JP2007205187A - Heat recovery system attached to boiler-steam turbine system - Google Patents

Heat recovery system attached to boiler-steam turbine system Download PDF

Info

Publication number
JP2007205187A
JP2007205187A JP2006022213A JP2006022213A JP2007205187A JP 2007205187 A JP2007205187 A JP 2007205187A JP 2006022213 A JP2006022213 A JP 2006022213A JP 2006022213 A JP2006022213 A JP 2006022213A JP 2007205187 A JP2007205187 A JP 2007205187A
Authority
JP
Japan
Prior art keywords
boiler
condensate
heat recovery
heat
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006022213A
Other languages
Japanese (ja)
Inventor
Kiyoko Isomura
聖子 磯村
Hiroshi Arase
央 荒瀬
Kenji Kariya
謙二 假屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2006022213A priority Critical patent/JP2007205187A/en
Publication of JP2007205187A publication Critical patent/JP2007205187A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat recovery system capable of increasing formed steam quantity by an exhaust gas boiler by effectively utilizing heat energy of cooling water derived from a condenser by introducing a heat pump, and performing temperature control at dew-point temperature or higher. <P>SOLUTION: When steam turbine condensation 14 is supplied to an exhaust gas boiler 3 in a heat recovery system, a system supplying condensation directly to an economizer 20 of the exhaust gas boiler 3 and a system supplying condensation after heating by the heat pump 11 are separated as former technology, and necessary water supply pipe is newly provided for that. Heat energy of condenser outlet cooling water is pumped up by the heat pump 11, a part of condensation 14 is heated to about 90°C by heat energy thereof and is mixed with rest of condensation at exhaust gas boiler 3 water supply inlet. Consequently, temperature of water supply to the exhaust gas boiler 3 is raised, and shortage of heat for increasing boiler steam quantity is compensated as a result. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプで熱交換された温水を排熱回収ボイラの給水として利用する熱回収システムに関するものであり、詳細には火力発電設備の1つであるコンバインドシステム(ボイラ−蒸気タービンシステム)における蒸気タービン復水を、ヒートポンプで加温してから排熱回収ボイラへ供給する熱回収システムに関する。   The present invention relates to a heat recovery system that uses hot water heat-exchanged by a heat pump as water supply for an exhaust heat recovery boiler, and more specifically, in a combined system (boiler-steam turbine system) that is one of thermal power generation facilities. The present invention relates to a heat recovery system in which steam turbine condensate is heated by a heat pump and then supplied to an exhaust heat recovery boiler.

ボイラ等の蒸気発生装置からの蒸気で仕事をする蒸気タービンの排気蒸気を凝縮するための復水器においては、復水器を冷却する冷却水の温度が一般に30℃〜40℃程度と低いため、一般的に未利用のまま排出されている。この低温の復水器出口冷却水を有効に活用する方法として、ヒートポンプの利用が考えられている。   In a condenser for condensing the exhaust steam of a steam turbine that works with steam from a steam generator such as a boiler, the temperature of the cooling water that cools the condenser is generally as low as 30 ° C to 40 ° C. Generally, it is discharged unused. Use of a heat pump is considered as a method of effectively using this low-temperature condenser outlet cooling water.

例えば、復水器出口冷却水等の低温熱源からヒートポンプで熱を汲み上げ、その熱を利用する特許文献1で知られている従来技術がある。   For example, there is a conventional technique known from Patent Document 1 in which heat is pumped from a low-temperature heat source such as condenser outlet cooling water and the heat is used.

特許文献2には、ボイラに対する給水加熱を行う給水加熱手段として蒸気圧縮ヒートポンプを備えたものが記載されている。   Patent Document 2 describes one provided with a vapor compression heat pump as feed water heating means for heating feed water to a boiler.

特許文献3には、吸収式ヒートポンプ装置を使用する例が記載されている。
従来の排熱回収ボイラでは、出口排ガス温度を酸露点温度以上とするため、排熱回収ボイラへの給水を予熱する特許文献2で知られるような技術が用いられている。
Patent Document 3 describes an example in which an absorption heat pump device is used.
In the conventional exhaust heat recovery boiler, in order to make the outlet exhaust gas temperature equal to or higher than the acid dew point temperature, a technique known in Patent Document 2 for preheating the feed water to the exhaust heat recovery boiler is used.

吸収式ヒートポンプは従来技術で良く知られているように、低温熱源から熱を効率良く汲み上げ、高温熱源を加温する仕組みだが、それにより発生させられる高温熱源の温度は現在の技術では90℃程度までであり、その利用先が限定される。復水器を冷却する冷却水には、一般的に冷却塔の水や海水が用いられ、その温度は一定に制御されることが望ましい。その制御法には種々の方法があるが、これを一定の温度に制御することができれば、ヒートポンプの低温熱源として利用することが可能である。ヒートポンプによって熱交換した流体の利用先としては、生成した温水をプロセス蒸気の予熱として利用することで、ボイラだけで加熱する場合に比べて、燃料使用量を減らすことができることから省エネルギーへの寄与が可能である。   Absorption heat pumps, as is well known in the prior art, efficiently pumps heat from a low-temperature heat source and heats the high-temperature heat source. The usage destination is limited. The cooling water for cooling the condenser is generally water from a cooling tower or seawater, and the temperature is preferably controlled to be constant. There are various control methods, and if it can be controlled to a constant temperature, it can be used as a low-temperature heat source of a heat pump. The use of fluid that has been heat-exchanged by a heat pump can contribute to energy saving because the amount of fuel used can be reduced by using the generated hot water as preheating of process steam, compared to heating with a boiler alone. Is possible.

一方、排熱回収ボイラはガスタービンの排熱を利用して、蒸気を発生し、蒸気タービンへ供給する従来の設備であり、排熱回収ボイラの伝熱面積を増加させれば、排ガスの回収熱量を大きくすることができ、発生蒸気量を増加させることができる。しかしながら、排熱回収ボイラの出口排ガス温度は、排ガス中に硫黄分を含む場合は、酸露点温度以上とする必要があり、また、硫黄分を含まない場合でも、排ガス中の水分結露による白煙防止の観点等から一般的に最低でも90℃程度に設定される。   On the other hand, the exhaust heat recovery boiler is a conventional facility that uses the exhaust heat of the gas turbine to generate steam and supply it to the steam turbine. If the heat transfer area of the exhaust heat recovery boiler is increased, the exhaust gas recovery is achieved. The amount of heat can be increased, and the amount of generated steam can be increased. However, the exhaust gas temperature at the outlet of the exhaust heat recovery boiler must be equal to or higher than the acid dew point temperature if the exhaust gas contains sulfur, and even if it does not contain sulfur, white smoke due to moisture condensation in the exhaust gas From the viewpoint of prevention, etc., it is generally set at about 90 ° C at least.

従来、排熱回収ボイラにおいて、前記排ガス温度は酸露点温度以上であれば良く、その目的以外に、給水を加温することは実施されていなかった。すなわち、排熱回収ボイラへの給水加熱のためにヒートポンプを導入することも実施されていなかった。   Conventionally, in an exhaust heat recovery boiler, the exhaust gas temperature has only to be equal to or higher than the acid dew point temperature, and heating of the feed water has not been performed for other purposes. That is, the introduction of a heat pump for heating the feed water to the exhaust heat recovery boiler has not been implemented.

また、従来の排熱回収ボイラでは、前記のように出口排ガス温度に下限値が存在するため、排熱回収ボイラによる回収熱量に上限があった。そのため、排熱回収ボイラの伝熱面積をある決まった上限値以上に増やすことはできず、発生するボイラ蒸気量にも上限があった。   Further, in the conventional exhaust heat recovery boiler, since the lower limit value exists in the outlet exhaust gas temperature as described above, there is an upper limit in the amount of heat recovered by the exhaust heat recovery boiler. For this reason, the heat transfer area of the exhaust heat recovery boiler cannot be increased beyond a certain upper limit, and the amount of boiler steam generated has an upper limit.

特開平6−129211号公報Japanese Patent Laid-Open No. 6-129511 特開平11−173110号公報JP-A-11-173110 特開平5−263610号公報JP-A-5-263610 特開2000−45713号公報JP 2000-45713 A

以上のように、排熱回収ボイラにおいては、その出口排ガス温度を酸露点温度以上とする必要があり、排熱回収ボイラによる回収熱量に上限があることから、発生するボイラ蒸気量にも上限があった。また、復水器出口冷却水はその温度が低く、その持っている熱量の有効利用がなされていなかった。   As described above, in the exhaust heat recovery boiler, the outlet exhaust gas temperature needs to be equal to or higher than the acid dew point temperature, and there is an upper limit on the amount of heat recovered by the exhaust heat recovery boiler, so there is also an upper limit on the amount of boiler steam generated. there were. Further, the condenser outlet cooling water has a low temperature, and the amount of heat it has had not been effectively used.

本発明は、ボイラ−蒸気タービンシステムにおいて、ヒートポンプを導入することによって復水器を導出した冷却水が持つ熱エネルギーを有効に活用して排熱回収ボイラによる発生蒸気量を増加させると共に、酸露点温度以上に温度コントロールの可能な熱回収システムを提供することを目的とする。   The present invention, in a boiler-steam turbine system, increases the amount of steam generated by the exhaust heat recovery boiler by effectively utilizing the thermal energy of the cooling water derived from the condenser by introducing a heat pump, and the acid dew point. An object of the present invention is to provide a heat recovery system capable of controlling the temperature above the temperature.

本発明での熱回収システムでは、排熱回収ボイラ、及び排熱回収ボイラからの蒸気を利用する蒸気タービン、蒸気タービンにて仕事をした蒸気を凝縮するための復水器、前記復水器及びプラント補機熱交換器に供給する冷却水システムを備えたボイラ給水システムにおいて、復水の一部をヒートポンプで熱交換するための配管及び、ヒートポンプの低温熱源として復水器出口冷却水を利用する配管を設ける。ヒートポンプにより復水器出口冷却水から熱を汲み上げ、90℃程度まで加温した復水を前記排熱回収ボイラへ給水する。ヒートポンプで加温しない比較的低温(一般に60℃程度)の復水は、排熱回収ボイラ節炭器へ復水ポンプを介して直接給水する。   In the heat recovery system of the present invention, an exhaust heat recovery boiler, a steam turbine that uses steam from the exhaust heat recovery boiler, a condenser for condensing steam that has worked in the steam turbine, the condenser, and In a boiler water supply system equipped with a cooling water system for supplying heat to a plant auxiliary heat exchanger, piping for exchanging a part of the condensate with a heat pump, and condenser outlet cooling water is used as a low-temperature heat source for the heat pump. Provide piping. Heat is pumped from the condenser outlet cooling water by a heat pump, and the condensed water heated to about 90 ° C. is supplied to the exhaust heat recovery boiler. Condensate at a relatively low temperature (generally around 60 ° C) that is not heated by a heat pump is supplied directly to the exhaust heat recovery boiler economizer via the condensate pump.

このとき、2つの異なる配管からの給水はヒートポンプによる加温の有無により温度が異なるが、これを排熱回収ボイラ給水入口において混合することで、結果的に排熱回収ボイラへの給水温度を上昇させる。   At this time, the temperature of the feed water from two different pipes varies depending on whether or not the heat pump is heated, but mixing this at the exhaust heat recovery boiler feed water inlet results in an increase in the feed water temperature to the exhaust heat recovery boiler Let

本発明は、ボイラ発生蒸気量を増やすためにヒートポンプを使用して排熱回収ボイラへの給水温度を上昇させる。その方法には、排熱回収ボイラへ給水する蒸気タービン復水の全流量の温度を少し上昇させる方法と、蒸気タービン復水の一部を高温に加温し、残りの給水と混合させ、結果的に全流量の温度を上昇させる方法が考えられるが、後者の方が経済的な面からも熱エネルギー活用の面からも効率が良い。   The present invention uses a heat pump to increase the feed water temperature to the exhaust heat recovery boiler in order to increase the amount of steam generated by the boiler. The method includes a method in which the temperature of the total flow rate of the steam turbine condensate supplied to the exhaust heat recovery boiler is slightly increased, and a part of the steam turbine condensate is heated to a high temperature and mixed with the remaining water supply. In general, a method of increasing the temperature of the entire flow rate is conceivable, but the latter is more efficient from the economical and thermal energy utilization viewpoints.

蒸気タービン復水のうち、ヒートポンプにより加温するための給水量と、直接排熱回収ボイラへ給水する流量との配分は、排熱回収ボイラにおいてガスタービン排熱を極限まで回収する前提を基に、増加させたい発生蒸気量から求めるものとする。   Among the steam turbine condensate, the distribution of the amount of water to be heated by the heat pump and the flow rate to supply water directly to the exhaust heat recovery boiler is based on the assumption that the exhaust heat recovery boiler recovers the gas turbine exhaust heat to the limit. It is determined from the amount of generated steam to be increased.

本発明は、排熱回収ボイラ、排熱回収ボイラからの蒸気を動力源とする蒸気タービン、蒸気タービンにて仕事をした蒸気を凝縮するための復水器、復水器から排熱回収ボイラに復水を循環させる復水循環系統および復水器に冷却水を供給する冷却水供給システムを備えたボイラ−蒸気タービンシステムに付属させる熱回収システムにおいて、
前記冷却水供給システムからの冷却水を導く配管に接続され、前記復水循環系統から分岐バルブを介して分岐した配管に接続されたヒートポンプを備え、
該ヒートポンプで昇温された復水を前記復水循環系統からの復水と混合してボイラ水を形成し、前記節炭器に導入される前記混合されたボイラ水の温度を制御する制御装置を設けたこと
を特徴とするボイラ−蒸気タービンシステムに付属させる熱回収システムを提供する。
The present invention relates to an exhaust heat recovery boiler, a steam turbine that uses steam from the exhaust heat recovery boiler as a power source, a condenser for condensing steam that has worked in the steam turbine, and a condenser to an exhaust heat recovery boiler. In a heat recovery system attached to a boiler-steam turbine system having a condensate circulation system for circulating condensate and a cooling water supply system for supplying cooling water to the condenser,
A heat pump connected to a pipe for guiding the cooling water from the cooling water supply system, and connected to a pipe branched from the condensate circulation system via a branch valve;
A controller for controlling the temperature of the mixed boiler water introduced into the economizer by mixing the condensate heated by the heat pump with the condensate from the condensate circulation system to form boiler water; There is provided a heat recovery system attached to a boiler-steam turbine system characterized by being provided.

本発明によれば、ボイラ−蒸気タービンシステムにおいて、上述したヒートポンプを導入することによって、復水器を導入した冷却水が持つ熱エネルギーを有効に活用して排熱回収ボイラによる発生蒸気量を増加させると共に、酸露点温度以上に温度コントロールの可能な熱回収システムを提供することができる。   According to the present invention, in the boiler-steam turbine system, by introducing the heat pump described above, the heat energy of the cooling water introduced with the condenser is effectively utilized to increase the amount of steam generated by the exhaust heat recovery boiler. In addition, it is possible to provide a heat recovery system capable of controlling the temperature above the acid dew point temperature.

本発明の実施例である熱回収システムは、排熱回収ボイラ、排熱回収ボイラからの蒸気を動力源とする蒸気タービン、蒸気タービンにて仕事をした蒸気を凝縮するための復水器、復水器から排熱回収ボイラに復水を循環させる復水循環系統および復水器に冷却水を供給する冷却水供給システムを備えたボイラ−蒸気タービンシステムに付属させる熱回収システムであって、
前記冷却水供給システムからの冷却水を導く配管に接続され、前記復水循環系統から分岐バルブを介して分岐した配管に接続されたヒートポンプを備え、
該ヒートポンプで昇温された復水を前記復水循環系統からの復水ならびに前記排熱回収ボイラのボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水と混合してボイラ水を形成し、前記節炭器に導入される前記混合されたボイラ水の温度を制御する制御装置を設けたことによって構成される。
A heat recovery system according to an embodiment of the present invention includes an exhaust heat recovery boiler, a steam turbine that uses steam from the exhaust heat recovery boiler as a power source, a condenser for condensing steam that has worked in the steam turbine, A heat recovery system attached to a boiler-steam turbine system having a condensate circulation system for circulating condensate from a water heater to a waste heat recovery boiler and a cooling water supply system for supplying cooling water to the condenser,
A heat pump connected to a pipe for guiding the cooling water from the cooling water supply system, and connected to a pipe branched from the condensate circulation system via a branch valve;
The condensate heated by the heat pump is mixed with the condensate from the condensate circulation system and the boiler water circulated by the boiler water circulation system of the exhaust heat recovery boiler to form boiler water. And it is comprised by providing the control apparatus which controls the temperature of the mixed boiler water introduce | transduced into the said economizer.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下に、本発明の第1の実施例を図1乃至図5に基づいて説明する。本実施例である熱回収システム100は、コンバインドサイクル、すなわちボイラ−蒸気タービンシステムに付属される。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The heat recovery system 100 according to the present embodiment is attached to a combined cycle, that is, a boiler-steam turbine system.

図1において、ガスタービン1には燃料が供給され、ガスタービン1により駆動する発電機2により発電が行われる。ガスタービン1からの排熱ガスは排熱回収ボイラ3へ送られ、熱エネルギー回収される。排熱回収ボイラ3で給水と熱交換した後の排ガスは煙突12から大気中に排出される。排熱回収ボイラ3で熱交換を行い、発生した蒸気は動力源として蒸気タービン4へ送られる。蒸気タービン4により駆動する発電機5で仕事をした蒸気は復水器6で冷却され、復水ポンプ9を介して排熱回収ボイラ3へ給水される。本実施例では、復水器6と排熱回収ボイラ3における系統を復水循環系統14と称する。   In FIG. 1, fuel is supplied to a gas turbine 1, and power is generated by a generator 2 driven by the gas turbine 1. The exhaust heat gas from the gas turbine 1 is sent to the exhaust heat recovery boiler 3 to recover thermal energy. The exhaust gas after heat exchange with the feed water in the exhaust heat recovery boiler 3 is discharged from the chimney 12 to the atmosphere. Heat is exchanged in the exhaust heat recovery boiler 3, and the generated steam is sent to the steam turbine 4 as a power source. The steam worked by the generator 5 driven by the steam turbine 4 is cooled by the condenser 6 and supplied to the exhaust heat recovery boiler 3 through the condensate pump 9. In the present embodiment, the system in the condenser 6 and the exhaust heat recovery boiler 3 is referred to as a condensate circulation system 14.

復水器6での回収熱量を有効にエネルギー回収するため、低温熱源の熱を効率的に汲み上げ、高温・高圧に圧縮し、高温熱源を温めるヒートポンプ11を、復水器出口側及び排熱回収ボイラ入口側に設ける。すなわち復水循環系統14に三方弁(分岐バルブ)10を設け、この三方弁10を介して分岐した配管18をヒートポンプ11に接続し、ヒートポンプ11から導出した配管E19を排熱回収ボイラ3の入口側に接続する。   In order to effectively recover the amount of heat recovered by the condenser 6, the heat pump 11 that efficiently pumps the heat of the low-temperature heat source, compresses it to high temperature and high pressure, and warms the high-temperature heat source is connected to the condenser outlet side and exhaust heat recovery. Installed on the boiler inlet side. That is, a three-way valve (branch valve) 10 is provided in the condensate circulation system 14, a pipe 18 branched through the three-way valve 10 is connected to the heat pump 11, and a pipe E 19 led out from the heat pump 11 is connected to the inlet side of the exhaust heat recovery boiler 3. Connect to.

ヒートポンプ11の低温熱源としては、一般的に冷却塔7の水や図示しない海水が用いられる復水器出口冷却水配管13の復水器出口冷却水(一般的に30℃から40℃程度)を用いるとするが、それに伴い、復水器出口冷却水配管13の復水器出口冷却水がヒートポンプ11を介して熱量を与え、ドレンとなって冷却塔7に戻るための配管A15、配管B16を設ける。   As a low-temperature heat source for the heat pump 11, condenser outlet cooling water (generally about 30 ° C. to 40 ° C.) of the condenser outlet cooling water pipe 13 that generally uses water of the cooling tower 7 or seawater (not shown) is used. As a result, the condenser outlet cooling water of the condenser outlet cooling water pipe 13 gives heat through the heat pump 11, and the pipe A15 and the pipe B16 are returned to the cooling tower 7 as drains. Provide.

また、復水循環系統14を流れる復水を排熱回収ボイラ3へ給水する際に、復水の一部を分岐して、ヒートポンプ11で回収した熱量により加温する。そのために必要な配管、すなわち復水を直接、排熱回収ボイラ3へ供給するための給水管C17の他に、新たに復水をヒートポンプの高温熱源として送る配管D18、及び高温となった前記復水を排熱回収ボイラ3へ供給するための配管E19を設置する。   Further, when the condensate flowing through the condensate circulation system 14 is supplied to the exhaust heat recovery boiler 3, a part of the condensate is branched and heated by the amount of heat recovered by the heat pump 11. For this purpose, in addition to the water supply pipe C17 for supplying the condensate directly to the exhaust heat recovery boiler 3, the pipe D18 for newly sending the condensate as a high-temperature heat source of the heat pump, and the above-mentioned recovery A pipe E19 for supplying water to the exhaust heat recovery boiler 3 is installed.

図2は、本発明の実施例を詳細に示す。排熱回収ボイラ3は、煙道40内に節炭器20を備え、入口側が復水循環系統14に接続され、出口側が水位調節21を介してボイラドラム22に接続されたボイラ配管41が設けられる。節炭器20の循環水入口側、すなわち排ガス24の出口側には温度計25が設けてあって、排ガスの出口側温度を計測して、温度信号を生成することができる。   FIG. 2 shows an embodiment of the present invention in detail. The exhaust heat recovery boiler 3 includes a economizer 20 in a flue 40, and is provided with a boiler pipe 41 whose inlet side is connected to the condensate circulation system 14 and whose outlet side is connected to the boiler drum 22 via a water level regulator 21. . A thermometer 25 is provided on the circulating water inlet side of the economizer 20, that is, the outlet side of the exhaust gas 24, and the temperature signal can be generated by measuring the outlet side temperature of the exhaust gas.

温度計25が生成された温度信号は制御装置26に入力される。   The temperature signal generated by the thermometer 25 is input to the control device 26.

制御装置26は、温度計25からの温度信号を用いて配管F23、すなわちボイラ水循環系統に設けた制御弁31を用いてボイラ水の循環量の制御を行う。また、制御装置26は、ボイラ水の循環量の制御と三方弁10による復水の分岐分配量の制御を行う。ボイラ−蒸気タービンシステムが系統安定すれば制御弁31,三方弁10は一定量制御となる。復水循環系統14に復水の温度計42を設けてこの温度計42で生成された温度信号を制御装置26において、温度計25からの温度信号とを合わせて制御弁31、三方弁10の制御を行うようにしてもよい。いずれにしても、節炭器20の入口における復水の温度を結露を考慮した所定の温度に制御することが重要である。ここでは、節炭器20に導入されるまでの循環水を復水と称し、排熱回収ボイラ3、すなわち節炭器20を流過する循環水をボイラ水と称する。従って、節炭器20に導入されてボイラ水となる循環水は、復水循環系統14を流れる復水、ヒートポンプ11で昇温された昇温復水および循環して節炭器20の系外に導入されたボイラ水(ボイラ水の一部)との混合によって形成される。   The control device 26 uses the temperature signal from the thermometer 25 to control the circulation amount of the boiler water using the pipe F23, that is, the control valve 31 provided in the boiler water circulation system. Further, the control device 26 controls the circulation amount of the boiler water and the branch distribution amount of the condensate by the three-way valve 10. If the boiler-steam turbine system is stabilized, the control valve 31 and the three-way valve 10 are controlled by a certain amount. A condensate thermometer 42 is provided in the condensate circulation system 14, and a temperature signal generated by the thermometer 42 is combined with a temperature signal from the thermometer 25 in the control device 26 to control the control valve 31 and the three-way valve 10. May be performed. In any case, it is important to control the temperature of the condensate at the inlet of the economizer 20 to a predetermined temperature in consideration of condensation. Here, the circulating water until it is introduced into the economizer 20 is referred to as condensate, and the exhaust heat recovery boiler 3, that is, the circulating water that flows through the economizer 20 is referred to as boiler water. Accordingly, the circulating water that is introduced into the economizer 20 and becomes boiler water is introduced outside the system of the economizer 20 through the condensate flowing through the condensate circulation system 14, the heated condensate heated by the heat pump 11, and circulating. It is formed by mixing with boiler water (part of boiler water).

このように、ヒートポンプ11で昇温された復水を復水循環系統14からの復水ならびに排熱回収ボイラ3のボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水と混合してボイラ水を形成し、節炭器20に導入される混合されたボイラ水の温度を制御する制御装置が設けられる。   Thus, the condensate heated by the heat pump 11 is mixed with the condensate from the condensate circulation system 14 and the boiler water circulated by the boiler water circulation system of the exhaust heat recovery boiler 3 and led out of the economizer. A controller is provided that forms boiler water and controls the temperature of the mixed boiler water introduced into the economizer 20.

制御装置26は、少なくとも温度計25からの温度信号を入力し、復水循環系統14から分岐される復水の循環量またはボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水の水量を制御することを行う。   The control device 26 inputs at least a temperature signal from the thermometer 25 and circulates the condensate branched from the condensate circulation system 14 or the amount of boiler water circulated by the boiler water circulation system and led out of the economizer. To control.

また、制御装置26は、復水循環系統14に設けた復水循環温度計27からの温度信号を入力し、復水循環系統14から分岐される復水の循環量またはボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水の水量を制御することを行う。   Further, the control device 26 inputs a temperature signal from a condensate circulation thermometer 27 provided in the condensate circulation system 14, and is circulated by a condensate circulation amount branched from the condensate circulation system 14 or a boiler water circulation system to save coal. The amount of boiler water led out of the vessel is controlled.

また、制御装置26は、節炭器外に導出されるボイラ水の水量の制御を分岐される復水の循環量の制御に優先して行うことができる。   Moreover, the control apparatus 26 can perform the control of the amount of boiler water led out of the economizer prior to the control of the circulation rate of the branched condensate.

図2において、ヒートポンプ11では、復水器出口冷却水配管13からの復水器出口冷却水から熱が汲み上げられ、ヒートポンプ11により復水14の一部を90℃程度まで昇温して高温水とし、排熱回収ボイラ3への給水として利用する。排熱回収ボイラ3内では、ガスタービンの排ガス24と復水循環系統14の復水が熱交換され、蒸気を発生させる。この発生蒸気には、ボイラドラム22を介して蒸気タービンへ送る系統と分岐して、再度排熱回収ボイラ入口へ送る循環水配管F23が設けられており、ボイラ水循環系統(すなわち、排熱回収ボイラ循環水系統)が形成されている。   In FIG. 2, in the heat pump 11, heat is pumped from the condenser outlet cooling water from the condenser outlet cooling water pipe 13, and a part of the condensate 14 is heated to about 90 ° C. by the heat pump 11 to generate high-temperature water. And used as water supply to the exhaust heat recovery boiler 3. In the exhaust heat recovery boiler 3, the exhaust gas 24 of the gas turbine and the condensate of the condensate circulation system 14 are heat-exchanged to generate steam. This generated steam is provided with a circulating water pipe F23 that branches off from the system to be sent to the steam turbine via the boiler drum 22 and is sent again to the exhaust heat recovery boiler inlet, so that the boiler water circulation system (that is, the exhaust heat recovery boiler) is provided. A circulating water system) is formed.

復水器6より直接給水される復水循環系統からの復水と、ヒートポンプ11により加温された配管E19からの復水は、節炭器20入口で混合され、排熱回収ボイラ3のボイラ水として節炭器20へ給水される。この給水されるボイラ水は、一部がヒートポンプ11により加温されているので、復水器6出口温度よりも温度が高い状態となっている。節炭器20へ給水されたボイラ水は、排熱回収ボイラ3内で排ガス24と熱交換し、ボイラ蒸気となって蒸気タービン4へ送られる。   Condensate from the condensate circulation system supplied directly from the condenser 6 and condensate from the pipe E19 heated by the heat pump 11 are mixed at the inlet of the economizer 20, and the boiler water of the exhaust heat recovery boiler 3 is mixed. Is supplied to the economizer 20. The boiler water to be supplied is partially heated by the heat pump 11, so that the temperature is higher than the outlet temperature of the condenser 6. The boiler water supplied to the economizer 20 exchanges heat with the exhaust gas 24 in the exhaust heat recovery boiler 3 and is sent to the steam turbine 4 as boiler steam.

一方、排熱回収ボイラ3は、その入口排ガス温度と排ガス流量がガスタービン1に依存し、また出口排ガス温度は腐食防止等の理由から酸露点温度以上としなければならないので、排ガス24から回収できる熱量は仕様で決まる。   On the other hand, the exhaust heat recovery boiler 3 can be recovered from the exhaust gas 24 because the inlet exhaust gas temperature and the exhaust gas flow rate depend on the gas turbine 1 and the outlet exhaust gas temperature must be equal to or higher than the acid dew point temperature for the purpose of preventing corrosion. The amount of heat is determined by the specifications.

また、排熱回収ボイラ3においては、排ガス24から回収した熱量が、給水されたボイラ水に与えられ、蒸気を発生させるが、図3のように、排ガス24から回収した熱量Q1は計算により求めることができるので、発生させる蒸気の温度T2を決めれば、発生蒸気量を求めることができる。   In the exhaust heat recovery boiler 3, the amount of heat recovered from the exhaust gas 24 is given to the supplied boiler water to generate steam. As shown in FIG. 3, the amount of heat Q1 recovered from the exhaust gas 24 is obtained by calculation. Therefore, if the temperature T2 of the generated steam is determined, the amount of generated steam can be obtained.

蒸気量を増やす場合に、排ガスから回収する熱量Q1と、増加させる蒸気量から求められる、蒸気発生に必要な熱量Q2との差をヒートポンプ11により与える熱量で補うようにする。すなわち、節炭器20の入口での給水温度をT1からT3へ上げることで、Q1とQ2の熱量差の不足分を補うことができる。従来はQ2の熱量をガスタービン1から排ガスによって供給していたが、ガスタービン1からの供給熱量はQ1で済む。ヒートポンプ11により加温する復水の流量は、予め熱量バランスから計算によって求めておく。   When the amount of steam is increased, the difference between the amount of heat Q1 recovered from the exhaust gas and the amount of heat Q2 required for generating steam obtained from the amount of steam to be increased is compensated by the amount of heat applied by the heat pump 11. That is, by raising the feed water temperature at the inlet of the economizer 20 from T1 to T3, the shortage of the difference in heat quantity between Q1 and Q2 can be compensated. Conventionally, the amount of heat of Q2 is supplied from the gas turbine 1 by exhaust gas, but the amount of heat supplied from the gas turbine 1 can be Q1. The flow rate of the condensate heated by the heat pump 11 is calculated in advance from the heat balance.

図4に示すように、給水温度をT3になるように制御して、排熱回収ボイラ3内の温度を一点鎖線になるように制御することも出来る。   As shown in FIG. 4, the feed water temperature can be controlled to be T3, and the temperature in the exhaust heat recovery boiler 3 can be controlled to be a one-dot chain line.

また、ヒートポンプ11の低温熱源となる復水器出口冷却水の温度は、大気温度により温度が異なるので、図5で示すように、大気温度毎にヒートポンプ11への給水流量を決める関数を決めておくと、より精度が高まる。   Moreover, since the temperature of the condenser outlet cooling water that is a low-temperature heat source of the heat pump 11 varies depending on the atmospheric temperature, a function that determines the feed water flow rate to the heat pump 11 is determined for each atmospheric temperature as shown in FIG. This will increase the accuracy.

図5は排熱回収ボイラへ給水する復水循環系統14からの復水の流量と、ヒートポンプ11で加温してから給水(昇温復水)する流量との関係を表す関数の例である。この関数は、排熱回収ボイラ3での熱回収が最大となるように決めておき、それに基づいてヒートポンプ11への高温熱源としての復水流量を決める。なお、図5の横軸の排熱回収ボイラ給水量(ボイラ水)は、これ以外にもガスタービン負荷、蒸気タービン負荷、プラント負荷等との関数を決めることも可能である。   FIG. 5 is an example of a function representing the relationship between the flow rate of condensate from the condensate circulation system 14 that supplies water to the exhaust heat recovery boiler and the flow rate of water supply (heated condensate) after being heated by the heat pump 11. This function is determined so that the heat recovery in the exhaust heat recovery boiler 3 is maximized, and the condensate flow rate as a high-temperature heat source to the heat pump 11 is determined based on this function. It should be noted that the exhaust heat recovery boiler water supply amount (boiler water) on the horizontal axis in FIG. 5 can also determine a function of gas turbine load, steam turbine load, plant load, and the like.

温度計25で生成した温度信号を用いて、出口温度が酸露点以下とならないよう監視すると共に、酸露点以下となった場合に復水循環系統14の復水を直接排熱回収ボイラ3給水側とヒートポンプ11給水側への流量の配分を制御するようにすることができる。   The temperature signal generated by the thermometer 25 is used to monitor the outlet temperature so that it does not fall below the acid dew point. The distribution of the flow rate to the water supply side of the heat pump 11 can be controlled.

本実施例によれば、排熱回収ボイラ給水をヒートポンプによる回収熱量で予熱することで、伝熱面積をある決まった上限値以上に増やすことはできず、発生するボイラ蒸気量にも上限があった排熱回収ボイラにおいても、発生蒸気量を増やすことが可能となる。   According to the present embodiment, the heat transfer area cannot be increased beyond a predetermined upper limit value by preheating the exhaust heat recovery boiler feed water with the recovered heat amount by the heat pump, and the generated boiler steam amount also has an upper limit. Even in the exhaust heat recovery boiler, the amount of generated steam can be increased.

図3及び図4は本実施例により得られる効果を表したものである。   3 and 4 show the effects obtained by this embodiment.

図3において、排熱回収ボイラの入口排ガス温度、及び排ガス流量はガスタービンに依存するものであり、また出口排ガス温度は前記のように酸露点温度以上としなければならないため、排ガスから回収できる熱量はQ1として求められる。一方、排熱回収ボイラにT1℃で給水された復水は、排熱回収ボイラを節炭器、蒸発器、過熱器の順に送られ、排ガスから回収した熱量Q1を受け取りT2℃の蒸気となる。図3における破線はこれらの、排ガス、給水の温度変化を示している。   In FIG. 3, the exhaust gas temperature and the exhaust gas flow rate of the exhaust heat recovery boiler depend on the gas turbine, and the outlet exhaust gas temperature must be equal to or higher than the acid dew point temperature as described above. Is required as Q1. On the other hand, the condensate supplied to the exhaust heat recovery boiler at T1 ° C is sent to the exhaust heat recovery boiler in the order of the economizer, evaporator, and superheater, receives the amount of heat Q1 recovered from the exhaust gas, and becomes T2 ° C steam. . The broken line in FIG. 3 has shown the temperature change of these waste gas and feed water.

一方、図3において、ボイラの発生蒸気量を増やした場合の温度変化を実線で示している。ボイラ発生蒸気量を増やすために必要な熱量はQ2となるが、排ガスから回収する熱量Q1は変わらないため、Q2-Q1分の熱量が不足する。本実施例ではこの不足した熱量をヒートポンプに得られた熱量によって補う。   On the other hand, in FIG. 3, the solid line shows the temperature change when the amount of steam generated by the boiler is increased. The amount of heat required to increase the amount of steam generated by the boiler is Q2, but the amount of heat Q1 recovered from the exhaust gas does not change, so the amount of heat for Q2-Q1 is insufficient. In this embodiment, the insufficient heat quantity is compensated by the heat quantity obtained by the heat pump.

すなわち、図4においてT1℃で給水されていた復水の温度をT3℃まで上げることにより、給水温度は一点鎖線のような温度変化をたどり、ボイラ発生蒸気量が増えた場合の不足熱量が、ヒートポンプにより回収された熱量で補われるのである。
また、もう一つの効果として、本発明のように熱回収システムを構成することで、従来は低温であったため、未利用のまま排出されていた復水器出口冷却水を、ヒートポンプで効率的に熱を汲み上げ、その汲み上げた熱エネルギーを有効に活用することができる。
In other words, by raising the temperature of the condensate supplied at T1 ° C. in FIG. 4 to T 3 ° C., the water supply temperature follows a temperature change as indicated by the alternate long and short dash line, and the insufficient heat quantity when the amount of steam generated by the boiler increases, It is compensated by the amount of heat recovered by the heat pump.
In addition, as another effect, by configuring the heat recovery system as in the present invention, the condenser outlet cooling water that has been conventionally discharged at low temperature can be efficiently discharged by a heat pump. It can pump up heat and effectively use the pumped-up heat energy.

本発明の第2の実施例を図1の系統図及び図6に基づいて説明する。   A second embodiment of the present invention will be described with reference to the system diagram of FIG. 1 and FIG.

第1の実施例と同様に、ガスタービン1、発電機2、排熱回収ボイラ3、蒸気タービン4、蒸気タービンで駆動する発電機5、復水器6、及び蒸気タービン復水を排熱回収ボイラ3へ給水するための復水ポンプ9等の冷却水循環系統を有するコンバインドサイクル(ボイラー蒸気タービンシステム)において、復水器出口冷却水配管13の復水器出口冷却水の熱エネルギーを汲み上げるヒートポンプ11、及び復水器出口冷却水がヒートポンプ11を介して熱量を与え、ドレンとなって冷却塔7に戻るための配管A15、配管B16を設ける。   As in the first embodiment, the gas turbine 1, the generator 2, the exhaust heat recovery boiler 3, the steam turbine 4, the generator 5 driven by the steam turbine, the condenser 6, and the steam turbine condensate are recovered as exhaust heat. In a combined cycle (boiler steam turbine system) having a cooling water circulation system such as a condensate pump 9 for supplying water to the boiler 3, a heat pump 11 pumps up the heat energy of the condenser outlet cooling water of the condenser outlet cooling water pipe 13. And the condenser outlet cooling water gives heat through the heat pump 11, and a pipe A15 and a pipe B16 are provided for returning to the cooling tower 7 as a drain.

ここで第1の実施例と同様に、復水循環系統14の復水を排熱回収ボイラ3へボイラ水として給水する際に、復水の一部を、ヒートポンプ11で回収した熱量により加温する。そのために必要な配管、すなわち復水14を排熱回収ボイラ3へ直接供給するための給水管C17の他に、新たに復水循環系統14の復水をヒートポンプの高温熱源として送る配管D18、及び高温となった復水循環系統14の復水を排熱回収ボイラ3へ供給するための給水管E19を設置する。   Here, as in the first embodiment, when supplying the condensate of the condensate circulation system 14 to the exhaust heat recovery boiler 3 as boiler water, a part of the condensate is heated by the amount of heat recovered by the heat pump 11. . For this purpose, in addition to the water supply pipe C17 for directly supplying the condensate 14 to the exhaust heat recovery boiler 3, a pipe D18 for newly sending the condensate of the condensate circulation system 14 as a high-temperature heat source of the heat pump, and a high temperature A water supply pipe E19 for supplying the condensate of the condensate circulation system 14 to the exhaust heat recovery boiler 3 is installed.

図6は、ヒートポンプ11により与えられる熱量の利用先を示した例である。排熱回収ボイラ3において、伝熱管の伝熱面積を大きくし、排ガス温度と給水出口温度との温度差を狭くする、すなわち温度差をt1℃からt2℃とすると、排熱回収ボイラ3への給水の温度変化は実線のようになる。この場合にも、蒸気を発生するのに必要な熱量Q3と比べて、排ガスから回収する熱量Q1が小さいため、熱量が不足する。ヒートポンプ11の導入により、未利用となっている熱量を効率良く汲み上げ、この熱量の不足分を補うことが可能となる。   FIG. 6 is an example showing where to use the amount of heat given by the heat pump 11. In the exhaust heat recovery boiler 3, if the heat transfer area of the heat transfer tube is increased and the temperature difference between the exhaust gas temperature and the feed water outlet temperature is narrowed, that is, the temperature difference is changed from t1 ° C to t2 ° C, The temperature change of the water supply is as shown by the solid line. Also in this case, the amount of heat is insufficient because the amount of heat Q1 recovered from the exhaust gas is smaller than the amount of heat Q3 necessary to generate steam. By introducing the heat pump 11, it is possible to efficiently pump up the amount of heat that has not been used, and to compensate for this shortage of heat.

本発明の実施形態を示す概略系統図である。It is a schematic systematic diagram showing an embodiment of the present invention. 本発明の実施形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 本発明の実施形態を示す排熱回収ボイラの特性図である。It is a characteristic view of an exhaust heat recovery boiler showing an embodiment of the present invention. 本発明の実施形態を示す排熱回収ボイラの特性図である。It is a characteristic view of an exhaust heat recovery boiler showing an embodiment of the present invention. 本発明の実施形態を示す給水流量決定のための特性図である。It is a characteristic view for the feed water flow rate determination which shows the embodiment of the present invention. 本発明の実施形態を示す排熱回収ボイラの特性図である。It is a characteristic view of an exhaust heat recovery boiler showing an embodiment of the present invention.

符号の説明Explanation of symbols

1…ガスタービン、2…発電機、3…排熱回収ボイラ、4…蒸気タービン、5…発電機、6…復水器、7…冷却塔、8…給水ポンプ、9…復水ポンプ、10…三方弁、11…ヒートポンプ、12…煙突、13…復水器出口冷却水配管、14…復水循環系統、15…配管A、16…配管B、17…配管C、18…配管D、19…配管E、20…節炭器、21…水位調節弁、22…低圧ドラム、23…配管F、24…排ガス、25…温度計、26…制御装置、27…蒸発器、28…過熱器、31…制御弁、40…煙道、41…ボイラ配管、42…温度計、100…熱回収システム。 DESCRIPTION OF SYMBOLS 1 ... Gas turbine, 2 ... Generator, 3 ... Waste heat recovery boiler, 4 ... Steam turbine, 5 ... Generator, 6 ... Condenser, 7 ... Cooling tower, 8 ... Feed water pump, 9 ... Condensate pump, 10 ... three-way valve, 11 ... heat pump, 12 ... chimney, 13 ... condenser outlet cooling water pipe, 14 ... condensate circulation system, 15 ... pipe A, 16 ... pipe B, 17 ... pipe C, 18 ... pipe D, 19 ... Pipe E, 20 ... economizer, 21 ... water level control valve, 22 ... low pressure drum, 23 ... pipe F, 24 ... exhaust gas, 25 ... thermometer, 26 ... control device, 27 ... evaporator, 28 ... superheater, 31 ... control valve, 40 ... flue, 41 ... boiler piping, 42 ... thermometer, 100 ... heat recovery system.

Claims (5)

排熱回収ボイラ、排熱回収ボイラからの蒸気を動力源とする蒸気タービン、蒸気タービンにて仕事をした蒸気を凝縮するための復水器、復水器から排熱回収ボイラに復水を循環させる復水循環系統および復水器に冷却水を供給する冷却水供給システムを備えたボイラ−蒸気タービンシステムに付属させる熱回収システムにおいて、
前記冷却水供給システムからの冷却水を導く配管に接続され、前記復水循環系統から分岐バルブを介して分岐した配管に接続されたヒートポンプを備え、
該ヒートポンプで昇温された復水を前記復水循環系統からの復水と混合してボイラ水を形成し、前記節炭器に導入される前記混合されたボイラ水の温度を制御する制御装置を設けたこと
を特徴とするボイラ−蒸気タービンシステムに付属させる熱回収システム。
Waste heat recovery boiler, steam turbine using steam from exhaust heat recovery boiler as a power source, condenser for condensing steam working in steam turbine, condensate circulation from condenser to exhaust heat recovery boiler A heat recovery system attached to a boiler-steam turbine system having a condensate circulation system and a cooling water supply system for supplying cooling water to the condenser,
A heat pump connected to a pipe for guiding cooling water from the cooling water supply system, and connected to a pipe branched from the condensate circulation system via a branch valve;
A controller for controlling the temperature of the mixed boiler water introduced into the economizer by mixing the condensate heated by the heat pump with the condensate from the condensate circulation system to form boiler water; A heat recovery system attached to a boiler-steam turbine system characterized by being provided.
排熱回収ボイラ、排熱回収ボイラからの蒸気を動力源とする蒸気タービン、蒸気タービンにて仕事をした蒸気を凝縮するための復水器、復水器から排熱回収ボイラに復水を循環させる復水循環系統および復水器に冷却水を供給する冷却水供給システムを備えたボイラ−蒸気タービンシステムに付属させる熱回収システムにおいて、
前記冷却水供給システムからの冷却水を導く配管に接続され、前記復水循環系統から分岐バルブを介して分岐した配管に接続されたヒートポンプを備え、
該ヒートポンプで昇温された復水を前記復水循環系統からの復水ならびに前記排熱回収ボイラのボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水と混合してボイラ水を形成し、前記節炭器に導入される前記混合されたボイラ水の温度を制御する制御装置を設けたこと
を特徴とするボイラ−蒸気タービンシステムに付属させる熱回収システム。
Waste heat recovery boiler, steam turbine using steam from exhaust heat recovery boiler as a power source, condenser for condensing steam working in steam turbine, condensate circulation from condenser to exhaust heat recovery boiler A heat recovery system attached to a boiler-steam turbine system having a condensate circulation system and a cooling water supply system for supplying cooling water to the condenser,
A heat pump connected to a pipe for guiding cooling water from the cooling water supply system, and connected to a pipe branched from the condensate circulation system via a branch valve;
The condensate heated by the heat pump is mixed with the condensate from the condensate circulation system and the boiler water circulated by the boiler water circulation system of the exhaust heat recovery boiler and led out of the economizer to form boiler water. And a controller for controlling the temperature of the mixed boiler water introduced into the economizer. A heat recovery system attached to a boiler-steam turbine system.
請求項2において、前記節炭器に導入される排熱ガスのガス温度を測定する温度計を備え、前記制御装置は、少なくとも前記温度計からの温度信号を入力し、前記復水循環系統から分岐される復水の循環量または前記ボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水の水量を制御することを特徴とするボイラ−蒸気タービンシステムに付属させる熱回収システム。   The thermometer which measures the gas temperature of the exhaust heat gas introduce | transduced into the said economizer in Claim 2, The said control apparatus inputs the temperature signal from the said thermometer at least, and branches from the said condensate circulation system The heat recovery system attached to the boiler-steam turbine system is characterized in that it controls the amount of recirculated condensate or the amount of boiler water circulated by the boiler water circulation system and led out of the economizer. 請求項3において、前記制御装置は、前記復水循環系統に設けた復水循環温度計からの温度信号入力し、前記復水の循環系統から分岐される復水の循環量または前記ボイラ水循環系統によって循環されて節炭器外に導出されるボイラ水の水量を制御することを特徴とするボイラ−蒸気タービンシステムに付属される熱回収システム。   4. The control device according to claim 3, wherein the control device inputs a temperature signal from a condensate circulation thermometer provided in the condensate circulation system, and circulates by a circulation amount of condensate branched from the condensate circulation system or by the boiler water circulation system. A heat recovery system attached to a boiler-steam turbine system that controls the amount of boiler water that is led out of the economizer. 請求項3または4において、前記制御装置は、節炭器外に導出されるボイラ水の水量の制御を分岐される復水の循環量の制御に優先して行うことを特徴とするボイラ−蒸気タービンシステムに付属させる熱回収システム。
5. The boiler-steam according to claim 3, wherein the control device preferentially controls the amount of boiler water led out of the economizer in preference to the control of the circulation amount of branched condensate. A heat recovery system attached to the turbine system.
JP2006022213A 2006-01-31 2006-01-31 Heat recovery system attached to boiler-steam turbine system Pending JP2007205187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022213A JP2007205187A (en) 2006-01-31 2006-01-31 Heat recovery system attached to boiler-steam turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022213A JP2007205187A (en) 2006-01-31 2006-01-31 Heat recovery system attached to boiler-steam turbine system

Publications (1)

Publication Number Publication Date
JP2007205187A true JP2007205187A (en) 2007-08-16

Family

ID=38484873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022213A Pending JP2007205187A (en) 2006-01-31 2006-01-31 Heat recovery system attached to boiler-steam turbine system

Country Status (1)

Country Link
JP (1) JP2007205187A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
WO2011033559A1 (en) * 2009-09-16 2011-03-24 株式会社日立製作所 Cogeneration power plant and biomass reforming combined cycle plant
CN101709661B (en) * 2009-12-11 2012-06-27 中冶京诚工程技术有限公司 Waste heat generating system and generating method
CN102563593A (en) * 2011-11-30 2012-07-11 金能科技股份有限公司 Recycling technique for sensible heat of flue gas in secondary quenching zone in carbon black production
KR101184656B1 (en) 2009-12-14 2012-09-21 한국지역난방기술 (주) Condensing boiler with dh water preheating for chp plant
JP2013238337A (en) * 2012-05-15 2013-11-28 Miura Co Ltd Water supply heating system
JP2014092158A (en) * 2012-11-05 2014-05-19 General Electric Co <Ge> Combined cycle power plant with absorption heat transformer
JP2014145521A (en) * 2013-01-29 2014-08-14 Hitachi Ltd Operation control method of coal gasification combined power generation plant, and coal gasification combined power generation plant
JP2014228222A (en) * 2013-05-24 2014-12-08 株式会社サムソン Boiler with water supply preheater
CN104533551A (en) * 2014-08-29 2015-04-22 中国华能集团清洁能源技术研究院有限公司 Waste heat recovery IGCC (integrated gasification combined cycle) combined heat and power generation central heating system and method
JP2015127594A (en) * 2013-12-27 2015-07-09 三菱日立パワーシステムズ株式会社 Boiler feedwater system
KR101559728B1 (en) 2014-01-20 2015-10-13 지에스파워 주식회사 Cogeneration Plant Cooling System
CN105222203A (en) * 2015-11-04 2016-01-06 清华大学 A kind of novel gas cogeneration of heat and power central heating device
CN105240815A (en) * 2015-03-11 2016-01-13 罗学大 Waste gas heat recovery steam conversion device and gas generator set
CN105484816A (en) * 2015-12-31 2016-04-13 中国能源建设集团广东省电力设计研究院有限公司 Fuel gas and steam combination system and running control method thereof
WO2016110124A1 (en) * 2015-01-08 2016-07-14 清华大学 Gas steam combined cycle central heating device and heating method
CN108798898A (en) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 The system and method for Proton Exchange Membrane Fuel Cells and combustion turbine combined supply steam and hot water
CN109057898A (en) * 2018-08-07 2018-12-21 西安热工研究院有限公司 A kind of Combined cycle gas-steam turbine afterheat utilizing system based on carbon dioxide heat-pump
CN109099588A (en) * 2018-10-16 2018-12-28 西安交通大学 A kind of double water channel cast aluminium silicon condenser boiler water circuit systems and working method
KR20190030920A (en) * 2017-09-15 2019-03-25 삼성중공업 주식회사 Combined cycle power plant
CN110107368A (en) * 2019-06-11 2019-08-09 赫普科技发展(北京)有限公司 Steam condensing method, steam and condensate system and electricity generation system
CN110185507A (en) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 A kind of indirect air cooling unit circulating water afterheat depth energy saving comprehensive utilization device and method
CN110656986A (en) * 2019-10-15 2020-01-07 中国电建集团山东电力建设第一工程有限公司 Circulating cooling water system of steam turbine and operation method thereof
CN113028485A (en) * 2021-04-22 2021-06-25 北京中矿节源节能技术有限公司 System for realizing carbon neutralization heating of mining area based on waste heat of power plant and regulation and control method thereof

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
WO2011033559A1 (en) * 2009-09-16 2011-03-24 株式会社日立製作所 Cogeneration power plant and biomass reforming combined cycle plant
JP5331890B2 (en) * 2009-09-16 2013-10-30 株式会社日立製作所 Cogeneration plant and biomass reforming combined power plant
CN101709661B (en) * 2009-12-11 2012-06-27 中冶京诚工程技术有限公司 Waste heat generating system and generating method
KR101184656B1 (en) 2009-12-14 2012-09-21 한국지역난방기술 (주) Condensing boiler with dh water preheating for chp plant
CN102563593A (en) * 2011-11-30 2012-07-11 金能科技股份有限公司 Recycling technique for sensible heat of flue gas in secondary quenching zone in carbon black production
JP2013238337A (en) * 2012-05-15 2013-11-28 Miura Co Ltd Water supply heating system
JP2014092158A (en) * 2012-11-05 2014-05-19 General Electric Co <Ge> Combined cycle power plant with absorption heat transformer
JP2014145521A (en) * 2013-01-29 2014-08-14 Hitachi Ltd Operation control method of coal gasification combined power generation plant, and coal gasification combined power generation plant
JP2014228222A (en) * 2013-05-24 2014-12-08 株式会社サムソン Boiler with water supply preheater
JP2015127594A (en) * 2013-12-27 2015-07-09 三菱日立パワーシステムズ株式会社 Boiler feedwater system
KR101559728B1 (en) 2014-01-20 2015-10-13 지에스파워 주식회사 Cogeneration Plant Cooling System
CN104533551A (en) * 2014-08-29 2015-04-22 中国华能集团清洁能源技术研究院有限公司 Waste heat recovery IGCC (integrated gasification combined cycle) combined heat and power generation central heating system and method
WO2016110124A1 (en) * 2015-01-08 2016-07-14 清华大学 Gas steam combined cycle central heating device and heating method
US10823015B2 (en) 2015-01-08 2020-11-03 Tsinghua University Gas-steam combined cycle centralized heat supply device and heat supply method
KR20170102793A (en) * 2015-01-08 2017-09-12 칭화 유니버시티 Gas-steam combined cycle centralized heat supply device and heat supply method
KR102071105B1 (en) 2015-01-08 2020-03-02 칭화 유니버시티 Gas-steam combined cycle centralized heat supply device and heat supply method
CN105240815A (en) * 2015-03-11 2016-01-13 罗学大 Waste gas heat recovery steam conversion device and gas generator set
CN105222203A (en) * 2015-11-04 2016-01-06 清华大学 A kind of novel gas cogeneration of heat and power central heating device
CN105484816A (en) * 2015-12-31 2016-04-13 中国能源建设集团广东省电力设计研究院有限公司 Fuel gas and steam combination system and running control method thereof
KR20190030920A (en) * 2017-09-15 2019-03-25 삼성중공업 주식회사 Combined cycle power plant
KR102391283B1 (en) * 2017-09-15 2022-04-27 삼성중공업(주) Combined cycle power plant
CN108798898A (en) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 The system and method for Proton Exchange Membrane Fuel Cells and combustion turbine combined supply steam and hot water
CN108798898B (en) * 2018-04-20 2023-11-28 华电电力科学研究院有限公司 System and method for supplying steam and hot water by combining proton exchange membrane fuel cell and gas turbine
CN109057898A (en) * 2018-08-07 2018-12-21 西安热工研究院有限公司 A kind of Combined cycle gas-steam turbine afterheat utilizing system based on carbon dioxide heat-pump
CN109057898B (en) * 2018-08-07 2023-10-20 西安热工研究院有限公司 Gas-steam combined cycle waste heat utilization system based on carbon dioxide heat pump
CN109099588B (en) * 2018-10-16 2023-08-04 西安交通大学 Double-water-channel cast aluminum silicon condensing boiler waterway system and working method
CN109099588A (en) * 2018-10-16 2018-12-28 西安交通大学 A kind of double water channel cast aluminium silicon condenser boiler water circuit systems and working method
CN110185507A (en) * 2019-05-10 2019-08-30 华电电力科学研究院有限公司 A kind of indirect air cooling unit circulating water afterheat depth energy saving comprehensive utilization device and method
CN110185507B (en) * 2019-05-10 2023-12-05 华电电力科学研究院有限公司 Deep energy-saving comprehensive utilization device and method for circulating water waste heat of indirect air cooling unit
CN110107368A (en) * 2019-06-11 2019-08-09 赫普科技发展(北京)有限公司 Steam condensing method, steam and condensate system and electricity generation system
CN110107368B (en) * 2019-06-11 2024-04-19 赫普科技发展(北京)有限公司 Steam condensing method, steam condensing system and power generation system
CN110656986A (en) * 2019-10-15 2020-01-07 中国电建集团山东电力建设第一工程有限公司 Circulating cooling water system of steam turbine and operation method thereof
CN110656986B (en) * 2019-10-15 2024-01-19 中国电建集团山东电力建设第一工程有限公司 Circulating cooling water system of steam turbine and operation method thereof
CN113028485A (en) * 2021-04-22 2021-06-25 北京中矿节源节能技术有限公司 System for realizing carbon neutralization heating of mining area based on waste heat of power plant and regulation and control method thereof

Similar Documents

Publication Publication Date Title
JP2007205187A (en) Heat recovery system attached to boiler-steam turbine system
US8186142B2 (en) Systems and method for controlling stack temperature
KR100975276B1 (en) Local heating water feeding system using absorbing type heat pump
US9453432B2 (en) Power generation system
JP4554527B2 (en) Energy-saving equipment using waste heat
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
US9803853B2 (en) Heat recovery and utilization system
JP2005351576A (en) Steam temperature control device and its method as well as power generation plant using the same
DK152448B (en) STEAM GENERATOR SYSTEM
CN102269401A (en) Low-temperature flue gas waste heat recovery utilization method
JP6053839B2 (en) Boiler water supply system, boiler equipped with the same, and control method for boiler water supply system
JP2009162449A (en) Exhaust heat recovery boiler device
CN103380329B (en) Boiler plant
JP2011127786A (en) Combined cycle power generation facility and feed-water heating method thereof
JP7184103B2 (en) Exhaust heat recovery boiler and its operation method
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4437987B2 (en) Hot water circulation system
KR101303811B1 (en) Combined cycle power plant utilizing waste heat
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
KR101662474B1 (en) Condensate preheater for a waste-heat steam generator
JP2012057860A (en) Exhaust heat recovery device
RU2383629C2 (en) Method of utilisation of heat of exhaust gases of process aggregates
JP7308719B2 (en) Exhaust heat recovery system
JP7335798B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
RU2600655C2 (en) Method of operating thermal power plant with open heat extraction system and device therefor