WO2011033559A1 - Cogeneration power plant and biomass reforming combined cycle plant - Google Patents

Cogeneration power plant and biomass reforming combined cycle plant Download PDF

Info

Publication number
WO2011033559A1
WO2011033559A1 PCT/JP2009/004640 JP2009004640W WO2011033559A1 WO 2011033559 A1 WO2011033559 A1 WO 2011033559A1 JP 2009004640 W JP2009004640 W JP 2009004640W WO 2011033559 A1 WO2011033559 A1 WO 2011033559A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
pipe
water
condenser
hot water
Prior art date
Application number
PCT/JP2009/004640
Other languages
French (fr)
Japanese (ja)
Inventor
高橋文夫
難波孝次
幡宮重雄
柴田貴範
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2009/004640 priority Critical patent/WO2011033559A1/en
Priority to JP2011531637A priority patent/JP5331890B2/en
Publication of WO2011033559A1 publication Critical patent/WO2011033559A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/44Use of steam for feed-water heating and another purpose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a cogeneration power plant and a cogeneration biomass reforming combined plant, and more particularly, to a cogeneration power plant and a biomass reforming combined power plant suitable for using a thermal power plant and a nuclear power plant.
  • the Rankine cycle is a cycle in which condensable vapor is used as a working medium, and consists of the following four processes.
  • (2) The hot water is further heated to generate steam.
  • (3) The steam is sent to the turbine and expanded to obtain power.
  • these four processes are assigned to each device as follows.
  • (1) and (2) are responsible for boilers and steam generators such as nuclear reactors for boiling water nuclear power plants, (3) for steam turbines, and (4) for condensers.
  • the working medium is circulated constantly.
  • a regeneration process is usually used as a method for improving the efficiency of the Rankine cycle.
  • heating of the feed water in the process (1) is performed using steam extracted from the turbine, and heat is recovered by extraction from the turbine.
  • the turbine output decreases with the bleed air, the recovered heat is effectively used for heating the feed water, so that the thermal efficiency is improved.
  • the reheating process which reheats a steam in the middle of expansion
  • the maximum thermal efficiency can be theoretically obtained by making the steam extraction points of the turbine from a continuous number of steam extraction points.
  • the steam extraction point must be finite, and there remains room for improving the thermal efficiency in the regeneration process.
  • Japanese Patent Application Laid-Open No. 2008-2413 describes an example of a steam heat pump system in FIG.
  • This steam heat pump includes an evaporator, a plurality of compressors, and a plurality of cooling towers.
  • the plurality of compressors are connected in series with each other by connecting a steam inlet of a compressor located downstream to a steam outlet of the compressor located upstream.
  • Each cooling tower is disposed between the compressors.
  • the steam generated in the evaporator is compressed by the most upstream compressor, the temperature rises, and is cooled by the cooling tower.
  • the steam cooled in the cooling tower is compressed by another compressor located downstream, the temperature rises, and is supplied to the other cooling tower to be cooled.
  • the compression of the steam by the compressor and the cooling of the compressed steam by the cooling tower are repeated.
  • Japanese Patent Application Laid-Open No. 5-65808 describes a co-heated steam turbine plant.
  • This co-heat steam turbine plant supplies steam generated in a boiler to a turbine, rotates a generator to generate electric power, and uses steam exhausted from the turbine as a high-pressure process steam supply destination and a low-pressure process steam supply destination. Supply each.
  • the steam supplied to the high pressure process steam supply destination compresses the steam exhausted from the turbine with a compressor.
  • subcritical water has the highest ionic product per unit volume and is said to be suitable for reforming biomass and waste.
  • Japanese Patent Application Laid-Open No. 2008-296192 describes a circulation type continuous subcritical water reaction treatment apparatus.
  • slurry liquid containing liquid, solid and gel raw materials in a raw material tank is supplied from a supply tank having a stirrer to a heater part of a subcritical water reactor. Supply.
  • This slurry liquid is heated by the heating medium supplied from the boiler by the heater member to be in a subcritical water state.
  • This slurry liquid is led to the gas-liquid separator part of the subcritical water reactor.
  • U.S. Pat. No. 7,476,296 describes an apparatus for converting organic and waste materials into useful products.
  • This equipment can be used to remove various wastes such as organs, livestock manure, municipal sewage sludge, tires and plastics, gas, oil, specialty chemicals and carbon with acceptable cost and high energy efficiency without generating odors.
  • the apparatus includes a heater that produces a mixture of liquid and vaporized oil from an organic liquid, a reactor that converts the mixture to a carbon solid and a hydrocarbon / gas mixture, a first cooler that receives the carbon solid, and a hydrocarbon / gas.
  • a second cooler is provided for receiving the mixture.
  • JP 59-12605A proposes a cogeneration system using a nuclear reactor.
  • high-temperature cooling water generated in a nuclear reactor is guided to a steam generator to generate steam, and this steam is guided to a high-pressure turbine and a low-pressure turbine to generate power.
  • the steam exhausted from the low-pressure turbine is condensed into water by the condenser.
  • This water is supplied to the steam generator through a water supply pipe, but is heated by a five-stage water heater in the middle.
  • steam extracted from the high-pressure turbine or the low-pressure turbine is supplied to each feed water heater as a heating source.
  • a closed loop connecting the two-stage low-pressure feed water heater and other heat exchangers to which the extraction steam from the low-pressure turbine is supplied is formed, and other heat supplied to the heat exchanger by a heat medium circulating in the closed loop. The medium is heated.
  • the temperature range of subcritical water is 120 ° C to 370 ° C (5 pages, Fig. 4).
  • the ion product per volume becomes maximum at around 250 ° C. (page 4, FIG. 3), and is described as being suitable for the reforming reaction.
  • JP 2008-2413 A Japanese Patent Laid-Open No. 5-65808 Japanese Utility Model Publication No. 1-130001 JP 2008-296192 A US Pat. No. 7,476,296 JP 59-126055
  • the theoretical maximum thermal efficiency may be obtained in the compression liquefaction process.
  • it is a gas in the steam engine that realizes the Carnot cycle described in Thermodynamics III, pages 234 to 236 and Fig. 6.3 (Take Ono, Iwanami Shoten, published on January 7, 1971).
  • the density ratio of the gas and the liquid is large, the uniformity of the density is not maintained, and the compression efficiency is lowered.
  • a cylinder type compressor is used in the steam engine. This compresses only one of the reciprocating motions of the piston in the cylinder, so that a steady operation is impossible due to pulsation. In addition, it is difficult to increase the capacity of the cylinder type, and it is difficult to apply to a commercial power plant in terms of capacity.
  • Japanese Patent Application Laid-Open No. 2008-2413 and Japanese Utility Model Laid-Open No. 1-112301 do not refer to a cogeneration plant.
  • the co-heated steam turbine plant described in Japanese Patent Laid-Open No. 5-65808 supplies steam exhausted from the turbine to a high-pressure process steam supply destination and a low-pressure process steam supply destination, respectively.
  • Japanese Patent Laid-Open No. 5-65808 does not mention supply of hot water.
  • hot water generated during regeneration in a cogeneration plant and hot water generated during compression liquefaction i.e. subcritical water
  • hot water generated during compression liquefaction i.e. subcritical water
  • Japanese Patent Application Laid-Open No. 2008-296192 and US Pat. No. 7,476,296 describe a reforming process using subcritical water produced by a boiler, but do not mention a cogeneration plant.
  • heat circulating in a closed loop formed by connecting a two-stage low-pressure feed water heater and other heat exchangers is used.
  • the other heat medium supplied to the heat exchanger is heated by the medium.
  • the heating efficiency of the other heat medium is poor, and the temperature of the other heat medium cannot be increased.
  • An object of the present invention is to provide a cogeneration plant that can reduce the amount of waste heat discharged from the condenser to the external environment and supply hot water.
  • a feature of the present invention that achieves the above-described object is that a steam generator that converts water into steam, a turbine that is supplied with steam from the steam generator, a condenser that condenses steam exhausted from the turbine, and hot water A generator,
  • the hot water generator is connected to the first piping connected to the second piping, the first piping for guiding the water extracted from the turbine, and the water guided by the first piping. And having a plurality of heating devices for heating with steam supplied by the second pipe.
  • Water is heated by the steam extracted from the turbine and supplied to each heating device provided in the first pipe, and hot water that is subcritical water is generated. Since the steam supplied from each heating device provided in the first pipe is extracted from the turbine, the amount of steam exhausted to the condenser is reduced, and cooling water (exhaust from the condenser to the external environment ( The amount of waste heat due to warm wastewater is reduced.
  • the hot water generator condenses the steam in the condenser and guides the cooling water discharged from the condenser, and the first pipe that is provided in the first pipe and guides the steam extracted from the turbine.
  • Example 3 It is a block diagram of the cogeneration plant of Example 3 which is another Example of this invention. It is a block diagram of the biomass reforming combined power plant of Example 4 which is another Example of this invention. It is a detailed block diagram of the biomass reforming apparatus shown in FIG. It is a block diagram of the cogeneration plant of Example 5 which is another Example of this invention. It is a block diagram of the cogeneration plant of Example 6 which is another Example of this invention.
  • the inventors examined a combined heat and power generation plant that can reduce the amount of waste heat from the discharged hot effluent and raise the temperature of the resulting hot water accordingly.
  • FIG. 3 shows a Tq ⁇ S diagram for a simple Rankine cycle
  • FIG. 5 shows a Tq ⁇ S diagram for the regenerated Rankine cycle
  • FIG. 8 shows a Tq ⁇ S diagram regarding the hot water combined cycle.
  • the TS diagram represents the change in the entropy of the vapor of temperature T and unit mass, that is, the specific entropy.
  • the Tq ⁇ S diagram shows a Tq ⁇ S diagram using entropy q ⁇ S multiplied by specific flow q instead of specific entropy S.
  • the specific flow rate q was standardized assuming that the amount of steam generated in the boiler is 1.
  • FIGS. 6 and 8 the reduction in the flow rate of the turbine stage due to the bleed air is taken into consideration, and the power generation output when the amount of steam generated in the boiler (steam generating device) is 1 as the ABCD area is shown.
  • the specific flow rate of the cooling water is normalized by assuming the amount of steam generated in the boiler to be 1.
  • FIG. 3 is a formal representation and has no physical meaning as it is.
  • the specific flow rate of the cooling water is normalized assuming that the amount of steam generated in the boiler is 1.
  • the route XcXh substantially matches the route DA.
  • the amount of heat exhausted to the condenser could be further reduced by increasing the amount of steam extracted from the path CD, compared to the simple Rankine cycle. If the amount of steam extracted in the path CD is further increased, the amount of heat exhausted by the steam exhausted from the turbine to the condenser can be further reduced.
  • hot water is produced separately from the feed water supplied to the steam generator, and the hot water is supplied to the outside.
  • the heating of this hot water is similar to the heating of the feed water.
  • steam extracted from the middle of the adiabatic expansion of steam is used.
  • all the exhaust heat to the condenser is recovered, and hot water having the same temperature as the steam generator is obtained.
  • both the hot water and the feed water are in the liquid phase, and the specific entropies coincide if the temperature T is equal.
  • Cooling water for example, seawater supplied to the condenser by the amount of heat exhausted from the turbine by steam exhausted from the turbine is heated to the temperature T0 and then heated by the extracted steam in the same manner as the water supply.
  • the steam generated by the steam generator is used as a high-temperature heat source, and cooling water supplied to the condenser is used as a low-temperature heat source to generate power.
  • the steam is used as a high temperature heat source, and the cooling water that condenses the steam extracted from the middle of the adiabatic expansion is used as a low temperature heat source for power generation.
  • the cooling water that condenses the steam extracted from the middle of the adiabatic expansion contributes to the power generation in the power plant and becomes hot water. It is theoretically the same if a compression liquefaction process is used instead of the regeneration process.
  • the hot water obtained by the above hot water combined supply cycle is subcritical water (120 ° C. to 370 ° C.) and can be used for reforming biomass and the like.
  • This reforming method applies a semi-batch suitable for cogeneration and recovers all products in the solid, dissolved, fat or gas state.
  • the reforming reaction is generally an endothermic reaction, and the recovered exhaust heat is stored in the reformed product.
  • the cogeneration plant 1 of this embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21.
  • the boiling water nuclear power plant 2 includes a nuclear reactor 3 that is a steam generator, a high-pressure turbine (first turbine) 4, a low-pressure turbine (second turbine) 5 having a lower pressure than the high-pressure turbine 4, a condenser 8, and low-pressure feed water Heaters 9 and 10, a high-pressure feed water heater 11, and a feed water pump 13 are provided.
  • the nuclear reactor 3 is connected to a high pressure turbine 4 and a low pressure turbine 5 by a main steam pipe 7.
  • a reheater 6 is provided in the main steam pipe 7 between the high pressure turbine 4 and the low pressure turbine 5.
  • a pipe 20 connected to the nuclear reactor 3 is connected to the reheater 6.
  • a water supply pipe 12 connects the condenser 8 and the reactor 3.
  • the feed water pipe 12 is provided with low pressure feed water heaters 9 and 10, a feed water pump 13 and a high pressure feed water heater 11 in this order from upstream to downstream.
  • the extraction pipe 17 is connected to a turbine casing (not shown) of the low-pressure turbine 5 and further connected to the low-pressure feed water heater 9.
  • the extraction pipe 18 is connected to the turbine casing of the low pressure turbine 5 and the low pressure feed water heater 10.
  • the extraction pipe 17 is connected to the turbine casing on the rear stage side of the low-pressure turbine 5 with respect to the extraction pipe 18.
  • the extraction pipe 19 is connected to a turbine casing (not shown) of the high-pressure turbine 4 and the high-pressure feed water heater 11.
  • the condenser 8 is provided with a large number of heat transfer tubes 14.
  • a cooling water supply pipe 15 and a cooling water discharge pipe 16 are connected to each heat transfer pipe 14.
  • the hot water generator 21 includes a pump 23, heaters (heating devices) 24, 25, and 26 that are heat exchangers, and a steam heat pump device (heating device) 36.
  • the pump 23, the heaters 24, 25, and 26 that are heat exchangers, and the steam heat pump device 36 are provided in the hot water pipe (first pipe) 22 in this order from the upstream.
  • the heater 24 is connected to the extraction pipe 17 by an extraction pipe (second pipe) 27 and communicates with the low-pressure turbine 5.
  • the heater 25 is connected to the extraction pipe 18 by an extraction pipe (second pipe) 28 and communicates with the low-pressure turbine 5.
  • the heater 26 is connected to the extraction pipe 19 by an extraction pipe (second pipe) 29 and communicates with the high-pressure turbine 4.
  • the condensed water pipe 30 connected to the heater 24 is connected to the feed water pipe 10 between the low pressure feed water heater 9 and the low pressure feed water heater 10.
  • a condensed water pipe 31 connected to the low-pressure feed water heater 9 is connected to the condensed water pipe 30.
  • a condensed water pipe 32 connected to the heater 25 is connected between the low-pressure feed water heater 10 and the feed water pump 13 to the feed water pipe 10.
  • a condensed water pipe 33 connected to the low-pressure feed water heater 10 is connected to the condensed water pipe 32.
  • the condensed water pipe 34 connected to the heater 26 is connected to the water supply pipe 10 downstream of the high-pressure feed water heater 11.
  • a condensed water pipe 35 connected to the high-pressure feed water heater 11 is connected to the condensed water pipe 34.
  • the steam heat pump device 36 includes compressors 37A, 37B, 37C and 37D, a motor (drive device) 38, condensers 41A, 41B, 41C and 41D and moisture separators 43A, 43B and 43C.
  • the compressors 37A, 37B, 37C, and 37D are turbo compressors that are rotating compressors having rotating blades.
  • Rotors (not shown) having moving blades of the compressors 37A, 37B, 37C and 37D are connected to the rotating shaft 40.
  • the rotating shaft 40 is connected to the motor 38 via a gear 39.
  • the condenser 41A is connected to the first stage compressor 37A by an exhaust pipe 44A.
  • the condenser 41A is connected to the second stage compressor 37B by a supply pipe 45A provided with a moisture separator 43A.
  • the condenser 41B is connected to the compressor 37B by an exhaust pipe 44B.
  • the condenser 41B is connected to the third stage compressor 37C by a supply pipe 45B.
  • a moisture separator 43B is provided in the supply pipe 45B.
  • the condenser 41C is connected to the compressor 37C by an exhaust pipe 44C.
  • the condenser 41C is connected to a fourth-stage compressor 37D as the final stage by a supply pipe 45C.
  • a moisture separator 43C is provided in the supply pipe 45C.
  • the condenser 41D is connected to the compressor 37D by an exhaust pipe 44D.
  • a compressor and a condenser are provided in pairs.
  • the first-stage compressor 37 ⁇ / b> A located at the most upstream is connected to the turbine casing of the high-pressure turbine 4 by an extraction pipe (second pipe) 48 provided with an on-off valve 54.
  • a heat transfer tube 42A is provided in the condenser 41A, and a heat transfer tube 42B is provided in the condenser 41B.
  • a heat transfer tube 42C is provided in the condenser 41C, and a heat transfer tube 42D is provided in the condenser 41D.
  • the hot water pipe 22 is connected to the inlet of the heat transfer pipe 42 ⁇ / b> A downstream of the pump 55 provided in the hot water pipe 22.
  • a pump 55 is disposed downstream of the heater 26.
  • the hot water tube 22 connects the outlet of the heat transfer tube 42A and the inlet of the heat transfer tube 42B, the outlet of the heat transfer tube 42B and the inlet of the heat transfer tube 42C, and the outlet of the heat transfer tube 42C and the heat transfer tube 42D, respectively.
  • the outlet of the heat transfer tube 42 ⁇ / b> D is also connected to the hot water tube 22.
  • the condensers 41 ⁇ / b> A, 43 ⁇ / b> B, 43 ⁇ / b> C, and 43 ⁇ / b> D are condensers if attention is paid to the steam exhausted from the compressors, but are heaters if attention is paid to the liquid flowing in the hot water pipe 22.
  • the condensed water piping 47A provided with the pump 46A is connected to the bottom of the condenser 41A and the condenser 41B.
  • a condensed water pipe 47B provided with a pump 46B is connected to the bottom of the condenser 41B and the condenser 41C.
  • a condensed water pipe 47C provided with a pump 46C is connected to the bottom of the condenser 41C and the condenser 41D.
  • a condensed water pipe 47D provided with a pump 46D is connected to the bottom of the condenser 41D.
  • the condensed water pipe 47 ⁇ / b> D is connected to the water supply pipe 12 downstream from the connection point between the condensed water pipe 34 and the water supply pipe 12.
  • Steam generated in the nuclear reactor 3 is supplied to the high-pressure turbine 4 through the main steam pipe 7 and further guided to the reheater 6 and the low-pressure turbine 5.
  • the steam discharged from the high-pressure turbine 4 is heated by the steam generated in the nuclear reactor 3 supplied through the pipe 20 in the reheater 6.
  • Steam whose temperature has risen in the reheater 6 is supplied to the low-pressure turbine 5.
  • the steam supplied to the high-pressure turbine 4 and the low-pressure turbine 5 rotates the high-pressure turbine 4 and the low-pressure turbine 5 whose rotation shafts are connected to each other.
  • a generator (not shown) connected to the rotating shafts of these turbines rotates to generate power.
  • the steam exhausted from the low-pressure turbine 5 is condensed by the condenser 8 to become water.
  • the condensation of steam in the condenser 8 is performed by supplying cooling water (for example, seawater) to the heat transfer pipe 14 in the condenser 8 through the cooling water supply pipe 15.
  • the cooling water in the heat transfer pipe 14 whose temperature has been increased by condensing the steam is discharged to the sea through the cooling water discharge pipe 16.
  • Water generated by condensation of steam in the condenser 8 is supplied to the reactor 3 through the water supply pipe 12 as water supply.
  • the feed water discharged from the condenser 8 is guided to the low pressure feed water heater 9.
  • the steam extracted from the low-pressure turbine 4 is supplied to the low-pressure feed water heater 9 through the extraction pipe 17 to heat the feed water supplied to the low-pressure feed water heater 9.
  • the feed water discharged from the low-pressure feed water heater 9 is supplied to the low-pressure feed water heater 10.
  • This feed water is further heated by the steam extracted from the low pressure turbine 4 and supplied to the low pressure feed water heater 10 through the extraction pipe 18.
  • the feed water heated by the low pressure feed water heater 10 is guided to the high pressure feed water heater 11.
  • the feed water is extracted from the high-pressure turbine 4, heated by steam supplied to the high-pressure feed water heater 11 through the extraction pipe 19, and supplied to the nuclear reactor 3.
  • the steam supplied to the low-pressure feed water heater 9 is condensed by heating the feed water and becomes condensed water.
  • the condensed water is guided to the water supply pipe 12 through the condensed water pipes 31 and 30.
  • the steam supplied to the low-pressure feed water heater 10 is condensed by heating the feed water to become condensed water.
  • the condensed water is guided to the water supply pipe 12 through the condensed water pipes 33 and 32.
  • the steam supplied to the high-pressure feed water heater 11 is condensed by heating the feed water to become condensed water.
  • the condensed water is guided to the water supply pipe 12 through the condensed water pipes 35 and 34.
  • the pumps 23 and 55 are driven, and a part of the cooling water discharged from the condenser 8 to the cooling water discharge pipe 16 flows into the hot water pipe 22 and is led to the heater 24.
  • a part of the steam flowing in the extraction pipe 17 is supplied to the heater 24 by the extraction pipe 27 and heats the cooling water in the heater 24.
  • the heated cooling water is supplied to the heater 25.
  • a part of the steam flowing in the extraction pipe 18 is supplied to the heater 25 through the extraction pipe 28 and heats the cooling water in the heater 25.
  • the heated cooling water is further supplied to the heater 26.
  • a part of the steam flowing in the extraction pipe 19 is supplied to the heater 26 by the extraction pipe 29 and heats the cooling water in the heater 26.
  • Heaters 24, 25 and 26 are provided with heat transfer tubes inside. Cooling water guided by the hot water pipe 22 flows through the heat transfer pipe, and steam extracted from the corresponding turbine is supplied to the shell side of each heater. The heat of the steam is transmitted to the cooling water flowing through the heat transfer tube through the heat transfer tube, and the cooling water is heated.
  • the heaters 24, 25, 26 and the steam heat pump device 36 are both heating devices, but the heaters 24, 25, 26 and the steam heat pump device 36 have different structures.
  • the hot water discharged from the heater 26 is supplied to the steam heat pump device 36, and the temperature is further increased.
  • the heating of hot water by the steam heat pump device 36 will be described in detail.
  • each of the compressors 37A, 37B, 37C, and 37D a rotor having moving blades is rotated by driving a motor 38.
  • the steam extracted from the high-pressure turbine 4 is supplied to the first stage compressor 37 ⁇ / b> A through the extraction pipe 48.
  • the on-off valve 54 is open.
  • the steam is compressed by the compressor 37A and the temperature rises.
  • the compressed steam is led into the condenser 41A through the exhaust pipe 44A and cooled by hot water flowing through the heat transfer pipe 42A of the condenser 41A.
  • a part of the vapor in the condenser 41A is condensed to become condensed water 53 and falls to the bottom of the condenser 41A. Since the steam supplied to the condenser 41A is higher than the temperature of the hot water flowing in the heat transfer tube 42A, it is condensed on the outer surface of the heat transfer tube 42A.
  • the hot water supplied by the hot water pipe 22 and flowing in the heat transfer pipe 42A is heated by cooling the steam in the condenser 41A and further condensing a part of the steam, and the temperature rises.
  • the temperature of the steam in the condenser 41A and the temperature of the hot water in the heat transfer tube 42A are substantially equal, and a thermal equilibrium is approximately maintained between the steam and the hot water.
  • the uncondensed vapor in the condenser 41A is guided to the compressor 37B through the supply pipe 45A after the moisture is removed by the moisture separator 43A.
  • the volume flow rate of the steam supplied from the condenser 41A to the compressor 37B is reduced by the cooling of the steam by the condenser 41A.
  • the steam is compressed again by the compressor 37B, and the temperature rises.
  • the temperature of the steam exhausted from the compressor 37B is higher than the temperature of the steam exhausted from the compressor 37A.
  • the steam compressed by the compressor 37B is led into the condenser 41B through the exhaust pipe 44B and cooled by hot water flowing through the heat transfer pipe 42B of the condenser 41B.
  • the hot water discharged from the heat transfer tube 42A and flowing in the heat transfer tube 42B is heated by cooling the steam in the condenser 41B and further condensing a part of the steam, and the temperature further rises.
  • the temperature of the steam in the condenser 41B and the temperature of the hot water in the heat transfer tube 42B are substantially equal, and the thermal equilibrium is approximately maintained.
  • the uncondensed vapor in the condenser 41B is guided to the compressor 37C through the supply pipe 45B after moisture is removed by the moisture separator 43B.
  • the volume flow rate of the steam supplied from the condenser 41B to the compressor 37C is reduced by the cooling of the steam by the condenser 41B.
  • the steam is compressed again by the compressor 37C and the temperature rises.
  • the temperature of the steam exhausted from the compressor 37C is higher than the temperature of the steam exhausted from the compressor 37B.
  • the steam compressed by the compressor 37C is led into the condenser 41C through the exhaust pipe 44C and cooled by hot water flowing through the heat transfer pipe 42C of the condenser 41C.
  • the hot water discharged from the heat transfer tube 42B and flowing in the heat transfer tube 42C is heated by cooling the steam in the condenser 41C and further condensing a part of the steam, and the temperature further rises.
  • the temperature of the steam in the condenser 41C and the temperature of the hot water in the heat transfer tube 42C are approximately equal, and the thermal equilibrium is approximately maintained.
  • the uncondensed vapor in the condenser 41C is guided to the compressor 37D through the supply pipe 45C after moisture is removed by the moisture separator 43C.
  • the volume flow rate of the steam supplied from the condenser 41C to the compressor 37D is reduced by the cooling of the steam by the condenser 41C.
  • the steam is compressed again by the compressor 37D, and the temperature rises.
  • the temperature of the steam exhausted from the compressor 37D is higher than the temperature of the steam exhausted from the compressor 37C.
  • the steam compressed by the compressor 37D is led into the condenser 41D through the exhaust pipe 44D and cooled by hot water flowing through the heat transfer pipe 42D of the condenser 41D.
  • the vapor in the condenser 41D is condensed to become condensed water 53 and falls to the bottom of the condenser 41D. Since the steam supplied to the condenser 41D is higher than the temperature of the hot water flowing in the heat transfer tube 42D, it is condensed on the outer surface of the heat transfer tube 42D. All the steam supplied into the condenser 41D is condensed in the condenser 41D.
  • the hot water discharged from the heat transfer tube 42C and flowing in the heat transfer tube 42D is heated by condensing the vapor in the condenser 41D, and the temperature further rises.
  • the temperature of the steam in the condenser 41D and the temperature of the hot water in the heat transfer tube 42D are substantially equal, and the thermal equilibrium is approximately maintained.
  • the hot water (subcritical water) discharged from the heat transfer pipe 42D requires the hot water through the hot water pipe 22 (for example, a biomass reformer or hydrothermal heat of inorganic materials such as nanotubes and zeolite) Synthesizer).
  • the condensed water 53 collected at the bottom of the condenser 41A is boosted by the pump 46A and guided into the condenser 41B through the condensed water piping 47A.
  • the condensed water 53 collected at the bottom of the condenser 41B is boosted by the pump 46B and guided into the condenser 41C through the condensed water piping 47B.
  • the condensed water 53 accumulated at the bottom of the condenser 41C is boosted by the pump 46C and guided into the condenser 41D through the condensed water piping 47C.
  • the condensed water 53 collected at the bottom of the condenser 41D is boosted by the pump 46D and supplied into the feed water pipe 10 through the condensed water pipe 47D.
  • Condensed water 53 having a high temperature in the condensers 41A, 41B, 41C and 41D is supplied to the nuclear reactor 3 together with water supply.
  • the cooling water discharged from the condenser 8 is guided to the heaters 24, 25, and 26 by the hot water pipe 22 and heated in the heaters 24, 25, and 26 to generate hot water that is subcritical water. is doing.
  • Steam extracted from the low-pressure turbine 5 and the high-pressure turbine 4 is used to generate the hot water. Since it is necessary to cover the amount of extracted steam supplied to the heater 26 in addition to the amount of extracted steam led to the high-pressure feed water heater 11, the amount of steam extracted from the high-pressure turbine 4 increases by the amount of the latter extracted steam. .
  • the amount of steam extracted from the low-pressure turbine 5 is also the same as the amount of extracted steam of the latter. Increase by the minute.
  • the amount of steam exhausted from the low-pressure turbine 5 to the condenser 8 is reduced, and the amount of waste heat due to cooling water (hot wastewater) discharged from the condenser 8 to the external environment (for example, the sea) is reduced.
  • the This reduced amount of waste heat is used to generate hot water by the heaters 24, 25, and 26.
  • a part of the cooling water whose temperature is increased by condensing the steam exhausted from the low-pressure turbine 5 to the condenser 8 is used as hot water.
  • the amount is reduced, and the amount of waste heat from hot wastewater is further reduced.
  • the use of the cooling water discharged from the condenser 8 also contributes to the generation of hot water.
  • the cooling water (hot drainage) discharged from the condenser 8 to the cooling water discharge pipe 16 as a raw material for hot water is heated in the condenser 8 due to heating by steam condensation.
  • the amount of extracted steam supplied to the heaters 24, 25, and 26 can be reduced.
  • the cogeneration plant 1 of the present embodiment in which the steam extracted from the low pressure turbine 5 and the high pressure turbine 4 is condensed by the heaters 24, 25, and 26 by the cooling water supplied by the hot water pipe 22 is as follows. It can be said that power generation is based on the new concept described.
  • the boiling water nuclear power plant 2 uses the steam generated by the reactor 3, that is, the steam generator as a high-temperature heat source, and generates power using the cooling water supplied to the condenser 8 through the cooling water supply pipe 15 as a low-temperature heat source. At the same time, power is generated using the steam as a high-temperature heat source and the cooling water supplied to the heaters 24, 25, and 26 to condense the steam extracted from the turbine as a low-temperature heat source.
  • the cooling water supplied to the heaters 24, 25, and 26 contributes to power generation in the boiling water nuclear power plant 2 and is hot water.
  • Such a new concept of power generation in the cogeneration plant 1 reduces the amount of waste heat of the hot effluent discharged from the condenser 8 to the external environment, resulting in the generation of hot water.
  • the condensed water respectively generated by the heaters 24, 25, and 26 is guided to the water supply pipe 12 and supplied to the nuclear reactor 3. For this reason, the amount of heat possessed by these condensed water can be used in the boiling water nuclear power plant 2.
  • Condensed water generated in each condenser of the steam heat pump device 36 is also guided to the water supply pipe 12 and supplied to the nuclear reactor 3. For this reason, the amount of heat possessed by the condensed water can be used in the boiling water nuclear power plant 2.
  • the thermal efficiency of the boiling water nuclear power plant 2 is improved.
  • the extraction pipes 27, 28, and 29 for supplying the extraction steam to each of the heaters 24, 25, and 26 are not directly connected to the casing of the corresponding turbine.
  • the extraction steam is supplied to the low-pressure feed water heater 9.
  • the extraction pipe 17 to be supplied is connected to the extraction pipe 18 for supplying the extraction steam to the low-pressure feed water heater 10, and the extraction pipe 19 to supply the extraction steam to the high-pressure feed water heater 11.
  • the number of extraction points in the low pressure turbine 5 and the high pressure turbine 4 is reduced, and the extraction structure can be simplified.
  • the length of each of the bleed pipes 27, 28, and 29 is shortened, and the time required for installing these bleed pipes can be shortened.
  • the cogeneration plant 1 of this embodiment has a steam heat pump device 36.
  • the steam heat pump device 36 By installing the steam heat pump device 36, the following effects can be obtained.
  • the temperature of the hot water discharged from the steam heat pump device 36 to the hot water pipe 22 can be easily adjusted. That is, the temperature of each steam compressed by each of the compressors 37A, 37B, 37C, and 37D can be changed by changing the rotation speed of the motor 38. Specifically, when the rotation speed of the motor 38 is small, the temperature of each steam is lowered, and when the rotation speed is increased, the temperature of each steam is lowered. As a result, the temperature of the hot water heated by each of the condensers 41A, 43B, 43C and 43D of the steam heat pump device 36 can be adjusted by changing the temperature of the steam supplied to each condenser.
  • the number of heaters (including condensers) in the hot water generator 21 can be increased without being restricted by the number of steam extraction points in the high-pressure turbine 4 and the low-pressure turbine 5, Water heating efficiency can be improved.
  • the steam supplied to the steam heat pump device 36 is extracted from one extraction point formed in the turbine casing of the high-pressure turbine 4.
  • a plurality of compressors for example, compressors 37A, 37B, 37C, and 37D
  • condensers for example, condensers 41A and 41B that are heaters for the respective compressors. , 41C and 41D).
  • the steam heat pump device 36 a plurality of compressors and a plurality of condensers can be provided, so the number of heaters in the hot water generator 21 can be increased and hot water can be increased. Heating efficiency can be improved. Furthermore, the temperature of the hot water generated by the heaters 24, 25, 26 can be further increased by the steam heat pump device 36.
  • the installation of the heaters 24, 25, and 26 is restricted by the number of steam extraction points in the high-pressure turbine 4 and the low-pressure turbine 5.
  • the extraction pipe for supplying the extraction steam to these heaters needs to be connected to the turbine casing at a position between the rotor blades in the axial direction of the turbine in order to avoid a decrease in efficiency of the turbine.
  • the number of compressor stages and the number of condensers can be increased regardless of the number of extraction points provided in the turbine.
  • a cogeneration plant according to embodiment 2, which is another embodiment of the present invention, will be described with reference to FIG.
  • the cogeneration plant 1A of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21A.
  • the hot water generator 21A has a configuration in which the heaters 25 and 26, the extraction pipes 28 and 29, and the condensed water pipes 32 and 34 are removed from the hot water generator 21 used in the first embodiment.
  • the other configuration of the hot water generator 21A is the same as that of the hot water generator 21.
  • the steam heat pump device 36 used in the hot water generator 21 ⁇ / b> A is associated with the number of stages of the compressor and the compressor rather than the steam heat pump device 36 used in the hot water generator 21 because the heaters 25 and 26 are not installed. The number of condensers to be used is increasing.
  • the extraction pipe 48 connected to the first stage compressor 37 ⁇ / b> A is connected to the extraction pipe 18 connected to the turbine casing of the low-pressure turbine 5.
  • a condensed water pipe 47D is connected to the bottom of the condenser connected to the final stage compressor.
  • An on-off valve 51 is provided in the condensed water pipe 47D.
  • a condensed water pipe 49 connected to the condensed water pipe 47 ⁇ / b> D upstream of the on-off valve 51 is connected to the water supply pipe 12 between the low-pressure feed water heater 10 and the feed water pump 13.
  • a condensed water pipe 52 connected to the low-pressure feed water heater 10 is connected to the feed water pipe 12.
  • a condensed water pipe 56 connected to the high-pressure feed water heater 11 is connected to the feed water pipe 12.
  • the cooling water flowing into the hot water pipe 22 is heated by the heater 24, and further heated by the steam compressed by each compressor in each condenser of the steam heat pump device 36, and hot water (subcritical water) having a predetermined temperature. )become.
  • the steam supplied to the first stage compressor 37 ⁇ / b> A of the steam heat pump device 36 is a part of the steam extracted from the low pressure turbine 5 by the extraction pipe 18.
  • the hot water discharged from the steam heat pump device 36 is guided to a facility that requires hot water through the hot water pipe 22.
  • Example 2 can also obtain each effect produced in Example 1.
  • the temperature of the steam compressed by each compressor can be changed by controlling the rotation speed of the motor 38.
  • a control device (not shown) controls opening and closing of the on-off valves 50 and 51 based on the temperature of the condensed water 53 discharged from the condenser connected to the final stage compressor to the condensed water piping 47D.
  • the on-off valve 51 is opened when the on-off valve 50 is closed, and the on-off valve 51 is closed when the on-off valve 50 is opened.
  • the on-off valve 50 is opened and the on-off valve 51 is closed, and the condensed water 53 is guided to the water supply pipe 12 through the condensed water pipe 49.
  • the on-off valve 50 is closed and the on-off valve 51 is opened, and the condensed water 53 is guided to the water supply pipe 12 through the condensed water pipe 47D.
  • the discharge destination of the condensed water 53 can be changed based on the temperature of the condensed water 53 discharged from the steam heat pump device 36.
  • the hot water generator 21A does not have the heaters 25 and 26 provided in the hot water generator 21, these heaters and the extraction provided in association with these heaters are used.
  • the tracheas 28 and 29 and the condensed water pipes 32 and 34 are unnecessary. For this reason, since the drawing of the extraction pipe and the condensed water pipe is reduced, the time required for the construction of the hot water generator 21A is shorter than that of the hot water generator 21.
  • a cogeneration plant according to embodiment 3, which is another embodiment of the present invention, will be described with reference to FIG.
  • the cogeneration plant 1B of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21B.
  • the hot water generator 21B has a configuration in which the heater 24, the extraction pipe 27, and the condensed water pipe 30 are removed from the hot water generator 21A used in the second embodiment. Other configurations of the hot water generator 21B are the same as the hot water generator 21A.
  • the steam heat pump device 36 used in the hot water generator 21B is not provided with the heater 24, so that the number of stages of the compressor and the condensation associated with the compressor are higher than those of the steam heat pump device 36 used in the hot water generator 21A. The number of vessels is increasing.
  • the extraction pipe 48 connected to the first stage compressor 37 ⁇ / b> A is connected to the steam space in the condenser 8.
  • a condensed water pipe 57 connected to the low-pressure feed water heater 9 is connected to the feed water pipe 12.
  • the extraction pipe 48 is not located in the steam space in the condenser 8 but at a certain position of the main steam system having the high pressure turbine 4, the low pressure turbine 5 and the main steam pipe 7 (for example, provided in the casing of the high pressure turbine 4 or the low pressure turbine 5. Connected bleed points).
  • the steam extracted from the condenser 8 and guided by the extraction pipe 48 is sequentially compressed by each compressor of the steam heat pump device 36.
  • the cooling water flowing into the hot water pipe 22 is heated by steam compressed by each compressor in each condenser of the steam heat pump device 36 to become hot water (subcritical water) having a predetermined temperature.
  • the hot water discharged from the steam heat pump device 36 is guided to a facility that requires hot water through the hot water pipe 22.
  • Example 2 can obtain each effect produced in Example 2.
  • the heater 24 is unnecessary as compared with the second embodiment, so that the time required for the construction of the hot water generator 21B is further shortened than that of the hot water generator 21A.
  • a biomass reforming combined power plant according to another embodiment of the present invention will be described with reference to FIGS.
  • the biomass reforming combined power plant 60 of this embodiment includes the cogeneration power plant 1 and the biomass reforming device 61.
  • the cogeneration plant 1 used in the present embodiment is the cogeneration plant 1 of the first embodiment.
  • any of the above-mentioned cogeneration plants 1A and 1B may be used.
  • the biomass reforming device 61 is connected to the hot water pipe 22 connected to the outlet side of the steam heat pump device 36 of the hot water generating device 21 included in the cogeneration plant 1.
  • the biomass reforming device 61 includes a reactor 62, a separator 63, and a cooler 76.
  • a reactor 62 is connected to the hot water pipe 22.
  • the separator 63 is connected to the reactor 62 by a pipe 65 provided with a valve 63.
  • the biomass supply pipe 84 is connected to the reactor 62, and the recovery pipes 67, 68, and 69 are connected to the separator 63, respectively.
  • the cooler 76 is connected to the separator 63, and the cooling water pipe 80, the condensed water pipe 81, and the recovery pipe 82 are connected to the cooler 76.
  • the biomass reformer 61 includes a plurality of reactors 62 (for example, reactors 62a, 62b, and 62c), a plurality of separators 63 (for example, separators 63a, 63b, and 63c), and a plurality of coolers 76 (for example, cooling). Devices 76a, 76b, 76c).
  • the reactors 63a, 63b, 63c are connected to the hot water pipe 22 via valves 64a, 64b, 64c.
  • the biomass supply pipe 84 is connected to the reactor 63a via the valve 85a, connected to the reactor 63b via the valve 85b, and connected to the reactor 63c via the valve 85c.
  • the separator 63a is connected to the reactor 63a by a pipe 65a provided with a valve 66a
  • the separator 63b is connected to the reactor 63b by a pipe 65b provided with a valve 66b
  • the separator 63c is provided with a valve 66c.
  • the pipe 65c is connected to the reactor 63c.
  • Recovery pipes 67, 68 and 69 are connected to the separator 63a. Although not shown, other recovery pipes 67, 68 and 69 are connected to the separator 63b, and further recovery pipes 67, 68 and 69 are connected to the separator 63c.
  • the separator 63a is connected to the pipe 70 via the valve 73a, connected to the pipe 71 via the valve 73b, and further connected to the pipe 72 via the valve 73c.
  • the separator 63b is connected to the pipe 70 via the valve 74a, is connected to the pipe 71 via the valve 74b, and is further connected to the pipe 72 via the valve 74c.
  • the separator 63c is connected to the pipe 70 via the valve 75a, connected to the pipe 71 via the valve 75b, and further connected to the pipe 72 via the valve 75c.
  • the coolers 76a, 76b and 76c are provided with heat transfer tubes 83a, 83b and 83c.
  • a cooling water pipe 80 connects the heat transfer tubes 83a, 83b, 83c in this order from upstream to downstream.
  • the shell side of the cooler 76 a is connected to the pipe 70 by the pipe 77
  • the shell side of the cooler 76 b is connected to the pipe 71 by the pipe 78
  • the shell side of the cooler 76 c is connected to the pipe 72 by the pipe 79.
  • a condensed water pipe 81a is connected to the cooler 76a.
  • the condensed water piping 81b is connected to the cooler 76a and the cooler 76b.
  • the condensed water piping 81c is connected to the cooler 76b and the cooler 76c.
  • a recovery pipe 82 is connected to each shell side of the coolers 76a, 76b, and 76c.
  • biomass such as wood, vegetation, seeds, seaweed and plastic is assumed.
  • a feature of biomass is that it contains multiple components rather than a single component. Taking wood as an example, wood mainly contains polymer compounds of cellulose, hemicellulose, and lignin, and moisture and a trace amount of metal elements are added to these. Such biomass is filled in the reactors 62a, 62b, and 62c, respectively. This filled biomass is usually in a state where wood, vegetation, seeds and the like are mixed.
  • the reforming of biomass with subcritical water mainly includes the first and second processes.
  • the first process is a process in which these miscellaneous components including a polymer compound that is biomass are reduced in molecular weight with high-temperature and high-pressure subcritical water and dissolved in subcritical water.
  • the second process is a process in which high-temperature and high-pressure subcritical water is depressurized and depressurized to separate and recover a low molecular weight and dissolved product.
  • This biomass reforming method will be specifically described using the biomass reforming apparatus 61 shown in FIG.
  • the valve 85a is opened, the valves 85b and 85c are closed, and solid biomass pulverized in advance is charged into one reactor 62a through the biomass supply pipe 84.
  • the valve 85a is closed, the valve 64a is opened, and hot water, which is subcritical water, is supplied from the hot water pipe 22 to the reactor 62a filled with solid biomass.
  • the valve 66a is closed. In the reactor 62a, a reforming reaction of solid biomass by hot water occurs.
  • valve 64a When a predetermined time for completing the reforming reaction has elapsed, the valve 64a is closed and the valve 66a is opened, and hot water and the dissolved product are introduced into the separator 63a. By supplying it into the separator 63a, the volume of the hot water and the dissolved product expands, and the hot water is depressurized and boiled. In addition, the volatile product is gasified in the separator 63a.
  • valve 85b Before closing the valve 64a, the valve 85b is opened and the solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62b. After filling the reactor 62b with biomass, the valve 85b is closed.
  • the valve 64a is closed to open the valve 66a as described above, the valve 64b is opened and hot water is supplied from the hot water pipe 22 to the reactor 62b.
  • the valve 66b is closed. In the reactor 62b, a reforming reaction of solid biomass occurs as in the reactor 62a.
  • the valves 73a, 73b, 73c provided in the three pipes connected to the separator 63a are opened.
  • the volatile gas generated in the separator 63a and the steam generated from the hot water by boiling under reduced pressure are separated from the hot water and the product in the separator 63a, cooled through the valve 73a and the pipes 70 and 77.
  • the separated volatile gas and vapor in the separator 63a pass through the valve 73b and are supplied to the cooler 76b through the pipes 71 and 78. Further, the separated volatile gas and vapor in the separator 63a are supplied to the cooler 76c through the valves 73c and the pipes 72 and 79.
  • Cooling water is supplied from the cooling water pipe 80 into the heat transfer tubes 83a, 83b, 83c in the coolers 76a, 76b, 76c. For this reason, the vapor
  • the valves 74a, 74b, 74c, 75a, 75b, and 75c are closed when volatile gas and vapor are discharged from the separator 63a to the respective coolers.
  • the condensed water in the cooler 76c is collected in the cooler 76b by the condensed water pipe 81c, and is further collected in the cooler 76a by the condensed water pipe 81b together with the condensed water generated in the cooler 76b.
  • the condensed water generated in the cooler 76a and the condensed water collected in the cooler 76a are discharged to the condensed water pipe 81a.
  • Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82.
  • the discharge of volatile gas and steam to each cooler lowers the internal pressure of the separator 63a and keeps the separator 63a in a low pressure state. Even after discharge of volatile gas and vapor, hot water and products remain in the separator 63a. When time elapses, the temperature of the hot water and the product in the separator 63a decreases to near the temperature of the cooling water supplied to the cooler 76a through the cooling water pipe 80. In the separator 63a, the product dissolved in the hot water is precipitated as fats and oils as the temperature decreases. Oils and fats in the separator 63a are recovered by a recovery pipe 67 connected to the separator 63a, and solids are recovered by a recovery pipe 69 connected to the separator 63a.
  • Hot water and dissolved matter remaining in the separator 63a are recovered by a recovery pipe 68 connected to the separator 63a.
  • the cooling water supplied by the cooling water pipe 80 is heated by each of the coolers 76a, 76b, and 76c to become hot water.
  • the heat of hot water supplied in this way can be recovered as warm water by a cooler.
  • valve 64b When the reforming reaction of the solid biomass in the reactor 62b is completed, the valve 64b is closed and the valve 66b is opened, and hot water and the dissolved product are introduced into the separator 63b. Similarly to the separator 63a, volatile gas and vapor are generated in the separator 63b. After the discharge of the volatile gas and vapor in the separator 63a to the coolers 76a, 76b, 76c is completed, the valves 73a, 73b, 73c are closed and the valves 74a, 74b, 74c are opened.
  • the volatile gas and vapor in the separator 63b are supplied to the coolers 76a, 76b, and 76c to which the cooling water is supplied by the cooling water pipe 80 through the corresponding pipes. Steam is condensed in each cooler, and condensed water is discharged to the condensed water pipe 81a. Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82. Oils and fats in the separator 63b are recovered by a recovery pipe 67 connected to the separator 63b, and solids are recovered by a recovery pipe 69 connected to the separator 63b. Hot water and dissolved matter remaining in the separator 63b are recovered by a recovery pipe 68 connected to the separator 63b.
  • valve 85c Before closing the valve 64b, the valve 85c is opened, and the solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62c. After filling the reactor 62c with biomass, the valve 85c is closed. When the valve 64b is closed to open the valve 66b, the valve 64c is opened to supply hot water from the hot water pipe 22 to the reactor 62c. The valve 66c is closed. In the reactor 62c, a reforming reaction of solid biomass occurs as in the reactor 62a.
  • valve 64c When the reforming reaction of the solid biomass in the reactor 62c is completed, the valve 64c is closed and the valve 66c is opened, and hot water and the dissolved product are introduced into the separator 63c. Similarly to the separator 63a, volatile gas and vapor are also generated in the separator 63c. After the discharge of the volatile gas and vapor in the separator 63b to the coolers 76a, 76b, and 76c is completed, the valves 74a, 74b, and 74c are closed and the valves 75a, 75b, and 75c are opened.
  • the volatile gas and steam in the separator 63c are supplied to the coolers 76a, 76b, and 76c to which the cooling water is supplied by the cooling water pipe 80 through the corresponding pipes. Steam is condensed in each cooler, and condensed water is discharged to the condensed water pipe 81a. Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82. Oils and fats in the separator 63c are recovered by a recovery pipe 67 connected to the separator 63c, and solids are recovered by a recovery pipe 69 connected to the separator 63c. Hot water and dissolved matter remaining in the separator 63c are recovered by a recovery pipe 68 connected to the separator 63c.
  • valve 85a Before closing the valve 64c, for example, the valve 85a is opened and solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62a. After filling the reactor 62a with biomass, the valve 85a is closed. When the valve 64c is closed to open the valve 66c, the valve 64a is opened again to supply hot water from the hot water pipe 22 to the reactor 62a. The valve 66a is closed. As described above, the reforming reaction of the solid biomass using the hot water generated by the hot water generator 21 is sequentially performed in the reactors 62a, 62b, and 62c.
  • the volatile gas recovered by the recovery pipe 82 is, for example, methane obtained by decomposing a polymer.
  • recovered with the collection piping 68 is saccharides, for example.
  • the solid recovered by the recovery pipe 69 is, for example, a trace amount of metals.
  • the fats and oils recovered by the recovery pipe 67 and the organic compounds such as sugars recovered by the recovery pipe 68 are reformed to ethanol or the like by another process.
  • This example can obtain the effect produced in Example 1 in the cogeneration plant 1.
  • the biomass reformer 61 used in the present embodiment can perform the first process by batch processing, that is, by switching the reactors 62a, 62b, and 62c. For this reason, the hot water (subcritical water) produced
  • coolers 76a, 76b, and 76c are connected in series. It is preferable to collect each product from the separators 63a, 63b, and 63c at room temperature. However, it is desirable that the temperature is as high as possible from the viewpoint of recovering heat. Therefore, the coolers 76a, 76b, and 76c are connected in series, and the volatile gas and the high-temperature steam in one separator (for example, the separator 63a) are supplied to three valves (for example, the valves 73a, 73b, and 73c). Are substantially simultaneously opened and supplied to the coolers 76a, 76b and 76c to which the cooling water is supplied by the cooling water pipe 80.
  • the cooling water can be heated by condensing steam in the coolers 76a, 76b, and 76c, and high-temperature hot water can be obtained.
  • the above three valves (for example, the valves 73a, 73b, and 73c) are opened and closed in synchronization with the switching operation of the inlet valve and the outlet valve (for example, the valves 64c and 66c for the reactor 62c) of one reactor. .
  • any one of the separators 63a, 63b, and 63c is connected to the coolers 76a, 76b, and 76c.
  • the biomass reforming apparatus used in the biomass reforming combined power plant 60 of this embodiment is different from the biomass reforming apparatus 61 described in US Pat. No. 7,476,296, instead of the batch processing biomass reforming apparatus 61. This type of biomass reformer may be used.
  • the cogeneration plant 1C of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21C.
  • the hot water generator 21C has a configuration in which the hot water pipe 22 is connected to the cooling water supply pipe 15 instead of the cooling water discharge pipe 16 in the hot water generator 21 used in the first embodiment.
  • Other configurations of the hot water generator 21C are the same as those of the hot water generator 21.
  • Example 1 Since the hot water pipe 22 is connected to the cooling water supply pipe 15, the cooling water having a low temperature before being supplied to the heat transfer pipe 14 of the condenser 8 during the operation of the cogeneration plant 1C is supplied with the cooling water.
  • the hot water pipe 22 is supplied from the pipe 15.
  • the steam extracted from the main steam system of the boiling water nuclear power plant 2 such as the low pressure turbine 5 and the high pressure turbine 4 is heated in the same manner as in the first embodiment.
  • the cooling water having a low temperature is supplied to the hot water pipe 22, the temperature of each steam supplied to the corresponding heater by the extraction pipes 27, 28, and 29 is the extraction pipe 27 in the first embodiment.
  • the extraction pipe 27 connected to the heater 24 is not connected to the extraction pipe 17 but connected to the low-pressure turbine 5 at a position upstream of the connection position of the extraction pipe 17 to the low-pressure turbine 5.
  • the extraction pipe 28 connected to the heater 25 is not the extraction pipe 18 but upstream of the new connection position of the extraction pipe 27 to the low-pressure turbine 5 and upstream of the connection position of the extraction pipe 18 to the low-pressure turbine 5.
  • the extraction pipe 29 connected to the heater 26 is connected to the high-pressure turbine 4 at a position upstream of the connection position of the extraction pipe 19 to the high-pressure turbine 4, not the extraction pipe 19.
  • connection position of the extraction pipes 27, 28, and 29 to the corresponding turbine is also moved to the upstream side in the first embodiment, so that the extraction steam having a higher temperature is transferred to the corresponding heater. Can be supplied.
  • the extraction pipe 48 connected to the steam compressor 37 ⁇ / b> A of the steam heat pump device 36 is connected to the extraction pipe 29.
  • the temperature of the steam supplied to the steam compressor 37A is higher than that in the first embodiment.
  • hot water (subcritical water) is discharged from the heater 26 to the hot water pipe 22.
  • This hot water is heated by the steam heat pump device 36 to become hot water (subcritical water) having a higher temperature.
  • This embodiment has the effect of reducing the amount of waste heat generated by using the cooling water discharged from the condenser 8 as the raw material for hot water, and the effect of reducing the extraction point by connecting the extraction tube 27 to the extraction tube 17. Except for this, each effect produced in the first embodiment can be obtained.
  • connection of the hot water pipe 22 to the cooling water discharge pipe 16 may be changed to the connection of the hot water pipe 22 to the cooling water supply pipe 15 as in the present embodiment.
  • the cogeneration plant 1D of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21D.
  • the hot water generator 21D is provided with a return pipe 86 for returning the hot water drainage used in the hot water utilization facility 90 to which hot water is supplied by the hot water pipe 22 in the hot water generator 21 used in the first embodiment.
  • the hot water generator 21 ⁇ / b> D includes a flow rate adjustment valve 87, a flow meter 88, and a controller 89.
  • Other configurations of the hot water generator 21D are the same as those of the hot water generator 21.
  • a return pipe 86 connected to hot water utilization equipment (for example, a biomass reformer or hydrothermal synthesizer) 90 connected to the hot water pipe 22 is connected to the hot water pipe 22 upstream of the pump 23.
  • a flow control valve 87 is provided in the hot water pipe 22 upstream of the connection point between the return pipe 86 and the hot water pipe 22.
  • a flow meter 88 is provided in the hot water pipe 22 between the pump 23 and the heater 24.
  • a controller 89 is connected to the flow control valve 87 and the flow meter 88.
  • hot water that is subcritical water is generated by the heaters 24, 25, and 26 and the steam heat pump device 36 as in the first embodiment.
  • the hot water is supplied to the hot water utilization facility 90 through the hot water pipe 22 and used in the hot water utilization facility 90.
  • the temperature of the hot water used in the hot water utilization facility 90 decreases and is discharged to the return pipe 86 as drainage.
  • This waste water is returned to the hot water pipe 22 through the return pipe 86 and mixed with the cooling water discharged from the condenser 8 to the cooling water discharge pipe 16 flowing in the hot water pipe 22.
  • the wastewater mixed with the cooling water is boosted by the pump 23, supplied to the heaters 24, 25, etc., and heated together with the cooling water.
  • the temperature of the waste water flowing in the return pipe 86 is higher than the temperature of the cooling water supplied to the condenser 8 by the cooling water supply pipe 15.
  • the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is reduced and returned.
  • the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is small, the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is increased.
  • the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is the flow rate of hot water supplied to the hot water utilization facility 90 by the hot water pipe 22 and discharged from the hot water utilization facility 90 to the return pipe 86. It is the difference from the flow rate of the waste water, and is the amount of hot water consumed in the hot water utilization facility 90.
  • Example 1 can obtain each effect produced in Example 1.
  • the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is smaller than that in the first embodiment. For this reason, compared with Example 1, the present Example increases the amount of waste heat discharged from the condenser 8 to the external environment.
  • the cogeneration plant 1D shown in FIG. 14 is a biomass reformer (for example, the biomass reformer 61 shown in FIGS. 11 and 12)
  • the cogeneration plant 1D shown in FIG. Is a biomass reforming combined power plant including the cogeneration plant 1D and the biomass reforming device 61.
  • the hot water pipe 22 of the cogeneration plant 1D is connected to the reactors 62a, 62b, 62c of the biomass reforming device 61 as shown in FIG. 12) is connected to the hot water pipe 22 between the pump 23 and the flow rate adjusting valve 87 as a return pipe 86.
  • Part of the hot water supplied to each of the reactors 62a, 62b, and 62c is collected from the separators 63a, 63b, and 63c to the recovery pipes 67, 68, and 69 together with the recovered products (oil, dissolved matter, solid, etc.). Each is discharged.
  • the remaining hot water vapor discharged from the separators 63a, 63b, and 63c to the coolers 76a, 76b, and 76c is condensed by the coolers 76a, 76b, and 76c to be condensed water, and the condensed water returns as waste water.
  • the hot water pipe 22 is supplied through the pipe 86.
  • Cooling water having a flow rate obtained by subtracting the flow rate of the condensed water discharged from each of the coolers 76a, 76b, and 76c to the return pipe 86 from the flow rate of hot water respectively supplied to the reactors 62a, 62b, and 62c
  • the hot water pipe 22 is supplied from the cooling water discharge pipe 16 by controlling the opening degree of the valve 87.
  • This biomass reforming combined power plant can obtain the above-described effects obtained by the combined heat and power generation plant 1D and the effects brought about by the biomass reforming apparatus 61 in the fourth embodiment.
  • connection of the hot water pipe 22 to the cooling water discharge pipe 16 is changed to the connection of the hot water pipe 22 to the cooling water supply pipe 15 as in the fifth embodiment. Also good.
  • the hot water utilization facility 90 shown in FIG. 14 is a hot water utilization facility that uses only the heat of the hot water supplied through the hot water supply pipe 22, the hot water utilization facility 90 returns to the return pipe 86.
  • the flow rate of the discharged waste water is the same as the flow rate of hot water supplied by the hot water pipe 22.
  • the hot water pipe 22 is connected to the return pipe 86, and the cooling water supply pipe 15 and the cooling water discharge interval 16 are connected. Is not connected to.
  • the boiling water nuclear power plant 2 may be replaced with any other type of nuclear power plant such as a pressurized water nuclear power plant, and a thermal power plant.
  • the steam generator is a steam generator
  • the thermal power plant the steam generator is a boiler.
  • the present invention can be applied to a combined heat and power generation plant using a power plant such as a nuclear power plant and a thermal power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided is a cogeneration power plant wherein the amount of waste heat due to heated effluent discharged to the external environment can be reduced. The cogeneration power plant is equipped with a boiling water nuclear power plant and a hot water generator. Steam generated from a reactor is supplied to a high pressure turbine and a low pressure turbine, and power is generated by rotating a generator. The hot water generator has a hot water pipe connected to the cooling water discharge pipe of a condenser which condenses exhaust steam of the low pressure turbine, and a plurality of heaters and steam heat pumps are installed in the hot water pipe. Vapor extraction from the low pressure turbine is supplied to the plurality of heaters and heats the cooling water introduced by the hot water pipe. Vapor extraction from the high pressure turbine is supplied to other heaters provided in the hot water pipe, and the hot water is further heated by the heaters to produce subcritical water. Vapor extraction from the high pressure turbine is compressed by the steam heat pumps and the hot water is further heated by the compressed steam.

Description

熱併給発電プラント及びバイオマス改質複合発電プラントCogeneration plant and biomass reforming combined power plant
 本発明は、熱併給発電プラント及び熱併給発電バイオマス改質複合プラントに係り、特に、火力発電プラント及び原子力発電プラントを用いるのに好適な熱併給発電プラント及びバイオマス改質複合発電プラントに関する。 The present invention relates to a cogeneration power plant and a cogeneration biomass reforming combined plant, and more particularly, to a cogeneration power plant and a biomass reforming combined power plant suitable for using a thermal power plant and a nuclear power plant.
 火力発電プラント及び原子力発電プラント等の外熱機関はランキンサイクルを基本とする。ランキンサイクルは、凝縮性の蒸気を作動媒体とするサイクルであり、次の4つの過程からなる。(1)給水を加熱し熱水を生成する。(2)熱水をさらに加熱して蒸気を生成する。(3)蒸気をタービンに送り膨張させて動力を得る。(4)蒸気を凝縮して給水とする。通常の発電プラントでは、これらの4つの過程を、次のように各機器に割り当てる。発電プラントでは、(1)及び(2)をボイラー、及び沸騰水型原子力発電プラントの原子炉等の蒸気発生装置が担い、(3)を蒸気タービンが担い、(4)を復水器が担っており、作動媒体を定常的に循環させる。 External heat engines such as thermal power plants and nuclear power plants are based on Rankine cycle. The Rankine cycle is a cycle in which condensable vapor is used as a working medium, and consists of the following four processes. (1) Heat feed water to generate hot water. (2) The hot water is further heated to generate steam. (3) The steam is sent to the turbine and expanded to obtain power. (4) Condensate steam to supply water. In a normal power plant, these four processes are assigned to each device as follows. In the power plant, (1) and (2) are responsible for boilers and steam generators such as nuclear reactors for boiling water nuclear power plants, (3) for steam turbines, and (4) for condensers. The working medium is circulated constantly.
 ランキンサイクルの効率を向上する方法として、通常、再生過程が用いられている。再生過程では、過程(1)での給水の加熱がタービンから抽気した蒸気を用いて行われ、タービンからの抽気により熱が回収される。抽気に伴いタービン出力は減少するが、回収した熱が給水の加熱に有効に使われるため、熱効率が向上する。また、タービン内の湿り度を抑制するため、過程(3)における蒸気の膨張の途中で、蒸気を再加熱する再熱過程が、通常、用いられる。付加的な効果として熱効率及び出力が増加する。 A regeneration process is usually used as a method for improving the efficiency of the Rankine cycle. In the regeneration process, heating of the feed water in the process (1) is performed using steam extracted from the turbine, and heat is recovered by extraction from the turbine. Although the turbine output decreases with the bleed air, the recovered heat is effectively used for heating the feed water, so that the thermal efficiency is improved. Moreover, in order to suppress the wetness in a turbine, the reheating process which reheats a steam in the middle of expansion | swelling of the steam in process (3) is normally used. As an additional effect, thermal efficiency and power are increased.
 凝縮性の蒸気を作動媒体に用いる外燃機関に対しても、より効率の高いカルノーサイクルを実現する蒸気機関が、岩波講座 基礎工学8 熱力学III、231頁~252頁(小野 周、岩波書店、(1971年1月7日発行))に記載されている(特に、234頁~236頁、図6.3参照)。この蒸気機関は、ランキンサイクルの過程(1)に代わり、蒸気の凝縮により生成された給水、及び未凝縮な蒸気を一緒に圧縮して熱水を生成している。この過程を圧縮液化過程と称する。 For external combustion engines that use condensable steam as the working medium, a steam engine that realizes a more efficient Carnot cycle is Iwanami Lecture, Basic Engineering 8, Thermodynamics III, pp. 231 to 252 (Ono Shu, Iwanami Shoten) (Issued Jan. 7, 1971)) (in particular, see pages 234 to 236, see FIG. 6.3). In this steam engine, instead of the Rankine cycle process (1), hot water is generated by compressing feed water generated by condensation of steam and uncondensed steam together. This process is called a compression liquefaction process.
 以上に述べた従来技術のうち、再生過程では、タービンからの蒸気の抽気点を無数にとって連続抽気にすることによって、理論上、最大の熱効率を得ることができる。しかしながら、実用上は、蒸気の抽気点を有限にせざるを得ず、再生過程では熱効率を向上させる余地が残されている。 Among the conventional technologies described above, in the regeneration process, the maximum thermal efficiency can be theoretically obtained by making the steam extraction points of the turbine from a continuous number of steam extraction points. However, in practice, the steam extraction point must be finite, and there remains room for improving the thermal efficiency in the regeneration process.
 特開2008-2413号公報は、図9に蒸気ヒートポンプシステムの例を記載している。この蒸気ヒートポンプは、蒸発器、複数の圧縮機及び複数の冷却塔を備えている。複数の圧縮機は、上流に位置する圧縮機の蒸気吐出口に下流に位置する圧縮機の蒸気流入口を接続することによって、互いに直列に接続される。各冷却塔は、圧縮機と圧縮機の間に配置される。蒸発器で発生した蒸気は、最も上流の圧縮機で圧縮されて温度が上昇し、冷却塔で冷却される。冷却塔で冷却された蒸気は、下流に位置する他の圧縮機で圧縮されて温度が上昇し、他の冷却塔に供給されて冷却される。このように、蒸気ヒートポンプでは、圧縮機による蒸気の圧縮及び冷却塔による圧縮された蒸気の冷却が繰り返される。 Japanese Patent Application Laid-Open No. 2008-2413 describes an example of a steam heat pump system in FIG. This steam heat pump includes an evaporator, a plurality of compressors, and a plurality of cooling towers. The plurality of compressors are connected in series with each other by connecting a steam inlet of a compressor located downstream to a steam outlet of the compressor located upstream. Each cooling tower is disposed between the compressors. The steam generated in the evaporator is compressed by the most upstream compressor, the temperature rises, and is cooled by the cooling tower. The steam cooled in the cooling tower is compressed by another compressor located downstream, the temperature rises, and is supplied to the other cooling tower to be cooled. Thus, in the steam heat pump, the compression of the steam by the compressor and the cooling of the compressed steam by the cooling tower are repeated.
 特開平5-65808号公報は、熱併給蒸気タービンプラントを記載している。この熱併給蒸気タービンプラントは、ボイラーで発生した蒸気をタービンに供給して発電機を回転させて電力を発生し、そのタービンから排気された蒸気を高圧プロセス蒸気供給先及び低圧プロセス蒸気供給先にそれぞれ供給する。高圧プロセス蒸気供給先に供給される蒸気は、タービンから排気された蒸気を圧縮機で圧縮している。 Japanese Patent Application Laid-Open No. 5-65808 describes a co-heated steam turbine plant. This co-heat steam turbine plant supplies steam generated in a boiler to a turbine, rotates a generator to generate electric power, and uses steam exhausted from the turbine as a high-pressure process steam supply destination and a low-pressure process steam supply destination. Supply each. The steam supplied to the high pressure process steam supply destination compresses the steam exhausted from the turbine with a compressor.
 実開平1-123001号公報は、復水器から供給した蒸気を一段の圧縮機で圧縮し、圧縮された蒸気を、圧縮機の、軸方向における複数箇所から4段の給水加熱器に供給する火力発電プラントを記載している。 In Japanese Utility Model Laid-Open No. 1-123001, steam supplied from a condenser is compressed by a single-stage compressor, and the compressed steam is supplied to a four-stage water heater from a plurality of locations in the axial direction of the compressor. A thermal power plant is described.
 近年、バイオマス及び廃棄物の改質に高温高圧の亜臨界水または超臨界水の利用が注目されている。特に、亜臨界水は単位体積中のイオン積が最も高く、バイオマス及び廃棄物の改質に向いているとされる。 In recent years, the use of high-temperature and high-pressure subcritical water or supercritical water has attracted attention for reforming biomass and waste. In particular, subcritical water has the highest ionic product per unit volume and is said to be suitable for reforming biomass and waste.
 特開2008-296192号公報は循環型連続式亜臨界水反応処理装置を記載している。この循環型連続式亜臨界水反応処理装置では、原料タンク内の液状、固形状及びゲル状の原料を含むスラリー液を、撹拌機を有する供給タンクから、亜臨界水反応器の加熱器部に供給する。このスラリー液が、加熱器部材で、ボイラーから供給される加熱媒体によって加熱され、亜臨界水状態になる。このスラリー液は、亜臨界水反応器の気液分離器部に導かれる。 Japanese Patent Application Laid-Open No. 2008-296192 describes a circulation type continuous subcritical water reaction treatment apparatus. In this circulation type continuous subcritical water reaction treatment apparatus, slurry liquid containing liquid, solid and gel raw materials in a raw material tank is supplied from a supply tank having a stirrer to a heater part of a subcritical water reactor. Supply. This slurry liquid is heated by the heating medium supplied from the boiler by the heater member to be in a subcritical water state. This slurry liquid is led to the gas-liquid separator part of the subcritical water reactor.
 米国特許第7476296号明細書は、有機材料及び廃棄物材料を有用な生成物へ転換するための装置を記載している。この装置は、臓物、家畜糞尿、都市下水汚泥、タイヤ及びプラスチックなどといった様々な廃棄物を、悪臭を発生することなく、受容可能な費用及び高いエネルギー効率で、気体、油、スペシャルティーケミカル及び炭素固体を含む有用な材料を生成する。その装置は、有機液から液体及び気化油の混合物を生成する加熱器、混合物を炭素固体及び炭化水素/気体混合物に転換する反応器、炭素固体を受容する第1冷却器、及び炭化水素/気体混合物を受容する第2冷却器を備える。 U.S. Pat. No. 7,476,296 describes an apparatus for converting organic and waste materials into useful products. This equipment can be used to remove various wastes such as organs, livestock manure, municipal sewage sludge, tires and plastics, gas, oil, specialty chemicals and carbon with acceptable cost and high energy efficiency without generating odors. Produces useful materials including solids. The apparatus includes a heater that produces a mixture of liquid and vaporized oil from an organic liquid, a reactor that converts the mixture to a carbon solid and a hydrocarbon / gas mixture, a first cooler that receives the carbon solid, and a hydrocarbon / gas. A second cooler is provided for receiving the mixture.
 特開昭59-126005号公報には原子炉を用いた熱併給発電システムが提案されている。この熱併給発電システムは、原子炉で発生した高温の冷却水を蒸気発生器に導いて蒸気を発生させ、この蒸気を高圧タービン及び低圧タービンに導いて発電を行っている。低圧タービンから排気された蒸気は、復水器で凝縮されて水になる。この水は、給水配管を通して蒸気発生器に供給されるが、途中で、5段の給水加熱器により加熱される。これらの給水加熱器には、高圧タービンまたは低圧タービンから抽気された蒸気が、各給水加熱器に加熱源として供給される。低圧タービンからの抽気蒸気が供給される2段の低圧給水加熱器及び他の熱交換器を連絡する閉ループを形成し、この閉ループ内を循環する熱媒体で熱交換器に供給される他の熱媒体を加熱している。 JP 59-12605A proposes a cogeneration system using a nuclear reactor. In this combined heat and power generation system, high-temperature cooling water generated in a nuclear reactor is guided to a steam generator to generate steam, and this steam is guided to a high-pressure turbine and a low-pressure turbine to generate power. The steam exhausted from the low-pressure turbine is condensed into water by the condenser. This water is supplied to the steam generator through a water supply pipe, but is heated by a five-stage water heater in the middle. In these feed water heaters, steam extracted from the high-pressure turbine or the low-pressure turbine is supplied to each feed water heater as a heating source. A closed loop connecting the two-stage low-pressure feed water heater and other heat exchangers to which the extraction steam from the low-pressure turbine is supplied is formed, and other heat supplied to the heat exchanger by a heat medium circulating in the closed loop. The medium is heated.
 また、亜臨界水反応による廃棄物処理と資源・エネルギー化(吉田弘之、シーエムシー出版(2007))には、亜臨界水の温度範囲が120℃~370℃(5頁、図4)であり、250℃付近で体積当たりのイオン積が最大となり(4頁、図3)、改質反応に適すると記載されている。 In addition, in the waste treatment and resource / energy conversion by subcritical water reaction (Hiroyuki Yoshida, CMC Publishing (2007)), the temperature range of subcritical water is 120 ° C to 370 ° C (5 pages, Fig. 4). The ion product per volume becomes maximum at around 250 ° C. (page 4, FIG. 3), and is described as being suitable for the reforming reaction.
特開2008-2413号公報JP 2008-2413 A 特開平5-65808号公報Japanese Patent Laid-Open No. 5-65808 実開平1-123001号公報Japanese Utility Model Publication No. 1-130001 特開2008-296192号公報JP 2008-296192 A 米国特許第7476296号明細書US Pat. No. 7,476,296 特開昭59-126005号公報JP 59-126055
 圧縮液化過程では、理論上の最大熱効率が得られる可能性がある。しかしながら、熱力学III、234頁~236頁及び図6.3(小野 周、岩波書店、(1971年1月7日発行))に記載された、カルノーサイクルを実現する蒸気機関では、気体である蒸気及び液体である給水を混合した状態で圧縮している。このように気体と液体を混合した状態で圧縮した場合には、気体と液体の密度比が大きく、密度の均一性が保たれず圧縮効率が低下する。図6.3に記載された蒸気機関では、圧縮液化過程のみで熱水を得るため、混合された蒸気及び給水を、高い圧力比での圧縮する必要がある。このため、その蒸気機関では、シリンダー式の圧縮機が用いられている。これは、シリンダー内のピストンの往復運動の一方でのみ圧縮するため、脈動により定常的な作動が不可能である。また、シリンダー式は、大容量化が難しく、事業用の発電プラントへの適用は容量的にも困難である。 The theoretical maximum thermal efficiency may be obtained in the compression liquefaction process. However, it is a gas in the steam engine that realizes the Carnot cycle described in Thermodynamics III, pages 234 to 236 and Fig. 6.3 (Take Ono, Iwanami Shoten, published on January 7, 1971). Compressed in a mixed state of steam and liquid feed water. When compression is performed in such a state where the gas and the liquid are mixed, the density ratio of the gas and the liquid is large, the uniformity of the density is not maintained, and the compression efficiency is lowered. In the steam engine described in FIG. 6.3, it is necessary to compress the mixed steam and feed water at a high pressure ratio in order to obtain hot water only by the compression liquefaction process. For this reason, a cylinder type compressor is used in the steam engine. This compresses only one of the reciprocating motions of the piston in the cylinder, so that a steady operation is impossible due to pulsation. In addition, it is difficult to increase the capacity of the cylinder type, and it is difficult to apply to a commercial power plant in terms of capacity.
 特開2008-2413号公報及び実開平1-123001号公報は、熱併給発電プラントについて言及していない。特開平5-65808号公報に記載された熱併給蒸気タービンプラントは、タービンから排気された蒸気を高圧プロセス蒸気供給先及び低圧プロセス蒸気供給先にそれぞれ供給する。しかしながら、特開平5-65808号公報は熱水の供給には言及していない。 Japanese Patent Application Laid-Open No. 2008-2413 and Japanese Utility Model Laid-Open No. 1-112301 do not refer to a cogeneration plant. The co-heated steam turbine plant described in Japanese Patent Laid-Open No. 5-65808 supplies steam exhausted from the turbine to a high-pressure process steam supply destination and a low-pressure process steam supply destination, respectively. However, Japanese Patent Laid-Open No. 5-65808 does not mention supply of hot water.
 熱併給発電プラントにおいて再生過程で生成される熱水、さらには圧縮液化過程で生成される熱水、すなわち、亜臨界水をバイオマスの改質に利用することができれば、熱併給発電プラントの排熱を低減することができ、電力及び利用価値の高い熱水を供給することができる。 If hot water generated during regeneration in a cogeneration plant and hot water generated during compression liquefaction, i.e. subcritical water, can be used for biomass reforming, waste heat from the cogeneration plant , And hot water with high power and utility value can be supplied.
 特開2008-296192号公報及び米国特許第7476296号明細書は、ボイラーで生成された亜臨界水を用いた改質プロセスについて説明しているが、熱併給発電プラントについて言及していない。また、特開昭59-126005号公報に記載された原子炉を用いた熱併給発電システムでは、2段の低圧給水加熱器及び他の熱交換器を連絡して形成した閉ループ内を循環する熱媒体によって、熱交換器に供給される他の熱媒体を加熱している。このようなシステム構成では、他の熱媒体の加熱効率が悪く、他の熱媒体の温度を高くすることができない。 Japanese Patent Application Laid-Open No. 2008-296192 and US Pat. No. 7,476,296 describe a reforming process using subcritical water produced by a boiler, but do not mention a cogeneration plant. In the combined heat and power generation system using a nuclear reactor described in Japanese Patent Laid-Open No. 59-125005, heat circulating in a closed loop formed by connecting a two-stage low-pressure feed water heater and other heat exchangers is used. The other heat medium supplied to the heat exchanger is heated by the medium. In such a system configuration, the heating efficiency of the other heat medium is poor, and the temperature of the other heat medium cannot be increased.
 本発明の目的は、復水器から外部環境に排出される廃熱量を低減でき、熱水を供給できる熱併給発電プラントを提供することにある。 An object of the present invention is to provide a cogeneration plant that can reduce the amount of waste heat discharged from the condenser to the external environment and supply hot water.
 上記した目的を達成する本発明の特徴は、水を蒸気にする蒸気発生装置と、蒸気発生装置から蒸気が供給されるタービンと、タービンから排気された蒸気を凝縮する復水器と、熱水発生装置とを備え、
 熱水発生装置が、水を導く第1配管と、タービンから抽気された蒸気を導く第2配管と、第2配管に接続されて第1配管に設けられ、第1配管で導かれる水を、第2配管で供給される蒸気で加熱する複数の加熱装置とを有することにある。
A feature of the present invention that achieves the above-described object is that a steam generator that converts water into steam, a turbine that is supplied with steam from the steam generator, a condenser that condenses steam exhausted from the turbine, and hot water A generator,
The hot water generator is connected to the first piping connected to the second piping, the first piping for guiding the water extracted from the turbine, and the water guided by the first piping. And having a plurality of heating devices for heating with steam supplied by the second pipe.
 タービンから抽気されて、第1配管に設けられた各加熱装置に供給された蒸気によって、水が加熱され、亜臨界水である熱水が生成される。第1配管に設けられた各加熱装置の供給される蒸気がタービンから抽気されるので、復水器に排気される蒸気の量が減少し、復水器から外部環境に排出される冷却水(温排水)による廃熱量が低減される。 Water is heated by the steam extracted from the turbine and supplied to each heating device provided in the first pipe, and hot water that is subcritical water is generated. Since the steam supplied from each heating device provided in the first pipe is extracted from the turbine, the amount of steam exhausted to the condenser is reduced, and cooling water (exhaust from the condenser to the external environment ( The amount of waste heat due to warm wastewater is reduced.
 好ましくは、熱水発生装置が、復水器で蒸気を凝縮して復水器から排出される冷却水を導く第1配管と、第1配管に設けられてタービンから抽気された蒸気を導く第2配管と、第2配管に接続されて第1配管に設けられ、第1配管で導かれる冷却水を、第2配管で供給される蒸気で加熱する複数の加熱装置とを有することにある。復水器から排出される冷却水を熱水にしているので、外部環境に排出される冷却水による廃熱量がさらに低減される。 Preferably, the hot water generator condenses the steam in the condenser and guides the cooling water discharged from the condenser, and the first pipe that is provided in the first pipe and guides the steam extracted from the turbine. There are two pipes and a plurality of heating devices that are connected to the second pipe and are provided in the first pipe and that heat the cooling water guided by the first pipe with steam supplied through the second pipe. Since the cooling water discharged from the condenser is hot water, the amount of waste heat due to the cooling water discharged to the external environment is further reduced.
 本発明によれば、外部環境に排出される温排水による廃熱量を低減することができる。 According to the present invention, it is possible to reduce the amount of waste heat due to warm wastewater discharged to the external environment.
本発明の好適な一実施例である実施例1の熱併給発電プラントの構成図である。It is a block diagram of the cogeneration plant of Example 1 which is one suitable Example of this invention. 図1に示す蒸気ヒートポンプ装置の詳細構成図である。It is a detailed block diagram of the vapor | steam heat pump apparatus shown in FIG. 単純なランキンサイクルに関するT-S線図である。It is a TS diagram regarding a simple Rankine cycle. 単純なランキンサイクルに関するT-q・S線図である。It is a Tq · S diagram for a simple Rankine cycle. 再生ランキンサイクルに関するT-S線図である。It is a TS diagram regarding a regenerated Rankine cycle. 再生ランキンサイクルに関するT-q・S線図である。It is a Tq * S diagram regarding a regenerated Rankine cycle. 熱水併給サイクルに関するT-S線図である。It is a TS diagram regarding a hot-water combined supply cycle. 熱水併給サイクルに関するT-q・S線図である。It is a Tq * S diagram regarding a hot-water combined supply cycle. 本発明の他の実施例である実施例2の熱併給発電プラントの構成図である。It is a block diagram of the cogeneration plant of Example 2 which is another Example of this invention. 本発明の他の実施例である実施例3の熱併給発電プラントの構成図である。It is a block diagram of the cogeneration plant of Example 3 which is another Example of this invention. 本発明の他の実施例である実施例4のバイオマス改質複合発電プラントの構成図である。It is a block diagram of the biomass reforming combined power plant of Example 4 which is another Example of this invention. 図11に示すバイオマス改質装置の詳細構成図である。It is a detailed block diagram of the biomass reforming apparatus shown in FIG. 本発明の他の実施例である実施例5の熱併給発電プラントの構成図である。It is a block diagram of the cogeneration plant of Example 5 which is another Example of this invention. 本発明の他の実施例である実施例6の熱併給発電プラントの構成図である。It is a block diagram of the cogeneration plant of Example 6 which is another Example of this invention.
 発明者らは、排出される温排水の廃熱量を低減でき、その分、得られる熱水の温度を上昇できる熱併給発電プラントについて検討した。 The inventors examined a combined heat and power generation plant that can reduce the amount of waste heat from the discharged hot effluent and raise the temperature of the resulting hot water accordingly.
 発明者らは、まず、単純なランキンサイクル及び再生ランキンサイクルの各理論を、冷却水温度を陽に扱える熱水併給に拡張することを考えた。単純なランキンサイクルに関するT-S線図を図3に示し、単純なランキンサイクルに関するT-q・S線図を図4に示す。再生ランキンサイクルに関するT-S線図を図5に示し、再生ランキンサイクルに関するT-q・S線図を図6示す。さらに、熱水併給サイクルに関するT-S線図を図7に示し、熱水併給サイクルに関するT-q・S線図を図8示す。図4及び図6では、横軸の冷却水のエントロピーと蒸気のエントロピーの原点が異なっている。図8では、横軸の冷却水のエントロピーと蒸気のエントロピーの原点は同じである。 The inventors first considered expanding each theory of the simple Rankine cycle and the regenerated Rankine cycle to a combined hot water supply capable of explicitly handling the cooling water temperature. A TS diagram for a simple Rankine cycle is shown in FIG. 3, and a Tq · S diagram for a simple Rankine cycle is shown in FIG. A TS diagram for the regenerated Rankine cycle is shown in FIG. 5, and a Tq · S diagram for the regenerated Rankine cycle is shown in FIG. Further, FIG. 7 shows a TS diagram regarding the hot water combined cycle, and FIG. 8 shows a Tq · S diagram regarding the hot water combined cycle. 4 and 6, the origins of the entropy of the cooling water and the entropy of the steam on the horizontal axis are different. In FIG. 8, the origin of the entropy of cooling water and the entropy of steam on the horizontal axis is the same.
 T-S線図は、温度Tと単位質量の蒸気のエントロピー、すなわち比エントロピーの変化を表している。T-q・S線図は、比エントロピーSに代え、比流量qを掛けたエントロピーq・Sを用いたT-q・S線図を示している。ここで、比流量qはボイラーで発生する蒸気量を1として規格化した。図6及び図8では、抽気に伴うタービン段落の流量減少が考慮され、ABCDの面積がボイラー(蒸気発生装置)で発生する蒸気量を1としたときの発電出力を表す。なお、図6及び図8において冷却水の比流量は同様にボイラーで発生する蒸気量を1とし規格化した。 The TS diagram represents the change in the entropy of the vapor of temperature T and unit mass, that is, the specific entropy. The Tq · S diagram shows a Tq · S diagram using entropy q · S multiplied by specific flow q instead of specific entropy S. Here, the specific flow rate q was standardized assuming that the amount of steam generated in the boiler is 1. In FIGS. 6 and 8, the reduction in the flow rate of the turbine stage due to the bleed air is taken into consideration, and the power generation output when the amount of steam generated in the boiler (steam generating device) is 1 as the ABCD area is shown. In FIG. 6 and FIG. 8, the specific flow rate of the cooling water is normalized by assuming the amount of steam generated in the boiler to be 1.
 まず、単純なランキンサイクルを、図3及び図4を用いて説明する。T-S線図(図3)に復水器における冷却水の状態を書き加えると、冷却水流入が点Xc、冷却水流出が点Xhとなる。図3は形式的に表したものであり、このままでは物理的な意味を持たない。一方、T-q・S線図(図4)では、冷却水の比流量はボイラーで発生する蒸気量を1として規格化した。経路XcXhは経路DAにほぼ一致する。これは、タービンから排出される蒸気による復水器への排熱量Qdaがエントロピーq・Sの変化幅と温度の積となるが、冷却水温度が凝縮温度にほぼ等しく、熱の受け手である、復水器に供給される冷却水のエントロピーq・Sの変化幅が排熱側に一致するためである。 First, a simple Rankine cycle will be described with reference to FIGS. If the state of the cooling water in the condenser is added to the TS diagram (FIG. 3), the cooling water inflow becomes point Xc and the cooling water outflow becomes point Xh. FIG. 3 is a formal representation and has no physical meaning as it is. On the other hand, in the Tq · S diagram (FIG. 4), the specific flow rate of the cooling water is normalized assuming that the amount of steam generated in the boiler is 1. The route XcXh substantially matches the route DA. This is because the amount of heat Qda exhausted to the condenser due to steam discharged from the turbine is the product of the change width of entropy q · S and the temperature, but the cooling water temperature is approximately equal to the condensing temperature and is a heat receiver. This is because the change width of the entropy q · S of the cooling water supplied to the condenser matches the exhaust heat side.
 再生ランキンサイクルでは、図5に示された経路CDの、蒸気の断熱膨張の途中から、蒸気の抽気があり、抽気された蒸気により経路ABで給水を加熱するため、T-q・S線図(図6)の蒸気側が平行四辺形に近づく。電気出力は経路ABCDの面積に比例する。比流量が同じである場合、再生ランキンサイクルは、単純なランキンサイクルに比べて、出力が減少するが、熱効率が向上する。再生ランキンサイクルの経路DAが単純なランキンサイクルよりも短縮される。これにより、再生ランキンサイクルでは復水器への排熱量が減少する。 In the regenerated Rankine cycle, steam is extracted from the middle of the adiabatic expansion of steam in the path CD shown in FIG. 5, and the feed water is heated by the extracted steam in the path AB. The vapor side of (FIG. 6) approaches a parallelogram. The electrical output is proportional to the area of the path ABCD. When the specific flow rate is the same, the regenerated Rankine cycle has a reduced output but improved thermal efficiency compared to a simple Rankine cycle. The regeneration Rankine cycle path DA is shorter than a simple Rankine cycle. Thereby, in the regeneration Rankine cycle, the amount of heat exhausted to the condenser is reduced.
 再生ランキンサイクルでは、経路CDからの蒸気の抽気量を増やすことによって、単純なランキンサイクルに比べて復水器への排熱量をさらに低減できた。経路CDでの蒸気の抽気量をさらに増加すれば、タービンから排気される蒸気による復水器への排熱量をさらに低減できる。 In the regeneration Rankine cycle, the amount of heat exhausted to the condenser could be further reduced by increasing the amount of steam extracted from the path CD, compared to the simple Rankine cycle. If the amount of steam extracted in the path CD is further increased, the amount of heat exhausted by the steam exhausted from the turbine to the condenser can be further reduced.
 図7及び図8に示す熱水併給サイクルの例は、蒸気発生装置に供給する給水とは別に熱水を作って外部へ熱水を併給し、この熱水の加熱に、給水の加熱と同様に、蒸気の断熱膨張の途中から抽気された蒸気を使用している。この例では、復水器への排熱を全て回収し、かつ蒸気発生装置の温度と同一の熱水を得ている。この熱水併給サイクルでは、T-S線図(図7)に示すように、熱水と給水は共に液相にあり、温度Tが等しければ、比エントロピーが一致する。このために、熱水併給サイクルでは、復水器に供給される冷却水量を再生ランキンサイクルに比べ減少させてほぼ給水量並みとする。タービンから排気される蒸気による復水器への排熱量で、復水器に供給される冷却水(例えば、海水)が、温度T0まで加熱された後、給水と同様に、抽気蒸気により加熱される。 In the example of the combined hot water supply cycle shown in FIGS. 7 and 8, hot water is produced separately from the feed water supplied to the steam generator, and the hot water is supplied to the outside. The heating of this hot water is similar to the heating of the feed water. In addition, steam extracted from the middle of the adiabatic expansion of steam is used. In this example, all the exhaust heat to the condenser is recovered, and hot water having the same temperature as the steam generator is obtained. In this hot water co-feed cycle, as shown in the TS diagram (FIG. 7), both the hot water and the feed water are in the liquid phase, and the specific entropies coincide if the temperature T is equal. For this reason, in the hot water combined supply cycle, the amount of cooling water supplied to the condenser is reduced compared to the regeneration Rankine cycle so that it is almost equal to the amount of water supplied. Cooling water (for example, seawater) supplied to the condenser by the amount of heat exhausted from the turbine by steam exhausted from the turbine is heated to the temperature T0 and then heated by the extracted steam in the same manner as the water supply. The
 この過程をT-q・S線図(図8)に示す。経路CDの途中での蒸気の抽気によりタービンから復水器への排熱量は僅かとなり、点Dは点Aにほぼ一致する。すなわち、経路ABCDAに囲まれた、ほぼ三角形の面積が、得られる電気出力である。このABCDの面積は再生ランキンサイクルの約1/2であり、電気出力も1/2になる。しかしながら、図7及び図8に示された熱水併給サイクルは、復水器に供給される冷却水から生成された熱水を供給することができる。これは、復水器の冷却水を蒸気の断熱膨張の途中からの抽気蒸気で加熱して熱水を生成し、生成された熱水を外部に供給することによりなされる。すなわち、熱水は加熱される過程で蒸気発生装置の蒸気温度より低温であり、蒸気発生装置で発生した蒸気を高温熱源とし、復水器に供給される冷却水を低温熱源として発電を行うと共に、その蒸気を高温熱源とし、断熱膨張の途中から抽気された蒸気を凝縮する冷却水を低温熱源として発電を行っている。熱水併給サイクルでは、断熱膨張の途中から抽気された蒸気を凝縮する冷却水が、発電プラントでの発電に貢献すると共に、熱水になっている。再生過程に代え圧縮液化過程を用いても理論上は同じである。 This process is shown in the Tq · S diagram (Fig. 8). Due to steam extraction in the middle of the path CD, the amount of heat exhausted from the turbine to the condenser becomes small, and the point D substantially coincides with the point A. That is, a substantially triangular area surrounded by the path ABCDA is an electrical output to be obtained. The area of this ABCD is about 1/2 of the regenerated Rankine cycle, and the electric output is also 1/2. However, the combined hot water supply cycle shown in FIGS. 7 and 8 can supply hot water generated from the cooling water supplied to the condenser. This is done by heating the cooling water of the condenser with the extracted steam from the middle of the adiabatic expansion of the steam to generate hot water, and supplying the generated hot water to the outside. That is, while hot water is heated to a temperature lower than the steam temperature of the steam generator, the steam generated by the steam generator is used as a high-temperature heat source, and cooling water supplied to the condenser is used as a low-temperature heat source to generate power. The steam is used as a high temperature heat source, and the cooling water that condenses the steam extracted from the middle of the adiabatic expansion is used as a low temperature heat source for power generation. In the combined hot water cycle, the cooling water that condenses the steam extracted from the middle of the adiabatic expansion contributes to the power generation in the power plant and becomes hot water. It is theoretically the same if a compression liquefaction process is used instead of the regeneration process.
 さらに、上記した熱水併給サイクルで得られた熱水は、亜臨界水(120℃~370℃)であって、バイオマス等の改質に用いることができる。この改質の方法は、熱併給発電に適したセミバッチを適用し、固体、溶解物、油脂またはガスの状態の全ての生成物を回収する。改質反応は、一般に吸熱反応であり回収された排熱は改質された生成物に蓄えられる。 Furthermore, the hot water obtained by the above hot water combined supply cycle is subcritical water (120 ° C. to 370 ° C.) and can be used for reforming biomass and the like. This reforming method applies a semi-batch suitable for cogeneration and recovers all products in the solid, dissolved, fat or gas state. The reforming reaction is generally an endothermic reaction, and the recovered exhaust heat is stored in the reformed product.
 以上に述べた検討結果を反映した、本発明の実施例を以下に説明する。 Embodiments of the present invention reflecting the above-described examination results will be described below.
 本発明の好適な一実施例である実施例1の熱併給発電プラントを、図1及び図2に基づいて説明する。本実施例の熱併給発電プラント1は、沸騰水型原子力発電プラント2及び熱水発生装置21を備えている。 A cogeneration plant according to Embodiment 1 which is a preferred embodiment of the present invention will be described with reference to FIGS. The cogeneration plant 1 of this embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21.
 沸騰水型原子力プラント2は、蒸気発生装置である原子炉3、高圧タービン(第1タービン)4、高圧タービン4よりも圧力が低い低圧タービン(第2タービン)5、復水器8、低圧給水加熱器9,10、高圧給水加熱器11及び給水ポンプ13を備えている。原子炉3は、主蒸気管7によって高圧タービン4及び低圧タービン5に接続される。再熱器6が高圧タービン4と低圧タービン5の間の主蒸気管7に設けられる。原子炉3に接続された配管20が再熱器6に接続される。給水配管12が復水器8と原子炉3を接続する。給水配管12には、上流から下流に向って、低圧給水加熱器9,10、給水ポンプ13及び高圧給水加熱器11がこの順に設けられる。抽気管17が、低圧タービン5のタービンケーシング(図示せず)に接続され、さらに、低圧給水加熱器9にも接続される。抽気管18が、低圧タービン5のタービンケーシング及び低圧給水加熱器10に接続される。抽気管17は、抽気管18よりも低圧タービン5の後段側でそのタービンケーシングに接続される。抽気管19が、高圧タービン4のタービンケーシング(図示せず)及び高圧給水加熱器11に接続される。復水器8には多数の伝熱管14が設けられている。冷却水供給管15及び冷却水排出管16がそれぞれの伝熱管14に連絡される。 The boiling water nuclear power plant 2 includes a nuclear reactor 3 that is a steam generator, a high-pressure turbine (first turbine) 4, a low-pressure turbine (second turbine) 5 having a lower pressure than the high-pressure turbine 4, a condenser 8, and low-pressure feed water Heaters 9 and 10, a high-pressure feed water heater 11, and a feed water pump 13 are provided. The nuclear reactor 3 is connected to a high pressure turbine 4 and a low pressure turbine 5 by a main steam pipe 7. A reheater 6 is provided in the main steam pipe 7 between the high pressure turbine 4 and the low pressure turbine 5. A pipe 20 connected to the nuclear reactor 3 is connected to the reheater 6. A water supply pipe 12 connects the condenser 8 and the reactor 3. The feed water pipe 12 is provided with low pressure feed water heaters 9 and 10, a feed water pump 13 and a high pressure feed water heater 11 in this order from upstream to downstream. The extraction pipe 17 is connected to a turbine casing (not shown) of the low-pressure turbine 5 and further connected to the low-pressure feed water heater 9. The extraction pipe 18 is connected to the turbine casing of the low pressure turbine 5 and the low pressure feed water heater 10. The extraction pipe 17 is connected to the turbine casing on the rear stage side of the low-pressure turbine 5 with respect to the extraction pipe 18. The extraction pipe 19 is connected to a turbine casing (not shown) of the high-pressure turbine 4 and the high-pressure feed water heater 11. The condenser 8 is provided with a large number of heat transfer tubes 14. A cooling water supply pipe 15 and a cooling water discharge pipe 16 are connected to each heat transfer pipe 14.
 熱水発生装置21は、ポンプ23、熱交換器である加熱器(加熱装置)24,25,26及び蒸気ヒートポンプ装置(加熱装置)36を有する。ポンプ23、熱交換器である加熱器24,25,26及び蒸気ヒートポンプ装置36は、上流よりこの順序で、熱水管(第1配管)22に設けられる。加熱器24は、抽気管(第2配管)27によって抽気管17に接続され、低圧タービン5に連絡される。加熱器25は、抽気管(第2配管)28によって抽気管18に接続され、低圧タービン5に連絡される。加熱器26は、抽気管(第2配管)29によって抽気管19に接続され、高圧タービン4に連絡される。加熱器24に接続された凝縮水配管30が、低圧給水加熱器9と低圧給水加熱器10の間で給水配管10に接続される。低圧給水加熱器9に接続された凝縮水配管31が凝縮水配管30に接続される。加熱器25に接続された凝縮水配管32が、低圧給水加熱器10と給水ポンプ13の間で給水配管10に接続される。低圧給水加熱器10に接続された凝縮水配管33が凝縮水配管32に接続される。加熱器26に接続された凝縮水配管34が、高圧給水加熱器11よりも下流で給水配管10に接続される。高圧給水加熱器11に接続された凝縮水配管35が凝縮水配管34に接続される。 The hot water generator 21 includes a pump 23, heaters (heating devices) 24, 25, and 26 that are heat exchangers, and a steam heat pump device (heating device) 36. The pump 23, the heaters 24, 25, and 26 that are heat exchangers, and the steam heat pump device 36 are provided in the hot water pipe (first pipe) 22 in this order from the upstream. The heater 24 is connected to the extraction pipe 17 by an extraction pipe (second pipe) 27 and communicates with the low-pressure turbine 5. The heater 25 is connected to the extraction pipe 18 by an extraction pipe (second pipe) 28 and communicates with the low-pressure turbine 5. The heater 26 is connected to the extraction pipe 19 by an extraction pipe (second pipe) 29 and communicates with the high-pressure turbine 4. The condensed water pipe 30 connected to the heater 24 is connected to the feed water pipe 10 between the low pressure feed water heater 9 and the low pressure feed water heater 10. A condensed water pipe 31 connected to the low-pressure feed water heater 9 is connected to the condensed water pipe 30. A condensed water pipe 32 connected to the heater 25 is connected between the low-pressure feed water heater 10 and the feed water pump 13 to the feed water pipe 10. A condensed water pipe 33 connected to the low-pressure feed water heater 10 is connected to the condensed water pipe 32. The condensed water pipe 34 connected to the heater 26 is connected to the water supply pipe 10 downstream of the high-pressure feed water heater 11. A condensed water pipe 35 connected to the high-pressure feed water heater 11 is connected to the condensed water pipe 34.
 蒸気ヒートポンプ装置36は、図2に示すように、圧縮機37A,37B,37C及び37D、モータ(駆動装置)38、凝縮器41A,41B,41C及び41D及び湿分分離器43A,43B及び43Cを有する。圧縮機37A,37B,37C及び37Dは回転する動翼を有する、回転式圧縮機であるターボ圧縮機である。圧縮機37A,37B,37C及び37Dの、動翼を有するローター(図示せず)は、回転軸40に連結されている。回転軸40は、歯車39を介してモータ38に連結される。 As shown in FIG. 2, the steam heat pump device 36 includes compressors 37A, 37B, 37C and 37D, a motor (drive device) 38, condensers 41A, 41B, 41C and 41D and moisture separators 43A, 43B and 43C. Have. The compressors 37A, 37B, 37C, and 37D are turbo compressors that are rotating compressors having rotating blades. Rotors (not shown) having moving blades of the compressors 37A, 37B, 37C and 37D are connected to the rotating shaft 40. The rotating shaft 40 is connected to the motor 38 via a gear 39.
 凝縮器41Aは排気管44Aによって一段目の圧縮機37Aに接続される。凝縮器41Aは、湿分分離器43Aが設けられた供給管45Aによって二段目の圧縮機37Bに接続される。凝縮器41Bは排気管44Bによって圧縮機37Bに接続される。凝縮器41Bが供給管45Bによって三段目の圧縮機37Cに接続される。湿分分離器43Bが供給管45Bに設けられる。凝縮器41Cは排気管44Cによって圧縮機37Cに接続される。凝縮器41Cは供給管45Cによって最終段である四段目の圧縮機37Dに接続される。湿分分離器43Cが供給管45Cに設けられる。凝縮器41Dは排気管44Dによって圧縮機37Dに接続される。蒸気ヒートポンプ装置36においては、圧縮機と凝縮器が対になって設けられている。最上流に位置する一段目の圧縮機37Aは、開閉弁54が設けられた抽気管(第2配管)48によって高圧タービン4のタービンケーシングに接続される。 The condenser 41A is connected to the first stage compressor 37A by an exhaust pipe 44A. The condenser 41A is connected to the second stage compressor 37B by a supply pipe 45A provided with a moisture separator 43A. The condenser 41B is connected to the compressor 37B by an exhaust pipe 44B. The condenser 41B is connected to the third stage compressor 37C by a supply pipe 45B. A moisture separator 43B is provided in the supply pipe 45B. The condenser 41C is connected to the compressor 37C by an exhaust pipe 44C. The condenser 41C is connected to a fourth-stage compressor 37D as the final stage by a supply pipe 45C. A moisture separator 43C is provided in the supply pipe 45C. The condenser 41D is connected to the compressor 37D by an exhaust pipe 44D. In the steam heat pump device 36, a compressor and a condenser are provided in pairs. The first-stage compressor 37 </ b> A located at the most upstream is connected to the turbine casing of the high-pressure turbine 4 by an extraction pipe (second pipe) 48 provided with an on-off valve 54.
 伝熱管42Aが凝縮器41A内に設けられ、伝熱管42Bが凝縮器41B内に設けられる。伝熱管42Cが凝縮器41C内に設けられ、伝熱管42Dが凝縮器41D内に設けられる。熱水管22に設けられたポンプ55の下流で熱水管22が伝熱管42Aの入口に接続される。ポンプ55が加熱器26の下流に配置されている。熱水管22は、伝熱管42Aの出口と伝熱管42Bの入口、伝熱管42Bの出口と伝熱管42Cの入口、伝熱管42Cの出口と伝熱管42Dをそれぞれ接続している。伝熱管42Dの出口も熱水管22に接続される。凝縮器41A,43B,43C及び43Dは、各圧縮機から排気される蒸気に着目すれば凝縮器であるが、熱水管22内を流れる液体に着目すれば加熱器である。 A heat transfer tube 42A is provided in the condenser 41A, and a heat transfer tube 42B is provided in the condenser 41B. A heat transfer tube 42C is provided in the condenser 41C, and a heat transfer tube 42D is provided in the condenser 41D. The hot water pipe 22 is connected to the inlet of the heat transfer pipe 42 </ b> A downstream of the pump 55 provided in the hot water pipe 22. A pump 55 is disposed downstream of the heater 26. The hot water tube 22 connects the outlet of the heat transfer tube 42A and the inlet of the heat transfer tube 42B, the outlet of the heat transfer tube 42B and the inlet of the heat transfer tube 42C, and the outlet of the heat transfer tube 42C and the heat transfer tube 42D, respectively. The outlet of the heat transfer tube 42 </ b> D is also connected to the hot water tube 22. The condensers 41 </ b> A, 43 </ b> B, 43 </ b> C, and 43 </ b> D are condensers if attention is paid to the steam exhausted from the compressors, but are heaters if attention is paid to the liquid flowing in the hot water pipe 22.
 ポンプ46Aが設けられる凝縮水配管47Aが、凝縮器41Aの底部及び凝縮器41Bに接続される。ポンプ46Bが設けられる凝縮水配管47Bが、凝縮器41Bの底部及び凝縮器41Cに接続される。ポンプ46Cが設けられる凝縮水配管47Cが、凝縮器41Cの底部及び凝縮器41Dに接続される。ポンプ46Dが設けられる凝縮水配管47Dが、凝縮器41Dの底部に接続される。凝縮水配管47Dが、凝縮水配管34と給水配管12の接続点より下流で給水配管12に接続される。 The condensed water piping 47A provided with the pump 46A is connected to the bottom of the condenser 41A and the condenser 41B. A condensed water pipe 47B provided with a pump 46B is connected to the bottom of the condenser 41B and the condenser 41C. A condensed water pipe 47C provided with a pump 46C is connected to the bottom of the condenser 41C and the condenser 41D. A condensed water pipe 47D provided with a pump 46D is connected to the bottom of the condenser 41D. The condensed water pipe 47 </ b> D is connected to the water supply pipe 12 downstream from the connection point between the condensed water pipe 34 and the water supply pipe 12.
 原子炉3で発生した蒸気は、主蒸気管7を通って高圧タービン4に供給され、さらに、再熱器6及び低圧タービン5に導かれる。高圧タービン4から排出された蒸気が、再熱器6内で、配管20で供給される、原子炉3で発生した蒸気によって、加熱される。再熱器6内で温度が上昇した蒸気が低圧タービン5に供給される。高圧タービン4及び低圧タービン5に供給された蒸気は、互いに回転軸が連結されている高圧タービン4及び低圧タービン5を回転させる。これらのタービンの回転軸に連結されている発電機(図示せず)が回転し、発電が行われる。 Steam generated in the nuclear reactor 3 is supplied to the high-pressure turbine 4 through the main steam pipe 7 and further guided to the reheater 6 and the low-pressure turbine 5. The steam discharged from the high-pressure turbine 4 is heated by the steam generated in the nuclear reactor 3 supplied through the pipe 20 in the reheater 6. Steam whose temperature has risen in the reheater 6 is supplied to the low-pressure turbine 5. The steam supplied to the high-pressure turbine 4 and the low-pressure turbine 5 rotates the high-pressure turbine 4 and the low-pressure turbine 5 whose rotation shafts are connected to each other. A generator (not shown) connected to the rotating shafts of these turbines rotates to generate power.
 低圧タービン5から排気された蒸気は、復水器8で凝縮されて水となる。復水器8内での蒸気の凝縮は、復水器8内の伝熱管14に冷却水供給管15によって冷却水(例えば、海水)を供給することによって行われる。蒸気を凝縮することによって温度が上昇した伝熱管14内の冷却水は、冷却水排出管16を通して海に排出される。 The steam exhausted from the low-pressure turbine 5 is condensed by the condenser 8 to become water. The condensation of steam in the condenser 8 is performed by supplying cooling water (for example, seawater) to the heat transfer pipe 14 in the condenser 8 through the cooling water supply pipe 15. The cooling water in the heat transfer pipe 14 whose temperature has been increased by condensing the steam is discharged to the sea through the cooling water discharge pipe 16.
 復水器8内で蒸気の凝縮により生成された水は、給水として給水配管12を通って原子炉3に供給される。復水器8から排出された給水は、低圧給水加熱器9に導かれる。低圧タービン4から抽気された蒸気が、抽気管17を通って低圧給水加熱器9に供給され、低圧給水加熱器9に供給された給水を加熱する。低圧給水加熱器9から排出された給水が、低圧給水加熱器10に供給される。この給水は、低圧タービン4から抽気されて抽気管18を通って低圧給水加熱器10に供給された蒸気によってさらに加熱される。低圧給水加熱器10で加熱された給水は、高圧給水加熱器11に導かれる。この給水は、高圧タービン4から抽気されて抽気管19を通って高圧給水加熱器11に供給された蒸気によって加熱され、原子炉3に供給される。 Water generated by condensation of steam in the condenser 8 is supplied to the reactor 3 through the water supply pipe 12 as water supply. The feed water discharged from the condenser 8 is guided to the low pressure feed water heater 9. The steam extracted from the low-pressure turbine 4 is supplied to the low-pressure feed water heater 9 through the extraction pipe 17 to heat the feed water supplied to the low-pressure feed water heater 9. The feed water discharged from the low-pressure feed water heater 9 is supplied to the low-pressure feed water heater 10. This feed water is further heated by the steam extracted from the low pressure turbine 4 and supplied to the low pressure feed water heater 10 through the extraction pipe 18. The feed water heated by the low pressure feed water heater 10 is guided to the high pressure feed water heater 11. The feed water is extracted from the high-pressure turbine 4, heated by steam supplied to the high-pressure feed water heater 11 through the extraction pipe 19, and supplied to the nuclear reactor 3.
 低圧給水加熱器9に供給された蒸気は、給水の加熱により凝縮され、凝縮水になる。この凝縮水は凝縮水配管31,30を通って給水配管12に導かれる。低圧給水加熱器10に供給された蒸気は、給水の加熱により凝縮されて凝縮水になる。この凝縮水は、凝縮水配管33,32を通って給水配管12に導かれる。高圧給水加熱器11に供給された蒸気は、給水の加熱により凝縮されて凝縮水になる。この凝縮水は、凝縮水配管35,34を通って給水配管12に導かれる。 The steam supplied to the low-pressure feed water heater 9 is condensed by heating the feed water and becomes condensed water. The condensed water is guided to the water supply pipe 12 through the condensed water pipes 31 and 30. The steam supplied to the low-pressure feed water heater 10 is condensed by heating the feed water to become condensed water. The condensed water is guided to the water supply pipe 12 through the condensed water pipes 33 and 32. The steam supplied to the high-pressure feed water heater 11 is condensed by heating the feed water to become condensed water. The condensed water is guided to the water supply pipe 12 through the condensed water pipes 35 and 34.
 ポンプ23,55が駆動されており、復水器8から冷却水排出管16に排出された冷却水の一部は、熱水管22内に流入し、加熱器24に導かれる。抽気管17内を流れる蒸気の一部は、抽気管27によって加熱器24に供給され、加熱器24内でその冷却水を加熱する。加熱された冷却水が加熱器25に供給される。抽気管18内を流れる蒸気の一部は、抽気管28によって加熱器25に供給され、加熱器25内でその冷却水を加熱する。この加熱された冷却水は、さらに、加熱器26に供給される。抽気管19内を流れる蒸気の一部は、抽気管29によって加熱器26に供給され、加熱器26内でその冷却水を加熱する。抽気管17,18,19内を流れる各蒸気の温度は、抽気管17、抽気管18及び抽気管19の順に高くなるので、熱水管22に流入した冷却水は、加熱器24,25及び26による加熱によって温度が次第に高くなり、亜臨界水である熱水になる。 The pumps 23 and 55 are driven, and a part of the cooling water discharged from the condenser 8 to the cooling water discharge pipe 16 flows into the hot water pipe 22 and is led to the heater 24. A part of the steam flowing in the extraction pipe 17 is supplied to the heater 24 by the extraction pipe 27 and heats the cooling water in the heater 24. The heated cooling water is supplied to the heater 25. A part of the steam flowing in the extraction pipe 18 is supplied to the heater 25 through the extraction pipe 28 and heats the cooling water in the heater 25. The heated cooling water is further supplied to the heater 26. A part of the steam flowing in the extraction pipe 19 is supplied to the heater 26 by the extraction pipe 29 and heats the cooling water in the heater 26. Since the temperature of each steam flowing in the extraction pipes 17, 18 and 19 increases in the order of the extraction pipe 17, the extraction pipe 18 and the extraction pipe 19, the cooling water flowing into the hot water pipe 22 is heated by the heaters 24, 25 and 26. The temperature gradually rises due to heating by, and becomes hot water which is subcritical water.
 加熱器24,25,26は内部に伝熱管を設けている。熱水管22によって導かれる冷却水が伝熱管内を流れ、該当するタービンから抽気された蒸気が各加熱器のシェル側に供給される。伝熱管を通して蒸気の熱が伝熱管内を流れる冷却水に伝わり、冷却水が加熱される。加熱器24,25,26及び蒸気ヒートポンプ装置36は共に加熱装置であるが、加熱器24,25,26と蒸気ヒートポンプ装置36は、構造が異なっている。 Heaters 24, 25 and 26 are provided with heat transfer tubes inside. Cooling water guided by the hot water pipe 22 flows through the heat transfer pipe, and steam extracted from the corresponding turbine is supplied to the shell side of each heater. The heat of the steam is transmitted to the cooling water flowing through the heat transfer tube through the heat transfer tube, and the cooling water is heated. The heaters 24, 25, 26 and the steam heat pump device 36 are both heating devices, but the heaters 24, 25, 26 and the steam heat pump device 36 have different structures.
 加熱器26から排出された熱水は、蒸気ヒートポンプ装置36に供給され、さらに温度が高められる。蒸気ヒートポンプ装置36による熱水の加熱について、詳細に説明する。 The hot water discharged from the heater 26 is supplied to the steam heat pump device 36, and the temperature is further increased. The heating of hot water by the steam heat pump device 36 will be described in detail.
 圧縮機37A,37B,37C及び37Dのそれぞれでは、モータ38の駆動によって動翼を有するローターが回転している。高圧タービン4から抽気された蒸気は、抽気管48を通って一段目の圧縮機37Aに供給される。このとき、開閉弁54は開いている。蒸気は、圧縮機37Aで圧縮されて温度が上昇する。圧縮された蒸気は、排気管44Aを通って凝縮器41A内に導かれ、凝縮器41Aの伝熱管42A内を流れる熱水によって冷却される。この冷却によって凝縮器41A内の一部の蒸気が凝縮されて凝縮水53になって凝縮器41Aの底部に落下する。凝縮器41Aに供給される蒸気は、伝熱管42A内を流れる熱水の温度よりも高くなっているので、伝熱管42Aの外面で凝縮される。 In each of the compressors 37A, 37B, 37C, and 37D, a rotor having moving blades is rotated by driving a motor 38. The steam extracted from the high-pressure turbine 4 is supplied to the first stage compressor 37 </ b> A through the extraction pipe 48. At this time, the on-off valve 54 is open. The steam is compressed by the compressor 37A and the temperature rises. The compressed steam is led into the condenser 41A through the exhaust pipe 44A and cooled by hot water flowing through the heat transfer pipe 42A of the condenser 41A. By this cooling, a part of the vapor in the condenser 41A is condensed to become condensed water 53 and falls to the bottom of the condenser 41A. Since the steam supplied to the condenser 41A is higher than the temperature of the hot water flowing in the heat transfer tube 42A, it is condensed on the outer surface of the heat transfer tube 42A.
 熱水管22によって供給されて伝熱管42A内を流れる熱水は、凝縮器41A内で蒸気を冷却しさらに一部の蒸気を凝縮することによって加熱され、温度が上昇する。凝縮器41A内の蒸気の温度と伝熱管42A内の熱水の温度はほぼ等しく、蒸気と熱水の間で近似的に熱的平衡が保たれる。 The hot water supplied by the hot water pipe 22 and flowing in the heat transfer pipe 42A is heated by cooling the steam in the condenser 41A and further condensing a part of the steam, and the temperature rises. The temperature of the steam in the condenser 41A and the temperature of the hot water in the heat transfer tube 42A are substantially equal, and a thermal equilibrium is approximately maintained between the steam and the hot water.
 凝縮器41A内の未凝縮の蒸気は、湿分分離器43Aで湿分が除去された後、供給管45Aを通って圧縮機37Bに導かれる。凝縮器41Aから圧縮機37Bに供給される蒸気の体積流量は、凝縮器41Aによる蒸気の冷却により減少している。蒸気は、圧縮機37Bで再度圧縮されて温度が上昇する。圧縮機37Bから排気される蒸気の温度は、圧縮機37Aから排気された蒸気の温度よりも高くなっている。圧縮機37Bで圧縮された蒸気は、排気管44Bを通って凝縮器41B内に導かれ、凝縮器41Bの伝熱管42B内を流れる熱水によって冷却される。この冷却によって凝縮器41B内の一部の蒸気が凝縮されて凝縮水53になって凝縮器41Bの底部に落下する。凝縮器41Bに供給される蒸気は、伝熱管42B内を流れる熱水の温度よりも高くなっているので、伝熱管42Bの外面で凝縮される。 The uncondensed vapor in the condenser 41A is guided to the compressor 37B through the supply pipe 45A after the moisture is removed by the moisture separator 43A. The volume flow rate of the steam supplied from the condenser 41A to the compressor 37B is reduced by the cooling of the steam by the condenser 41A. The steam is compressed again by the compressor 37B, and the temperature rises. The temperature of the steam exhausted from the compressor 37B is higher than the temperature of the steam exhausted from the compressor 37A. The steam compressed by the compressor 37B is led into the condenser 41B through the exhaust pipe 44B and cooled by hot water flowing through the heat transfer pipe 42B of the condenser 41B. By this cooling, a part of the vapor in the condenser 41B is condensed to become condensed water 53 and falls to the bottom of the condenser 41B. Since the steam supplied to the condenser 41B is higher than the temperature of the hot water flowing in the heat transfer tube 42B, it is condensed on the outer surface of the heat transfer tube 42B.
 伝熱管42Aから排出されて伝熱管42B内を流れる熱水は、凝縮器41B内で蒸気を冷却しさらに一部の蒸気を凝縮することによって加熱され、温度がさらに上昇する。凝縮器41B内の蒸気の温度と伝熱管42B内の熱水の温度はほぼ等しく、近似的に熱的平衡が保たれる。 The hot water discharged from the heat transfer tube 42A and flowing in the heat transfer tube 42B is heated by cooling the steam in the condenser 41B and further condensing a part of the steam, and the temperature further rises. The temperature of the steam in the condenser 41B and the temperature of the hot water in the heat transfer tube 42B are substantially equal, and the thermal equilibrium is approximately maintained.
 凝縮器41B内の未凝縮の蒸気は、湿分分離器43Bで湿分が除去された後、供給管45Bを通って圧縮機37Cに導かれる。凝縮器41Bから圧縮機37Cに供給される蒸気の体積流量は、凝縮器41Bによる蒸気の冷却により減少している。蒸気は、圧縮機37Cで再度圧縮されて温度が上昇する。圧縮機37Cから排気される蒸気の温度は、圧縮機37Bから排気された蒸気の温度よりも高くなっている。圧縮機37Cで圧縮された蒸気は、排気管44Cを通って凝縮器41C内に導かれ、凝縮器41Cの伝熱管42C内を流れる熱水によって冷却される。この冷却によって凝縮器41C内の一部の蒸気が凝縮されて凝縮水53になって凝縮器41Cの底部に落下する。凝縮器41Cに供給される蒸気は、伝熱管42C内を流れる熱水の温度よりも高いので、伝熱管42Cの外面で凝縮される。 The uncondensed vapor in the condenser 41B is guided to the compressor 37C through the supply pipe 45B after moisture is removed by the moisture separator 43B. The volume flow rate of the steam supplied from the condenser 41B to the compressor 37C is reduced by the cooling of the steam by the condenser 41B. The steam is compressed again by the compressor 37C and the temperature rises. The temperature of the steam exhausted from the compressor 37C is higher than the temperature of the steam exhausted from the compressor 37B. The steam compressed by the compressor 37C is led into the condenser 41C through the exhaust pipe 44C and cooled by hot water flowing through the heat transfer pipe 42C of the condenser 41C. By this cooling, a part of the vapor in the condenser 41C is condensed to become condensed water 53 and falls to the bottom of the condenser 41C. Since the steam supplied to the condenser 41C is higher than the temperature of the hot water flowing in the heat transfer tube 42C, it is condensed on the outer surface of the heat transfer tube 42C.
 伝熱管42Bから排出されて伝熱管42C内を流れる熱水は、凝縮器41C内で蒸気を冷却しさらに一部の蒸気を凝縮することによって加熱され、温度がさらに上昇する。凝縮器41C内の蒸気の温度と伝熱管42C内の熱水の温度はほぼ等しく、近似的に熱的平衡が保たれる。 The hot water discharged from the heat transfer tube 42B and flowing in the heat transfer tube 42C is heated by cooling the steam in the condenser 41C and further condensing a part of the steam, and the temperature further rises. The temperature of the steam in the condenser 41C and the temperature of the hot water in the heat transfer tube 42C are approximately equal, and the thermal equilibrium is approximately maintained.
 凝縮器41C内の未凝縮の蒸気は、湿分分離器43Cで湿分が除去された後、供給管45Cを通って圧縮機37Dに導かれる。凝縮器41Cから圧縮機37Dに供給される蒸気の体積流量は、凝縮器41Cによる蒸気の冷却により減少している。蒸気は、圧縮機37Dで再度圧縮されて温度が上昇する。圧縮機37Dから排気される蒸気の温度は、圧縮機37Cから排気された蒸気の温度よりも高くなっている。圧縮機37Dで圧縮された蒸気は、排気管44Dを通って凝縮器41D内に導かれ、凝縮器41Dの伝熱管42D内を流れる熱水によって冷却される。この冷却によって凝縮器41D内の蒸気が凝縮されて凝縮水53になって凝縮器41Dの底部に落下する。凝縮器41Dに供給される蒸気は、伝熱管42D内を流れる熱水の温度よりも高いので、伝熱管42Dの外面で凝縮される。凝縮器41D内に供給された全ての蒸気が凝縮器41D内で凝縮される。 The uncondensed vapor in the condenser 41C is guided to the compressor 37D through the supply pipe 45C after moisture is removed by the moisture separator 43C. The volume flow rate of the steam supplied from the condenser 41C to the compressor 37D is reduced by the cooling of the steam by the condenser 41C. The steam is compressed again by the compressor 37D, and the temperature rises. The temperature of the steam exhausted from the compressor 37D is higher than the temperature of the steam exhausted from the compressor 37C. The steam compressed by the compressor 37D is led into the condenser 41D through the exhaust pipe 44D and cooled by hot water flowing through the heat transfer pipe 42D of the condenser 41D. By this cooling, the vapor in the condenser 41D is condensed to become condensed water 53 and falls to the bottom of the condenser 41D. Since the steam supplied to the condenser 41D is higher than the temperature of the hot water flowing in the heat transfer tube 42D, it is condensed on the outer surface of the heat transfer tube 42D. All the steam supplied into the condenser 41D is condensed in the condenser 41D.
 伝熱管42Cから排出されて伝熱管42D内を流れる熱水は、凝縮器41D内で蒸気を凝縮することによって加熱され、温度がさらに上昇する。凝縮器41D内の蒸気の温度と伝熱管42D内の熱水の温度はほぼ等しく、近似的に熱的平衡が保たれる。この伝熱管42Dから排出された熱水(亜臨界水)が熱水管22を通してこの熱水を必要とする熱水利用設備(例えば、バイオマス改質装置、またはナノチューブ及びゼオライト等の無機材料の水熱合成装置)に導かれる。 The hot water discharged from the heat transfer tube 42C and flowing in the heat transfer tube 42D is heated by condensing the vapor in the condenser 41D, and the temperature further rises. The temperature of the steam in the condenser 41D and the temperature of the hot water in the heat transfer tube 42D are substantially equal, and the thermal equilibrium is approximately maintained. The hot water (subcritical water) discharged from the heat transfer pipe 42D requires the hot water through the hot water pipe 22 (for example, a biomass reformer or hydrothermal heat of inorganic materials such as nanotubes and zeolite) Synthesizer).
 ポンプ46A,46B,46C,46Dが駆動されている。凝縮器41Aの底部に溜まった凝縮水53は、ポンプ46Aによって昇圧され、凝縮水配管47Aを通って凝縮器41B内に導かれる。凝縮器41Bの底部に溜まった凝縮水53は、ポンプ46Bによって昇圧され、凝縮水配管47Bを通って凝縮器41C内に導かれる。凝縮器41Cの底部に溜まった凝縮水53は、ポンプ46Cによって昇圧され、凝縮水配管47Cを通って凝縮器41D内に導かれる。凝縮器41Dの底部に溜まった凝縮水53は、ポンプ46Dによって昇圧され、凝縮水配管47Dを通って給水配管10内に供給される。凝縮器41A,41B,41C及び41D内の温度の高い凝縮水53は、給水と共に原子炉3に供給される。 Pumps 46A, 46B, 46C and 46D are driven. The condensed water 53 collected at the bottom of the condenser 41A is boosted by the pump 46A and guided into the condenser 41B through the condensed water piping 47A. The condensed water 53 collected at the bottom of the condenser 41B is boosted by the pump 46B and guided into the condenser 41C through the condensed water piping 47B. The condensed water 53 accumulated at the bottom of the condenser 41C is boosted by the pump 46C and guided into the condenser 41D through the condensed water piping 47C. The condensed water 53 collected at the bottom of the condenser 41D is boosted by the pump 46D and supplied into the feed water pipe 10 through the condensed water pipe 47D. Condensed water 53 having a high temperature in the condensers 41A, 41B, 41C and 41D is supplied to the nuclear reactor 3 together with water supply.
 本実施例は、沸騰水型原子力発電プラント2を用いているので、発電を行うことができる。 In this embodiment, since the boiling water nuclear power plant 2 is used, power generation can be performed.
 本実施例では、復水器8から排出された冷却水を熱水管22により加熱器24,25,26に導いて加熱器24,25,26において加熱して亜臨界水である熱水を生成している。この熱水の生成には低圧タービン5及び高圧タービン4から抽気された蒸気を利用している。高圧給水加熱器11に導かれる抽気蒸気量以外に加熱器26に供給する抽気蒸気量をまかなう必要があるので、高圧タービン4から抽気される蒸気量は、後者の抽気蒸気量の分だけ多くなる。低圧給水加熱器9,10に導かれる抽気蒸気量に加えて加熱器24,25に供給する抽気蒸気量が必要になるので、低圧タービン5から抽気される蒸気量も、後者の抽気蒸気量の分だけ多くなる。この結果、低圧タービン5から復水器8に排気される蒸気の量が減少し、復水器8から外部環境(例えば、海)に排出される冷却水(温排水)による廃熱量が低減される。この廃熱量の低減分が、加熱器24,25,26による熱水の生成に利用される。さらに、本実施例では、低圧タービン5から復水器8に排気された蒸気を凝縮して温度が上昇した冷却水の一部を熱水にしているので、外部環境に排出される温排水の量が減少し、温排水による廃熱量がさらに低減される。この復水器8から排出された冷却水の利用も、熱水の生成に貢献している。熱水の原料となる、復水器8から冷却水排出管16に排出された冷却水(温排水)は、復水器8内で蒸気凝縮による加熱で温度が上昇しているので、その冷却水の温度を熱水としての所定温度まで高めるために加熱器24,25,26に供給される抽気蒸気の量を低減できる。 In this embodiment, the cooling water discharged from the condenser 8 is guided to the heaters 24, 25, and 26 by the hot water pipe 22 and heated in the heaters 24, 25, and 26 to generate hot water that is subcritical water. is doing. Steam extracted from the low-pressure turbine 5 and the high-pressure turbine 4 is used to generate the hot water. Since it is necessary to cover the amount of extracted steam supplied to the heater 26 in addition to the amount of extracted steam led to the high-pressure feed water heater 11, the amount of steam extracted from the high-pressure turbine 4 increases by the amount of the latter extracted steam. . Since the amount of extracted steam supplied to the heaters 24 and 25 in addition to the amount of extracted steam introduced to the low-pressure feed water heaters 9 and 10 is required, the amount of steam extracted from the low-pressure turbine 5 is also the same as the amount of extracted steam of the latter. Increase by the minute. As a result, the amount of steam exhausted from the low-pressure turbine 5 to the condenser 8 is reduced, and the amount of waste heat due to cooling water (hot wastewater) discharged from the condenser 8 to the external environment (for example, the sea) is reduced. The This reduced amount of waste heat is used to generate hot water by the heaters 24, 25, and 26. Further, in this embodiment, a part of the cooling water whose temperature is increased by condensing the steam exhausted from the low-pressure turbine 5 to the condenser 8 is used as hot water. The amount is reduced, and the amount of waste heat from hot wastewater is further reduced. The use of the cooling water discharged from the condenser 8 also contributes to the generation of hot water. The cooling water (hot drainage) discharged from the condenser 8 to the cooling water discharge pipe 16 as a raw material for hot water is heated in the condenser 8 due to heating by steam condensation. In order to increase the temperature of water to a predetermined temperature as hot water, the amount of extracted steam supplied to the heaters 24, 25, and 26 can be reduced.
 熱水管22で供給される冷却水によって加熱器24,25,26で低圧タービン5及び高圧タービン4から抽気されたそれぞれの蒸気を凝縮している本実施例の熱併給発電プラント1は、以下に述べる新たな概念で発電を行っていると言える。 The cogeneration plant 1 of the present embodiment in which the steam extracted from the low pressure turbine 5 and the high pressure turbine 4 is condensed by the heaters 24, 25, and 26 by the cooling water supplied by the hot water pipe 22 is as follows. It can be said that power generation is based on the new concept described.
 沸騰水型原子力発電プラント2は、原子炉3、すなわち、蒸気発生装置で発生した蒸気を高温熱源とし、冷却水供給管15で復水器8に供給される冷却水を低温熱源として発電を行うと共に、その蒸気を高温熱源とし、タービンから抽気された蒸気を凝縮するために加熱器24,25,26に供給される冷却水を低温熱源として発電を行っている。熱併給発電プラント1では、加熱器24,25,26に供給される冷却水が、沸騰水型原子力発電プラント2における発電に貢献すると共に、熱水になっている。熱併給発電プラント1におけるこのような新たな発電の概念が、復水器8から外部環境に排出される温排水の廃熱量を低減し、熱水の生成をもたらしている。 The boiling water nuclear power plant 2 uses the steam generated by the reactor 3, that is, the steam generator as a high-temperature heat source, and generates power using the cooling water supplied to the condenser 8 through the cooling water supply pipe 15 as a low-temperature heat source. At the same time, power is generated using the steam as a high-temperature heat source and the cooling water supplied to the heaters 24, 25, and 26 to condense the steam extracted from the turbine as a low-temperature heat source. In the cogeneration plant 1, the cooling water supplied to the heaters 24, 25, and 26 contributes to power generation in the boiling water nuclear power plant 2 and is hot water. Such a new concept of power generation in the cogeneration plant 1 reduces the amount of waste heat of the hot effluent discharged from the condenser 8 to the external environment, resulting in the generation of hot water.
 本実施例では、加熱器24,25,26でそれぞれ発生した凝縮水を、給水配管12に導いて、原子炉3に供給している。このため、これらの凝縮水が保有する熱量を、沸騰水型原子力発電プラント2で利用することができる。蒸気ヒートポンプ装置36の各凝縮器で発生した凝縮水も、給水配管12に導いて、原子炉3に供給している。このため、この凝縮水が保有する熱量を、沸騰水型原子力発電プラント2で利用することができる。このように、熱水発生装置21で発生した凝縮水を原子炉3に戻しているので、沸騰水型原子力発電プラント2の熱効率が向上する。 In this embodiment, the condensed water respectively generated by the heaters 24, 25, and 26 is guided to the water supply pipe 12 and supplied to the nuclear reactor 3. For this reason, the amount of heat possessed by these condensed water can be used in the boiling water nuclear power plant 2. Condensed water generated in each condenser of the steam heat pump device 36 is also guided to the water supply pipe 12 and supplied to the nuclear reactor 3. For this reason, the amount of heat possessed by the condensed water can be used in the boiling water nuclear power plant 2. Thus, since the condensed water generated in the hot water generator 21 is returned to the nuclear reactor 3, the thermal efficiency of the boiling water nuclear power plant 2 is improved.
 加熱器24,25,26のそれぞれに抽気蒸気を供給する抽気管27,28,29が、該当するタービンのケーシングに直接接続されていなく、前述したように、低圧給水加熱器9に抽気蒸気を供給する抽気管17に、低圧給水加熱器10に抽気蒸気を供給する抽気管18に、高圧給水加熱器11に抽気蒸気を供給する抽気管19に接続されている。このため、低圧タービン5及び高圧タービン4における抽気点の数が少なくなり、抽気構造を簡素化できる。また、抽気管27,28,29のそれぞれの長さが短くなり、これらの抽気管の設置作業に要する時間を短縮できる。 The extraction pipes 27, 28, and 29 for supplying the extraction steam to each of the heaters 24, 25, and 26 are not directly connected to the casing of the corresponding turbine. As described above, the extraction steam is supplied to the low-pressure feed water heater 9. The extraction pipe 17 to be supplied is connected to the extraction pipe 18 for supplying the extraction steam to the low-pressure feed water heater 10, and the extraction pipe 19 to supply the extraction steam to the high-pressure feed water heater 11. For this reason, the number of extraction points in the low pressure turbine 5 and the high pressure turbine 4 is reduced, and the extraction structure can be simplified. Further, the length of each of the bleed pipes 27, 28, and 29 is shortened, and the time required for installing these bleed pipes can be shortened.
 本実施例の熱併給発電プラント1は、蒸気ヒートポンプ装置36を有している。蒸気ヒートポンプ装置36の設置により、以下に示す各効果を得ることができる。 The cogeneration plant 1 of this embodiment has a steam heat pump device 36. By installing the steam heat pump device 36, the following effects can be obtained.
 第1に、蒸気ヒートポンプ装置36を設けることによって蒸気ヒートポンプ装置36から熱水管22に排出する熱水の温度を容易に調節することができる。すなわち、モータ38の回転数を変えることによって各圧縮機37A,37B,37C,37Dのそれぞれで圧縮された各蒸気の温度を変えることができる。具体的には、モータ38の回転数が小さい場合には各蒸気の温度が低くなり、その回転数が大きくなると、各蒸気の温度が低くなる。この結果、蒸気ヒートポンプ装置36の凝縮器41A,43B,43C及び43Dそれぞれで加熱される熱水の温度は、各凝縮器に供給される蒸気の温度を変えることによって調節できる。 First, by providing the steam heat pump device 36, the temperature of the hot water discharged from the steam heat pump device 36 to the hot water pipe 22 can be easily adjusted. That is, the temperature of each steam compressed by each of the compressors 37A, 37B, 37C, and 37D can be changed by changing the rotation speed of the motor 38. Specifically, when the rotation speed of the motor 38 is small, the temperature of each steam is lowered, and when the rotation speed is increased, the temperature of each steam is lowered. As a result, the temperature of the hot water heated by each of the condensers 41A, 43B, 43C and 43D of the steam heat pump device 36 can be adjusted by changing the temperature of the steam supplied to each condenser.
 第2に、高圧タービン4及び低圧タービン5での蒸気の抽気点の数に制約を受けずに、熱水発生装置21における加熱器(凝縮器を含む)の数を増加することができ、熱水の加熱効率を向上できる。蒸気ヒートポンプ装置36に供給される蒸気は、高圧タービン4のタービンケーシングに形成された1つの抽気点から抽気される。この1つの抽気点に対して複数段の圧縮機(例えば、圧縮機37A,37B,37C及び37D)を設け、それぞれの圧縮機に対して加熱器である凝縮器(例えば、凝縮器41A,41B,41C及び41D)を設けることができる。このように、蒸気ヒートポンプ装置36を設けることによって、複数段の圧縮機、及び複数の凝縮器を設けることができるので、熱水発生装置21における加熱器の数を増加することができ熱水の加熱効率を向上させることができる。さらに、加熱器24,25,26で生成された熱水の温度を、蒸気ヒートポンプ装置36によってさらに高めることができる。 Secondly, the number of heaters (including condensers) in the hot water generator 21 can be increased without being restricted by the number of steam extraction points in the high-pressure turbine 4 and the low-pressure turbine 5, Water heating efficiency can be improved. The steam supplied to the steam heat pump device 36 is extracted from one extraction point formed in the turbine casing of the high-pressure turbine 4. A plurality of compressors (for example, compressors 37A, 37B, 37C, and 37D) are provided for the one extraction point, and condensers (for example, condensers 41A and 41B) that are heaters for the respective compressors. , 41C and 41D). Thus, by providing the steam heat pump device 36, a plurality of compressors and a plurality of condensers can be provided, so the number of heaters in the hot water generator 21 can be increased and hot water can be increased. Heating efficiency can be improved. Furthermore, the temperature of the hot water generated by the heaters 24, 25, 26 can be further increased by the steam heat pump device 36.
 加熱器24,25,26の設置は、高圧タービン4及び低圧タービン5での蒸気の抽気点の数に制約を受ける。これらの加熱器に抽気蒸気を供給する抽気管は、タービンの効率低下を避けるために、タービンの軸方向において動翼間の位置でタービンケーシングに接続する必要がある。複数の抽気点からそれぞれ異なる温度の抽気蒸気を得るためには、異なる動翼間の位置に抽気点を設定しなければならない。これに対して、蒸気ヒートポンプ装置36では、上記したように、圧縮機の段数及び凝縮器の個数をタービンに設けられる抽気点の数とは関係なく増やすことができる。 The installation of the heaters 24, 25, and 26 is restricted by the number of steam extraction points in the high-pressure turbine 4 and the low-pressure turbine 5. The extraction pipe for supplying the extraction steam to these heaters needs to be connected to the turbine casing at a position between the rotor blades in the axial direction of the turbine in order to avoid a decrease in efficiency of the turbine. In order to obtain extracted steam at different temperatures from a plurality of extracted points, it is necessary to set the extracted points at positions between different moving blades. On the other hand, in the steam heat pump device 36, as described above, the number of compressor stages and the number of condensers can be increased regardless of the number of extraction points provided in the turbine.
 本発明の他の実施例である実施例2の熱併給発電プラントを、図9を用いて説明する。本実施例の熱併給発電プラント1Aは、沸騰水型原子力発電プラント2及び熱水発生装置21Aを備えている。 A cogeneration plant according to embodiment 2, which is another embodiment of the present invention, will be described with reference to FIG. The cogeneration plant 1A of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21A.
 熱水発生装置21Aは、実施例1で用いられた熱水発生装置21において加熱器25,26、抽気管28,29及び凝縮水配管32,34を取り除いた構成を有する。熱水発生装置21Aの他の構成は熱水発生装置21と同じである。熱水発生装置21Aに用いられる蒸気ヒートポンプ装置36は、加熱器25,26を設置していない関係上、熱水発生装置21に用いられる蒸気ヒートポンプ装置36よりも圧縮機の段数及び圧縮機に付随する凝縮器の個数が多くなっている。本実施例では、蒸気ヒートポンプ装置36において、一段目の圧縮機37Aに接続された抽気管48は、低圧タービン5のタービンケーシングに接続された抽気管18に接続される。凝縮水配管47Dが最終段の圧縮機に接続された凝縮器の底部に接続される。開閉弁51が凝縮水配管47Dに設けられる。開閉弁51の上流で凝縮水配管47Dに接続された凝縮水配管49が低圧給水加熱器10と給水ポンプ13の間で、給水配管12に接続される。低圧給水加熱器10に接続された凝縮水配管52が給水配管12に接続される。高圧給水加熱器11に接続された凝縮水配管56が給水配管12に接続される。 The hot water generator 21A has a configuration in which the heaters 25 and 26, the extraction pipes 28 and 29, and the condensed water pipes 32 and 34 are removed from the hot water generator 21 used in the first embodiment. The other configuration of the hot water generator 21A is the same as that of the hot water generator 21. The steam heat pump device 36 used in the hot water generator 21 </ b> A is associated with the number of stages of the compressor and the compressor rather than the steam heat pump device 36 used in the hot water generator 21 because the heaters 25 and 26 are not installed. The number of condensers to be used is increasing. In the present embodiment, in the steam heat pump device 36, the extraction pipe 48 connected to the first stage compressor 37 </ b> A is connected to the extraction pipe 18 connected to the turbine casing of the low-pressure turbine 5. A condensed water pipe 47D is connected to the bottom of the condenser connected to the final stage compressor. An on-off valve 51 is provided in the condensed water pipe 47D. A condensed water pipe 49 connected to the condensed water pipe 47 </ b> D upstream of the on-off valve 51 is connected to the water supply pipe 12 between the low-pressure feed water heater 10 and the feed water pump 13. A condensed water pipe 52 connected to the low-pressure feed water heater 10 is connected to the feed water pipe 12. A condensed water pipe 56 connected to the high-pressure feed water heater 11 is connected to the feed water pipe 12.
 熱水管22に流入する冷却水は、加熱器24で加熱され、さらに、蒸気ヒートポンプ装置36の各凝縮器で、各圧縮機で圧縮された蒸気によって加熱されて所定温度の熱水(亜臨界水)になる。蒸気ヒートポンプ装置36の一段目の圧縮機37Aに供給される蒸気は、抽気管18で低圧タービン5より抽気された蒸気の一部である。蒸気ヒートポンプ装置36から排出された熱水は、熱水管22を通して熱水を必要とする設備に導かれる。 The cooling water flowing into the hot water pipe 22 is heated by the heater 24, and further heated by the steam compressed by each compressor in each condenser of the steam heat pump device 36, and hot water (subcritical water) having a predetermined temperature. )become. The steam supplied to the first stage compressor 37 </ b> A of the steam heat pump device 36 is a part of the steam extracted from the low pressure turbine 5 by the extraction pipe 18. The hot water discharged from the steam heat pump device 36 is guided to a facility that requires hot water through the hot water pipe 22.
 本実施例も実施例1で生じる各効果を得ることができる。実施例1と同様に、モータ38の回転数を制御することによって各圧縮機で圧縮する蒸気の温度を変更することができる。制御装置(図示せず)が、最終段の圧縮機に接続される凝縮器から凝縮水配管47Dに排出される凝縮水53の温度に基づいて、開閉弁50及び51の開閉制御を行う。開閉弁50が閉じられるときには開閉弁51が開き、開閉弁50が開くときには開閉弁51が閉じる。凝縮水配管47Dに排出される凝縮水53の温度が設定温度以下であれば、開閉弁50を開いて開閉弁51を閉じ、凝縮水53を、凝縮水配管49を通して給水配管12に導く。凝縮水配管47Dに排出される凝縮水53の温度が設定温度を超えて入れば、開閉弁50を閉じて開閉弁51を開き、凝縮水53を、凝縮水配管47Dを通して給水配管12に導く。このように、蒸気ヒートポンプ装置36から排出される凝縮水53の温度に基づいて、凝縮水53の排出先を変えることができる。 This example can also obtain each effect produced in Example 1. As in the first embodiment, the temperature of the steam compressed by each compressor can be changed by controlling the rotation speed of the motor 38. A control device (not shown) controls opening and closing of the on-off valves 50 and 51 based on the temperature of the condensed water 53 discharged from the condenser connected to the final stage compressor to the condensed water piping 47D. The on-off valve 51 is opened when the on-off valve 50 is closed, and the on-off valve 51 is closed when the on-off valve 50 is opened. If the temperature of the condensed water 53 discharged to the condensed water pipe 47D is equal to or lower than the set temperature, the on-off valve 50 is opened and the on-off valve 51 is closed, and the condensed water 53 is guided to the water supply pipe 12 through the condensed water pipe 49. When the temperature of the condensed water 53 discharged into the condensed water pipe 47D exceeds the set temperature, the on-off valve 50 is closed and the on-off valve 51 is opened, and the condensed water 53 is guided to the water supply pipe 12 through the condensed water pipe 47D. Thus, the discharge destination of the condensed water 53 can be changed based on the temperature of the condensed water 53 discharged from the steam heat pump device 36.
 本実施例は、熱水発生装置21Aが、熱水発生装置21で設けられた加熱器25,26を有していないので、これらの加熱器、及びこれらの加熱器に付随して設けられる抽気管28,29及び凝縮水配管32,34が不要になる。このため、抽気管及び凝縮水配管の引き回しが少なくなるので、熱水発生装置21Aの建設に要する時間が熱水発生装置21よりも短縮される。 In the present embodiment, since the hot water generator 21A does not have the heaters 25 and 26 provided in the hot water generator 21, these heaters and the extraction provided in association with these heaters are used. The tracheas 28 and 29 and the condensed water pipes 32 and 34 are unnecessary. For this reason, since the drawing of the extraction pipe and the condensed water pipe is reduced, the time required for the construction of the hot water generator 21A is shorter than that of the hot water generator 21.
 本発明の他の実施例である実施例3の熱併給発電プラントを、図10を用いて説明する。本実施例の熱併給発電プラント1Bは、沸騰水型原子力発電プラント2及び熱水発生装置21Bを備えている。 A cogeneration plant according to embodiment 3, which is another embodiment of the present invention, will be described with reference to FIG. The cogeneration plant 1B of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21B.
 熱水発生装置21Bは、実施例2で用いられる熱水発生装置21Aにおいて加熱器24、抽気管27及び凝縮水配管30を取り除いた構成を有する。熱水発生装置21Bの他の構成は熱水発生装置21Aと同じである。熱水発生装置21Bに用いられる蒸気ヒートポンプ装置36は、加熱器24を設置していない関係上、熱水発生装置21Aに用いられる蒸気ヒートポンプ装置36よりも圧縮機の段数及び圧縮機に付随する凝縮器の個数が多くなっている。本実施例では、蒸気ヒートポンプ装置36において、一段目の圧縮機37Aに接続された抽気管48は、復水器8内の蒸気空間に接続される。低圧給水加熱器9に接続された凝縮水配管57が給水配管12に接続される。 The hot water generator 21B has a configuration in which the heater 24, the extraction pipe 27, and the condensed water pipe 30 are removed from the hot water generator 21A used in the second embodiment. Other configurations of the hot water generator 21B are the same as the hot water generator 21A. The steam heat pump device 36 used in the hot water generator 21B is not provided with the heater 24, so that the number of stages of the compressor and the condensation associated with the compressor are higher than those of the steam heat pump device 36 used in the hot water generator 21A. The number of vessels is increasing. In the present embodiment, in the steam heat pump device 36, the extraction pipe 48 connected to the first stage compressor 37 </ b> A is connected to the steam space in the condenser 8. A condensed water pipe 57 connected to the low-pressure feed water heater 9 is connected to the feed water pipe 12.
 抽気管48は、復水器8内の蒸気空間ではなく、高圧タービン4、低圧タービン5及び主蒸気管7を有する主蒸気系のある位置(例えば、高圧タービン4または低圧タービン5のケーシングに設けられた抽気点)に接続してもよい。 The extraction pipe 48 is not located in the steam space in the condenser 8 but at a certain position of the main steam system having the high pressure turbine 4, the low pressure turbine 5 and the main steam pipe 7 (for example, provided in the casing of the high pressure turbine 4 or the low pressure turbine 5. Connected bleed points).
 復水器8から抽気されて抽気管48で導かれた蒸気が、蒸気ヒートポンプ装置36の各圧縮機で順次圧縮される。熱水管22に流入する冷却水は、蒸気ヒートポンプ装置36の各凝縮器で、各圧縮機で圧縮された蒸気によって加熱されて所定温度の熱水(亜臨界水)になる。蒸気ヒートポンプ装置36から排出された熱水は、熱水管22を通して熱水を必要とする設備に導かれる。 The steam extracted from the condenser 8 and guided by the extraction pipe 48 is sequentially compressed by each compressor of the steam heat pump device 36. The cooling water flowing into the hot water pipe 22 is heated by steam compressed by each compressor in each condenser of the steam heat pump device 36 to become hot water (subcritical water) having a predetermined temperature. The hot water discharged from the steam heat pump device 36 is guided to a facility that requires hot water through the hot water pipe 22.
 本実施例は、実施例2で生じる各効果を得ることができる。本実施例は、実施例2に比べて加熱器24が不用になるので、熱水発生装置21Bの建設に要する時間が熱水発生装置21Aよりもさらに短縮される。 This example can obtain each effect produced in Example 2. In the present embodiment, the heater 24 is unnecessary as compared with the second embodiment, so that the time required for the construction of the hot water generator 21B is further shortened than that of the hot water generator 21A.
 本発明の他の実施例であるバイオマス改質複合発電プラントを、図11及び図12を用いて説明する。本実施例のバイオマス改質複合発電プラント60は、熱併給発電プラント1及びバイオマス改質装置61を備えている。本実施例で用いられる熱併給発電プラント1は、実施例1の熱併給発電プラント1である。バイオマス改質複合発電プラント60において、熱併給発電プラント1の替りに、前述した熱併給発電プラント1A及び1Bのいずれかを用いてもよい。 A biomass reforming combined power plant according to another embodiment of the present invention will be described with reference to FIGS. The biomass reforming combined power plant 60 of this embodiment includes the cogeneration power plant 1 and the biomass reforming device 61. The cogeneration plant 1 used in the present embodiment is the cogeneration plant 1 of the first embodiment. In the biomass reforming combined power plant 60, instead of the cogeneration plant 1, any of the above-mentioned cogeneration plants 1A and 1B may be used.
 バイオマス改質複合発電プラント60では、バイオマス改質装置61が、熱併給発電プラント1に含まれる熱水発生装置21の蒸気ヒートポンプ装置36の出口側に接続された熱水管22に接続される。 In the biomass reforming combined power plant 60, the biomass reforming device 61 is connected to the hot water pipe 22 connected to the outlet side of the steam heat pump device 36 of the hot water generating device 21 included in the cogeneration plant 1.
 バイオマス改質装置61は、反応器62、分離器63及び冷却器76を備えている。反応器62が熱水管22に接続される。分離器63が、弁63が設けられた配管65によって反応器62に接続される。バイオマス供給管84が反応器62に接続され、回収配管67,68,69が分離器63にそれぞれ接続される。冷却器76が分離器63に接続され、冷却水配管80、凝縮水配管81及び回収配管82が冷却器76に接続される。 The biomass reforming device 61 includes a reactor 62, a separator 63, and a cooler 76. A reactor 62 is connected to the hot water pipe 22. The separator 63 is connected to the reactor 62 by a pipe 65 provided with a valve 63. The biomass supply pipe 84 is connected to the reactor 62, and the recovery pipes 67, 68, and 69 are connected to the separator 63, respectively. The cooler 76 is connected to the separator 63, and the cooling water pipe 80, the condensed water pipe 81, and the recovery pipe 82 are connected to the cooler 76.
 バイオマス改質装置61の詳細構成を、図12を用いて説明する。バイオマス改質装置61は、複数の反応器62(例えば、反応器62a,62b,62c)、複数の分離器63(例えば、分離器63a,63b,63c)及び複数の冷却器76(例えば、冷却器76a,76b,76c)を備えている。反応器63a,63b,63cは弁64a,64b,64cを介して熱水管22に接続される。バイオマス供給管84が、弁85aを介して反応器63aに接続され、弁85bを介して反応器63bに接続され、弁85cを介して反応器63cに接続される。 The detailed configuration of the biomass reforming apparatus 61 will be described with reference to FIG. The biomass reformer 61 includes a plurality of reactors 62 (for example, reactors 62a, 62b, and 62c), a plurality of separators 63 (for example, separators 63a, 63b, and 63c), and a plurality of coolers 76 (for example, cooling). Devices 76a, 76b, 76c). The reactors 63a, 63b, 63c are connected to the hot water pipe 22 via valves 64a, 64b, 64c. The biomass supply pipe 84 is connected to the reactor 63a via the valve 85a, connected to the reactor 63b via the valve 85b, and connected to the reactor 63c via the valve 85c.
 分離器63aは弁66aが設けられた配管65aによって反応器63aに接続され、分離器63bは弁66bが設けられた配管65bによって反応器63bに接続され、分離器63cは弁66cが設けられた配管65cによって反応器63cに接続される。回収配管67,68及び69が分離器63aに接続される。図示されていないが、別の回収配管67,68及び69が分離器63bに接続され、さらに別の回収配管67,68及び69が分離器63cに接続される。 The separator 63a is connected to the reactor 63a by a pipe 65a provided with a valve 66a, the separator 63b is connected to the reactor 63b by a pipe 65b provided with a valve 66b, and the separator 63c is provided with a valve 66c. The pipe 65c is connected to the reactor 63c. Recovery pipes 67, 68 and 69 are connected to the separator 63a. Although not shown, other recovery pipes 67, 68 and 69 are connected to the separator 63b, and further recovery pipes 67, 68 and 69 are connected to the separator 63c.
 分離器63aは、弁73aを介して配管70に接続され、弁73bを介して配管71に接続され、さらに、弁73cを介して配管72に接続される。分離器63bは、弁74aを介して配管70に接続され、弁74bを介して配管71に接続され、さらに、弁74cを介して配管72に接続される。分離器63cは、弁75aを介して配管70に接続され、弁75bを介して配管71に接続され、さらに、弁75cを介して配管72に接続される。 The separator 63a is connected to the pipe 70 via the valve 73a, connected to the pipe 71 via the valve 73b, and further connected to the pipe 72 via the valve 73c. The separator 63b is connected to the pipe 70 via the valve 74a, is connected to the pipe 71 via the valve 74b, and is further connected to the pipe 72 via the valve 74c. The separator 63c is connected to the pipe 70 via the valve 75a, connected to the pipe 71 via the valve 75b, and further connected to the pipe 72 via the valve 75c.
 冷却器76a,76b,76cは内部に伝熱管83a,83b,83cを設けている。冷却水配管80が、上流から下流に向って、伝熱管83a,83b,83cをこの順番に接続している。冷却器76aのシェル側が配管77によって配管70に接続され、冷却器76bのシェル側が配管78によって配管71に接続され、冷却器76cのシェル側が配管79によって配管72に接続される。凝縮水配管81aが冷却器76aに接続される。凝縮水配管81bが冷却器76a及び冷却器76bに接続される。凝縮水配管81cが冷却器76b及び冷却器76cに接続される。回収配管82が冷却器76a,76b,76cのそれぞれのシェル側に接続される。 The coolers 76a, 76b and 76c are provided with heat transfer tubes 83a, 83b and 83c. A cooling water pipe 80 connects the heat transfer tubes 83a, 83b, 83c in this order from upstream to downstream. The shell side of the cooler 76 a is connected to the pipe 70 by the pipe 77, the shell side of the cooler 76 b is connected to the pipe 71 by the pipe 78, and the shell side of the cooler 76 c is connected to the pipe 72 by the pipe 79. A condensed water pipe 81a is connected to the cooler 76a. The condensed water piping 81b is connected to the cooler 76a and the cooler 76b. The condensed water piping 81c is connected to the cooler 76b and the cooler 76c. A recovery pipe 82 is connected to each shell side of the coolers 76a, 76b, and 76c.
 バイオマスとしては、木材、草木、種子、海草及びプラスチックなど固体状のバイオマスを想定する。バイオマスの特徴は、単一成分ではなく複数成分を含んでいることである。木材を例にとれば、木材は、主にセルロース、ヘミセルロース、リグニンの高分子化合物を含んでおり、これらに、湿分及び微量な金属元素も加わっている。このようなバイオマスが反応器62a,62b,62c内にそれぞれ充填される。充填されたこのバイオマスは、通常、木材、草木及び種子等が混在した状態になっている。 ∙ As biomass, solid biomass such as wood, vegetation, seeds, seaweed and plastic is assumed. A feature of biomass is that it contains multiple components rather than a single component. Taking wood as an example, wood mainly contains polymer compounds of cellulose, hemicellulose, and lignin, and moisture and a trace amount of metal elements are added to these. Such biomass is filled in the reactors 62a, 62b, and 62c, respectively. This filled biomass is usually in a state where wood, vegetation, seeds and the like are mixed.
 バイオマスの、亜臨界水による改質は、主に、第1及び第2のプロセスを含んでいる。第1のプロセスは、バイオマスである高分子化合物を含むこれらの雑多な成分を、高温高圧の亜臨界水で低分子化し、かつ、亜臨界水に溶解させるプロセスである。第2のプロセスが、高温高圧の亜臨界水を減温減圧し、低分子化され溶解している生成物を分離し回収するプロセスである。 The reforming of biomass with subcritical water mainly includes the first and second processes. The first process is a process in which these miscellaneous components including a polymer compound that is biomass are reduced in molecular weight with high-temperature and high-pressure subcritical water and dissolved in subcritical water. The second process is a process in which high-temperature and high-pressure subcritical water is depressurized and depressurized to separate and recover a low molecular weight and dissolved product.
 このバイオマスの改質方法を、図12に示されたバイオマス改質装置61を用いて具体的に説明する。弁85aを開いて弁85b及び85cを閉じ、予め粒状に粉砕された固体バイオマスをバイオマス供給管84により一基の反応器62aに充填する。反応器62a内にバイオマスを充填した後、弁85aを閉じ、弁64aを開いて熱水管22から亜臨界水である熱水を、固体バイオマスを充填した反応器62aに供給する。弁66aは閉じている。反応器62aでは、熱水による固体バイオマスの改質反応が生じる。この改質反応が終了する所定時間を経過したとき、弁64aを閉じて弁66aを開き、熱水及び溶解した生成物を分離器63aに導入する。分離器63a内に供給することによって熱水及び溶解した生成物の体積が膨張し、熱水は減圧され沸騰する。併せて、揮発性の生成物が分離器63a内でガス化される。 This biomass reforming method will be specifically described using the biomass reforming apparatus 61 shown in FIG. The valve 85a is opened, the valves 85b and 85c are closed, and solid biomass pulverized in advance is charged into one reactor 62a through the biomass supply pipe 84. After filling the reactor 62a with biomass, the valve 85a is closed, the valve 64a is opened, and hot water, which is subcritical water, is supplied from the hot water pipe 22 to the reactor 62a filled with solid biomass. The valve 66a is closed. In the reactor 62a, a reforming reaction of solid biomass by hot water occurs. When a predetermined time for completing the reforming reaction has elapsed, the valve 64a is closed and the valve 66a is opened, and hot water and the dissolved product are introduced into the separator 63a. By supplying it into the separator 63a, the volume of the hot water and the dissolved product expands, and the hot water is depressurized and boiled. In addition, the volatile product is gasified in the separator 63a.
 弁64aを閉じる前に、弁85bを開いてバイオマス供給管84により粉砕された固体バイオマスを反応器62bに供給する。反応器62b内にバイオマスを充填した後、弁85bを閉じる。上記したように弁66aを開くために弁64aを閉じたとき、弁64bを開いて熱水管22から熱水を反応器62bに供給する。弁66bは閉じている。反応器62b内で、反応器62aと同様に、固体バイオマスの改質反応が生じる。 Before closing the valve 64a, the valve 85b is opened and the solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62b. After filling the reactor 62b with biomass, the valve 85b is closed. When the valve 64a is closed to open the valve 66a as described above, the valve 64b is opened and hot water is supplied from the hot water pipe 22 to the reactor 62b. The valve 66b is closed. In the reactor 62b, a reforming reaction of solid biomass occurs as in the reactor 62a.
 分離器63aに接続された3本の配管に設けられた弁73a,73b,73cを開く。分離器63a内で生成された揮発性ガス、及び減圧沸騰で熱水から生じた蒸気が、分離器63a内の熱水及び生成物から分離され、弁73aを通り、配管70,77を経て冷却器76aに供給される。分離器63a内の分離された揮発性ガス及び蒸気が、弁73bを通り、配管71,78を経て冷却器76bに供給される。さらに、分離器63a内の分離された揮発性ガス及び蒸気が、弁73cを通り、配管72,79を経て冷却器76cに供給される。冷却器76a,76b,76c内の伝熱管83a,83b,83c内に、冷却水配管80により冷却水が供給される。このため、揮発性ガスと共に流入した蒸気が、冷却器76a,76b,76c内でその冷却水によってそれぞれ凝縮される。この凝縮によって生成された凝縮水は、冷却器76a,76b,76c内でそれぞれの底部に溜まる。分離器63aから揮発性ガス及び蒸気を各冷却器に排出しているとき、弁74a,74b,74c,75a,75b,75cは閉じている。 The valves 73a, 73b, 73c provided in the three pipes connected to the separator 63a are opened. The volatile gas generated in the separator 63a and the steam generated from the hot water by boiling under reduced pressure are separated from the hot water and the product in the separator 63a, cooled through the valve 73a and the pipes 70 and 77. Is supplied to the container 76a. The separated volatile gas and vapor in the separator 63a pass through the valve 73b and are supplied to the cooler 76b through the pipes 71 and 78. Further, the separated volatile gas and vapor in the separator 63a are supplied to the cooler 76c through the valves 73c and the pipes 72 and 79. Cooling water is supplied from the cooling water pipe 80 into the heat transfer tubes 83a, 83b, 83c in the coolers 76a, 76b, 76c. For this reason, the vapor | steam which flowed with volatile gas is each condensed with the cooling water in the coolers 76a, 76b, and 76c. Condensed water generated by this condensation accumulates at the bottom of each of the coolers 76a, 76b and 76c. The valves 74a, 74b, 74c, 75a, 75b, and 75c are closed when volatile gas and vapor are discharged from the separator 63a to the respective coolers.
 冷却器76c内の凝縮水は、凝縮水配管81cにより冷却器76bに集められ、さらに、冷却器76bで生じた凝縮水と共に、凝縮水配管81bにより冷却器76a内に集められる。冷却器76aで生じた凝縮水、及び冷却器76aに集められた凝縮水は、凝縮水配管81aに排出される。冷却器76a,76b,76c内の各揮発性ガスは回収配管82によって回収される。 The condensed water in the cooler 76c is collected in the cooler 76b by the condensed water pipe 81c, and is further collected in the cooler 76a by the condensed water pipe 81b together with the condensed water generated in the cooler 76b. The condensed water generated in the cooler 76a and the condensed water collected in the cooler 76a are discharged to the condensed water pipe 81a. Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82.
 揮発性ガス及び蒸気の各冷却器への排出によって、分離器63aの内圧が低下し、分離器63aが低圧状態に保たれる。揮発性ガス及び蒸気の排出後においても、熱水及び生成物は分離器63a内に残留している。時間が経過すると、分離器63a内の熱水及び生成物の温度が冷却水配管80で冷却器76aに供給される冷却水の温度付近まで低下する。分離器63aでは、温度の低下に伴い、熱水に溶解している生成物が油脂及び固体として析出する。分離器63a内の油脂が分離器63aに接続された回収配管67によって回収され、固体が分離器63aに接続された回収配管69によって回収される。分離器63a内に残った熱水及び溶解物が分離器63aに接続された回収配管68によって回収される。冷却水配管80によって供給される冷却水は、冷却器76a,76b,76cのそれぞれで加熱され、温水となる。このように供給した熱水の熱は、冷却器により温水として回収できる。 The discharge of volatile gas and steam to each cooler lowers the internal pressure of the separator 63a and keeps the separator 63a in a low pressure state. Even after discharge of volatile gas and vapor, hot water and products remain in the separator 63a. When time elapses, the temperature of the hot water and the product in the separator 63a decreases to near the temperature of the cooling water supplied to the cooler 76a through the cooling water pipe 80. In the separator 63a, the product dissolved in the hot water is precipitated as fats and oils as the temperature decreases. Oils and fats in the separator 63a are recovered by a recovery pipe 67 connected to the separator 63a, and solids are recovered by a recovery pipe 69 connected to the separator 63a. Hot water and dissolved matter remaining in the separator 63a are recovered by a recovery pipe 68 connected to the separator 63a. The cooling water supplied by the cooling water pipe 80 is heated by each of the coolers 76a, 76b, and 76c to become hot water. The heat of hot water supplied in this way can be recovered as warm water by a cooler.
 反応器62b内での固体バイオマスの改質反応が終了したとき、弁64bが閉じられて弁66bが開き、熱水及び溶解した生成物を分離器63bに導入する。分離器63b内でも、分離器63aと同様に、揮発性ガス及び蒸気が生成される。分離器63a内の揮発性ガス及び蒸気の冷却器76a,76b,76cへの排出が終了した後、弁73a,73b,73cを閉じて弁74a,74b,74cを開く。分離器63b内の揮発性ガス及び蒸気が該当する配管を通って、冷却水配管80により冷却水が供給されている冷却器76a,76b,76cにそれぞれ供給される。各冷却器で蒸気が凝縮されて凝縮水が凝縮水配管81aに排出される。冷却器76a,76b,76c内の各揮発性ガスは回収配管82によって回収される。分離器63b内の油脂が分離器63bに接続された回収配管67によって回収され、固体が分離器63bに接続された回収配管69によって回収される。分離器63b内に残った熱水及び溶解物が分離器63bに接続された回収配管68によって回収される。 When the reforming reaction of the solid biomass in the reactor 62b is completed, the valve 64b is closed and the valve 66b is opened, and hot water and the dissolved product are introduced into the separator 63b. Similarly to the separator 63a, volatile gas and vapor are generated in the separator 63b. After the discharge of the volatile gas and vapor in the separator 63a to the coolers 76a, 76b, 76c is completed, the valves 73a, 73b, 73c are closed and the valves 74a, 74b, 74c are opened. The volatile gas and vapor in the separator 63b are supplied to the coolers 76a, 76b, and 76c to which the cooling water is supplied by the cooling water pipe 80 through the corresponding pipes. Steam is condensed in each cooler, and condensed water is discharged to the condensed water pipe 81a. Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82. Oils and fats in the separator 63b are recovered by a recovery pipe 67 connected to the separator 63b, and solids are recovered by a recovery pipe 69 connected to the separator 63b. Hot water and dissolved matter remaining in the separator 63b are recovered by a recovery pipe 68 connected to the separator 63b.
 弁64bを閉じる前に、弁85cを開いてバイオマス供給管84により粉砕された固体バイオマスを反応器62cに供給する。反応器62c内にバイオマスを充填した後、弁85cを閉じる。弁66bを開くために弁64bを閉じたとき、弁64cを開いて熱水管22から熱水を反応器62cに供給する。弁66cは閉じている。反応器62c内で、反応器62aと同様に、固体バイオマスの改質反応が生じる。 Before closing the valve 64b, the valve 85c is opened, and the solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62c. After filling the reactor 62c with biomass, the valve 85c is closed. When the valve 64b is closed to open the valve 66b, the valve 64c is opened to supply hot water from the hot water pipe 22 to the reactor 62c. The valve 66c is closed. In the reactor 62c, a reforming reaction of solid biomass occurs as in the reactor 62a.
 反応器62c内での固体バイオマスの改質反応が終了したとき、弁64cが閉じられて弁66cが開き、熱水及び溶解した生成物を分離器63cに導入する。分離器63c内でも、分離器63aと同様に、揮発性ガス及び蒸気が生成される。分離器63b内の揮発性ガス及び蒸気の冷却器76a,76b,76cへの排出が終了した後、弁74a,74b,74cを閉じて弁75a,75b,75cを開く。分離器63c内の揮発性ガス及び蒸気が該当する配管を通って、冷却水配管80により冷却水が供給されている冷却器76a,76b,76cにそれぞれ供給される。各冷却器で蒸気が凝縮されて凝縮水が凝縮水配管81aに排出される。冷却器76a,76b,76c内の各揮発性ガスは回収配管82によって回収される。分離器63c内の油脂が分離器63cに接続された回収配管67によって回収され、固体が分離器63cに接続された回収配管69によって回収される。分離器63c内に残った熱水及び溶解物が分離器63cに接続された回収配管68によって回収される。 When the reforming reaction of the solid biomass in the reactor 62c is completed, the valve 64c is closed and the valve 66c is opened, and hot water and the dissolved product are introduced into the separator 63c. Similarly to the separator 63a, volatile gas and vapor are also generated in the separator 63c. After the discharge of the volatile gas and vapor in the separator 63b to the coolers 76a, 76b, and 76c is completed, the valves 74a, 74b, and 74c are closed and the valves 75a, 75b, and 75c are opened. The volatile gas and steam in the separator 63c are supplied to the coolers 76a, 76b, and 76c to which the cooling water is supplied by the cooling water pipe 80 through the corresponding pipes. Steam is condensed in each cooler, and condensed water is discharged to the condensed water pipe 81a. Each volatile gas in the coolers 76a, 76b, and 76c is recovered by a recovery pipe 82. Oils and fats in the separator 63c are recovered by a recovery pipe 67 connected to the separator 63c, and solids are recovered by a recovery pipe 69 connected to the separator 63c. Hot water and dissolved matter remaining in the separator 63c are recovered by a recovery pipe 68 connected to the separator 63c.
 弁64cを閉じる前に、例えば、弁85aを開いてバイオマス供給管84により粉砕された固体バイオマスを反応器62aに供給する。反応器62a内にバイオマスを充填した後、弁85aを閉じる。弁66cを開くために弁64cを閉じたとき、弁64aを再び開いて熱水管22から熱水を反応器62aに供給する。弁66aは閉じている。このように、熱水発生装置21で生成された熱水を用いた固体バイオマスの改質反応が反応器62a,62b,62cで順番に行われる。 Before closing the valve 64c, for example, the valve 85a is opened and solid biomass pulverized by the biomass supply pipe 84 is supplied to the reactor 62a. After filling the reactor 62a with biomass, the valve 85a is closed. When the valve 64c is closed to open the valve 66c, the valve 64a is opened again to supply hot water from the hot water pipe 22 to the reactor 62a. The valve 66a is closed. As described above, the reforming reaction of the solid biomass using the hot water generated by the hot water generator 21 is sequentially performed in the reactors 62a, 62b, and 62c.
 回収配管82により回収される揮発性ガスは、例えば、高分子が分解したメタンである。回収配管68で回収される熱水に含まれた溶解物は、例えば、糖類である。回収配管69で回収される固体は、例えば、微量成分の金属類である。回収配管67で回収された油脂、及び回収配管68で回収された糖類等の有機化合物は、別のプロセスでエタノールなどに改質される。 The volatile gas recovered by the recovery pipe 82 is, for example, methane obtained by decomposing a polymer. The melt | dissolution substance contained in the hot water collect | recovered with the collection piping 68 is saccharides, for example. The solid recovered by the recovery pipe 69 is, for example, a trace amount of metals. The fats and oils recovered by the recovery pipe 67 and the organic compounds such as sugars recovered by the recovery pipe 68 are reformed to ethanol or the like by another process.
 本実施例は、熱併給発電プラント1において実施例1で生じる効果を得ることができる。 This example can obtain the effect produced in Example 1 in the cogeneration plant 1.
 本実施例に用いられるバイオマス改質装置61は、第1のプロセスを、バッチ処理、すなわち、反応器62a,62b,62cを切り替えて行うことができる。このため、熱水発生装置21で生成された熱水(亜臨界水)を反応器62a,62b,62cに順番に供給することができ、熱水発生装置21で生成された熱水を有効に利用することができる。 The biomass reformer 61 used in the present embodiment can perform the first process by batch processing, that is, by switching the reactors 62a, 62b, and 62c. For this reason, the hot water (subcritical water) produced | generated by the hot water generator 21 can be supplied to reactor 62a, 62b, 62c in order, and the hot water produced | generated by the hot water generator 21 can be used effectively. Can be used.
 冷却器76a,76b,76cを直列に接続している理由について説明する。分離器63a,63b,63cからの各生成物の回収は常温で行うことが好ましい。しかしながら、熱を回収する観点からは、できるだけ高温であることが望ましい。したがって、冷却器76a,76b,76cを直列に接続し、一つの分離器(例えば、分離器63a)内の揮発性ガス及び温度の高い蒸気を、3つの弁(例えば、弁73a,73b,73c)を実質的に同時に開いて、冷却水配管80で冷却水が供給されている冷却器76a,76b,76cに供給する。冷却器76a,76b,76cでの蒸気の凝縮によって冷却水を加熱することができ高温の温水を得ることができる。上記した3つの弁(例えば、弁73a,73b,73c)の開閉は、1つの反応器の入口弁及び出口弁(例えば、反応器62cに対する弁64c、66c)の切り替え操作に同調して行われる。これによって、冷却器76a,76b,76cには、分離器63a,63b,63cのいずれか1つの分離器が接続される。このように1つの分離器を冷却器76a,76b,76cに接続することによって、この分離器を早く常温にし、最も下流に位置する冷却器76cから排出される温水の温度を高くすることができる。 The reason why the coolers 76a, 76b, and 76c are connected in series will be described. It is preferable to collect each product from the separators 63a, 63b, and 63c at room temperature. However, it is desirable that the temperature is as high as possible from the viewpoint of recovering heat. Therefore, the coolers 76a, 76b, and 76c are connected in series, and the volatile gas and the high-temperature steam in one separator (for example, the separator 63a) are supplied to three valves (for example, the valves 73a, 73b, and 73c). Are substantially simultaneously opened and supplied to the coolers 76a, 76b and 76c to which the cooling water is supplied by the cooling water pipe 80. The cooling water can be heated by condensing steam in the coolers 76a, 76b, and 76c, and high-temperature hot water can be obtained. The above three valves (for example, the valves 73a, 73b, and 73c) are opened and closed in synchronization with the switching operation of the inlet valve and the outlet valve (for example, the valves 64c and 66c for the reactor 62c) of one reactor. . As a result, any one of the separators 63a, 63b, and 63c is connected to the coolers 76a, 76b, and 76c. By connecting one separator to the coolers 76a, 76b, and 76c in this way, the separator can be quickly brought to room temperature, and the temperature of the hot water discharged from the cooler 76c located on the most downstream side can be increased. .
 本実施例のバイオマス改質複合発電プラント60で用いるバイオマス改質装置は、バッチ処理のバイオマス改質装置61の替りに、米国特許第7476296号明細書に記載されたバイオマス改質装置のように他のタイプのバイオマス改質装置を用いてもよい。 The biomass reforming apparatus used in the biomass reforming combined power plant 60 of this embodiment is different from the biomass reforming apparatus 61 described in US Pat. No. 7,476,296, instead of the batch processing biomass reforming apparatus 61. This type of biomass reformer may be used.
 本発明の他の実施例である熱併給発電プラントを、図13を用いて説明する。本実施例の熱併給発電プラント1Cは、沸騰水型原子力発電プラント2及び熱水発生装置21Cを備えている。熱水発生装置21Cは、実施例1で用いられた熱水発生装置21において熱水管22を冷却水排出管16ではなく冷却水供給管15に接続した構成を有する。熱水発生装置21Cの他の構成は熱水発生装置21と同じである。 A cogeneration plant according to another embodiment of the present invention will be described with reference to FIG. The cogeneration plant 1C of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21C. The hot water generator 21C has a configuration in which the hot water pipe 22 is connected to the cooling water supply pipe 15 instead of the cooling water discharge pipe 16 in the hot water generator 21 used in the first embodiment. Other configurations of the hot water generator 21C are the same as those of the hot water generator 21.
 実施例1と異なる部分について説明する。熱水管22が冷却水供給管15に接続されているので、熱併給発電プラント1Cの運転中において、復水器8の伝熱管14に供給される前の温度の低い冷却水が、冷却水供給管15から熱水管22に供給される。加熱器24,25,26で、低圧タービン5及び高圧タービン4等の、沸騰水型原子力発電プラント2の主蒸気系から抽気された蒸気により実施例1と同様に加熱される。本実施例では、温度の低い冷却水が熱水管22に供給されるので、抽気管27,28,29によって該当する加熱器に供給されるそれぞれの蒸気の温度は、実施例1において抽気管27,28,29によって該当する加熱器に供給されるそれぞれの蒸気の温度よりも高くすることが望ましい。このため、加熱器24に接続された抽気管27は、抽気管17ではなく、抽気管17の低圧タービン5への接続位置よりも上流の位置で低圧タービン5に接続されている。加熱器25に接続された抽気管28は、抽気管18ではなく、抽気管27の低圧タービン5のその新たな接続位置よりも上流で抽気管18の低圧タービン5への接続位置よりも上流の位置で低圧タービン5に接続されている。加熱器26に接続された抽気管29は、抽気管19ではなく、抽気管19の高圧タービン4への接続位置よりも上流の位置で高圧タービン4に接続されている。このように、抽気管27,28,29の該当するタービンへの接続位置を、実施例1におけるそれらの接続位置も上流側に移動させることによって、より温度の高い抽気蒸気を該当する加熱器に供給することができる。蒸気ヒートポンプ装置36の蒸気圧縮機37Aに接続される抽気管48が、抽気管29に接続される。本実施例において、蒸気圧縮機37Aに供給される蒸気の温度は、実施例1におけるその温度よりも高くなる。 The difference from Example 1 will be described. Since the hot water pipe 22 is connected to the cooling water supply pipe 15, the cooling water having a low temperature before being supplied to the heat transfer pipe 14 of the condenser 8 during the operation of the cogeneration plant 1C is supplied with the cooling water. The hot water pipe 22 is supplied from the pipe 15. In the heaters 24, 25, and 26, the steam extracted from the main steam system of the boiling water nuclear power plant 2 such as the low pressure turbine 5 and the high pressure turbine 4 is heated in the same manner as in the first embodiment. In the present embodiment, since the cooling water having a low temperature is supplied to the hot water pipe 22, the temperature of each steam supplied to the corresponding heater by the extraction pipes 27, 28, and 29 is the extraction pipe 27 in the first embodiment. , 28, 29 are preferably higher than the temperature of the respective steam supplied to the corresponding heater. For this reason, the extraction pipe 27 connected to the heater 24 is not connected to the extraction pipe 17 but connected to the low-pressure turbine 5 at a position upstream of the connection position of the extraction pipe 17 to the low-pressure turbine 5. The extraction pipe 28 connected to the heater 25 is not the extraction pipe 18 but upstream of the new connection position of the extraction pipe 27 to the low-pressure turbine 5 and upstream of the connection position of the extraction pipe 18 to the low-pressure turbine 5. Connected to the low pressure turbine 5 in position. The extraction pipe 29 connected to the heater 26 is connected to the high-pressure turbine 4 at a position upstream of the connection position of the extraction pipe 19 to the high-pressure turbine 4, not the extraction pipe 19. As described above, the connection position of the extraction pipes 27, 28, and 29 to the corresponding turbine is also moved to the upstream side in the first embodiment, so that the extraction steam having a higher temperature is transferred to the corresponding heater. Can be supplied. The extraction pipe 48 connected to the steam compressor 37 </ b> A of the steam heat pump device 36 is connected to the extraction pipe 29. In the present embodiment, the temperature of the steam supplied to the steam compressor 37A is higher than that in the first embodiment.
 本実施例でも、加熱器26から熱水管22に熱水(亜臨界水)が排出される。この熱水は、蒸気ヒートポンプ装置36で加熱されてさらに温度の高い熱水(亜臨界水)になる。 Also in this embodiment, hot water (subcritical water) is discharged from the heater 26 to the hot water pipe 22. This hot water is heated by the steam heat pump device 36 to become hot water (subcritical water) having a higher temperature.
 本実施例は、復水器8から排出される冷却水を熱水の原料に用いることによって生じる廃熱量の低減効果、及び抽気管27の抽気管17への接続等による抽気点の低減効果を除いて、実施例1で生じる各効果を得ることができる。 This embodiment has the effect of reducing the amount of waste heat generated by using the cooling water discharged from the condenser 8 as the raw material for hot water, and the effect of reducing the extraction point by connecting the extraction tube 27 to the extraction tube 17. Except for this, each effect produced in the first embodiment can be obtained.
 前述した実施例2~4において、熱水管22の冷却水排出管16への接続を、本実施例と同様に、熱水管22の冷却水供給管15への接続に変更してもよい。 In the above-described Examples 2 to 4, the connection of the hot water pipe 22 to the cooling water discharge pipe 16 may be changed to the connection of the hot water pipe 22 to the cooling water supply pipe 15 as in the present embodiment.
 本発明の他の実施例である熱併給発電プラントを、図14を用いて説明する。本実施例の熱併給発電プラント1Dは、沸騰水型原子力発電プラント2及び熱水発生装置21Dを備えている。熱水発生装置21Dは、実施例1で用いられた熱水発生装置21において、熱水管22により熱水が供給される熱水利用設備90で利用された熱水の排水を戻す戻り配管86を、熱水管22に接続した構成を有する。さらに、熱水発生装置21Dは、流量調節弁87、流量計88及び制御器89を有している。熱水発生装置21Dの他の構成は熱水発生装置21と同じである。 A cogeneration plant according to another embodiment of the present invention will be described with reference to FIG. The cogeneration plant 1D of the present embodiment includes a boiling water nuclear power plant 2 and a hot water generator 21D. The hot water generator 21D is provided with a return pipe 86 for returning the hot water drainage used in the hot water utilization facility 90 to which hot water is supplied by the hot water pipe 22 in the hot water generator 21 used in the first embodiment. And a configuration connected to the hot water pipe 22. Furthermore, the hot water generator 21 </ b> D includes a flow rate adjustment valve 87, a flow meter 88, and a controller 89. Other configurations of the hot water generator 21D are the same as those of the hot water generator 21.
 実施例1と異なる部分について説明する。熱水管22に接続された熱水利用設備(例えば、バイオマス改質装置、または水熱合成装置)90に接続された戻り配管86がポンプ23よりも上流で熱水管22に接続される。流量調節弁87が、戻り配管86と熱水管22の接続点よりも上流で、熱水管22に設けられる。流量計88がポンプ23と加熱器24の間で熱水管22に設けられる。制御器89が流量調節弁87及び流量計88に接続される。 The difference from Example 1 will be described. A return pipe 86 connected to hot water utilization equipment (for example, a biomass reformer or hydrothermal synthesizer) 90 connected to the hot water pipe 22 is connected to the hot water pipe 22 upstream of the pump 23. A flow control valve 87 is provided in the hot water pipe 22 upstream of the connection point between the return pipe 86 and the hot water pipe 22. A flow meter 88 is provided in the hot water pipe 22 between the pump 23 and the heater 24. A controller 89 is connected to the flow control valve 87 and the flow meter 88.
 熱併給発電プラント1Dの運転中に、実施例1と同様に、加熱器24,25,26及び蒸気ヒートポンプ装置36によって、亜臨界水である熱水が生成される。この熱水は、熱水管22によって熱水利用設備90に供給され、熱水利用設備90で利用される。熱水利用設備90で利用された熱水は、温度が低下し、排水として戻り配管86に排出される。この排水は、戻り配管86を通して熱水管22に戻され、熱水管22内を流れる、復水器8から冷却水排出管16に排出された冷却水に混合される。この冷却水に混合された排水は、ポンプ23で昇圧されて加熱器24,25等に供給され、冷却水と共に加熱される。戻り配管86内を流れる排水の温度は、冷却水供給管15によって復水器8に供給される冷却水の温度よりも高くなっている。 During operation of the cogeneration plant 1D, hot water that is subcritical water is generated by the heaters 24, 25, and 26 and the steam heat pump device 36 as in the first embodiment. The hot water is supplied to the hot water utilization facility 90 through the hot water pipe 22 and used in the hot water utilization facility 90. The temperature of the hot water used in the hot water utilization facility 90 decreases and is discharged to the return pipe 86 as drainage. This waste water is returned to the hot water pipe 22 through the return pipe 86 and mixed with the cooling water discharged from the condenser 8 to the cooling water discharge pipe 16 flowing in the hot water pipe 22. The wastewater mixed with the cooling water is boosted by the pump 23, supplied to the heaters 24, 25, etc., and heated together with the cooling water. The temperature of the waste water flowing in the return pipe 86 is higher than the temperature of the cooling water supplied to the condenser 8 by the cooling water supply pipe 15.
 熱水管22によって熱水利用設備90に供給する熱水の流量を熱水利用設備90が必要とする熱水の流量に調節するためには、戻り配管86により熱水管22に供給される排水の流量だけ、冷却水排出管16から熱水管22に供給される冷却水の流量を低減させる必要がある。ポンプ23から吐出された、その冷却水と排水の混合水の流量が、流量計88によって計測される。制御器89は、流量計88で計測した流量を入力し、この流量に基づいて熱水利用設備90に供給される熱水の流量が流量設定値になるように流量調節弁87の開度を調節する。流量調節弁87の開度制御によって、戻り配管86から熱水管22に供給される排水の流量が多いときには、冷却水排出管16から熱水管22に供給される冷却水の流量が減少され、戻り配管86から熱水管22に供給される排水の流量が少ないときには、冷却水排出管16から熱水管22に供給される冷却水の流量が増加される。冷却水排出管16から熱水管22に供給される冷却水の流量は、熱水管22により熱水利用設備90に供給された熱水の流量と熱水利用設備90から戻り配管86に排出された排水の流量との差であり、熱水利用設備90内で消費された熱水の量である。 In order to adjust the flow rate of hot water supplied to the hot water use facility 90 by the hot water pipe 22 to the flow rate of hot water required by the hot water use facility 90, It is necessary to reduce the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 by the flow rate. The flow rate of the mixed water of the cooling water and the drainage discharged from the pump 23 is measured by the flow meter 88. The controller 89 inputs the flow rate measured by the flow meter 88, and based on this flow rate, opens the flow rate control valve 87 so that the flow rate of hot water supplied to the hot water utilization facility 90 becomes a flow rate set value. Adjust. When the flow rate of the waste water supplied from the return pipe 86 to the hot water pipe 22 is large by the opening degree control of the flow rate control valve 87, the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is reduced and returned. When the flow rate of the waste water supplied from the pipe 86 to the hot water pipe 22 is small, the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is increased. The flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is the flow rate of hot water supplied to the hot water utilization facility 90 by the hot water pipe 22 and discharged from the hot water utilization facility 90 to the return pipe 86. It is the difference from the flow rate of the waste water, and is the amount of hot water consumed in the hot water utilization facility 90.
 本実施例は実施例1で生じる各効果を得ることができる。本実施例は、戻り配管86から熱水管22に排水が供給されるので、冷却水排出管16から熱水管22に供給される冷却水の流量が実施例1よりも減少する。このため、本実施例は、実施例1に比べて、復水器8から外部環境に排出される廃熱量が増大する。 This example can obtain each effect produced in Example 1. In the present embodiment, since the drainage is supplied from the return pipe 86 to the hot water pipe 22, the flow rate of the cooling water supplied from the cooling water discharge pipe 16 to the hot water pipe 22 is smaller than that in the first embodiment. For this reason, compared with Example 1, the present Example increases the amount of waste heat discharged from the condenser 8 to the external environment.
 図14に示された熱水利用設備90がバイオマス改質装置(例えば、図11及び図12に示されたバイオマス改質装置61)であるとき、図14に示された、熱併給発電プラント1Dを含むシステムは、熱併給発電プラント1D及びバイオマス改質装置61を備えたバイオマス改質複合発電プラントになる。このバイオマス改質複合発電プラントでは、熱併給発電プラント1Dの熱水管22が、図12に示すように、バイオマス改質装置61の反応器62a,62b,62cにそれぞれ接続され、凝縮水配管81a(図12参照)が戻り配管86としてポンプ23と流量調節弁87の間で熱水管22に接続される。 When the hot water utilization facility 90 shown in FIG. 14 is a biomass reformer (for example, the biomass reformer 61 shown in FIGS. 11 and 12), the cogeneration plant 1D shown in FIG. Is a biomass reforming combined power plant including the cogeneration plant 1D and the biomass reforming device 61. In this combined biomass reforming power plant, the hot water pipe 22 of the cogeneration plant 1D is connected to the reactors 62a, 62b, 62c of the biomass reforming device 61 as shown in FIG. 12) is connected to the hot water pipe 22 between the pump 23 and the flow rate adjusting valve 87 as a return pipe 86.
 反応器62a,62b,62cにそれぞれ供給された熱水の一部は、回収される生成物(油、溶解物及び固体等)と共に分離器63a,63b,63cから回収配管67,68,69にそれぞれ排出される。分離器63a,63b,63cから冷却器76a,76b,76cに排出された残りの熱水の蒸気が、冷却器76a,76b,76cで凝縮されて凝縮水になり、この凝縮水が排水として戻り配管86を通って熱水管22に供給される。反応器62a,62b,62cにそれぞれ供給された熱水の流量から、冷却器76a,76b,76cのそれぞれから戻り配管86に排出された凝縮水の流量を差し引いた流量の冷却水が、流量調節弁87の開度制御によって、冷却水排出管16から熱水管22に供給される。 Part of the hot water supplied to each of the reactors 62a, 62b, and 62c is collected from the separators 63a, 63b, and 63c to the recovery pipes 67, 68, and 69 together with the recovered products (oil, dissolved matter, solid, etc.). Each is discharged. The remaining hot water vapor discharged from the separators 63a, 63b, and 63c to the coolers 76a, 76b, and 76c is condensed by the coolers 76a, 76b, and 76c to be condensed water, and the condensed water returns as waste water. The hot water pipe 22 is supplied through the pipe 86. Cooling water having a flow rate obtained by subtracting the flow rate of the condensed water discharged from each of the coolers 76a, 76b, and 76c to the return pipe 86 from the flow rate of hot water respectively supplied to the reactors 62a, 62b, and 62c The hot water pipe 22 is supplied from the cooling water discharge pipe 16 by controlling the opening degree of the valve 87.
 本バイオマス改質複合発電プラントは、熱併給発電プラント1Dで得られる前述の各効果、及び実施例4においてバイオマス改質装置61によってもたらされる各効果を得ることができる。 This biomass reforming combined power plant can obtain the above-described effects obtained by the combined heat and power generation plant 1D and the effects brought about by the biomass reforming apparatus 61 in the fourth embodiment.
 図14に示された熱併給発電プラント1Dにおいて、熱水管22の冷却水排出管16への接続を、実施例5と同様に、熱水管22の冷却水供給管15への接続に変更してもよい。 In the cogeneration plant 1D shown in FIG. 14, the connection of the hot water pipe 22 to the cooling water discharge pipe 16 is changed to the connection of the hot water pipe 22 to the cooling water supply pipe 15 as in the fifth embodiment. Also good.
 図14に示された熱水利用設備90が、熱水供給管22で供給された熱水の熱だけを利用する熱水利用設備である場合には、この熱水利用設備から戻り配管86に排出される排水の流量は、熱水管22によって供給される熱水の流量と同じである。このような熱水利用設備を用いた場合には、熱併給発電プラント1Dの熱水発生装置21Dでは、熱水管22は、戻り配管86に接続され、冷却水供給管15及び冷却水排出間16には接続されない。 When the hot water utilization facility 90 shown in FIG. 14 is a hot water utilization facility that uses only the heat of the hot water supplied through the hot water supply pipe 22, the hot water utilization facility 90 returns to the return pipe 86. The flow rate of the discharged waste water is the same as the flow rate of hot water supplied by the hot water pipe 22. When such a hot water utilization facility is used, in the hot water generator 21D of the cogeneration plant 1D, the hot water pipe 22 is connected to the return pipe 86, and the cooling water supply pipe 15 and the cooling water discharge interval 16 are connected. Is not connected to.
 実施例1から実施例6において、沸騰水型原子力発電プラント2を、加圧水型原子力発電プラント等の他のタイプの原子力発電プラント、及び火力発電プラントのいずれかに替えてもよい。加圧水型原子力発電プラントでは蒸気発生装置が蒸気発生器であり、火力発電プラントでは蒸気発生装置がボイラーである。 In Examples 1 to 6, the boiling water nuclear power plant 2 may be replaced with any other type of nuclear power plant such as a pressurized water nuclear power plant, and a thermal power plant. In the pressurized water nuclear power plant, the steam generator is a steam generator, and in the thermal power plant, the steam generator is a boiler.
 本発明は、原子力発電プラント、及び火力発電プラント等の発電プラントを用いた熱併給発電プラントに適用することができる。 The present invention can be applied to a combined heat and power generation plant using a power plant such as a nuclear power plant and a thermal power plant.
 1,1A,1B,1C,1D…熱併給発電プラント、2…沸騰水型原子力発電プラント、3…原子炉(蒸気発生装置)、4…高圧タービン、5…低圧タービン、8…復水器、9,10…低圧給水加熱器、11…高圧給水加熱器、12…給水配管、14…伝熱管、15…冷却水供給管、16…冷却水排出管、17,18,19,27,28,29…抽気管、21,21A,21B,21C,21D…熱水発生装置、22…熱水管、24,25,26…加熱器、36…蒸気ヒートポンプ装置、37A,37B,37C,37D…圧縮機、38…モータ、41A,41B,41C,41D…凝縮器、43A,43B,43C…湿分分離器、60…バイオマス改質複合発電プラント、61…バイオマス改質装置、62,62a,62b,62c…反応器、63,63a,63b,63c…分離器、76,76a,76b,76c…冷却器、86…戻り配管、90…熱水利用設備。 1, 1A, 1B, 1C, 1D ... cogeneration plant, 2 ... boiling water nuclear power plant, 3 ... nuclear reactor (steam generator), 4 ... high pressure turbine, 5 ... low pressure turbine, 8 ... condenser, DESCRIPTION OF SYMBOLS 9,10 ... Low pressure feed water heater, 11 ... High pressure feed water heater, 12 ... Feed water piping, 14 ... Heat transfer pipe, 15 ... Cooling water supply pipe, 16 ... Cooling water discharge pipe, 17, 18, 19, 27, 28, 29 ... Bleeding pipe, 21, 21A, 21B, 21C, 21D ... Hot water generator, 22 ... Hot water pipe, 24, 25, 26 ... Heater, 36 ... Steam heat pump device, 37A, 37B, 37C, 37D ... Compressor , 38 ... motor, 41A, 41B, 41C, 41D ... condenser, 43A, 43B, 43C ... moisture separator, 60 ... biomass reforming combined power plant, 61 ... biomass reforming device, 62, 62a, 62b, 62c ... anti Vessel, 63, 63a, 63 b, 63c ... separator, 76, 76a, 76 b, 76c ... cooler, 86 ... return pipe, 90 ... hot water utilizing facility.

Claims (26)

  1.  水を蒸気にする蒸気発生装置と、前記蒸気発生装置から前記蒸気が供給されるタービンと、前記タービンから排気された前記蒸気を凝縮する復水器と、熱水発生装置とを備え、
     前記熱水発生装置が、水を導く第1配管と、前記タービンから抽気された前記蒸気を導く第2配管と、前記第2配管に接続されて前記第1配管に設けられ、前記第1配管で導かれる前記水を前記第2配管で供給される前記蒸気で加熱する複数の加熱装置とを有することを特徴とする熱併給発電プラント。
    A steam generator for converting water into steam, a turbine to which the steam is supplied from the steam generator, a condenser for condensing the steam exhausted from the turbine, and a hot water generator,
    The hot water generator is provided in the first pipe connected to the second pipe, a second pipe for guiding the steam extracted from the turbine, a first pipe for guiding water, and the first pipe. And a plurality of heating devices for heating the water guided by the above-mentioned steam supplied by the second pipe.
  2.  前記第2配管が、前記タービンから抽気される前記蒸気を導く第1抽気管、及び前記タービンから抽気される前記蒸気を導く第2抽気管を含み、
     前記複数の加熱装置に含まれる第1加熱装置が前記第1抽気管に接続されており、前記複数の加熱装置に含まれる第2加熱装置である蒸気ヒートポンプ装置が、前記第1加熱装置よりも下流で前記第1配管に設けられ、
     前記蒸気ヒートポンプ装置が、前記第2抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記加熱された水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されている請求項1に記載の熱併給発電プラント。
    The second pipe includes a first extraction pipe that guides the steam extracted from the turbine, and a second extraction pipe that guides the steam extracted from the turbine,
    The first heating device included in the plurality of heating devices is connected to the first extraction pipe, and the steam heat pump device that is the second heating device included in the plurality of heating devices is more than the first heating device. Provided in the first pipe downstream;
    The steam heat pump device forms a pair for each of the plurality of compressors arranged in order to compress the steam guided by the second extraction pipe in order, and the first pipe A plurality of steam cooling units connected to a steam supply pipe for guiding the steam compressed by the pair of compressors, and further heating the heated water flowing in the first pipe by the steam. Having a device,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. The cogeneration plant according to claim 1, wherein the other one of the compressors is connected by a steam exhaust pipe.
  3.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記タービンに接続されて前記タービンから抽気される前記蒸気を導く第3抽気管と、前記第3抽気管が接続された位置より上流の位置で前記タービンに接続されて前記タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管が前記第4抽気管に接続されている請求項2に記載の熱併給発電プラント。
    The condenser and the steam generator are connected to each other, and the feed water generated by condensing the steam in the condenser is guided to the steam generator, and is connected to the turbine and extracted from the turbine. A third bleed pipe for guiding the steam, a fourth bleed pipe for guiding the steam extracted from the turbine connected to the turbine at a position upstream from a position where the third bleed pipe is connected, A first feed water heater provided on the feed water pipe and connected to the third bleed pipe, and a fourth feed pipe connected to the feed water pipe and connected to the fourth bleed pipe, arranged downstream of the first feed water heater. A second feed water heater,
    The cogeneration plant according to claim 2, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe is connected to the fourth extraction pipe.
  4.  前記タービンが、前記蒸気発生装置から前記蒸気が供給される高圧タービン、及び前記高圧タービンから排気される前記蒸気が供給される低圧タービンを含み、
     前記第2配管が、前記低圧タービンから抽気される前記蒸気を導く第1抽気管、及び前記高圧タービンから抽気される前記蒸気を導く第2抽気管を含み、
     前記複数の加熱装置に含まれる第1加熱装置が前記第1抽気管に接続されており、前記複数の加熱装置に含まれる第2加熱装置が、前記第1加熱装置よりも下流で前記第1配管に設けられ、さらに、前記第2抽気管に接続されている請求項1に記載の熱併給発電プラント。
    The turbine includes a high-pressure turbine to which the steam is supplied from the steam generator, and a low-pressure turbine to which the steam exhausted from the high-pressure turbine is supplied;
    The second pipe includes a first extraction pipe that guides the steam extracted from the low-pressure turbine, and a second extraction pipe that guides the steam extracted from the high-pressure turbine,
    A first heating device included in the plurality of heating devices is connected to the first extraction pipe, and a second heating device included in the plurality of heating devices is downstream of the first heating device and the first heating device. The combined heat and power generation plant according to claim 1, further comprising a pipe and further connected to the second extraction pipe.
  5.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記低圧タービンに接続されて前記低圧タービンから抽気される前記蒸気を導く第3抽気管と、前記高圧タービンに接続されて前記高圧タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管が前記第4抽気管に接続されている請求項4に記載の熱併給発電プラント。
    The low pressure turbine connected to the low pressure turbine, connected to the low pressure turbine, and connected to the low pressure turbine, connecting the condenser and the steam generator, and leading the feed water generated by condensing the steam in the condenser to the steam generator A third bleed pipe for guiding the steam extracted from the fourth high pressure turbine; a fourth bleed pipe for connecting the steam extracted from the high pressure turbine; and the third bleed pipe provided in the water supply pipe. Is connected to the first feed water heater, and the second feed water heater is provided downstream of the first feed water heater.
    The cogeneration plant according to claim 4, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe is connected to the fourth extraction pipe.
  6.  前記複数の加熱装置のうちの1つが蒸気ヒートポンプ装置であり、前記蒸気ヒートポンプ装置が前記第2加熱装置よりも下流に配置され、前記第2配管がさらに前記高圧タービンから抽気される前記蒸気を導く第5抽気管を含んでおり、
     前記蒸気ヒートポンプ装置が、前記第5抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記加熱された水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されている請求項4に記載の熱併給発電プラント。
    One of the plurality of heating devices is a steam heat pump device, the steam heat pump device is arranged downstream of the second heating device, and the second pipe further guides the steam extracted from the high-pressure turbine. Including the fifth bleed tube,
    The steam heat pump device forms a pair for each of the plurality of stages of compressors arranged so as to sequentially compress the steam guided by the fifth extraction pipe, and the first pipe A plurality of steam cooling units connected to a steam supply pipe for guiding the steam compressed by the pair of compressors, and further heating the heated water flowing in the first pipe by the steam. Having a device,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. The cogeneration plant according to claim 4, wherein the other one of the compressors is connected by a steam exhaust pipe.
  7.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記低圧タービンに接続されて前記低圧タービンから抽気される前記蒸気を導く第3抽気管と、前記高圧タービンに接続されて前記高圧タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管及び前記第5抽気管が前記第4抽気管に接続されている請求項6に記載の熱併給発電プラント。
    The low pressure turbine connected to the low pressure turbine, connected to the low pressure turbine, and connected to the low pressure turbine, connecting the condenser and the steam generator, and leading the feed water generated by condensing the steam in the condenser to the steam generator A third bleed pipe for guiding the steam extracted from the fourth high pressure turbine; a fourth bleed pipe for connecting the steam extracted from the high pressure turbine; and the third bleed pipe provided in the water supply pipe. Is connected to the first feed water heater, and the second feed water heater is provided downstream of the first feed water heater.
    The cogeneration plant according to claim 6, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe and the fifth extraction pipe are connected to the fourth extraction pipe.
  8.  前記第1加熱装置と前記給水配管を接続する第1凝縮水配管と、前記蒸気ヒートポンプ装置の各々の前記蒸気冷却装置と前記給水配管を接続する第2凝縮水配管とを備えた請求項3に記載の熱併給発電プラント。 The first condensate water pipe connecting the first heating device and the feed water pipe, and the second condensate water pipe connecting the steam cooling device and the feed water pipe of each of the steam heat pump devices. The combined heat and power plant described.
  9.  前記第1加熱装置と前記給水配管を接続する第1凝縮水配管と、前記第2加熱装置と前記給水配管を接続する第2凝縮水配管とを備えた請求項5に記載の熱併給発電プラント。 6. The cogeneration plant according to claim 5, comprising: a first condensate water pipe connecting the first heating device and the feed water pipe; and a second condensate water pipe connecting the second heating device and the feed water pipe. .
  10.  前記第1加熱装置と前記給水配管を接続する第1凝縮水配管と、前記第2加熱装置と前記給水配管を接続する第2凝縮水配管と、前記蒸気ヒートポンプ装置の各々の前記蒸気冷却装置と前記給水配管を接続する第3凝縮水配管とを備えた請求項7に記載の熱併給発電プラント。 A first condensed water pipe connecting the first heating device and the feed water pipe; a second condensed water pipe connecting the second heating device and the feed water pipe; and the steam cooling device of each of the steam heat pump devices; The cogeneration plant according to claim 7, further comprising a third condensed water pipe connecting the water supply pipe.
  11.  水を蒸気にする蒸気発生装置と、前記蒸気発生装置に接続されて前記蒸気を導く主蒸気配管、及び前記主蒸気配管により前記蒸気が供給されるタービンを有する主蒸気系と、前記タービンから排気された前記蒸気を凝縮する復水器と、熱水発生装置とを備え、
     前記熱水発生装置が、水を導く第1配管と、前記第1配管に設けられた蒸気ヒートポンプ装置とを有し、
     前記蒸気ヒートポンプ装置が、前記主蒸気系のある位置、及び前記復水器の蒸気空間のいずれかに接続された抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されていることを特徴とする熱併給発電プラント。
    A steam generator that converts water into steam, a main steam pipe that is connected to the steam generator and guides the steam, a main steam system that is supplied with the steam through the main steam pipe, and exhausted from the turbine A condenser for condensing the steam, and a hot water generator,
    The hot water generator has a first pipe for guiding water, and a steam heat pump device provided in the first pipe,
    A plurality of stages of compression in which the steam heat pump device is arranged to sequentially compress the steam guided by a bleed pipe connected to one of the positions of the main steam system and the steam space of the condenser. And a steam supply pipe for connecting the steam compressed by the compressor forming the pair is connected to each of the plurality of stages of compressors and connected to the steam. A plurality of steam cooling devices for further heating the water flowing in the first pipe,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. A combined heat and power plant, connected to another one of the compressors by a steam exhaust pipe.
  12.  前記第1配管が、前記復水器に接続され、前記復水器で前記蒸気を凝縮する冷却水を供給する冷却水供給管、及び前記復水器に接続され、前記復水器で前記蒸気を凝縮して前記復水器から排出される前記冷却水を導く冷却水排出管のいずれかに接続された請求項1ないし11のいずれか1項に記載の熱併給発電プラント。 The first pipe is connected to the condenser, and is connected to a cooling water supply pipe for supplying cooling water for condensing the steam in the condenser, and to the condenser, and the steam is connected to the condenser. The cogeneration plant according to any one of claims 1 to 11, wherein the cogeneration plant is connected to any one of cooling water discharge pipes that condense the cooling water and guide the cooling water discharged from the condenser.
  13.  前記第1配管が接続されて前記熱水発生装置で生成される熱水が前記第1配管によって供給される熱水利用設備に接続され、前記熱利用設備から排出された、前記熱水の少なくとも一部である排水を導く第3配管が、前記熱水発生装置より上流で前記第1配管に接続される請求項1ないし12のいずれか1項に記載の熱併給発電プラント。 The hot water generated by the hot water generator connected to the first pipe is connected to the hot water use facility supplied by the first pipe, and is discharged from the heat use facility. The cogeneration plant according to any one of claims 1 to 12, wherein a third pipe that guides part of the waste water is connected to the first pipe upstream of the hot water generator.
  14.  前記熱水発生装置が、温度が120℃から370℃の範囲にある前記熱水を生成する熱水発生装置である請求項1に記載の熱併給発電プラント。 The cogeneration plant according to claim 1, wherein the hot water generator is a hot water generator that generates the hot water having a temperature in a range of 120 ° C to 370 ° C.
  15.  水を蒸気にする蒸気発生装置と、前記蒸気発生装置から前記蒸気が供給されるタービンと、前記タービンから排気された前記蒸気を凝縮する復水器と、熱水発生装置と、前記熱水発生装置で生成された亜臨界水である熱水が供給されるバイオマス改質装置とを備え、
     前記熱水発生装置が、前記復水器に接続されて前記復水器で前記蒸気を凝縮する冷却水を供給する冷却水供給管、及び前記復水器に接続されて前記復水器で前記蒸気を凝縮して前記復水器から排出される前記冷却水を導く冷却水排出管のいずれかに接続され、冷却水を導く第1配管と、前記タービンから抽気された前記蒸気を導く第2配管と、前記第2配管に接続されて前記第1配管に設けられ、前記第1配管で導かれる前記冷却水を前記第2配管で供給される前記蒸気で加熱する複数の加熱装置とを有することを特徴とするバイオマス改質複合発電プラント。
    A steam generator for converting water into steam, a turbine to which the steam is supplied from the steam generator, a condenser for condensing the steam exhausted from the turbine, a hot water generator, and the hot water generator A biomass reformer to which hot water, which is subcritical water generated by the apparatus, is supplied,
    The hot water generator is connected to the condenser and supplies a cooling water supply pipe for supplying cooling water to condense the steam in the condenser, and connected to the condenser and the condenser in the condenser A first pipe for leading the cooling water connected to one of the cooling water discharge pipes for condensing the steam and leading the cooling water discharged from the condenser, and a second for guiding the steam extracted from the turbine A plurality of heating devices that are connected to the second pipe and are provided in the first pipe and that heat the cooling water guided by the first pipe with the steam supplied by the second pipe; A biomass reforming combined power plant characterized by that.
  16.  前記第2配管が、前記タービンから抽気される前記蒸気を導く第1抽気管、及び前記タービンから抽気される前記蒸気を導く第2抽気管を含み、
     前記複数の加熱装置に含まれる第1加熱装置が前記第1抽気管に接続されており、前記複数の加熱装置に含まれる第2加熱装置である蒸気ヒートポンプ装置が、前記第1加熱装置よりも下流で前記第1配管に設けられ、
     前記蒸気ヒートポンプ装置が、前記第2抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記加熱された冷却水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されている請求項15に記載のバイオマス改質複合発電プラント。
    The second pipe includes a first extraction pipe that guides the steam extracted from the turbine, and a second extraction pipe that guides the steam extracted from the turbine,
    The first heating device included in the plurality of heating devices is connected to the first extraction pipe, and the steam heat pump device that is the second heating device included in the plurality of heating devices is more than the first heating device. Provided in the first pipe downstream;
    The steam heat pump device forms a pair for each of the plurality of compressors arranged in order to compress the steam guided by the second extraction pipe in order, and the first pipe A plurality of steams connected to a steam supply pipe for guiding the steam compressed by the compressor formed in a pair, and further heating the heated cooling water flowing in the first pipe by the steam A cooling device,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. The biomass reforming combined power plant according to claim 15, which is connected to another one of the compressors by a steam exhaust pipe.
  17.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記タービンに接続されて前記タービンから抽気される前記蒸気を導く第3抽気管と、前記第3抽気管が接続された位置より上流の位置で前記タービンに接続されて前記タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管が前記第4抽気管に接続されている請求項16に記載のバイオマス改質複合発電プラント。
    The condenser and the steam generator are connected to each other, and the feed water generated by condensing the steam in the condenser is guided to the steam generator, and is connected to the turbine and extracted from the turbine. A third bleed pipe for guiding the steam, a fourth bleed pipe for guiding the steam extracted from the turbine connected to the turbine at a position upstream from a position where the third bleed pipe is connected, A first feed water heater provided on the feed water pipe and connected to the third bleed pipe, and a fourth feed pipe connected to the feed water pipe and connected to the fourth bleed pipe, arranged downstream of the first feed water heater. A second feed water heater,
    The biomass reforming combined power plant according to claim 16, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe is connected to the fourth extraction pipe.
  18.  前記タービンが、前記蒸気発生装置から前記蒸気が供給される高圧タービン、及び前記高圧タービンから排気される前記蒸気が供給される低圧タービンを含み、
     前記第2配管が、前記低圧タービンから抽気される前記蒸気を導く第1抽気管、及び前記高圧タービンから抽気される前記蒸気を導く第2抽気管を含み、
     前記複数の加熱装置に含まれる第1加熱装置が前記第1抽気管に接続されており、前記複数の加熱装置に含まれる第2加熱装置が、前記第1加熱装置よりも下流で前記第1配管に設けられ、さらに、前記第2抽気管に接続されている請求項15に記載のバイオマス改質複合発電プラント。
    The turbine includes a high-pressure turbine to which the steam is supplied from the steam generator, and a low-pressure turbine to which the steam exhausted from the high-pressure turbine is supplied;
    The second pipe includes a first extraction pipe that guides the steam extracted from the low-pressure turbine, and a second extraction pipe that guides the steam extracted from the high-pressure turbine,
    A first heating device included in the plurality of heating devices is connected to the first extraction pipe, and a second heating device included in the plurality of heating devices is downstream of the first heating device and the first heating device. The biomass reforming combined power plant according to claim 15 provided in piping and further connected to said 2nd extraction pipe.
  19.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記低圧タービンに接続されて前記低圧タービンから抽気される前記蒸気を導く第3抽気管と、前記高圧タービンに接続されて前記高圧タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管が前記第4抽気管に接続されている請求項18に記載のバイオマス改質複合発電プラント。
    The low pressure turbine connected to the low pressure turbine, connected to the low pressure turbine, and connected to the low pressure turbine, connecting the condenser and the steam generator, and leading the feed water generated by condensing the steam in the condenser to the steam generator A third bleed pipe for guiding the steam extracted from the fourth high pressure turbine; a fourth bleed pipe for connecting the steam extracted from the high pressure turbine; and the third bleed pipe provided in the water supply pipe. Is connected to the first feed water heater, and the second feed water heater is provided downstream of the first feed water heater.
    The biomass reforming combined power plant according to claim 18, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe is connected to the fourth extraction pipe.
  20.  前記複数の加熱装置のうちの1つが蒸気ヒートポンプ装置であり、前記蒸気ヒートポンプ装置が前記第2加熱装置よりも下流に配置され、前記第2配管がさらに前記高圧タービンから抽気される前記蒸気を導く第5抽気管を含んでおり、
     前記蒸気ヒートポンプ装置が、前記第5抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記加熱された冷却水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されている請求項18に記載のバイオマス改質複合発電プラント。
    One of the plurality of heating devices is a steam heat pump device, the steam heat pump device is disposed downstream of the second heating device, and the second pipe further guides the steam extracted from the high-pressure turbine. Including the fifth bleed tube,
    The steam heat pump device forms a pair for each of the plurality of stages of compressors arranged so as to sequentially compress the steam guided by the fifth extraction pipe, and the first pipe A plurality of steams connected to a steam supply pipe for guiding the steam compressed by the compressor formed in a pair, and further heating the heated cooling water flowing in the first pipe by the steam A cooling device,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. 19. The combined biomass reforming power plant according to claim 18, connected to another one of the compressors by a steam exhaust pipe.
  21.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記低圧タービンに接続されて前記低圧タービンから抽気される前記蒸気を導く第3抽気管と、前記高圧タービンに接続されて前記高圧タービンから抽気される前記蒸気を導く第4抽気管と、前記給水配管に設けられて前記第3抽気管が接続された第1給水加熱器と、前記給水配管に設けられて前記第4抽気管が接続され、前記第1給水加熱器よりも下流に配置された第2給水加熱器とを備え、
     前記第1抽気管が前記第3抽気管に接続され、前記第2抽気管及び前記第5抽気管が前記第4抽気管に接続されている請求項20に記載のバイオマス改質複合発電プラント。
    The low pressure turbine connected to the low pressure turbine, connected to the low pressure turbine, and connected to the low pressure turbine, connecting the condenser and the steam generator, and leading the feed water generated by condensing the steam in the condenser to the steam generator A third bleed pipe for guiding the steam extracted from the fourth high pressure turbine; a fourth bleed pipe for connecting the steam extracted from the high pressure turbine; and the third bleed pipe provided in the water supply pipe. Is connected to the first feed water heater, and the second feed water heater is provided downstream of the first feed water heater.
    21. The combined biomass reforming power plant according to claim 20, wherein the first extraction pipe is connected to the third extraction pipe, and the second extraction pipe and the fifth extraction pipe are connected to the fourth extraction pipe.
  22.  水を蒸気にする蒸気発生装置と、前記蒸気発生装置に接続されて前記蒸気を導く主蒸気配管、及び前記主蒸気配管により前記蒸気が供給されるタービンを有する主蒸気系と、前記タービンから排気された前記蒸気を凝縮する復水器と、熱水発生装置と、前記熱水発生装置で生成された亜臨界水である熱水が供給されるバイオマス改質装置とを備え、
     前記熱水発生装置が、前記復水器に接続されて前記復水器で前記蒸気を凝縮する冷却水を供給する冷却水供給管、及び前記復水器に接続されて前記復水器で前記蒸気を凝縮して前記復水器から排出される前記冷却水を導く冷却水排出管のいずれかに接続され、前記冷却水を導く第1配管と、前記第1配管に設けられた蒸気ヒートポンプ装置とを有し、
     前記蒸気ヒートポンプ装置が、前記主蒸気系のある位置、及び前記復水器の蒸気空間のいずれかに接続された抽気管で導かれる前記蒸気を順番に圧縮するように配置された複数段の圧縮機と、前記複数段の圧縮機ごとに対を形成して前記第1配管に設けられ、対を形成した前記圧縮機で圧縮された前記蒸気を導く蒸気供給管が接続されて、この蒸気によって前記第1配管内を流れる前記加熱された冷却水をさらに加熱する複数の蒸気冷却装置とを有し、
     最終段の前記圧縮機から圧縮された前記蒸気が供給される前記蒸気冷却装置を除いて、前記蒸気供給管が接続された前記蒸気冷却装置が、この蒸気供給管が接続された前記圧縮機以外の他の1つの前記圧縮機に、蒸気排気管によって接続されていることを特徴とするバイオマス改質複合発電プラント。
    A steam generator that converts water into steam, a main steam pipe that is connected to the steam generator and guides the steam, a main steam system that is supplied with the steam through the main steam pipe, and exhausted from the turbine A condenser that condenses the steam, a hot water generator, and a biomass reformer that is supplied with hot water that is subcritical water generated by the hot water generator,
    The hot water generator is connected to the condenser and supplies a cooling water supply pipe for supplying cooling water to condense the steam in the condenser, and connected to the condenser and the condenser in the condenser A steam pipe connected to one of the cooling water discharge pipes for condensing steam and discharging the cooling water discharged from the condenser, and a steam heat pump device provided in the first pipe for guiding the cooling water And
    A plurality of stages of compression in which the steam heat pump device is arranged to sequentially compress the steam guided by a bleed pipe connected to one of the positions of the main steam system and the steam space of the condenser. And a steam supply pipe for connecting the steam compressed by the compressor forming the pair is connected to each of the plurality of stages of compressors and connected to the steam. A plurality of steam cooling devices for further heating the heated cooling water flowing in the first pipe,
    Except for the steam cooling device to which the compressed steam is supplied from the compressor at the final stage, the steam cooling device to which the steam supply pipe is connected is other than the compressor to which the steam supply pipe is connected. A biomass reforming combined power plant, which is connected to another one of the compressors by a steam exhaust pipe.
  23.  前記復水器と前記蒸気発生装置を接続し、前記復水器で前記蒸気を凝縮することによって生成された給水を前記蒸気発生装置に導く給水配管と、前記蒸気ヒートポンプ装置の各々の前記蒸気冷却装置と前記給水配管を接続する凝縮水配管とを備えた請求項22に記載のバイオマス改質複合発電プラント。 The steam cooling of each of the steam heat pump device, the feed water pipe connecting the condenser and the steam generator, and leading the feed water generated by condensing the steam in the condenser to the steam generator. The biomass reforming combined power plant according to claim 22, further comprising a condensate water pipe connecting the apparatus and the water supply pipe.
  24.  前記バイオマス改質装置が、前記熱水が供給され、この熱水によってバイオマスを改質する反応器、及び前記反応器に接続され、前記熱水及び改質によって生成される複数の生成物が供給される分離器を有する請求項15または22に記載のバイオマス改質複合発電プラント。 The biomass reforming apparatus is supplied with the hot water, and is connected to the reactor for reforming biomass with the hot water, and the hot water and a plurality of products generated by the reforming are supplied. The biomass reforming combined power plant according to claim 15 or 22, comprising a separator to be operated.
  25.  前記バイオマス改質装置から排出された、前記熱水の少なくとも一部である排水を導く第3配管が、前記熱水発生装置より上流で前記第1配管に接続される請求項15ないし24のいずれか1項に記載のバイオマス改質複合発電プラント。 The third pipe for guiding drainage that is at least part of the hot water discharged from the biomass reformer is connected to the first pipe upstream from the hot water generator. The biomass reforming combined power plant according to claim 1.
  26.  前記熱水発生装置が、温度が120℃から370℃の範囲にある前記熱水を生成する熱水発生装置である請求項15または22に記載のバイオマス改質複合発電プラント。 The biomass reforming combined power plant according to claim 15 or 22, wherein the hot water generator is a hot water generator that generates the hot water having a temperature in a range of 120 ° C to 370 ° C.
PCT/JP2009/004640 2009-09-16 2009-09-16 Cogeneration power plant and biomass reforming combined cycle plant WO2011033559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/004640 WO2011033559A1 (en) 2009-09-16 2009-09-16 Cogeneration power plant and biomass reforming combined cycle plant
JP2011531637A JP5331890B2 (en) 2009-09-16 2009-09-16 Cogeneration plant and biomass reforming combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004640 WO2011033559A1 (en) 2009-09-16 2009-09-16 Cogeneration power plant and biomass reforming combined cycle plant

Publications (1)

Publication Number Publication Date
WO2011033559A1 true WO2011033559A1 (en) 2011-03-24

Family

ID=43758188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004640 WO2011033559A1 (en) 2009-09-16 2009-09-16 Cogeneration power plant and biomass reforming combined cycle plant

Country Status (2)

Country Link
JP (1) JP5331890B2 (en)
WO (1) WO2011033559A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024046A (en) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd Method and system for manufacturing gasoline from methanol and generating power
JP5906348B1 (en) * 2015-08-24 2016-04-20 春男 上原 Semi-carbide manufacturing apparatus and power generation system
EP3098549A1 (en) * 2015-05-26 2016-11-30 General Electric Technology GmbH Lignite drying with a heat recovery circuit
US9835056B2 (en) 2015-05-26 2017-12-05 General Electric Technology Gmbh Lignite drying integration with a water/steam power cycle
WO2018001436A1 (en) * 2016-06-30 2018-01-04 Hsl Energy Holding Aps Plant and process for production of a high pressure steam
US9944875B2 (en) 2015-05-26 2018-04-17 General Electric Technology Gmbh Lignite drying in a lignite fired power plant with a heat pump
US10392575B2 (en) 2015-05-26 2019-08-27 General Electric Company Lignite drying with closed loop heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276368B1 (en) * 2017-03-03 2021-07-12 대우조선해양 주식회사 Power Generation System and Method Using Supercritical Carbon Dioxide
KR102038071B1 (en) * 2019-06-06 2019-10-29 (주)케이알터빈에너지 Power generation system using steam turbine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126005A (en) * 1983-01-10 1984-07-20 Hitachi Ltd Power generating system supplying heat energy simultaneously
JPH11172262A (en) * 1997-12-10 1999-06-29 Agency Of Ind Science & Technol Process for gasifying cellulosic biomass
JP2002105466A (en) * 2000-09-29 2002-04-10 Osaka Gas Co Ltd Manufacturing method of fuel gas
JP2007051565A (en) * 2005-08-16 2007-03-01 Toshiba Corp Warm water overheat temperature control device and cogeneration power plant
JP2007205188A (en) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd Energy saving installation using waste heat
JP2007205187A (en) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd Heat recovery system attached to boiler-steam turbine system
JP2007333336A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Energy supply system, energy supply method, and method for remodeling energy supply system
JP2008002413A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Cooling device, gas turbine system using cooling device, heat pump system using cooling mechanism, cooling method, and cooling device operating method
JP2009133318A (en) * 2009-02-26 2009-06-18 Hitachi Ltd System having compressor equipped with multiple middle coolers, and cooling method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126005A (en) * 1983-01-10 1984-07-20 Hitachi Ltd Power generating system supplying heat energy simultaneously
JPH11172262A (en) * 1997-12-10 1999-06-29 Agency Of Ind Science & Technol Process for gasifying cellulosic biomass
JP2002105466A (en) * 2000-09-29 2002-04-10 Osaka Gas Co Ltd Manufacturing method of fuel gas
JP2007051565A (en) * 2005-08-16 2007-03-01 Toshiba Corp Warm water overheat temperature control device and cogeneration power plant
JP2007205188A (en) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd Energy saving installation using waste heat
JP2007205187A (en) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd Heat recovery system attached to boiler-steam turbine system
JP2007333336A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Energy supply system, energy supply method, and method for remodeling energy supply system
JP2008002413A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Cooling device, gas turbine system using cooling device, heat pump system using cooling mechanism, cooling method, and cooling device operating method
JP2009133318A (en) * 2009-02-26 2009-06-18 Hitachi Ltd System having compressor equipped with multiple middle coolers, and cooling method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024046A (en) * 2011-07-15 2013-02-04 Mitsubishi Heavy Ind Ltd Method and system for manufacturing gasoline from methanol and generating power
US9193918B2 (en) 2011-07-15 2015-11-24 Mitsubishi Heavy Industries, Ltd. Method for generating electricity and for producing gasoline from methanol and system therefor
EP3098549A1 (en) * 2015-05-26 2016-11-30 General Electric Technology GmbH Lignite drying with a heat recovery circuit
US9835056B2 (en) 2015-05-26 2017-12-05 General Electric Technology Gmbh Lignite drying integration with a water/steam power cycle
US9944875B2 (en) 2015-05-26 2018-04-17 General Electric Technology Gmbh Lignite drying in a lignite fired power plant with a heat pump
US9944874B2 (en) 2015-05-26 2018-04-17 General Electric Technology Gmbh Lignite drying with a heat recovery circuit
US10392575B2 (en) 2015-05-26 2019-08-27 General Electric Company Lignite drying with closed loop heat pump
JP5906348B1 (en) * 2015-08-24 2016-04-20 春男 上原 Semi-carbide manufacturing apparatus and power generation system
JP2017043657A (en) * 2015-08-24 2017-03-02 春男 上原 Semicarbide producing apparatus, and power generation system
WO2018001436A1 (en) * 2016-06-30 2018-01-04 Hsl Energy Holding Aps Plant and process for production of a high pressure steam

Also Published As

Publication number Publication date
JP5331890B2 (en) 2013-10-30
JPWO2011033559A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5331890B2 (en) Cogeneration plant and biomass reforming combined power plant
US8938966B2 (en) Storage of electrical energy with thermal storage and return through a thermodynamic cycle
US7987676B2 (en) Two-phase expansion system and method for energy recovery
EP0372864B1 (en) Method of and apparatus for producing power using steam
JP5462939B2 (en) Power generation and seawater desalination complex plant
Wang et al. Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems—Part 1: The desalination unit and its combination with a steam-injected gas turbine power system
AU2005268758B2 (en) Method and device for the transfer of heat from a heat source to a thermodynamic circuit with a working medium of at least two substances with non-isothermal evaporation and condensation
CN102639818B (en) Thermodynamic machine and method for the operation thereof
AU707916B1 (en) Integrated air separation and combustion turbine process
US20080190110A1 (en) Heat energy supply system and method, and reconstruction method of the system
TW201211375A (en) Energy conversion using RANKINE cycle system
KR20040105851A (en) Method and device for the production of electricity from the heat produced in the core of at least one high-temperature nuclear reactor
CN112985143B (en) CO2 gas-liquid phase change-based multistage compression energy storage device for converting heat energy into mechanical energy
EP1645613A1 (en) Novel fuel production plant and seawater desalination system for use therein
US7493764B2 (en) Electric power generation/hydrogen production combination plant
KR101247772B1 (en) generator of ship using the organic rankine cycle
JP4972708B2 (en) Steam-utilizing plant, operation method of the plant, steam supply device, and steam supply method
KR20210104067A (en) District heating network including heat pump unit and heat pump unit
CN102159798B (en) Co-production of synthesis gas and power
JP5976570B2 (en) Superheated steam generator
KR101935637B1 (en) Combined cycle power generation system
JPH11267643A (en) Reverse osmosis membrane sea water desalination plant and method thereof
CN217481350U (en) Thermal power unit system for coupling compressed liquid carbon dioxide energy storage
RU2261338C1 (en) Steam power plant with additional steam turbines
RU2166102C2 (en) Combined-cycle cogeneration process and combined- cycle plant implementing it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531637

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849419

Country of ref document: EP

Kind code of ref document: A1