the combustor 25, and becomes a high-temperature high-pressure gas. The turbine 26 is expanded to work, and the generator 27 is driven.

前記排熱回収ボイラ12は、ガスタービン11からの排ガスの流れの上流側から高圧過熱器28、再熱器29、高圧蒸発器30、高圧ドラム30a、中圧過熱器31、低圧過熱器32、中圧蒸発器33、中圧ドラム33a、高圧節炭器34、中圧節炭器35、低圧蒸発器36、低圧ドラム36a、低圧節炭器37、排ガス煙道38及び煙突39を有して構成される。また、前記蒸気タービン13は、高圧タービン40、中圧タービン41及び低圧タービン42を有して構成され、発電機43を駆動する。   The exhaust heat recovery boiler 12 includes a high pressure superheater 28, a reheater 29, a high pressure evaporator 30, a high pressure drum 30a, an intermediate pressure superheater 31, a low pressure superheater 32 from the upstream side of the flow of exhaust gas from the gas turbine 11. It has an intermediate pressure evaporator 33, an intermediate pressure drum 33a, a high pressure economizer 34, an intermediate pressure economizer 35, a low pressure evaporator 36, a low pressure drum 36a, a low pressure economizer 37, an exhaust gas flue 38 and a chimney 39. Composed. The steam turbine 13 includes a high pressure turbine 40, an intermediate pressure turbine 41, and a low pressure turbine 42, and drives the generator 43.

これらの排熱回収ボイラ12と蒸気タービン13との間では、高圧主蒸気管44により高圧過熱器28の出口と高圧タービン40の入口とが連結され、低圧主蒸気管45により低圧過熱器32の出口と低圧タービン42の入口とが連結され、低温再熱蒸気管46により高圧タービン40の出口と再熱器29の入口とが連結され、高温再熱蒸気管47により再熱器29の出口と中圧タービン41の入口とが連結されている。また、排熱回収ボイラ12の中圧過熱器31と低温再熱蒸気管46とが中圧主蒸気管48により連結されている。   Between the exhaust heat recovery boiler 12 and the steam turbine 13, the high-pressure main steam pipe 44 connects the outlet of the high-pressure superheater 28 and the inlet of the high-pressure turbine 40, and the low-pressure main steam pipe 45 connects the low-pressure superheater 32. The outlet and the inlet of the low-pressure turbine 42 are connected, the low-temperature reheat steam pipe 46 connects the outlet of the high-pressure turbine 40 and the inlet of the reheater 29, and the high-temperature reheat steam pipe 47 connects to the outlet of the reheater 29. The inlet of the intermediate pressure turbine 41 is connected. Further, the intermediate pressure superheater 31 and the low-temperature reheat steam pipe 46 are connected by an intermediate pressure main steam pipe 48.

前記ガスタービン11から排出される高温の排ガスは、排ガスダクト49を経て排熱回収ボイラ12で給水と熱交換を行った後、排ガス煙道38を経て煙突39より大気に放出される。   The high-temperature exhaust gas discharged from the gas turbine 11 is exchanged with the feed water in the exhaust heat recovery boiler 12 through the exhaust gas duct 49 and then discharged from the chimney 39 to the atmosphere through the exhaust gas flue 38.

つまり、排熱回収ボイラ12において、給水系16の主給水管50から供給された給水は低圧節炭器37及び低圧蒸発器36にて順次加熱され、一部は低圧ドラム36aにより低圧過熱器32に流入して加熱されて低圧蒸気を発生し、低圧主蒸気管45を経て、中圧タービン41から排出された蒸気と共に低圧タービン42へ導入される。   That is, in the exhaust heat recovery boiler 12, the feed water supplied from the main feed pipe 50 of the feed water system 16 is sequentially heated by the low pressure economizer 37 and the low pressure evaporator 36, and a part of the low pressure superheater 32 is fed by the low pressure drum 36a. And is heated to generate low-pressure steam, which is introduced into the low-pressure turbine 42 along with the steam discharged from the intermediate-pressure turbine 41 through the low-pressure main steam pipe 45.

また、排熱回収ボイラ12の低圧蒸発器36にて加熱された給水の一部は給水ポンプ51を経て、更にその一部は中圧節炭器35及び中圧蒸発器33により順次加熱される。この中圧蒸発器33により加熱された蒸気は、中圧ドラム33aを経て中圧過熱器31により更に加熱されて中圧蒸気を発生し、中圧主蒸気管48を経て低温再熱蒸気管46に合流し、再熱器29へ導入される。低圧蒸発器36で加熱された残りの給水は、給水ポンプ51を経て高圧節炭器34及び高圧蒸発器30により順次加熱され、高圧ドラム30aを経て高圧過熱器28で更に加熱されて高圧蒸気となり、高圧主蒸気管44を経て高圧タービン40へ導入される。   Further, a part of the feed water heated by the low-pressure evaporator 36 of the exhaust heat recovery boiler 12 passes through the feed water pump 51, and a part thereof is further heated sequentially by the medium pressure economizer 35 and the intermediate pressure evaporator 33. . The steam heated by the intermediate pressure evaporator 33 is further heated by the intermediate pressure superheater 31 through the intermediate pressure drum 33a to generate intermediate pressure steam, and the low temperature reheat steam pipe 46 through the intermediate pressure main steam pipe 48. And is introduced into the reheater 29. The remaining feed water heated by the low-pressure evaporator 36 is sequentially heated by the high-pressure economizer 34 and the high-pressure evaporator 30 via the feed water pump 51, and further heated by the high-pressure superheater 28 via the high-pressure drum 30a to become high-pressure steam. Then, it is introduced into the high-pressure turbine 40 through the high-pressure main steam pipe 44.

蒸気タービン13において、高圧タービン40から排出された蒸気は、低温再熱蒸気管46により、中圧主蒸気管48からの前記中圧蒸気と共に再熱器29へ導入されて加熱される。この再熱器29にて加熱された蒸気は、高温再熱蒸気管47により中圧タービン41へ導入される。中圧タービン41から排出された蒸気は低圧主蒸気管45に流入し、低圧過熱器32からの前記低圧蒸気と共に低圧タービン42へ導入される。低圧タービン42から排出された蒸気は、復水器52にて冷却されて復水となり、復水ポンプ53によりグランド蒸気復水器54及び給水加熱器15を順次経由して、主給水管50から排熱回収ボイラ12の低圧節炭器37へ導入される。   In the steam turbine 13, the steam discharged from the high-pressure turbine 40 is introduced into the reheater 29 by the low-temperature reheat steam pipe 46 together with the intermediate pressure steam from the intermediate pressure main steam pipe 48 and heated. The steam heated by the reheater 29 is introduced into the intermediate pressure turbine 41 through the high temperature reheat steam pipe 47. The steam discharged from the intermediate pressure turbine 41 flows into the low pressure main steam pipe 45 and is introduced into the low pressure turbine 42 together with the low pressure steam from the low pressure superheater 32. The steam discharged from the low-pressure turbine 42 is cooled by the condenser 52 to become condensed water, and is sequentially discharged from the main water supply pipe 50 by the condensate pump 53 via the ground steam condenser 54 and the feed water heater 15. It is introduced into the low pressure economizer 37 of the exhaust heat recovery boiler 12.

前記給水加熱システム14のうちの前記給水系16は、主給水管50に復水器52、復水ポンプ53、グランド蒸気復水器54、給水加熱器15が上流側から順次配設されて構成され、給水加熱器15にて加熱された給水を排熱回収ボイラ12の低圧節炭器37へ供給する。給水加熱器15は、低圧タービン42の段落途中から抽出した蒸気(抽気)を抽気管55を用いて導入し、給水と熱交換を行って給水を加熱する。   The feed water system 16 of the feed water heating system 14 includes a main feed pipe 50 in which a condenser 52, a condensate pump 53, a ground steam condenser 54, and a feed water heater 15 are sequentially arranged from the upstream side. The feed water heated by the feed water heater 15 is supplied to the low pressure economizer 37 of the exhaust heat recovery boiler 12. The feed water heater 15 introduces steam (extracted air) extracted from the middle of the paragraph of the low-pressure turbine 42 using an extract pipe 55, and heats the feed water by exchanging heat with the supplied water.

給水系16の主給水管50には、給水加熱器15をバイパスする前記給水加熱器バイパスライン17が接続され、この給水加熱器バイパスライン17に前記流量調節弁18が配設される。この流量調節弁18は、給水加熱器バイパスライン17を流れるバイパス流量を調節することで、給水加熱器15の出口からの給水温度を制御するものである。この流量調節弁18の開度は、前記給水温度計19、大気温度計20a、大気湿度計20b及び排ガス露点計21からの計測データに基づいて前記制御装置22により制御される。   The feed water heater bypass line 17 that bypasses the feed water heater 15 is connected to the main feed pipe 50 of the feed water system 16, and the flow rate adjusting valve 18 is disposed in the feed water heater bypass line 17. The flow rate adjusting valve 18 controls the feed water temperature from the outlet of the feed water heater 15 by adjusting the bypass flow rate flowing through the feed water heater bypass line 17. The opening degree of the flow rate control valve 18 is controlled by the control device 22 based on measurement data from the feed water thermometer 19, the atmospheric thermometer 20a, the atmospheric hygrometer 20b, and the exhaust gas dew point meter 21.

つまり、給水温度計19は、給水系16の主給水管50における給水加熱器15の下流側で、且つ給水加熱器バイパスライン17の主給水管50への接続点Aよりも下流側に設置され、給水加熱器バイパスライン17からのバイパス流が合流した後の給水の温度を計測する。また、大気温度計20a、大気湿度計20bは、排熱回収ボイラ12の煙突39の近傍に設置されて、大気温度、大気湿度をそれぞれ計測する。   In other words, the feed water thermometer 19 is installed downstream of the feed water heater 15 in the main feed pipe 50 of the feed water system 16 and downstream of the connection point A to the main feed pipe 50 of the feed water heater bypass line 17. The temperature of the feed water after the bypass flow from the feed water heater bypass line 17 joins is measured. The atmospheric thermometer 20a and the atmospheric hygrometer 20b are installed in the vicinity of the chimney 39 of the exhaust heat recovery boiler 12, and measure the atmospheric temperature and atmospheric humidity, respectively.

排ガス露点計21は、排熱回収ボイラ12の排ガス煙道38または煙突39内に設置されて、排熱回収ボイラ12から排出される排気ガスの露点を計測する。この排ガス露点計21は、実際には、上記排ガスの温度と湿度に基づいて排ガスの露点を算出して求める。ここで、排ガスの露点とは、排ガス中の水蒸気が凝縮するときの温度である。   The exhaust gas dew point meter 21 is installed in the exhaust gas flue 38 or the chimney 39 of the exhaust heat recovery boiler 12 and measures the dew point of the exhaust gas discharged from the exhaust heat recovery boiler 12. The exhaust gas dew point meter 21 actually calculates and determines the dew point of the exhaust gas based on the temperature and humidity of the exhaust gas. Here, the dew point of the exhaust gas is a temperature at which water vapor in the exhaust gas condenses.

制御装置22は、大気温度計20a、大気湿度計20bにてそれぞれ計測された大気温度、大気湿度から大気の露点を算出する。この大気の露点は、大気中の水蒸気が凝縮する温度である。そして、制御装置22は、排ガス露点計21にて計測された排ガスの露点と、算出した上記大気の露点とから給水温度の目標値を演算する。制御装置22は、大気の露点が排ガスの露点よりも高い場合には、排ガスの露点から給水温度の下限値を定め、大気の露点から給水温度の上限値を定め、これらの給水温度の下限値と上限値との範囲内で給水温度の目標値を設定する。   The control device 22 calculates the atmospheric dew point from the atmospheric temperature and atmospheric humidity measured by the atmospheric thermometer 20a and the atmospheric hygrometer 20b, respectively. This atmospheric dew point is the temperature at which water vapor in the atmosphere condenses. And the control apparatus 22 calculates the target value of feed water temperature from the dew point of the exhaust gas measured with the exhaust gas dew point meter 21, and the calculated dew point of the said atmosphere. When the dew point of the atmosphere is higher than the dew point of the exhaust gas, the control device 22 determines the lower limit value of the feed water temperature from the dew point of the exhaust gas, determines the upper limit value of the feed water temperature from the dew point of the atmosphere, and lower limit values of these feed water temperatures. The target value of the feed water temperature is set within the range between the upper limit value and the upper limit value.

排ガスの露点から給水温度の下限値を設定する理由は、排熱回収ボイラ12の低圧節炭器37内における配管内を流れる給水の温度が上記配管外を流れる排ガスの露点よりも低下すると、排ガス中の水蒸気が凝縮して、上記配管の外表面に結露が発生するからである。   The reason why the lower limit value of the feed water temperature is set from the dew point of the exhaust gas is that if the temperature of the feed water flowing in the pipe in the low pressure economizer 37 of the exhaust heat recovery boiler 12 is lower than the dew point of the exhaust gas flowing outside the pipe, the exhaust gas This is because the water vapor inside condenses and condensation occurs on the outer surface of the pipe.

また、大気の露点から給水温度の上限値を設定する理由は次の通りである。つまり、排熱回収ボイラ12の低圧節炭器37内における配管内を流れる給水の温度が上昇すると、上記配管外を流れる排ガスとの熱交換が低下して排ガス温度が低下せず、高温状態に維持される。この高温の排ガスが排熱回収ボイラ12の煙突39から大気中へ放出されたときには白煙が生じ易くなるため、給水温度を大気の露点以下にして白煙の発生を抑制する必要があるからである。   The reason for setting the upper limit value of the water supply temperature from the dew point of the atmosphere is as follows. That is, when the temperature of the feed water flowing in the pipe in the low pressure economizer 37 of the exhaust heat recovery boiler 12 rises, the heat exchange with the exhaust gas flowing outside the pipe decreases, the exhaust gas temperature does not decrease, and the temperature becomes high. Maintained. When this high-temperature exhaust gas is released from the chimney 39 of the exhaust heat recovery boiler 12 into the atmosphere, white smoke is likely to be generated. Therefore, it is necessary to suppress the generation of white smoke by setting the feed water temperature below the dew point of the atmosphere. is there.

また、制御装置22は、大気温度が低下して大気の露点が排ガスの露点よりも低いかまたは等しくなった場合には、給水温度の目標値を排ガスの露点に基づいて、つまり排ガスの露点に対し所定の余裕温度を加味して設定する。この場合には、白煙の発生よりも低圧節炭器37内の配管外表面の結露防止が優先される。   When the atmospheric temperature decreases and the atmospheric dew point is lower than or equal to the exhaust gas dew point, the control device 22 sets the target value of the feed water temperature based on the exhaust gas dew point, that is, the exhaust gas dew point. On the other hand, it is set taking into account a predetermined margin temperature. In this case, the prevention of condensation on the outer surface of the pipe in the low pressure economizer 37 has priority over the generation of white smoke.

制御装置22は、上述のようにして給水温度の目標値を設定し、給水温度計19にて計測される、給水加熱器バイパスライン17からのバイパス流合流後の給水温度を上記給水温度の目標値に制御すべく、給水加熱器バイパスライン17の流量調節弁18の開度を調節して、給水加熱器15の出口の給水温度を制御する。尚、給水温度の目標値は、一定の値でもよいが、所定範囲の値であってもよい。   The control device 22 sets the target value of the feed water temperature as described above, and the feed water temperature after the bypass flow merging from the feed water heater bypass line 17 measured by the feed water thermometer 19 is the target of the feed water temperature. In order to control the value, the opening of the flow rate adjusting valve 18 of the feed water heater bypass line 17 is adjusted to control the feed water temperature at the outlet of the feed water heater 15. Note that the target value of the feed water temperature may be a constant value or a value within a predetermined range.

以上のように構成されたことから、本実施の形態によれば、次の効果(1)及び(2)を奏する。   Since it was configured as described above, according to the present embodiment, the following effects (1) and (2) are achieved.

(1)給水加熱器15により加熱された給水を主給水管50を経て排熱回収ボイラ12の低圧節炭器37へ供給することから、この低圧節炭器37内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。特に、排ガスが硫黄分を含む場合にも、結露の発生による硫酸の生成が抑制されるので、上記配管の腐食を確実に防止できる。   (1) Since the feed water heated by the feed water heater 15 is supplied to the low pressure economizer 37 of the exhaust heat recovery boiler 12 through the main feed pipe 50, the feed water flows inside and outside the pipe in the low pressure economizer 37, respectively. The temperature difference between the exhaust gas and the exhaust gas can be reduced, the occurrence of condensation on the outer surface of the pipe can be prevented, and corrosion of the pipe can be prevented. In particular, even when the exhaust gas contains a sulfur content, the production of sulfuric acid due to the occurrence of condensation is suppressed, so that corrosion of the pipe can be reliably prevented.

(2)給水加熱器バイパスライン17の流量調節弁18が給水加熱器バイパスライン17を流れる給水(バイパス流)の流量を調節することで、給水加熱器15の出口の給水温度が、排ガスとの熱交換が促進される温度に制御される。この結果、排熱回収ボイラ12の排ガス煙道38及び煙突39を流れる排ガスの温度低下が促進されて、煙突39からの白煙の発生を抑制できる。   (2) The flow rate adjustment valve 18 of the feed water heater bypass line 17 adjusts the flow rate of the feed water (bypass flow) flowing through the feed water heater bypass line 17 so that the feed water temperature at the outlet of the feed water heater 15 The temperature is controlled to promote heat exchange. As a result, the temperature reduction of the exhaust gas flowing through the exhaust gas flue 38 and the chimney 39 of the exhaust heat recovery boiler 12 is promoted, and the generation of white smoke from the chimney 39 can be suppressed.

[B]第2の実施の形態(図2)
図2は、本発明に係るコンバインドサイクル発電設備における第2の実施の形態を示す系統図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 2)
FIG. 2 is a system diagram showing a second embodiment of the combined cycle power generation facility according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施の形態のコンバインドサイクル発電設備60が前記実施の形態のコンバインドサイクル発電設備10と異なる点は給水加熱システム61の構成であり、前記実施の形態の給水加熱システム14の給水加熱器バイパスライン17に代えて給水再循環ライン62を備え、この給水再循環ライン62に流量調節弁63が配設され、更に給水加熱器15が省略された点である。   The difference between the combined cycle power generation facility 60 of the present embodiment and the combined cycle power generation facility 10 of the above embodiment is the configuration of the feed water heating system 61, and the feed water heater bypass line 17 of the feed water heating system 14 of the above embodiment. Instead of this, a water supply recirculation line 62 is provided, a flow rate adjusting valve 63 is provided in the water supply recirculation line 62, and the water heater 15 is further omitted.

つまり、給水再循環ライン62は、給水系16の主給水管50に接続され、排熱回収ボイラ12の低圧節炭器37、低圧蒸発器36及び中圧節炭器35にて加熱された給水の一部を、中圧節炭器35から給水系16へ再循環させるものである。また、流量調節弁63は、給水再循環ライン62を流れる給水再循環流量を調節することで、給水系16の主給水管50から排熱回収ボイラ12の低圧節炭器37へ供給される給水の温度を制御する。   That is, the feed water recirculation line 62 is connected to the main feed pipe 50 of the feed water system 16 and is heated by the low pressure economizer 37, the low pressure evaporator 36, and the medium pressure economizer 35 of the exhaust heat recovery boiler 12. Is recirculated from the medium pressure economizer 35 to the water supply system 16. Further, the flow rate adjusting valve 63 adjusts the feed water recirculation flow rate flowing through the feed water recirculation line 62, thereby supplying water supplied from the main water supply pipe 50 of the water supply system 16 to the low pressure economizer 37 of the exhaust heat recovery boiler 12. To control the temperature.

この流量調節弁63の開度は、前記実施の形態の場合と同様にして、給水温度計19、外気温度計20a、大気湿度計20b及び排ガス露点計21からの計測データに基づいて制御装置22により制御される。但し、給水温度計19は、主給水管50における給水再循環ライン62の接続点Bの下流側に設置され、給水再循環ライン62からの給水再循環流が合流した後の給水の温度を計測する。   The opening degree of the flow rate adjusting valve 63 is controlled based on the measurement data from the feed water thermometer 19, the outside air thermometer 20 a, the atmospheric humidity meter 20 b, and the exhaust gas dew point meter 21 in the same manner as in the above embodiment. Controlled by However, the feed water thermometer 19 is installed downstream of the connection point B of the feed water recirculation line 62 in the main feed water pipe 50, and measures the temperature of the feed water after the feed water recirculation flow from the feed water recirculation line 62 joins. To do.

制御装置22は、大気の露点が排ガスの露点よりも高い場合には、排ガスの露点から給水温度の下限値を定め、大気の露点から給水温度の上限値を定め、これらの給水温度の下限値と上限値との範囲内で給水温度の目標値を設定する。また、制御装置22は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、給水温度の目標値を排ガスの露点に基づいて、つまり排ガスの露点に対し所定の余裕温度を加味して設定する。   When the dew point of the atmosphere is higher than the dew point of the exhaust gas, the control device 22 determines the lower limit value of the feed water temperature from the dew point of the exhaust gas, determines the upper limit value of the feed water temperature from the dew point of the atmosphere, and lower limit values of these feed water temperatures. The target value of the feed water temperature is set within the range between the upper limit value and the upper limit value. Further, when the dew point of the atmosphere is lower than or equal to the dew point of the exhaust gas, the control device 22 sets the target value of the water supply temperature based on the dew point of the exhaust gas, that is, adds a predetermined margin temperature to the dew point of the exhaust gas. To set.

制御装置22は、上述のようにして給水温度の目標値を設定し、給水温度計19にて計測される、給水再循環ライン62からの給水再循環流合流後の給水温度を上記給水温度の目標値に制御すべく、給水再循環ライン62の流量調節弁63の開度を調節して、給水系16の主給水管50から排熱回収ボイラ12の低圧節炭器37へ供給される給水の温度を制御する。尚、給水温度の目標値は、一定の値でもよいが所定範囲の値であってもよい。   The control device 22 sets the target value of the feed water temperature as described above, and determines the feed water temperature after joining the feed water recirculation line 62 from the feed water recirculation line 62 measured by the feed water thermometer 19 to the above feed water temperature. In order to control to the target value, the opening of the flow rate control valve 63 of the feed water recirculation line 62 is adjusted, and the feed water supplied from the main feed pipe 50 of the feed water system 16 to the low pressure economizer 37 of the exhaust heat recovery boiler 12. To control the temperature. The target value of the feed water temperature may be a constant value or a value within a predetermined range.

以上のことから、本実施の形態によれば、次の効果(3)及び(4)を奏する。   From the above, according to the present embodiment, the following effects (3) and (4) are obtained.

(3)給水再循環ライン62からの加熱された給水を排熱回収ボイラ12の低圧節炭器37へ供給することから、この低圧節炭器37内配管の内外をそれぞれ流れる給水と排ガスの温度差を低減でき、上記配管の外表面における結露の発生を防止して、この配管の腐食を防止できる。特に、排ガスが硫黄分を含む場合にも、結露の発生による硫酸の生成が抑制されるので、上記配管の腐食を確実に防止できる。   (3) Since the heated feed water from the feed water recirculation line 62 is supplied to the low pressure economizer 37 of the exhaust heat recovery boiler 12, the temperature of the feed water and the exhaust gas respectively flowing in and out of the piping in the low pressure economizer 37 The difference can be reduced, the occurrence of condensation on the outer surface of the pipe can be prevented, and corrosion of the pipe can be prevented. In particular, even when the exhaust gas contains a sulfur content, the production of sulfuric acid due to the occurrence of condensation is suppressed, so that corrosion of the pipe can be reliably prevented.

(4)給水再循環ライン62の流量調節弁63が給水再循環ライン62を流れる給水再循環流量を調節することで、排熱回収ボイラ12の低圧節炭器37へ供給される給水温度が、排ガスとの熱交換が促進される温度に制御される。この結果、排熱回収ボイラ12の排ガス煙道38及び煙突39を流れる排ガスの温度低下が促進されて、煙突39からの白煙の発生を抑制できる。   (4) The feed water temperature supplied to the low-pressure economizer 37 of the exhaust heat recovery boiler 12 is adjusted by the flow rate adjustment valve 63 of the feed water recirculation line 62 adjusting the feed water recirculation flow rate flowing through the feed water recirculation line 62. The temperature is controlled to promote heat exchange with the exhaust gas. As a result, the temperature reduction of the exhaust gas flowing through the exhaust gas flue 38 and the chimney 39 of the exhaust heat recovery boiler 12 is promoted, and the generation of white smoke from the chimney 39 can be suppressed.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

例えば、第2の実施の形態において、給水再循環ライン62の合流点Bの下流側に、第1の実施の形態の給水加熱器15を設置し、更にこの給水加熱器15をバイパスする、流量調節弁18を備えた給水加熱器バイパスライン17を配設し、この流量調節弁18の開度を前記第1の実施の形態と同様に制御してもよい。この場合には、第1及び第2の実施の形態の組み合わせにより、給水系16を流れる給水が給水再循環流と給水加熱器15により加熱されることになるので、給水加熱器15の容量を第1の実施の形態の場合よりも低減させることができる。   For example, in the second embodiment, the feed water heater 15 of the first embodiment is installed on the downstream side of the junction B of the feed water recirculation line 62, and the feed water heater 15 is further bypassed. A feed water heater bypass line 17 provided with a control valve 18 may be provided, and the opening of the flow rate control valve 18 may be controlled in the same manner as in the first embodiment. In this case, since the feed water flowing through the feed water system 16 is heated by the feed water recirculation flow and the feed water heater 15 by the combination of the first and second embodiments, the capacity of the feed water heater 15 is increased. This can be reduced as compared with the case of the first embodiment.

10 コンバインドサイクル発電設備
11 ガスタービン
12 排熱回収ボイラ
13 蒸気タービン
15 給水加熱器
16 給水系
17 給水加熱器バイパスライン
18 流量調節弁
19 給水温度計
20a 大気温度計
20b 大気湿度計
21 排ガス露点計
22 制御装置
27 発電機
43 発電機
60 コンバインドサイクル発電設備
62 給水再循環ライン
63 流量調節弁
DESCRIPTION OF SYMBOLS 10 Combined cycle power generation equipment 11 Gas turbine 12 Waste heat recovery boiler 13 Steam turbine 15 Feed water heater 16 Feed water system 17 Feed water heater bypass line 18 Flow rate control valve 19 Feed water thermometer 20a Atmospheric thermometer 20b Atmospheric hygrometer 21 Exhaust gas dew point meter 22 Control device 27 Generator 43 Generator 60 Combined cycle power generation facility 62 Water supply recirculation line 63 Flow control valve

Claims (8)

ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、
前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系と、
この給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインと、
この給水加熱器バイパスラインに設けられ、この給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を制御する流量調節弁と、
前記給水系における前記給水加熱器の下流側で、且つ前記給水加熱器バイパスラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、
大気温度を計測する大気温度計と、
大気湿度を計測する大気湿度計と、
前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、
前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするコンバインドサイクル発電設備。
A combined cycle that includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine, introduces exhaust gas from the gas turbine to the exhaust heat recovery boiler, heats feed water to generate steam, and guides the steam to the steam turbine to generate power In power generation facilities,
A water supply system that includes a water heater that guides the bleed air from the steam turbine and heats the water supply; and a water supply system that supplies the heated water supply to the exhaust heat recovery boiler;
A feed water heater bypass line connected to the feed water system to bypass the feed water heater;
A flow rate adjusting valve for controlling the feed water temperature at the outlet of the feed water heater by adjusting the bypass flow rate provided in the feed water heater bypass line and flowing through the feed water heater bypass line;
A feed water thermometer for measuring a feed water temperature provided downstream of the feed water heater in the feed water system and downstream of a connection point of the feed water heater bypass line; and
An atmospheric thermometer to measure the atmospheric temperature;
An atmospheric hygrometer to measure atmospheric humidity;
An exhaust gas dew point meter for measuring the dew point of the exhaust gas discharged from the exhaust heat recovery boiler;
The target value of the feed water temperature is calculated from the atmospheric dew point and the exhaust gas dew point obtained from the atmospheric temperature and the atmospheric humidity, and the feed water temperature measured by the feed water thermometer is controlled to the target value of the feed water temperature. And a control device for adjusting the opening of the flow control valve .
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備において、
前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインと、
この給水再循環ラインに設けられ、この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を制御する流量調節弁と、
前記給水系における前記給水再循環ラインの接続点の下流側に設けられて給水温度を計測する給水温度計と、
大気温度を計測する大気温度計と、
大気湿度を計測する大気湿度計と、
前記排熱回収ボイラから排出される排ガスの露点を計測する排ガス露点計と、
前記大気温度及び前記大気湿度から求めた大気の露点と前記排ガスの露点とから給水温度の目標値を演算し、前記給水温度計にて計測される給水温度を前記給水温度の目標値に制御すべく前記流量調節弁の開度を調節する制御装置と、を有することを特徴とするコンバインドサイクル発電設備。
A combined cycle that includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine, introduces exhaust gas from the gas turbine to the exhaust heat recovery boiler, heats feed water to generate steam, and guides the steam to the steam turbine to generate power In power generation facilities,
A water supply recirculation line connected to a water supply system for supplying water to the exhaust heat recovery boiler and recirculating a part of the water supplied by the exhaust heat recovery boiler;
A flow rate adjusting valve that is provided in the feed water recirculation line and controls a feed water temperature supplied from the feed water system to the exhaust heat recovery boiler by adjusting a feed water recirculation flow rate flowing through the feed water recirculation line;
A feed water thermometer for measuring the feed water temperature provided downstream of the connection point of the feed water recirculation line in the feed water system;
An atmospheric thermometer to measure the atmospheric temperature;
An atmospheric hygrometer to measure atmospheric humidity;
An exhaust gas dew point meter for measuring the dew point of the exhaust gas discharged from the exhaust heat recovery boiler;
The target value of the feed water temperature is calculated from the atmospheric dew point and the exhaust gas dew point obtained from the atmospheric temperature and the atmospheric humidity, and the feed water temperature measured by the feed water thermometer is controlled to the target value of the feed water temperature. And a control device for adjusting the opening of the flow control valve.
前記制御装置は、大気の露点が排ガスの露点よりも高い場合には、給水温度の目標値を前記大気の露点と前記排ガスの露点との間の値に設定することを特徴とする請求項またはに記載のコンバインドサイクル発電設備。 The control device according to claim 1 the dew point of the atmosphere is higher than the dew point of the exhaust gas, characterized in that for setting a target value of the feed water temperature to a value between the dew point of the flue gas dew point of the atmosphere or combined cycle power generating plant according to 2. 前記制御装置は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、給水温度の目標値を前記排ガスの露点に基づいて設定することを特徴とする請求項またはに記載のコンバインドサイクル発電設備。 The control device, when the dew point of the atmosphere is less than or equal to the dew point of the exhaust gas, according to claim 1 or 2, characterized in that set on the basis of the target value of the feed water temperature to the dew point of the flue gas Combined cycle power generation equipment. ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、
前記蒸気タービンからの抽気を導いて前記給水を加熱する給水加熱器を備え、この加熱された給水を前記排熱回収ボイラへ供給する給水系を有し、
前記給水系に接続されて前記給水加熱器をバイパスする給水加熱器バイパスラインを流れるバイパス流量を調節することで、前記給水加熱器の出口の給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするコンバインドサイクル発電設備の給水加熱方法。
A combined cycle that includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine, introduces exhaust gas from the gas turbine to the exhaust heat recovery boiler, heats feed water to generate steam, and guides the steam to the steam turbine to generate power In the water heating method for power generation equipment,
A feed water heater that guides extraction from the steam turbine and heats the feed water, and has a feed water system that feeds the heated feed water to the exhaust heat recovery boiler;
The feed water temperature at the outlet of the feed water heater is determined from the dew point of the atmosphere and the exhaust gas by adjusting the bypass flow rate that flows through the feed water heater bypass line that is connected to the feed water system and bypasses the feed water heater. A method for heating a feed water in a combined cycle power generation facility, characterized by controlling the target water temperature to a target value.
ガスタービン、排熱回収ボイラ及び蒸気タービンを有し、前記ガスタービンからの排ガスを前記排熱回収ボイラに導き給水を加熱して蒸気とし、この蒸気を前記蒸気タービンに導いて発電を行うコンバインドサイクル発電設備の給水加熱方法において、
前記排熱回収ボイラへ給水を供給する給水系に接続されて、前記排熱回収ボイラにて加熱された給水の一部を再循環させる給水再循環ラインを有し、
この給水再循環ラインを流れる給水再循環流量を調節することで、前記給水系から前記排熱回収ボイラへ供給される給水温度を、大気の露点と排ガスの露点とから求めた給水温度の目標値に制御することを特徴とするコンバインドサイクル発電設備の給水加熱方法。
A combined cycle that includes a gas turbine, an exhaust heat recovery boiler, and a steam turbine, introduces exhaust gas from the gas turbine to the exhaust heat recovery boiler, heats feed water to generate steam, and guides the steam to the steam turbine to generate power In the water heating method for power generation equipment,
Connected to a water supply system for supplying water to the exhaust heat recovery boiler, and having a feed water recirculation line for recirculating a part of the feed water heated by the exhaust heat recovery boiler;
By adjusting the feed water recirculation flow rate flowing through this feed water recirculation line, the feed water temperature supplied from the feed water system to the exhaust heat recovery boiler is determined from the atmospheric dew point and the exhaust gas dew point. A feed water heating method for a combined cycle power generation facility, wherein
前記給水温度の目標値は、大気の露点が排ガスの露点よりも高い場合には、前記大気の露点と前記排ガスの露点との間の値に設定することを特徴とする請求項またはに記載のコンバインドサイクル発電設備の給水加熱方法。 Target value of the feed water temperature, when the dew point of the atmosphere is higher than the dew point of the exhaust gas, to claim 5 or 6, characterized in that set to a value between the dew point of the flue gas dew point of the atmosphere A feed water heating method for the described combined cycle power generation facility. 前記給水温度の目標値は、大気の露点が排ガスの露点よりも低いかまたは等しい場合には、前記排ガスの露点に基づいて設定することを特徴とする請求項またはに記載のコンバインドサイクル発電設備の給水加熱方法。 The combined cycle power generation according to claim 5 or 6 , wherein the target value of the feed water temperature is set based on the dew point of the exhaust gas when the dew point of the atmosphere is lower than or equal to the dew point of the exhaust gas. Water heating method for equipment.
JP2009284043A 2009-12-15 2009-12-15 Combined cycle power generation facility and its feed water heating method Active JP5523810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284043A JP5523810B2 (en) 2009-12-15 2009-12-15 Combined cycle power generation facility and its feed water heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284043A JP5523810B2 (en) 2009-12-15 2009-12-15 Combined cycle power generation facility and its feed water heating method

Publications (2)

Publication Number Publication Date
JP2011127786A JP2011127786A (en) 2011-06-30
JP5523810B2 true JP5523810B2 (en) 2014-06-18

Family

ID=44290557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284043A Active JP5523810B2 (en) 2009-12-15 2009-12-15 Combined cycle power generation facility and its feed water heating method

Country Status (1)

Country Link
JP (1) JP5523810B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539697C2 (en) * 2012-11-26 2015-01-27 Закрытое акционерное общество "Турмалин" Combined power plant for disposal of associated oil gas and liquid wastes of oil processing
JP6415122B2 (en) * 2014-06-13 2018-10-31 三菱重工業株式会社 Combined cycle equipment
JP2016065486A (en) * 2014-09-24 2016-04-28 株式会社東芝 Combined cycle power generation facility
CN107883369B (en) * 2017-11-30 2024-01-09 华电电力科学研究院有限公司 Boiler water supply cascade heating system suitable for wide-load denitration of unit and adjusting method
JP6405589B2 (en) * 2017-12-21 2018-10-17 三菱日立パワーシステムズ株式会社 Waste heat recovery device
JP2018141464A (en) * 2018-04-27 2018-09-13 株式会社東芝 Combined cycle power generation facility
JP7269761B2 (en) 2019-03-15 2023-05-09 三菱重工業株式会社 Raw material fluid processing plant and raw material fluid processing method
CN113187568B (en) * 2021-05-28 2022-12-20 西安热工研究院有限公司 System and method for reversely improving power supply and heat supply capacity of high-back-pressure heat supply unit
JP2024038830A (en) * 2022-09-08 2024-03-21 三菱重工業株式会社 heat engine system

Also Published As

Publication number Publication date
JP2011127786A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5523810B2 (en) Combined cycle power generation facility and its feed water heating method
JP5417068B2 (en) Oxyfuel boiler and control method for oxygen fired boiler
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP5946279B2 (en) Control of gaseous components in gas turbine power plants with flue gas recirculation.
EP2795084B1 (en) Control of the gas composition in a gas turbine power plant with flue gas recirculation
JP4540472B2 (en) Waste heat steam generator
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
US9404393B2 (en) Combined cycle power plant
TWI639764B (en) Coal fired oxy boiler power plant
KR102347285B1 (en) System and method for fluid medium preheating
US20130199196A1 (en) System and method for gas turbine part load efficiency improvement
JP4818391B2 (en) Steam turbine plant and operation method thereof
KR20230104733A (en) Gas turbine plant and its fuel supply method
JP2007248018A (en) Control system for supply water preheater of reheat boiler
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
RU2528190C2 (en) Steam gas plant
JP4415189B2 (en) Thermal power plant
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
CN105318343B (en) The method of operation of exhaust smoke processing device and the exhaust smoke processing device
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2012057860A (en) Exhaust heat recovery device
CN107110488B (en) Feed water preheating system bypass

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R151 Written notification of patent or utility model registration

Ref document number: 5523810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151