JP2009133318A - System having compressor equipped with multiple middle coolers, and cooling method - Google Patents

System having compressor equipped with multiple middle coolers, and cooling method Download PDF

Info

Publication number
JP2009133318A
JP2009133318A JP2009043316A JP2009043316A JP2009133318A JP 2009133318 A JP2009133318 A JP 2009133318A JP 2009043316 A JP2009043316 A JP 2009043316A JP 2009043316 A JP2009043316 A JP 2009043316A JP 2009133318 A JP2009133318 A JP 2009133318A
Authority
JP
Japan
Prior art keywords
water
compressor
cooling
temperature
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009043316A
Other languages
Japanese (ja)
Inventor
Hidefumi Araki
秀文 荒木
Takanori Shibata
貴範 柴田
Shigeo Hatamiya
重雄 幡宮
Moriaki Tsukamoto
守昭 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009043316A priority Critical patent/JP2009133318A/en
Publication of JP2009133318A publication Critical patent/JP2009133318A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a middle cooling device having a structure capable of cooling cooled gas to saturation temperature without controlling a water injection amount, and capable of suppressing the deterioration of the reliability of a compressor and improving efficiency, for solving a problem wherein the actual temperature of compressed gas at an outlet of a middle cooler is higher than the saturation temperature even if controlling the water injection amount so as to cool the compressed gas to the saturation temperature, because a margin needs to be set when controlling the water injection amount in the middle cooler and the accuracy of properly adjusting the water injection amount by controlling has limits. <P>SOLUTION: The middle cooling mechanism of this invention is installed between stages of a gas compressor constituted by multiple compressing stages, and cools the compressed gas of the compressor. The compressed gas is cooled by spraying liquid of not less than required amount, and a means for suppressing the inflow of the liquid into the compressing stages is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気や水蒸気などを圧縮する気体圧縮機の被圧縮流体の冷却装置を用いたガスタービンシステムやヒートポンプシステムなどのシステム,作動媒体の冷却方法に関する。   The present invention relates to a system such as a gas turbine system or a heat pump system using a cooling device for a fluid to be compressed of a gas compressor that compresses air, water vapor, or the like, and a method for cooling a working medium.

空気や水蒸気を圧縮する気体圧縮機の中間冷却について、圧縮機の被圧縮気体を水の散
布により冷却する方式が知られている。圧縮機での圧縮過程中の被圧縮気体のような高温
の流体を冷却する方法に関し、例えば特開2005−274070号公報には、過熱蒸気
に減温水を注水して飽和温度近くまで減温させる装置が開示されている。
As an intermediate cooling of a gas compressor that compresses air or water vapor, a method of cooling a compressed gas of the compressor by spraying water is known. For example, JP 2005-274070 discloses a method for cooling a high-temperature fluid such as a gas to be compressed during a compression process in a compressor. An apparatus is disclosed.

圧縮機の中間冷却器内での注水により被圧縮気体を飽和温度近くまで冷却する方式では
、過剰注水によるエロージョンや過少注水による冷却効率の低下を抑える必要がある。そ
のため従来、中間冷却器内への注水により被圧縮気体を飽和温度近くまで冷却する場合に
は、中間冷却器の出口側の蒸気温度等を元にした注水量の制御が必須であった。
In the method of cooling the compressed gas to near the saturation temperature by water injection in the intermediate cooler of the compressor, it is necessary to suppress the erosion due to excessive water injection and the decrease in cooling efficiency due to under water injection. Therefore, conventionally, when the gas to be compressed is cooled to near the saturation temperature by water injection into the intermediate cooler, it is essential to control the water injection amount based on the steam temperature on the outlet side of the intermediate cooler.

特開2005−274070号公報JP 2005-274070 A

水を散布する方式の中間冷却器での散布水量を制御する場合、制御の基準となる計測値の計測誤差や、計測してから散布水量の加減作業が完了するまでの時間差を考える必要がある。これらを考慮したマージンを設定しなければならないために、制御により注水量を適正に調節する精度には限界がある。そのため、被圧縮気体を飽和温度まで冷却しようと注水量を制御したとしても、実際には中間冷却器出口での被圧縮気体の温度は飽和温度よりも高く、この分だけ圧縮機の効率は低い。本発明の目的は、圧縮機の効率向上を達成することができる冷却装置を提供することにある。   When controlling the amount of sprayed water with an intercooler that sprays water, it is necessary to consider the measurement error of the measurement value that serves as the control reference, and the time difference from the measurement until the adjustment of the sprayed water amount is completed. . Since it is necessary to set a margin that takes these into account, there is a limit to the accuracy with which the amount of water injection is appropriately adjusted by control. Therefore, even if the amount of water injection is controlled to cool the compressed gas to the saturation temperature, the temperature of the compressed gas at the outlet of the intermediate cooler is actually higher than the saturation temperature, and the efficiency of the compressor is low by this amount. . The objective of this invention is providing the cooling device which can achieve the efficiency improvement of a compressor.

上記目的を達成するため、本発明のシステムは、作動流体を圧縮する第一の圧縮機と、前記第一の圧縮機で圧縮された作動流体を水との直接接触熱交換で冷却する第一の中間冷却器と、前記第一の中間冷却器で冷却された作動媒体を圧縮する第二の圧縮機と、前記第二の圧縮機で圧縮された作動媒体を水との直接接触熱交換で冷却する第二の中間冷却器と、前記第二の中間冷却器で冷却された作動媒体を圧縮する第三の圧縮機とを備えたシステムであって、前記第一の中間冷却器に水を供給する系統と、前記第一の中間冷却器から前記第二の中間冷却器へ水を供給する系統とを有する。   In order to achieve the above object, a system of the present invention includes a first compressor that compresses a working fluid and a first compressor that cools the working fluid compressed by the first compressor by direct contact heat exchange with water. An intermediate cooler, a second compressor that compresses the working medium cooled by the first intercooler, and the working medium compressed by the second compressor by direct contact heat exchange with water. A system comprising: a second intercooler for cooling; and a third compressor for compressing the working medium cooled by the second intercooler, wherein water is supplied to the first intercooler. A supply system; and a system for supplying water from the first intermediate cooler to the second intermediate cooler.

本発明によると、圧縮機の効率向上を達成することができる冷却装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the cooling device which can achieve the efficiency improvement of a compressor can be provided.

本発明の実施例1である中間冷却機構を適用したシンプルサイクルガスタービンシステムを示す。1 shows a simple cycle gas turbine system to which an intermediate cooling mechanism that is Embodiment 1 of the present invention is applied. 本発明の実施例1の冷却塔36の詳細図を示す。The detailed drawing of the cooling tower 36 of Example 1 of this invention is shown. 本発明の実施例1である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。1 shows a regeneration cycle gas turbine system including an intermediate cooling mechanism for a compressor that is Embodiment 1 of the present invention. 本発明の実施例2である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。6 shows a regeneration cycle gas turbine system including an intermediate cooling mechanism for a compressor that is Embodiment 2 of the present invention. 本発明の実施例1の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示す。The graph which each represents the distribution of the temperature with respect to the height direction position in the packing 71 installation part inside the cooling tower 36 of Example 1 of this invention, an absolute humidity, and humidification amount is shown. 本発明の実施例2の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示す。The graph showing the distribution of the temperature, the absolute humidity, and the humidification amount with respect to the height direction position in the packing 71 installation part inside the cooling tower 36 of Example 2 of the present invention is shown. 本発明の冷却塔36の詳細図を示す。A detailed view of the cooling tower 36 of the present invention is shown. 本発明の冷却塔36の詳細図を示す。A detailed view of the cooling tower 36 of the present invention is shown. 本発明の実施例3である圧縮機の中間冷却機構を備えた水蒸気ヒートポンプシステムを示す。The steam heat pump system provided with the intermediate cooling mechanism of the compressor which is Example 3 of this invention is shown. 本発明の実施例3の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,流量,蒸気圧の分布をそれぞれ表すグラフを示す。The graph which each represents temperature, the flow volume, and the distribution of a vapor pressure with respect to the height direction position in the packing 71 installation part inside the cooling tower 36 of Example 3 of this invention is shown. 本発明の実施例3の冷却塔を作動させる場合と作動させない場合の温度,圧力,質量流量の推移を示す。The transition of temperature, pressure, and mass flow rate when the cooling tower of Example 3 of the present invention is operated and when not operated is shown.

圧縮機の圧縮効率の向上技術につき説明する。気体圧縮機では、被圧縮気体を中間冷却することにより被圧縮気体の密度を大きくして圧縮に必要な動力を低減し、圧縮効率を向上させる。また、圧縮機に吸入される被圧縮気体に水を散布して被圧縮気体を冷却し、被圧縮気体の熱や圧縮機内での昇温効果により散布された水を蒸発させることで、圧縮動力を低減させつつ圧縮機主流流体である被圧縮気体の流量を増加させる。   A technique for improving the compression efficiency of the compressor will be described. In the gas compressor, the density of the gas to be compressed is increased by intercooling the gas to be compressed, the power required for the compression is reduced, and the compression efficiency is improved. Also, water is sprayed on the compressed gas sucked into the compressor to cool the compressed gas, and the sprayed power is evaporated by evaporating the sprayed water due to the heat of the compressed gas and the temperature rise effect in the compressor. The flow rate of the compressed gas, which is the main fluid of the compressor, is increased while reducing the pressure.

圧縮機の中間冷却装置内で被圧縮気体中に水を散布すると、圧縮機の圧縮動力を低減させつつ被圧縮気体の流量を増加させることができる。中間冷却器内で被圧縮気体の流量を増加させることは、同じ圧縮動力でより多くの気体を圧縮できたことを意味し、より一層の圧縮効率向上につながる。   When water is sprinkled into the compressed gas in the intermediate cooling device of the compressor, the flow rate of the compressed gas can be increased while reducing the compression power of the compressor. Increasing the flow rate of the compressed gas in the intercooler means that more gas can be compressed with the same compression power, which leads to further improvement in compression efficiency.

以上説明したように、圧縮機の中間冷却器内で水を散布すると、被圧縮気体の冷却効果と散布水の蒸発による被圧縮気体の増量効果という二つの効果により圧縮機の圧縮効率は向上する。このとき圧縮効率が最大となるのは被圧縮気体を飽和温度まで冷却した場合である。したがって、圧縮効率を向上させるためには被圧縮気体を飽和温度まで冷却可能な程度の多量の水を散布することが望ましい。   As described above, when water is sprayed in the intercooler of the compressor, the compression efficiency of the compressor is improved by two effects of the cooling effect of the compressed gas and the increase effect of the compressed gas by evaporation of the sprayed water. . At this time, the compression efficiency becomes maximum when the gas to be compressed is cooled to the saturation temperature. Therefore, in order to improve the compression efficiency, it is desirable to spray a large amount of water that can cool the compressed gas to the saturation temperature.

しかしながら中間冷却機内での散布水量が多すぎると、中間冷却器内で蒸発しきれなかった散布水が圧縮機内に流入して高速回転する圧縮段に液滴が衝突することでエロージョンと呼ばれる機械的な侵食が発生し、圧縮機の信頼性が低下する。   However, if the amount of sprayed water in the intercooler is too large, the sprayed water that could not evaporate in the intercooler flows into the compressor and the droplets collide with the compression stage that rotates at high speed, causing a mechanical condition called erosion. Erosion occurs, reducing the reliability of the compressor.

圧縮機の信頼性を低下させることなく、できるだけ圧縮効率を向上させるためには、中間冷却器内で蒸発可能な水量を超えることがない範囲内でできるだけ多くの水を散布できるように散布水量を制御するのが望ましい。   In order to improve the compression efficiency as much as possible without reducing the reliability of the compressor, the amount of sprayed water should be set so that as much water as possible can be sprayed without exceeding the amount of water that can be evaporated in the intercooler. It is desirable to control.

適切な散布水量の判断方法として、例えば中間冷却器出口の被圧縮気体温度を基準とすることが考えられる。圧縮機主流の圧力は設計で決められる略一定の値であり、圧力一定であればその圧力での飽和温度も一義的に定まる。中間冷却器出口での被圧縮気体の温度を飽和温度より5℃〜10℃程度高くなるよう設定すれば、中間冷却器出口で被圧縮気体は過熱状態にあり、散布水が蒸発せず液体の状態で圧縮機に流入する可能性は少ない。   As an appropriate method for determining the amount of sprayed water, for example, it is conceivable to use the compressed gas temperature at the outlet of the intercooler as a reference. The pressure of the compressor mainstream is a substantially constant value determined by design, and if the pressure is constant, the saturation temperature at that pressure is also uniquely determined. If the temperature of the compressed gas at the outlet of the intermediate cooler is set to be about 5 ° C. to 10 ° C. higher than the saturation temperature, the compressed gas at the outlet of the intermediate cooler is in an overheated state, and the sprayed water does not evaporate. There is little possibility to flow into the compressor in the state.

この例で、被圧縮気体の温度を飽和温度とせずに飽和温度より5℃〜10℃程度高くなるよう設定するのは、気体温度の計測誤差や、計測してから注水量の加減作業が完了するまでの時間差を考慮したマージンをとる必要があるためである。このマージンは、被圧縮気体温度が高くなるようにとる必要がある。中間冷却器出口で被圧縮気体温度が飽和温度より低くなった場合、ここでの被圧縮気体は飽和状態であるため散布水の一部が蒸発せず液体のまま残ってしまい、圧縮機の信頼性は低下する。   In this example, setting the temperature of the compressed gas to be about 5 ° C to 10 ° C higher than the saturation temperature without setting it as the saturation temperature, the measurement error of the gas temperature, and the adjustment of the water injection amount after measurement are completed This is because it is necessary to take a margin in consideration of the time difference until it is done. This margin needs to be set so that the temperature of the compressed gas becomes high. If the compressed gas temperature at the outlet of the intercooler becomes lower than the saturation temperature, the compressed gas here is in a saturated state. Sex declines.

中間冷却器出口温度以外の測定値を基準とする技術も考えられる。しかし、圧縮機の信頼性を低下させないようにするためにはマージンを設定する必要があり、そのマージンは被圧縮気体の温度が高くなるように設定される。つまり、散布水量を制御する方法では被圧縮気体を飽和温度まで冷却することは困難である。   A technique based on measurement values other than the intermediate cooler outlet temperature is also conceivable. However, in order not to reduce the reliability of the compressor, it is necessary to set a margin, and the margin is set so that the temperature of the compressed gas becomes high. That is, it is difficult to cool the compressed gas to the saturation temperature by the method of controlling the amount of sprayed water.

なお、以上説明した散布水量を制御する方法では、被圧縮気体が飽和状態でない限り、中間冷却器内に散布した水は全量蒸発することを前提とした。この前提条件が満たされていない中間冷却器では、蒸発せずに残る水量が多いために上記マージンをより多く設定しなければならず、被圧縮気体の冷却効果は低い。   In the above-described method for controlling the amount of sprayed water, it is assumed that all of the water sprayed in the intercooler evaporates unless the compressed gas is saturated. In the intercooler in which this precondition is not satisfied, since the amount of water remaining without being evaporated is large, the margin must be set more, and the cooling effect of the compressed gas is low.

この前提条件を満たすよう効率的に被圧縮気体と散布水とを熱交換させるためには、被圧縮気体と散布水との接触面積を広くすることが望ましい。このためには、中間冷却装置内の気液接触流路を長くする、散布水の液滴の大きさを微細なものとすること等が考えられるが、いずれにしても装置が大型化,複雑化して設備コストは高くなる。   In order to efficiently exchange heat between the compressed gas and the spray water so as to satisfy this precondition, it is desirable to increase the contact area between the compressed gas and the spray water. To this end, it is conceivable to lengthen the gas-liquid contact flow path in the intermediate cooling device and to make the size of the droplets of the sprayed water fine. The equipment cost becomes higher.

これに対し本発明実施の形態の中間冷却装置は、散布水量の制御によるものではなく、構造的に、圧縮機の信頼性低下を抑制しつつ被圧縮気体を飽和温度まで冷却できるよう構成されている。   On the other hand, the intermediate cooling device according to the embodiment of the present invention is not based on the control of the amount of sprayed water, but is structurally configured to cool the compressed gas to the saturation temperature while suppressing a decrease in the reliability of the compressor. Yes.

具体的には、圧縮機への散布水の流入を抑制する手段を有し、被圧縮気体は所望量以上の散布水により冷却されるよう構成されている。ここで所望量とは、中間冷却装置出口における被圧縮気体の温度を飽和温度まで冷却することが可能な程度の水量を意味する。   Specifically, it has means for suppressing the inflow of sprayed water into the compressor, and the compressed gas is configured to be cooled by a desired amount or more of sprayed water. Here, the desired amount means an amount of water that can cool the temperature of the compressed gas at the outlet of the intermediate cooling device to the saturation temperature.

圧縮機への散布水の流入を抑制する手段としては、例えば、中間冷却器内において被圧縮気体を下方から上方へ流通させるように流路を構成し、被圧縮気体の入口と出口の間に水散布装置を設置し、水散布装置と被圧縮気体出口の間に、液体通過抑制装置であるミスト除去器を設置する方法がある。このような構成にすれば、蒸発せず液体のまま残った水の大半は重力の作用で流下し、被圧縮気体出口から圧縮機内へ流入する可能性は低い。一部の微細な液滴が被圧縮気体の流れにのって流路中を上方へ流れることも考えられるが、この微細な液滴は流路出口直前に設置されたミスト除去器に捕らえられて圧縮機内への流入が抑えられるため、信頼性低下を抑制できる。
このように構成することで、圧縮機の信頼性を低下させることなく被圧縮気体を飽和温度まで冷却することができる。つまり、本発明実施の形態の中間冷却装置を用いれば、散布水量を制御するものと比べてマージン設定が不要な分だけ被圧縮空気をさらに冷却することができ、圧縮効率のさらなる向上が可能である。これは重力の利用とミスト除去器の設置によって圧縮機への液水の流入を抑制した上で所望量以上の水を散布する構成とすることで、圧縮機の信頼性低下の抑制と被圧縮気体の飽和温度までの冷却を、原理的に両立できるよう構成したことによる。
As a means for suppressing the inflow of sprayed water to the compressor, for example, a flow path is configured to flow the compressed gas from below to above in the intercooler, and between the inlet and outlet of the compressed gas. There is a method of installing a water spray device and installing a mist remover, which is a liquid passage suppression device, between the water spray device and the compressed gas outlet. With such a configuration, most of the water that is not evaporated and remains in a liquid state flows down due to the action of gravity and is unlikely to flow into the compressor from the compressed gas outlet. It is conceivable that some fine droplets flow upward in the flow path along the flow of the compressed gas, but these fine droplets are caught by the mist remover installed just before the flow path outlet. Therefore, since the inflow into the compressor is suppressed, a decrease in reliability can be suppressed.
By comprising in this way, to-be-compressed gas can be cooled to saturation temperature, without reducing the reliability of a compressor. In other words, if the intermediate cooling device according to the embodiment of the present invention is used, the compressed air can be further cooled by an amount that does not require a margin setting as compared with the control of the amount of sprayed water, and the compression efficiency can be further improved. is there. This is a configuration in which the use of gravity and the installation of a mist remover suppresses the inflow of liquid water into the compressor and then sprays more water than the desired amount, thereby suppressing the reduction in compressor reliability and being compressed. This is because the cooling to the gas saturation temperature can be achieved in principle.

以下実施例を用い、本発明の冷却装置について詳細に説明する。   Hereinafter, the cooling device of the present invention will be described in detail using examples.

図3を用い、本発明の実施例を詳細に説明する。図3は、本発明の一実施例である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。   The embodiment of the present invention will be described in detail with reference to FIG. FIG. 3 shows a regeneration cycle gas turbine system including an intermediate cooling mechanism for a compressor according to an embodiment of the present invention.

本実施例の再生サイクルガスタービンシステムの主要な構成要素は、空気を圧縮する圧縮機10a,10bと、圧縮機10bで圧縮して得た圧縮空気をガスタービンの排ガスにより加熱する再生熱交換器60と、再生熱交換器60で加熱された空気と燃料50を燃焼させて燃焼ガスを生成する燃焼器12と、燃焼器12で生成された前記燃焼ガスにより駆動されるタービン14と、タービン14を駆動し再生熱交換器60で圧縮空気と熱交換した燃焼ガスが排ガスとして排出されるスタック82である。本実施例では、ガスタービンの圧力比は16、圧縮機10aと10bの圧力比はそれぞれ4、ガスタービンの吸気流量は、10kg/sのものを想定した。また、再生熱交換器の温度効率は90%、圧縮機とタービンのポリトロープ効率はそれぞれ90%および88%と想定した。ガスタービンの出力軸から得られる動力は発電機16によって電力に変換され送電系統に接続される。   The main components of the regenerative cycle gas turbine system of this embodiment are compressors 10a and 10b that compress air, and a regenerative heat exchanger that heats the compressed air obtained by compression by the compressor 10b with the exhaust gas of the gas turbine. 60, a combustor 12 that burns air heated by the regenerative heat exchanger 60 and the fuel 50 to generate combustion gas, a turbine 14 that is driven by the combustion gas generated by the combustor 12, and a turbine 14 Is a stack 82 in which the combustion gas heat-exchanged with the compressed air by the regenerative heat exchanger 60 is discharged as exhaust gas. In this embodiment, it is assumed that the pressure ratio of the gas turbine is 16, the pressure ratios of the compressors 10a and 10b are 4, and the intake flow rate of the gas turbine is 10 kg / s. The temperature efficiency of the regenerative heat exchanger was assumed to be 90%, and the polytropic efficiency of the compressor and turbine was assumed to be 90% and 88%, respectively. The power obtained from the output shaft of the gas turbine is converted into electric power by the generator 16 and connected to the power transmission system.

本実施例における特徴的な構成要素は、圧縮機10aの吐出配管86aに設置された中間冷却機構である冷却塔36である。図2を用いて冷却塔36を詳細に説明する。   A characteristic component in the present embodiment is a cooling tower 36 which is an intermediate cooling mechanism installed in the discharge pipe 86a of the compressor 10a. The cooling tower 36 will be described in detail with reference to FIG.

図2は、冷却塔36の詳細図を示す。図2に示した冷却塔36aには、塔の下部に落下した循環水を塔内の充填物71の上方に再循環させる循環ポンプ6が設置されている。また、液溜り74には給水ポンプ7と調整弁38により補給水を供給可能である。被圧縮空気の入口であるガス分散器70は、吐出配管86aを介して圧縮機10aから導いた圧縮空気が冷却塔36a内のある部分に集中することのないよう分散させるために設置される。このガス分散器70は、上方から落下する液滴の流入を避けるため下向きに開口部を有している。図2に示した冷却塔36は充填物71を用いた充填塔である。充填物71はガス分散器70の上方に気液接触の有効面積を広くするために設置される。充填物71としては、例えば化学プラントなどで一般的に用いられる体積あたりの表面積が大きな構造物が用いられる。本実施例では、充填物71として市販の不規則充填物を利用する。冷却塔36aの塔径は、充填物71の性能仕様として一般的に開示されているフラッディング特性から1.8mのものを適用した。フラッディング(Flooding)とは、上向きのガス流れに対向して液膜を流下させる充填塔や多孔板塔において、ガスの流速が増加した場合に、ガスの流れから受ける上向きの力によって散布水が下向きに流れることができなくなる現象である。充填物71の充填高さは、35℃程度の水を散布した際に冷却塔36aの出口での空気温度が60℃前後になることを想定し、高さ0.8mのものを適用した。圧縮機への液体の流入を抑制する流体通過抑制装置であるミスト除去器72は、充填物71の表面で上向きの空気流と下向きの液膜流とのせん断力によって生じたエントレインメントなどの液滴を除去し、液滴の下流側圧縮機10bへの流入を抑制する。そのためミスト除去器72は充填物71,液分散器80の上方に設置することが望ましい。循環ポンプ6は、冷却塔36aの下部の液溜り74から、配管76を介して液相水を吸入する。   FIG. 2 shows a detailed view of the cooling tower 36. The cooling tower 36a shown in FIG. 2 is provided with a circulation pump 6 that recirculates the circulating water dropped to the lower part of the tower above the packing 71 in the tower. The liquid reservoir 74 can be supplied with makeup water by the water supply pump 7 and the regulating valve 38. The gas distributor 70 serving as an inlet for the compressed air is installed to disperse the compressed air led from the compressor 10a through the discharge pipe 86a so as not to concentrate on a certain part in the cooling tower 36a. The gas disperser 70 has an opening downward to avoid inflow of liquid droplets falling from above. The cooling tower 36 shown in FIG. 2 is a packed tower using a packed material 71. The filling 71 is installed above the gas distributor 70 in order to widen the effective area of gas-liquid contact. As the filling 71, for example, a structure having a large surface area per volume generally used in a chemical plant or the like is used. In this embodiment, a commercially available irregular filling is used as the filling 71. As the tower diameter of the cooling tower 36a, a tower diameter of 1.8 m was applied because of the flooding characteristics generally disclosed as the performance specifications of the packing 71. Flooding is a packed tower or perforated plate tower that flows down a liquid film opposite to an upward gas flow. When the gas flow rate increases, the sprayed water is directed downward by the upward force received from the gas flow. It is a phenomenon that can no longer flow. The packing height of the packing material 71 is 0.8 m, assuming that the air temperature at the outlet of the cooling tower 36 a is around 60 ° C. when water of about 35 ° C. is sprayed. A mist remover 72, which is a fluid passage restraint device that restrains the inflow of liquid to the compressor, is a liquid such as entrainment generated by the shearing force between the upward air flow and the downward liquid film flow on the surface of the filling 71. The droplets are removed, and the inflow of the droplets to the downstream compressor 10b is suppressed. Therefore, it is desirable to install the mist remover 72 above the filler 71 and the liquid distributor 80. The circulation pump 6 sucks liquid phase water from a liquid pool 74 below the cooling tower 36 a through a pipe 76.

本実施例では循環ポンプ6の吐出水は熱交換器90にて低温の冷却水91と熱交換する。熱交換器90により冷却された循環水は、調整弁84で流量を調整され、充填物の上方に設置された液分散器80から冷却塔36aに供給される。液分散器80は化学プラントなどで一般的に用いられており、充填物の全面に可及的均等に液相水を散布する機能を持つ。冷却塔36aには、液溜り74の水位を所望の位置に制御するために水位計78が設置されており、液溜り74の水位が低下した場合には、配管75の調整弁38を操作して水源から補給水を供給する。液溜り74の水位が上昇した場合には、配管79の調整弁39を操作して液相水を系外へ排出する。   In this embodiment, the water discharged from the circulation pump 6 is heat-exchanged with the low-temperature cooling water 91 by the heat exchanger 90. The circulating water cooled by the heat exchanger 90 is adjusted in flow rate by the regulating valve 84 and supplied to the cooling tower 36a from the liquid disperser 80 installed above the packing. The liquid disperser 80 is generally used in a chemical plant or the like, and has a function of spraying liquid phase water over the entire surface of the packing as evenly as possible. A water level gauge 78 is installed in the cooling tower 36a to control the water level of the liquid reservoir 74 to a desired position. When the water level of the liquid reservoir 74 decreases, the adjustment valve 38 of the pipe 75 is operated. Supply makeup water from the water source. When the water level of the liquid pool 74 rises, the adjustment valve 39 of the pipe 79 is operated to discharge the liquid phase water out of the system.

次に、図3を用いて、本実施例の中間冷却機構を備えた、再生サイクルガスタービン発電システムの定常時の動作を説明する。   Next, the operation | movement at the time of the steady state of the regenerative cycle gas turbine power generation system provided with the intermediate cooling mechanism of a present Example is demonstrated using FIG.

図示しない吸気室に吸い込まれた空気は、図示しない吸気フィルタによって煤塵などを除去されたあと、圧縮機10aで約400kPaまで圧縮される。圧縮された空気は冷却塔36に流入する。冷却塔36では、熱交換器90によって冷却された、空気とほぼ同じ質量流量の約35℃の水が充填物71の表面に散布される。気温15℃,相対湿度60%の大気条件の場合、冷却塔36の入口での圧縮空気の露点温度は約29℃であり、露点温度より高温な水と気液接触することにより、空気は加湿されながら冷却される。   Air sucked into an unillustrated intake chamber is compressed to about 400 kPa by the compressor 10a after dust and the like are removed by an unillustrated intake filter. The compressed air flows into the cooling tower 36. In the cooling tower 36, the water having a mass flow rate of about 35 ° C., which is cooled by the heat exchanger 90, is sprayed on the surface of the packing 71. In the case of atmospheric conditions with an air temperature of 15 ° C. and a relative humidity of 60%, the dew point temperature of the compressed air at the inlet of the cooling tower 36 is about 29 ° C., and the air is humidified by coming into gas-liquid contact with water higher than the dew point temperature. While being cooled.

図5は、本実施例の、冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は絶対湿度、(c)は加湿量を示す。図5(a)に示すように、冷却塔36の下方から流入した約174℃の空気(実線)は、上方から充填物71の表面を流下する約35℃の液膜(破線)と熱交換しながら、上方に流動するにつれて低温となる。液膜と空気の気液界面は、液膜の温度に対応する飽和水蒸気圧の湿り空気で覆われる。図5(b)に示すように、充填物71の下部領域では、液膜表面における湿り空気の絶対湿度(破線)が主流の湿り空気の絶対湿度(実線)より高いため、水蒸気圧力差を原動力として、図5(c)に示すように液膜表面から主流空気中に水蒸気が移動する。その結果として、上方に流動するにつれて主流空気の絶対湿度は高くなる。しかし、充填物71の上部領域では液膜水温が低いためにこの関係が逆転し、主流空気中の絶対湿度が高くなり、主流空気中の湿分が凝縮して液膜に移動する。本実施例のように、約35℃の低温水を約174℃の圧縮空気に接触させた場合、低温水から空気への加湿量は比較的少なく空気質量の約0.6質量%であった。一方、冷却塔出口の空気温度は約62℃まで冷却される。つまり主流空気は冷却塔36で100℃以上冷却されたことになる。充填物71から落下した液膜水は冷却塔36の液溜り74に流下する。蒸発により失われた水分は給水ポンプ7と調整弁38を介して液溜り74に補給される。熱交換器90には液溜り74から約55℃の熱水が循環ポンプ6により供給される。熱交換器90では、低温の冷却水91との熱交換により約55℃の熱水が約35℃まで冷却され、再び冷却塔36に供給される。   FIG. 5 is a graph showing the distribution of temperature, absolute humidity, and humidification amount with respect to the height direction position in the packing 71 installation portion inside the cooling tower 36 in this embodiment, and (a) shows the temperature. (B) shows the absolute humidity, and (c) shows the humidification amount. As shown in FIG. 5A, about 174 ° C. air (solid line) flowing from the lower side of the cooling tower 36 exchanges heat with about 35 ° C. liquid film (broken line) flowing down the surface of the packing 71 from above. However, the temperature becomes lower as it flows upward. The gas-liquid interface between the liquid film and air is covered with moist air having a saturated water vapor pressure corresponding to the temperature of the liquid film. As shown in FIG. 5B, in the lower region of the packing 71, the absolute humidity of the humid air (broken line) on the surface of the liquid film is higher than the absolute humidity (solid line) of the mainstream humid air. As shown in FIG. 5C, water vapor moves from the liquid film surface into the mainstream air. As a result, the absolute humidity of the mainstream air increases as it flows upward. However, since the liquid film water temperature is low in the upper region of the filling 71, this relationship is reversed, the absolute humidity in the mainstream air is increased, and moisture in the mainstream air is condensed and moved to the liquid film. When the low temperature water of about 35 ° C. was brought into contact with the compressed air of about 174 ° C. as in this example, the humidification amount from the low temperature water to the air was relatively small and about 0.6% by mass of the air mass. . On the other hand, the air temperature at the outlet of the cooling tower is cooled to about 62 ° C. That is, the mainstream air is cooled by the cooling tower 36 at 100 ° C. or more. The liquid film water dropped from the filling 71 flows down to the liquid pool 74 of the cooling tower 36. Moisture lost due to evaporation is supplied to the liquid reservoir 74 via the water supply pump 7 and the regulating valve 38. The heat exchanger 90 is supplied with hot water at about 55 ° C. from the liquid reservoir 74 by the circulation pump 6. In the heat exchanger 90, the hot water at about 55 ° C. is cooled to about 35 ° C. by heat exchange with the low-temperature cooling water 91 and is supplied to the cooling tower 36 again.

冷却塔36により62℃程度まで冷却された圧縮空気は、吸入配管85bから圧縮機10bに吸入され、1600kPaまで圧縮される。この時の温度は、約240℃となる。本実施例では、圧縮機10bの吸気温度が約62℃、吐出温度が約240℃と比較的低いため、これらの温度が高温な場合と比較して圧縮動力が大幅に低減できる。   The compressed air cooled to about 62 ° C. by the cooling tower 36 is sucked into the compressor 10b from the suction pipe 85b and compressed to 1600 kPa. The temperature at this time is about 240 ° C. In this embodiment, since the intake air temperature of the compressor 10b is relatively low at approximately 62 ° C. and the discharge temperature is approximately 240 ° C., the compression power can be significantly reduced as compared with the case where these temperatures are high.

表1に、本実施例で示した圧力比が4である圧縮機を2基直列に接続した圧力比が16である仮想的な圧縮機において、中間冷却機構を設けた場合と設けなかった場合の圧縮動力を比較した表を示す。中間冷却機構により主流空気を約62℃まで冷却した場合、圧縮動力が約17%低減できることがわかる。   Table 1 shows a case where an intermediate cooling mechanism is provided and not provided in a virtual compressor having a pressure ratio of 16 in which two compressors having a pressure ratio of 4 shown in this embodiment are connected in series. The table which compared the compression power of was shown. It can be seen that when the mainstream air is cooled to about 62 ° C. by the intermediate cooling mechanism, the compression power can be reduced by about 17%.

Figure 2009133318
Figure 2009133318

吐出配管86bの約240℃の圧縮空気は、再生熱交換器60の被加熱流体流路に流入し、約560℃のタービン14の排ガスと熱交換し、約530℃まで加熱される。この圧縮空気は、再生熱交換器60の被加熱流体出口配管61から燃焼器12に供給され、燃料50とともに燃焼し、約1300℃の燃焼ガスとなる。燃焼器12に供給される圧縮空気は再生熱交換器60で加熱されているため、このとき必要な燃料50の流量は再生熱交換器60が無い場合よりも大幅に節約でき、プラント熱効率が向上する。高温の燃焼ガスは、タービン14に供給され、図示しない静翼と動翼とを通過することにより、膨張過程を経て熱エネルギーが回転運動エネルギーに変換される。回転運動エネルギーは、同じ軸に連結された発電機16を駆動し、電気エネルギーとして取り出される。膨張過程を経てタービン14から排出される約560℃の燃焼排ガスは、再生熱交換器60の排ガス流路に供給され、前述の通り圧縮空気の加熱に利用される。さらに、再生熱交換器60から排出された340℃程度の燃焼排ガスは、スタック82に導かれ、大気中に放出される。   The compressed air of about 240 ° C. in the discharge pipe 86b flows into the heated fluid flow path of the regenerative heat exchanger 60, exchanges heat with the exhaust gas of the turbine 14 of about 560 ° C., and is heated to about 530 ° C. This compressed air is supplied from the heated fluid outlet pipe 61 of the regenerative heat exchanger 60 to the combustor 12 and combusted together with the fuel 50 to become a combustion gas of about 1300 ° C. Since the compressed air supplied to the combustor 12 is heated by the regenerative heat exchanger 60, the flow rate of the fuel 50 required at this time can be saved significantly compared to the case without the regenerative heat exchanger 60, and the plant thermal efficiency is improved. To do. The high-temperature combustion gas is supplied to the turbine 14 and passes through a stationary blade and a moving blade (not shown), whereby thermal energy is converted into rotational kinetic energy through an expansion process. The rotational kinetic energy drives the generator 16 connected to the same shaft, and is extracted as electric energy. The combustion exhaust gas of about 560 ° C. discharged from the turbine 14 through the expansion process is supplied to the exhaust gas flow path of the regenerative heat exchanger 60 and used for heating the compressed air as described above. Further, the combustion exhaust gas at about 340 ° C. discharged from the regenerative heat exchanger 60 is guided to the stack 82 and released into the atmosphere.

本実施例では、冷却塔36内で散布する前の液水を、熱交換器90で冷却している。このような構成とすることで、冷却塔での主流空気の冷却効率を向上できる。この熱交換器90は液体と液体の熱交換を行うので、気体と液体の熱交換を行う熱交換器よりも総括熱伝達率が大きく、コンパクトに構成できる利点がある。さらに、熱交換器90を流れる水の温度は最大55℃程度であり、高い耐食性は必要とされない。そのため熱交換器90としてはプレート式など比較的安価なものを用いることが出来る。   In the present embodiment, the liquid water before being sprayed in the cooling tower 36 is cooled by the heat exchanger 90. By setting it as such a structure, the cooling efficiency of the mainstream air in a cooling tower can be improved. Since the heat exchanger 90 performs heat exchange between liquid and liquid, the overall heat transfer coefficient is larger than that of a heat exchanger that performs heat exchange between gas and liquid, and there is an advantage that the heat exchanger 90 can be configured compactly. Furthermore, the temperature of the water flowing through the heat exchanger 90 is about 55 ° C. at the maximum, and high corrosion resistance is not required. Therefore, a relatively inexpensive one such as a plate type can be used as the heat exchanger 90.

本実施例ではまた、液溜り74の液水をポンプ6で循環させて液分散器80からの散布水として利用している。散布された水のうち、主流空気との熱交換後も蒸発せずに残った水は液溜り74に流下する。このように、主流空気の冷却のために散布した液水の一部を再び散布可能な構成とすることで、水の有効利用を図り、外部からの供給水量を削減することができる。   In this embodiment, the liquid water in the liquid reservoir 74 is also circulated by the pump 6 and used as spray water from the liquid disperser 80. Of the sprayed water, the water that has not evaporated even after heat exchange with the mainstream air flows down to the liquid reservoir 74. Thus, by using a configuration in which a part of the liquid water sprayed for cooling the mainstream air can be sprayed again, the water can be effectively used and the amount of water supplied from the outside can be reduced.

冷却塔36の圧力容器,充填物71などは、化学プラントで一般的に利用される量産品であり比較的安価である。また、冷却塔36から熱交換器90を経由して循環する循環水のうち蒸発するのは液膜表面の一部であり、不純物は循環水に濃縮する。なお、補給水に含まれている不純物が濃縮することによる液溜り74の水質悪化を抑制するため、調整弁39を操作して連続的あるいは断続的に液相水の一部を系外へ排出することが望ましい。   The pressure vessel, packing 71 and the like of the cooling tower 36 are mass-produced products generally used in chemical plants and are relatively inexpensive. Further, of the circulating water circulating from the cooling tower 36 via the heat exchanger 90, it is a part of the liquid film surface that evaporates, and the impurities are concentrated in the circulating water. In addition, in order to suppress the deterioration of the water quality of the liquid pool 74 due to the concentration of impurities contained in the makeup water, the regulating valve 39 is operated to discharge part of the liquid phase water out of the system continuously or intermittently. It is desirable to do.

図1は、本実施例の中間冷却機構を適用したシンプルサイクルガスタービンを示す。ここまでは図3を用いて再生サイクルガスタービンに対して中間冷却機構を適用した例を説明してきたが、図1に示すように、シンプルサイクルガスタービンに対して本実施例の中間冷却機構を適用してもよい。シンプルサイクルまたは再生サイクルに対して中間冷却機構を適用した場合の利点は、前述のように圧縮動力を低減できる点である。また、圧縮空気を冷却することにより圧縮機の部材の高温化を回避し寿命を延ばす効果もある。なお、タービン高温部材の冷却に圧縮機からの抽気を用いる場合には、圧縮機を中間冷却することでタービン部材の冷却に用いる冷却空気の温度を低下させることができ、冷却空気量を節約できる。   FIG. 1 shows a simple cycle gas turbine to which the intermediate cooling mechanism of this embodiment is applied. Up to this point, the example in which the intermediate cooling mechanism is applied to the regenerative cycle gas turbine has been described with reference to FIG. 3, but as shown in FIG. 1, the intermediate cooling mechanism of the present embodiment is applied to the simple cycle gas turbine. You may apply. An advantage of applying the intermediate cooling mechanism to the simple cycle or the regeneration cycle is that the compression power can be reduced as described above. In addition, cooling the compressed air has the effect of avoiding a high temperature of the members of the compressor and extending the life. In addition, when using the bleed air from a compressor for cooling a turbine high temperature member, the temperature of the cooling air used for cooling a turbine member can be lowered | hung by carrying out intermediate cooling of a compressor, and it can save the amount of cooling air .

再生サイクルガスタービンについては、中間冷却作用により圧縮機10bの吐出温度も低下することから、再生熱交換器60で排ガスから回収できる排熱回収量が増加するという効果も得られる。つまり、発電効率の点では、図3で示した再生サイクルガスタービンに本実施例の中間冷却機構を適用した場合の方が、シンプルサイクルガスタービンに適用するよりもより高い効果を得られる。   With respect to the regenerative cycle gas turbine, the discharge temperature of the compressor 10b is also lowered by the intermediate cooling action, so that an effect of increasing the amount of exhaust heat recovered that can be recovered from the exhaust gas by the regenerative heat exchanger 60 is also obtained. That is, in terms of power generation efficiency, a higher effect can be obtained when the intermediate cooling mechanism of the present embodiment is applied to the regeneration cycle gas turbine shown in FIG. 3 than when it is applied to a simple cycle gas turbine.

図7は、冷却塔36の詳細図を示す。図7に示した冷却塔36bは、図2に示した冷却塔36aにおける充填物71のかわりに多孔板92を用いた多孔板塔である。冷却塔36に多孔板92を用いた場合、塔内のガスおよび液体の幾何学的な流量分配が良く、充填塔よりも汚れに対して強いという特徴がある。多孔板塔と比較した充填塔のメリットは、体積あたりの接触効率が高く、圧力損失が少ない点である。   FIG. 7 shows a detailed view of the cooling tower 36. The cooling tower 36b shown in FIG. 7 is a perforated plate tower using a perforated plate 92 instead of the packing 71 in the cooling tower 36a shown in FIG. When the perforated plate 92 is used for the cooling tower 36, the gas and liquid in the tower have a good geometric flow rate distribution and are more resistant to dirt than the packed tower. The advantage of the packed column compared with the perforated plate column is that the contact efficiency per volume is high and the pressure loss is small.

図8は、冷却塔36の詳細図を示す。図8に示した冷却塔36cは、図2に示した冷却塔36aにおいて充填物71を設置するかわりにスプレイノズル93から液滴を多量に噴霧する構成としたスプレイ塔である。スプレイ塔は充填塔や多孔板塔と比較してガス側の圧力損失が少ないという利点がある。   FIG. 8 shows a detailed view of the cooling tower 36. The cooling tower 36c shown in FIG. 8 is a spray tower configured to spray a large amount of droplets from the spray nozzle 93 instead of installing the packing 71 in the cooling tower 36a shown in FIG. The spray tower has an advantage that the pressure loss on the gas side is smaller than that of the packed tower or the perforated plate tower.

液滴と主流空気との熱交換が空間で行われるスプレイ塔では特に、所定の大きさ以上の液滴を散布することが望ましい。所定の大きさとは、一つの液滴について水が完全に蒸発してしまうことなく、液滴の一部が蒸発せずに液体のまま液溜り74に着水する程度の多きさを意味する。   Particularly in a spray tower in which heat exchange between droplets and mainstream air is performed in a space, it is desirable to spray droplets having a predetermined size or more. The predetermined size means that the water does not completely evaporate with respect to one droplet, and the droplets do not evaporate and do not evaporate and remain in the liquid pool 74.

ここで、例えば液滴径10μmから20μm程度の微細な液滴を噴霧して冷却塔36c内で完全蒸発させようとする場合を考えると、不純物が液滴から析出することを抑制するため、噴霧用の水には不純物を極微量まで除去した純水を用いることが望ましい。冷却塔36c内の空間で不純物が析出した場合、不純物が冷却塔36cの内壁等に付着したり、極小な不純物が主流空気に導かれ圧縮機中に同伴し圧縮機を傷める可能性がある。そこで、図8に示したスプレイ塔は、スプレイノズル93から液滴径100μm以上の比較的大きな液滴を多量に噴霧可能な構成とし、噴霧した液滴の表面の一部だけが蒸発するようにしている。蒸発せず液体のままの液滴は液溜りに流下後、ポンプで再循環され、再びスプレイノズル93からの噴霧に用いられる。このような構成とすることで、図8に示すスプレイ塔では水中の不純物は蒸発せずに液滴中に残るため、不純物を極微量まで除去した純水を用意しなくても、不純物の冷却塔内壁への付着や圧縮機中への流入を抑制でき、冷却塔の冷却効率の低下や圧縮機の信頼性の低下を抑えることができる。   Here, for example, in the case where a fine droplet having a droplet diameter of about 10 μm to 20 μm is sprayed to be completely evaporated in the cooling tower 36c, the spraying is performed in order to suppress impurities from being deposited from the droplet. It is desirable to use pure water from which impurities are removed to an extremely small amount. When impurities are deposited in the space in the cooling tower 36c, the impurities may adhere to the inner wall or the like of the cooling tower 36c, or extremely small impurities may be introduced into the mainstream air and entrained in the compressor to damage the compressor. Therefore, the spray tower shown in FIG. 8 is configured to spray a large amount of relatively large droplets having a droplet diameter of 100 μm or more from the spray nozzle 93 so that only a part of the surface of the sprayed droplets evaporates. ing. The liquid droplets that do not evaporate and flow into the liquid reservoir are then recirculated by a pump and used again for spraying from the spray nozzle 93. With such a configuration, in the spray tower shown in FIG. 8, impurities in water remain in the droplets without evaporating, so that it is possible to cool impurities without preparing pure water from which impurities have been removed to a very small amount. Adhesion to the inner wall of the tower and inflow into the compressor can be suppressed, and a decrease in cooling efficiency of the cooling tower and a decrease in reliability of the compressor can be suppressed.

冷却塔として充填塔や多孔板塔を用いた場合には、液滴の大部分が充填物71や多孔板92といった構造物上に付着した状態で主流空気と熱交換する。そのため、不純物の冷却塔内壁への付着や圧縮機内への流入の可能性は低い。しかしこの場合でも所定の大きさ以上の液滴を散布する構成とすれば、圧縮機の信頼性を更に高められるだけでなく、充填物71や多孔板92,ミスト除去器72といった構造物への不純物の付着を抑制することができ、不純物を極微量まで除去した純水を用意しなくても、主流空気の圧力損失の増大や冷却効率の低下を抑えることができる。   When a packed tower or a perforated plate tower is used as the cooling tower, heat is exchanged with the mainstream air in a state where most of the droplets adhere to the structure such as the packed material 71 and the perforated plate 92. Therefore, the possibility of impurities adhering to the inner wall of the cooling tower and inflow into the compressor is low. However, even in this case, if it is configured to spray droplets of a predetermined size or more, not only the reliability of the compressor can be further improved, but also the structure such as the packing 71, the perforated plate 92, and the mist remover 72 can be applied. The adhesion of impurities can be suppressed, and an increase in pressure loss of mainstream air and a decrease in cooling efficiency can be suppressed without preparing pure water from which impurities are removed to an extremely small amount.

本実施例では、圧縮機の中間冷却機構とし、図2に示した冷却塔36aである充填塔を用いる例を示したが、充填塔のかわりに図7に示した多孔板塔や図8に示したスプレイ塔を用いても構わない。要は、主流空気と液滴との接触面積を増やすことができればよい。気液接触面積を広くすることで熱交換の効率が向上し、液滴の効率的な蒸発を促し冷却塔36を小型化,低コスト化できる。冷却塔36の冷却効率も一段と高めることができる。   In the present embodiment, an example in which a packed tower which is the cooling tower 36a shown in FIG. 2 is used as the intermediate cooling mechanism of the compressor is shown. However, instead of the packed tower, the perforated plate tower shown in FIG. The spray tower shown may be used. In short, it is sufficient that the contact area between the mainstream air and the droplets can be increased. By widening the gas-liquid contact area, the efficiency of heat exchange is improved, and efficient evaporation of droplets is promoted, and the cooling tower 36 can be reduced in size and cost. The cooling efficiency of the cooling tower 36 can be further increased.

次に、図3を用いて、本実施例のガスタービンシステムの起動時における冷却塔36の運用方法を説明する。圧縮機10a,10bを起動する前に、冷却塔36の内部には給水ポンプ7により所定の水位まで水を注入しておく。ここで所定の水位とは、各システムに固有に定められる設計水位であり、少なくとも冷却塔の運転中に循環水が不足することがない程度の水量が確保できる程度の水位である。その後、冷却塔36の液溜り74の水を循環ポンプ6により熱交換器90に供給する。熱交換器90で低温の冷却水91と熱交換した水は、調整弁84を経由して冷却塔36の液分散器80に供給する。液分散器80から充填物71の表面に散布された水は液溜り74に落下し、循環ポンプ6に吸入され、以下同じ経路を循環する。   Next, the operation method of the cooling tower 36 at the time of starting the gas turbine system of the present embodiment will be described with reference to FIG. Before starting the compressors 10a and 10b, water is injected into the cooling tower 36 to a predetermined water level by the water supply pump 7. Here, the predetermined water level is a design water level that is uniquely determined for each system, and is a water level that can secure at least a water amount that does not cause a shortage of circulating water during operation of the cooling tower. Thereafter, the water in the liquid pool 74 of the cooling tower 36 is supplied to the heat exchanger 90 by the circulation pump 6. The water exchanged with the low-temperature cooling water 91 by the heat exchanger 90 is supplied to the liquid distributor 80 of the cooling tower 36 via the regulating valve 84. The water sprayed on the surface of the filling 71 from the liquid disperser 80 falls into the liquid reservoir 74 and is sucked into the circulation pump 6, and thereafter circulates through the same path.

この状態で、図示しない駆動装置により圧縮機10a,10bを駆動する。圧縮機を駆動すると、圧縮機の内部では圧力の上昇とともに空気の露点温度が上昇する。圧縮機10aの構成部材が低温のうちは、空気中の湿分が凝縮し凝縮水が発生する。この凝縮水は冷却塔36のミスト除去器72に捕集され液溜り74に流下する。この凝縮水量が多い場合には液溜り74の水位が上昇するので、配管79の調整弁39を自動制御して余分な水を系外へ排出する。時間の経過とともに圧縮機10aの構成部材が暖められて圧縮機10aの吐出空気温度が定常状態となると、冷却塔36の作用により圧縮機10bの吸入配管85bより下流も定常状態に達する。   In this state, the compressors 10a and 10b are driven by a driving device (not shown). When the compressor is driven, the dew point temperature of the air rises as the pressure rises inside the compressor. When the constituent members of the compressor 10a are low in temperature, moisture in the air is condensed and condensed water is generated. This condensed water is collected by the mist remover 72 of the cooling tower 36 and flows down to the liquid reservoir 74. When the amount of condensed water is large, the water level of the liquid reservoir 74 rises, so that the adjustment valve 39 of the pipe 79 is automatically controlled to discharge excess water out of the system. When the constituent members of the compressor 10a are warmed with the passage of time and the discharge air temperature of the compressor 10a reaches a steady state, the downstream of the intake pipe 85b of the compressor 10b reaches the steady state by the action of the cooling tower 36.

このように、冷却塔36の充填物71への散水を開始した後に空気の圧縮を開始することが望ましい理由は、以下二点の問題の発生を抑制するためである。第一の問題は、圧縮機を起動した後に冷却塔36の散水を開始した場合、圧縮機10bの吸入温度,圧力,流量が急激に変動し、圧縮機10bの流量・圧力比が不安定に振動するサージ領域に入り、圧縮機10bの信頼性が低下する点である。圧縮機10bは圧縮機10aと同軸で直列に接続されているため、圧縮機10aも圧力比や流量の影響を受け、同様に信頼性が低下する。第二の問題は、冷却塔36の散水なしで圧縮機を駆動した場合、冷却塔36の内部温度は174℃程度まで上昇し、機器および配管も高温になる点である。このような高温状態の冷却塔36で水を噴霧した場合、高温の部材に接触した液相水の突沸現象により急激に圧力が上昇する可能性がある。   As described above, the reason why it is desirable to start the air compression after the sprinkling of the packing 71 of the cooling tower 36 is started is to suppress the occurrence of the following two problems. The first problem is that when the cooling tower 36 is sprinkled after starting the compressor, the suction temperature, pressure, and flow rate of the compressor 10b fluctuate rapidly, and the flow rate / pressure ratio of the compressor 10b becomes unstable. The point is that it enters a vibrating surge region, and the reliability of the compressor 10b decreases. Since the compressor 10b is coaxially connected in series with the compressor 10a, the compressor 10a is also affected by the pressure ratio and the flow rate, and the reliability similarly decreases. The second problem is that when the compressor is driven without watering the cooling tower 36, the internal temperature of the cooling tower 36 rises to about 174 ° C., and the equipment and piping also become hot. When water is sprayed in the cooling tower 36 in such a high temperature state, there is a possibility that the pressure rapidly increases due to a sudden boiling phenomenon of the liquid phase water in contact with the high temperature member.

つまり、予め冷却塔36への散水を開始した後に空気の圧縮を開始することにより、圧縮機10の流路内での急激な温度や圧力,流量の変化を回避することができ、圧縮機10や冷却塔36の信頼性の低下を抑制することができる。また、本実施例では冷却塔36にミスト除去器72を設置しており、圧縮機の起動前に散水を開始しても、圧縮機内にドレンが流入する可能性は低い。そのため、圧縮機起動前に散水を開始する場合でもエロージョンを抑制する手段を新たに設けなくてもよい。   That is, by starting the air compression after the water sprinkling to the cooling tower 36 is started in advance, a sudden change in temperature, pressure and flow rate in the flow path of the compressor 10 can be avoided. And the fall of the reliability of the cooling tower 36 can be suppressed. In the present embodiment, the mist remover 72 is installed in the cooling tower 36, and even if watering is started before the compressor is started, there is a low possibility that drain will flow into the compressor. Therefore, it is not necessary to newly provide means for suppressing erosion even when watering is started before the compressor is started.

一方、本実施例のガスタービンシステムの停止時における冷却塔36の運用方法に関しては、圧縮機10a,10bを停止してから冷却塔36への散水を停止することが望ましい。圧縮機の駆動中に冷却塔36への散水を停止した場合、それぞれの圧縮機10a,10bにおいて、吐出温度,圧力,流量が急激に変化し、圧縮機のサージ現象や噴霧水の突沸が起きる可能性があるためである。上述のように圧縮機10a,10bを停止してから、冷却塔36への散水を停止することにより、圧縮機10a,10b駆動中の被圧縮流体の急激な温度変化や圧力変化を回避することができ、圧縮機10や冷却塔36の信頼性の低下を抑制することができる。   On the other hand, regarding the operation method of the cooling tower 36 when the gas turbine system of the present embodiment is stopped, it is desirable to stop the water spraying to the cooling tower 36 after stopping the compressors 10a and 10b. When water spraying to the cooling tower 36 is stopped while the compressor is being driven, the discharge temperature, pressure, and flow rate in each of the compressors 10a and 10b change abruptly, causing the compressor surge phenomenon and spray water bumping. This is because there is a possibility. By stopping the compressors 10a and 10b as described above, and then stopping watering to the cooling tower 36, a sudden temperature change and pressure change of the fluid to be compressed while the compressors 10a and 10b are driven can be avoided. It is possible to suppress a decrease in the reliability of the compressor 10 and the cooling tower 36.

次に、図4を用いて、本発明の中間冷却機構を備えた再生サイクルガスタービンシステムの別の実施例を示す。図4は本発明の一実施例である圧縮機の中間冷却機構を備えた再生サイクルガスタービンシステムを示す。実施例1で示した中間冷却機構を備えた再生サイクルガスタービンシステムでは、圧縮空気の冷却効果は100℃以上あり、圧縮空気への加湿量は空気質量の0.6質量%である。本実施例は、実施例1で示したシステムと比較して、圧縮空気の冷却効果を小さくし圧縮空気の加湿による効果を大きくした、中間冷却機構を備えた再生サイクルガスタービンシステムを示す。本実施例で示したシステムの、実施例1で示したシステムとの構成上の相違点は、熱交換器90および冷却水91を使用しない点である。循環ポンプ6の吐出水は、冷却されることなく調整弁84により流量が調整されて充填物の上方に設置された液分散器80に供給される。   Next, another embodiment of the regeneration cycle gas turbine system provided with the intermediate cooling mechanism of the present invention will be described with reference to FIG. FIG. 4 shows a regenerative cycle gas turbine system equipped with an intermediate cooling mechanism for a compressor according to an embodiment of the present invention. In the regeneration cycle gas turbine system including the intermediate cooling mechanism shown in the first embodiment, the cooling effect of the compressed air is 100 ° C. or higher, and the humidification amount of the compressed air is 0.6% by mass of the air mass. The present embodiment shows a regenerative cycle gas turbine system having an intermediate cooling mechanism in which the cooling effect of compressed air is reduced and the effect of humidification of compressed air is increased as compared with the system shown in the first embodiment. The structural difference between the system shown in this embodiment and the system shown in Embodiment 1 is that the heat exchanger 90 and the cooling water 91 are not used. The discharge water of the circulation pump 6 is supplied to a liquid distributor 80 installed above the packing after the flow rate is adjusted by the adjusting valve 84 without being cooled.

図4を用いて、本実施例における中間冷却機構の定常時の動作を説明する。圧縮機10aにより、約400kPaまで圧縮された空気は、吐出配管86aから、冷却塔36に流入する。冷却塔36では、循環ポンプ6から供給された約65℃の熱水が充填物の表面に散布されている。気温15℃,相対湿度60%の大気条件の場合、冷却塔36への入口での圧縮空気の露点温度は約29℃であり、露点温度より高温な熱水と気液接触させることにより冷却塔36では空気が加湿される。   With reference to FIG. 4, the steady state operation of the intermediate cooling mechanism in the present embodiment will be described. The air compressed to about 400 kPa by the compressor 10a flows into the cooling tower 36 from the discharge pipe 86a. In the cooling tower 36, hot water of about 65 ° C. supplied from the circulation pump 6 is sprayed on the surface of the packing. In the case of atmospheric conditions with an air temperature of 15 ° C. and a relative humidity of 60%, the dew point temperature of the compressed air at the inlet to the cooling tower 36 is about 29 ° C., and the cooling tower is brought into gas-liquid contact with hot water higher than the dew point temperature. At 36, the air is humidified.

図6は、本実施例の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,絶対湿度,加湿量の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は絶対湿度、(c)は加湿量を示す。図6(a)に示すように、冷却塔36の下方から流入した約174℃の空気(実線)は、上方から充填物71の表面を流下する約65℃の液膜(破線)と熱交換しながら上方に流動するにつれて低温となる。図6(b)に示すように、充填物71設置部の全ての領域において液膜表面の湿り空気の絶対湿度(破線)が主流空気の絶対湿度(実線)より高いため、水蒸気圧力差を駆動力として、図6(c)に示すように、液膜表面から主流空気中に水蒸気が移動する。その結果として、上方に流動するにつれ主流空気中の絶対湿度は単調増加する。実施例1では、約35℃の水を散布していたため、主流の空気と液膜表面の空気の絶対湿度が充填物の上方では逆転していたが、本実施例では逆転しない。約65℃の熱水を約174℃の圧縮空気に接触させる本実施例では、空気への加湿量は空気質量の3.2質量%である。一方、冷却塔出口の空気温度は82℃である。つまり、空気は冷却塔36で約90℃冷却される。充填物から落下した液膜水は、冷却塔36の液溜り74に流下する。蒸発により失われた水分は給水ポンプ7,調整弁38を介して補給され、約65℃の熱水として循環ポンプ6から熱交換器90に供給される。   FIG. 6 is a graph showing the distribution of temperature, absolute humidity, and humidification amount with respect to the height direction position in the packing 71 installation portion inside the cooling tower 36 of the present embodiment, where (a) is the temperature, (B) shows absolute humidity, and (c) shows the amount of humidification. As shown in FIG. 6A, about 174 ° C. air (solid line) flowing from the bottom of the cooling tower 36 exchanges heat with about 65 ° C. liquid film (dashed line) flowing down the surface of the packing 71 from above. However, the temperature becomes lower as it flows upward. As shown in FIG. 6B, since the absolute humidity of the humid air on the liquid film surface (broken line) is higher than the absolute humidity of the mainstream air (solid line) in all areas of the packing 71 installation portion, the water vapor pressure difference is driven. As a force, as shown in FIG. 6C, water vapor moves from the liquid film surface into the mainstream air. As a result, the absolute humidity in the mainstream air monotonously increases as it flows upward. In Example 1, since the water of about 35 ° C. was sprayed, the absolute humidity of the mainstream air and the air on the liquid film surface was reversed above the packing, but in this example, it was not reversed. In this embodiment in which hot water of about 65 ° C. is brought into contact with compressed air of about 174 ° C., the humidification amount of the air is 3.2% by mass of the air mass. On the other hand, the air temperature at the exit of the cooling tower is 82 ° C. That is, the air is cooled at about 90 ° C. by the cooling tower 36. The liquid film water dropped from the packing flows down to the liquid pool 74 of the cooling tower 36. Moisture lost due to evaporation is replenished via the feed water pump 7 and the regulating valve 38, and is supplied from the circulation pump 6 to the heat exchanger 90 as hot water of about 65 ° C.

本実施例で示したシステムは、蒸発量が空気質量の約3.2質量%であり冷却塔36における補給水量が比較的多い点で、蒸発量が空気質量の約0.6質量%である実施例1と異なる。空気流量の約3.2質量%分の蒸発量増加により、圧縮機10aでは、100%の質量流量に必要な圧縮仕事で103.2%の質量流量の湿り空気を圧縮できたことになり、質量流量あたりの圧縮動力を低減できたことになる。   In the system shown in this embodiment, the evaporation amount is about 3.2% by mass of the air mass and the amount of makeup water in the cooling tower 36 is relatively large, and the evaporation amount is about 0.6% by mass of the air mass. Different from the first embodiment. By increasing the evaporation amount by about 3.2% by mass of the air flow rate, the compressor 10a was able to compress the humid air having a mass flow rate of 103.2% by the compression work required for the mass flow rate of 100%. The compression power per mass flow rate could be reduced.

冷却塔36により約82℃まで冷却されて質量流量が3.2%増加した圧縮空気は、吸入配管85bから圧縮機10bに吸入され、1600kPa程度まで圧縮される。この時の温度は、約260℃である。本実施例では圧縮機10bの吸気温度が約82℃、吐出温度が約260℃と比較的低いため、これらの温度が高温な場合と比較して圧縮動力が大幅に低減できる。その他の作用,機能は実施例1と同様である。   The compressed air that has been cooled to about 82 ° C. by the cooling tower 36 and whose mass flow rate has increased by 3.2% is sucked into the compressor 10b from the suction pipe 85b and compressed to about 1600 kPa. The temperature at this time is about 260 ° C. In this embodiment, since the intake air temperature of the compressor 10b is relatively low at about 82 ° C. and the discharge temperature is about 260 ° C., the compression power can be greatly reduced as compared with the case where these temperatures are high. Other operations and functions are the same as those in the first embodiment.

本実施例のように冷却塔36の循環水を冷却しない場合、圧縮空気の中間冷却は循環水を冷却する実施例1と比べて噴霧水の蒸発潜熱による部分が大きく、空気の冷却幅は加湿とともに上昇する湿り空気の露点温度の制約を受けやすい。一方、実施例1で用いる熱交換器90を必要としないため設備コストを低減できる。また、燃焼用空気に添加されている湿分が多いほど燃焼時の窒素酸化物の生成量は抑えられる。   When the circulating water in the cooling tower 36 is not cooled as in the present embodiment, the intermediate cooling of the compressed air has a larger portion due to the latent heat of evaporation of the spray water than in the first embodiment in which the circulating water is cooled, and the cooling width of the air is humidified. It tends to be restricted by the dew point temperature of the humid air that rises with it. On the other hand, since the heat exchanger 90 used in Example 1 is not required, the equipment cost can be reduced. Further, the more moisture added to the combustion air, the lower the amount of nitrogen oxide produced during combustion.

なお、本実施例における冷却塔36の起動停止方法は、循環水ポンプ6の下流側の熱交換器90を起動しない点が異なるのみで、実施例1とほぼ同様である。   The method for starting and stopping the cooling tower 36 in the present embodiment is substantially the same as that in the first embodiment, except that the heat exchanger 90 on the downstream side of the circulating water pump 6 is not started.

次に、図9を用いて、本発明の別の実施例を示す。図9は本発明の一実施例である圧縮機の中間冷却機構を備えた水蒸気ヒートポンプシステムを示す。本実施例は、圧縮機を流れる流体が空気ではなく水蒸気である点で実施例1および実施例2と異なる。   Next, another embodiment of the present invention will be described with reference to FIG. FIG. 9 shows a steam heat pump system equipped with an intermediate cooling mechanism for a compressor according to an embodiment of the present invention. The present embodiment is different from the first and second embodiments in that the fluid flowing through the compressor is not air but water vapor.

本実施例の主要な構成要素は、大気圧以下の条件下で外部から導入した温水40の熱により液水35を蒸発させて水蒸気を生成する蒸発器42と、図示しない駆動装置によって駆動され、蒸発器42で生成した水蒸気を加圧する圧縮機110a,110b,110c,110dと、前記圧縮機110dで加圧した高温の水蒸気を需要先に供給する吐出配管25である。圧縮機110a,110b,110c,110dは、同軸で直列に接続されており、徐々に水蒸気の圧力を上昇させる構成となっている。さらに、本実施例の特徴的な構成要素としては、圧縮機110aの吐出配管186aに接続された冷却塔136a,圧縮機110bの吐出配管186bに接続された冷却塔136b,圧縮機110cの吐出配管186cに接続された冷却塔136cがある。これら冷却塔136a,136b,136cには、塔の下部に落下した循環水を塔内の充填物71の上方に再循環させる循環ポンプ6a,6b,6cがそれぞれ設置されている。また、蒸発器42には、補給水ポンプ5と調整弁83により補給水31が必要なだけ供給可能である。冷却塔136aには、給水ポンプ7と調整弁38aにより、蒸発器42の液水35が供給可能である。さらに、冷却塔136b,136cには、それぞれ冷却塔136a,136bの循環ポンプ6a,6bの吐出水が給水可能に配管されており、これらの配管には調整弁38b,38cがそれぞれ設置されている。冷却塔136a,136b,136cの構造,機能は、実施例1の冷却塔36とほぼ同様である。ただし、本実施例のように冷却塔36の内部圧力が系外の圧力より低い場合には、配管79に図示しない加圧ポンプなどを設置して、液相水を系外の圧力より高圧として排出する。   The main components of the present embodiment are driven by an evaporator 42 that evaporates the liquid water 35 by the heat of the hot water 40 introduced from the outside under the condition of atmospheric pressure or less and generates water vapor, and a driving device (not shown). There are compressors 110a, 110b, 110c, and 110d that pressurize water vapor generated by the evaporator 42, and a discharge pipe 25 that supplies high-temperature water vapor pressurized by the compressor 110d to a customer. The compressors 110a, 110b, 110c, and 110d are coaxially connected in series and are configured to gradually increase the water vapor pressure. Further, characteristic components of the present embodiment include a cooling tower 136a connected to the discharge pipe 186a of the compressor 110a, a cooling tower 136b connected to the discharge pipe 186b of the compressor 110b, and a discharge pipe of the compressor 110c. There is a cooling tower 136c connected to 186c. These cooling towers 136a, 136b, and 136c are provided with circulation pumps 6a, 6b, and 6c, respectively, for recirculating the circulating water dropped to the lower part of the tower above the packing 71 in the tower. Further, the replenishing water pump 5 and the regulating valve 83 can supply as much replenishing water 31 to the evaporator 42 as necessary. Liquid water 35 from the evaporator 42 can be supplied to the cooling tower 136a by the feed water pump 7 and the regulating valve 38a. Further, the cooling towers 136b and 136c are respectively piped so as to be able to supply water discharged from the circulation pumps 6a and 6b of the cooling towers 136a and 136b, and regulating valves 38b and 38c are respectively installed in these pipes. . The structures and functions of the cooling towers 136a, 136b, and 136c are substantially the same as those of the cooling tower 36 of the first embodiment. However, when the internal pressure of the cooling tower 36 is lower than the pressure outside the system as in this embodiment, a pressure pump or the like (not shown) is installed in the pipe 79 to make the liquid phase water higher than the pressure outside the system. Discharge.

次に、本実施例のヒートポンプシステムの定常状態における運用方法を説明する。   Next, the operation method in the steady state of the heat pump system of the present embodiment will be described.

蒸発器42には、外部熱源により約70℃に温められた温水40が供給される。利用する外部熱源の例としては、工場,ごみ焼却場,火力発電設備,内燃機関などの排熱があげられる。前記蒸発器42の液水35は、温水40との間接熱交換により約63℃に保持される。約63℃に保持するための方法としては、例えば、温水40の供給流量や温度を制御する方法がある。約63℃に保持された液水35の液面は、63℃の飽和水蒸気圧である23kPa程度の水蒸気と約63℃の液相水の気液平衡状態となる。蒸発器42の上部空間の空気は排出されており、絶対圧力23kPa程度の水蒸気で満たされた空間となる。この状態で圧縮機110aを駆動することにより、吸入配管185aから、圧縮機110aの吸込容量に応じた体積の水蒸気が吸引される。この吸引により、液水35の液面では連続的に液水35が蒸発して水蒸気が生成され液水35から多量の蒸発潜熱を奪うことになるが、この熱は温水40との熱交換により賄われる。   The evaporator 42 is supplied with hot water 40 heated to about 70 ° C. by an external heat source. Examples of external heat sources to be used include exhaust heat from factories, refuse incineration plants, thermal power generation facilities, internal combustion engines, and the like. The liquid water 35 of the evaporator 42 is maintained at about 63 ° C. by indirect heat exchange with the hot water 40. As a method for maintaining the temperature at about 63 ° C., for example, there is a method of controlling the supply flow rate or temperature of the hot water 40. The liquid level of the liquid water 35 maintained at about 63 ° C. is in a vapor-liquid equilibrium state of about 23 kPa of water vapor having a saturated water vapor pressure of 63 ° C. and about 63 ° C. liquid phase water. The air in the upper space of the evaporator 42 is discharged and becomes a space filled with water vapor having an absolute pressure of about 23 kPa. By driving the compressor 110a in this state, water vapor having a volume corresponding to the suction capacity of the compressor 110a is sucked from the suction pipe 185a. By this suction, the liquid water 35 continuously evaporates on the liquid surface of the liquid water 35 to generate water vapor, and a large amount of latent heat of evaporation is taken away from the liquid water 35. This heat is exchanged with the hot water 40. Be covered.

圧縮機110aに吸引された温度約63℃,圧力23kPa程度の水蒸気は、圧縮機110aにより、約48kPaまで加圧され、温度は約145℃の過熱蒸気となる。この約145℃の過熱蒸気は、冷却塔136aのガス分散器70から冷却塔136aの内部へ流入し、充填物71の表面で、液分散器80から散布された、飽和温度である約80℃よりも低温の熱水の液膜と気液接触する。   The water vapor sucked into the compressor 110a at a temperature of about 63 ° C. and a pressure of about 23 kPa is pressurized to about 48 kPa by the compressor 110a, and becomes a superheated steam at a temperature of about 145 ° C. The superheated steam at about 145 ° C. flows from the gas disperser 70 of the cooling tower 136 a into the cooling tower 136 a and is sprayed from the liquid disperser 80 on the surface of the packing 71, which is a saturation temperature of about 80 ° C. It is in gas-liquid contact with a liquid film of hot water at a lower temperature.

図10は、本実施例の冷却塔36内部の充填物71設置部における高さ方向位置に対する温度,流量,蒸気圧の分布をそれぞれ表すグラフを示したものであり、(a)は温度、(b)は流量、(c)は蒸気圧を示す。   FIG. 10 is a graph showing the distribution of temperature, flow rate, and vapor pressure with respect to the height direction position in the packing 71 installation portion inside the cooling tower 36 of the present embodiment, where (a) is the temperature, ( b) shows the flow rate, and (c) shows the vapor pressure.

充填物71の表面には、散布された熱水が液膜を形成して流下しており、図10(a)に示すように、充填物の上部領域では、高温の過熱蒸気との温度差に基づく伝熱により、熱水が加熱され、下方に流下するに従い高温となる。熱水が加熱される温度の上限は、塔内圧力の飽和温度である約80℃である。充填物の下部領域では、約145℃の過熱蒸気により、温度差に基づく伝熱により熱水が加熱され、充填物の表面を流下する約80℃の熱水が加熱される。この熱量は、塔内の飽和温度が約80℃であるため熱水の温度上昇には利用されず、熱水が蒸発する潜熱として利用され、図10(b)に示すように熱水の一部が水蒸気となる。この作用により、水蒸気の質量流量は充填物を通過後には約5パーセント増加している。一方、過熱蒸気は熱水に顕熱を奪われることにより、図10(a)に示すように、上方に流れるに従って温度が低下する。熱水が液膜表面から蒸発する際、蒸発する水は不純物を含まない純粋な水蒸気であり、補給水に固形物や金属イオン,酸化物などの不純物が含有していた場合、それらは液膜水中に残り濃縮する。従って、補給水中に不純物が混入していても、冷却塔136にて主流蒸気に付加される蒸気は不純物を含んでいないため冷却塔136の下流側にある圧縮機や機器類には影響を及ぼさない。本実施例の冷却塔36を用いれば、不純物を極微量まで除去した補給水を用いなくても圧縮機や計器類の信頼性の低下を抑制できる。   The sprayed hot water flows down in the form of a liquid film on the surface of the filling 71. As shown in FIG. 10 (a), in the upper region of the filling, the temperature difference from the high-temperature superheated steam The hot water is heated by the heat transfer based on, and becomes hot as it flows downward. The upper limit of the temperature at which hot water is heated is about 80 ° C., which is the saturation temperature of the pressure in the tower. In the lower region of the packing, hot water is heated by superheated steam at about 145 ° C. by heat transfer based on the temperature difference, and hot water at about 80 ° C. flowing down the surface of the packing is heated. This amount of heat is not used for increasing the temperature of hot water because the saturation temperature in the tower is about 80 ° C., but is used as latent heat for evaporating the hot water. As shown in FIG. Part becomes water vapor. This action increases the water vapor mass flow rate by about 5 percent after passing the packing. On the other hand, as the superheated steam is deprived of sensible heat by hot water, the temperature decreases as it flows upward as shown in FIG. When hot water evaporates from the surface of the liquid film, the water that evaporates is pure water vapor that does not contain impurities, and if makeup water contains impurities such as solids, metal ions, and oxides, they are liquid films. Concentrate in water. Therefore, even if impurities are mixed in the make-up water, the steam added to the mainstream steam in the cooling tower 136 does not contain impurities, and therefore the compressors and equipment on the downstream side of the cooling tower 136 are not affected. Absent. If the cooling tower 36 of the present embodiment is used, it is possible to suppress a decrease in the reliability of the compressors and instruments without using make-up water from which impurities are removed to a very small amount.

充填物から流下した散布水は、飽和温度である約80℃となり、冷却塔136aの液溜り74に落下して収集される。流下する水量は、図10(b)に示すように蒸発により減少するので、液溜り74の水量を維持するため水位計78で水位を計測し調整弁38を自動制御して配管75から補給水を供給する。低温な水との混合により液溜り74の水温は飽和温度である約80℃よりも数℃低温となる。   The spray water flowing down from the packing reaches about 80 ° C., which is the saturation temperature, and falls into the liquid pool 74 of the cooling tower 136a and is collected. Since the amount of water flowing down decreases due to evaporation as shown in FIG. 10B, the water level is measured by the water level meter 78 and the adjustment valve 38 is automatically controlled to maintain the amount of water in the liquid reservoir 74, and makeup water is supplied from the pipe 75. Supply. By mixing with low-temperature water, the water temperature of the liquid pool 74 is several degrees lower than the saturation temperature of about 80 ° C.

この作用により、過熱蒸気は温度が冷却塔136における飽和温度である約80℃近くまで低下し、流量が若干増加する。エネルギーの変化としては、過熱蒸気の顕熱のエネルギーが潜熱のエネルギーに変換されており、結果的には水蒸気の温度が低下して流量が増加している。圧縮機110aは、増加前の流量の水蒸気を圧縮する動力しか必要としていないため、より少ない圧縮動力でより多くの質量流量の水蒸気を圧縮できたことになる。   By this action, the temperature of the superheated steam is reduced to about 80 ° C., which is the saturation temperature in the cooling tower 136, and the flow rate is slightly increased. As the energy change, the sensible heat energy of the superheated steam is converted into latent heat energy, and as a result, the temperature of the water vapor is lowered and the flow rate is increased. Since the compressor 110a only needs the power to compress the steam at the flow rate before the increase, the compressor 110a can compress the steam at a larger mass flow rate with less compression power.

充填物71の表面を流下する液膜と、上向きに流れる水蒸気とのせん断力により、液膜表面からは、エントレインメントと呼ばれる微細なミストが発生する。充填物71の流路を上向きに流れる水蒸気と、微細なミストは、充填物71を通過したあと、上方にあるミスト除去器72に流入する。ミスト除去器72では、ミストの大部分が除去され、飽和温度の乾き水蒸気となった状態で冷却塔36aから出た水蒸気は、配管73により圧縮機10bに流入する。ここでミストを除去する目的は、圧縮機の回転部分に液滴が衝突し、エロージョンと呼ばれる機械的な侵食が発生することを防ぐためである。ミスト除去器で捕集されたミストは、ミスト同士が結合して大きな液滴となると、重力により落下し、散布水として充填物表面を流下する。   Due to the shearing force between the liquid film flowing down the surface of the filling 71 and the water vapor flowing upward, a fine mist called entrainment is generated from the surface of the liquid film. The water vapor and fine mist flowing upward in the flow path of the filling 71 flow into the mist remover 72 located above after passing through the filling 71. In the mist remover 72, most of the mist is removed, and the water vapor that has come out of the cooling tower 36a in a state of being dry steam at the saturation temperature flows into the compressor 10b through the pipe 73. Here, the purpose of removing mist is to prevent droplets from colliding with the rotating portion of the compressor and causing mechanical erosion called erosion. When the mists collected by the mist remover are combined with each other to form large droplets, they fall by gravity and flow down the surface of the filling material as spray water.

また、本実施例の圧縮機110bでは、冷却塔136の作用により中間冷却を行うことにより、中間冷却を行わない方式のものと比べ低温な蒸気を圧縮する。そのため同じ圧力比で圧縮する場合、少ない動力で圧縮することが可能である。本実施例の圧縮機110bの吐出蒸気は圧力約95kPa,温度約158℃の過熱蒸気である。この過熱蒸気を圧縮機110cで圧縮する際、圧縮動力を減らすため、冷却塔136bにより冷却塔136aで説明した場合と同様の動作で過熱蒸気を飽和温度近くまで冷却し、質量流量が若干増加した水蒸気に調整する。以下、圧縮機110dで圧縮する際にも、冷却塔136cで過熱蒸気を飽和温度近くまで冷却し、質量流量を増加させる。その結果、圧縮機110dの入口での蒸気の温度は約117℃、圧力は約179kPaとなり、圧縮機110dの出口での蒸気の温度は約187℃、圧力は約312kPaとなる。この過熱水蒸気は、吐出配管25により、熱利用設備に供給され、利用される。   In the compressor 110b of the present embodiment, intermediate cooling is performed by the action of the cooling tower 136, thereby compressing steam at a temperature lower than that of a system that does not perform intermediate cooling. Therefore, when compressing with the same pressure ratio, it is possible to compress with less power. The discharge steam of the compressor 110b of the present embodiment is superheated steam having a pressure of about 95 kPa and a temperature of about 158 ° C. When compressing this superheated steam with the compressor 110c, the cooling tower 136b cooled the superheated steam to near the saturation temperature in the same manner as described for the cooling tower 136a to reduce the compression power, and the mass flow rate increased slightly. Adjust to water vapor. Hereinafter, also when compressing by the compressor 110d, the superheated steam is cooled to near the saturation temperature by the cooling tower 136c, and the mass flow rate is increased. As a result, the steam temperature at the inlet of the compressor 110d is about 117 ° C. and the pressure is about 179 kPa, the steam temperature at the outlet of the compressor 110d is about 187 ° C., and the pressure is about 312 kPa. The superheated steam is supplied to the heat utilization facility through the discharge pipe 25 and used.

本実施例では、冷却塔136a,136b,136cの作用により、圧縮機110b,110c,110dでは、少ない圧縮動力でより多くの質量流量の水蒸気を圧縮できる効果があり、それぞれの圧縮機において過熱蒸気よりも低温な飽和蒸気を圧縮するため、より少ない動力で圧縮することができる。システム全体としては、より少ない動力でより多量の水蒸気を圧縮できることになり、効率が相乗効果的に上昇する。   In this embodiment, due to the action of the cooling towers 136a, 136b, and 136c, the compressors 110b, 110c, and 110d have the effect of compressing steam with a larger mass flow rate with less compression power. Since the saturated steam at a lower temperature is compressed, it can be compressed with less power. As a whole system, more water vapor can be compressed with less power, and the efficiency increases synergistically.

図11を用いて本実施例の効果を定量的に説明する。図11は、本実施例の冷却塔を136を作動させる場合と作動させない場合の温度,圧力,質量流量の推移を示したものであり、(a)は温度、(b)は圧力、(c)は質量流量を示す。   The effect of the present embodiment will be described quantitatively with reference to FIG. FIG. 11 shows changes in temperature, pressure, and mass flow rate when the cooling tower of this embodiment is operated and not operated, where (a) is the temperature, (b) is the pressure, (c ) Indicates mass flow rate.

圧縮機110dの吐出配管186dの温度は、冷却塔を作動させる場合には、図11(a)に実線で示したように約187℃であるに対し、冷却塔を作動させない場合には、破線で示したように、約370℃になる。そのため、同じ圧縮機を用いた場合、吐出圧力が前者は圧力約312kPaであるに対し、後者は約206kPaまでしか上昇できない。一般的な産業用の水蒸気の利用先では、通常は飽和蒸気として利用されるため、約312kPaと約206kPaでは水蒸気の利用価値が大きく異なる。さらに、本実施例では作動媒体である水蒸気の増量効果も得られる。冷却塔136を作動させる場合には水蒸気の量が1.17倍となるに対し、冷却塔136を作動させない場合、増加量はゼロである。   The temperature of the discharge pipe 186d of the compressor 110d is about 187 ° C. as shown by the solid line in FIG. 11A when the cooling tower is operated, whereas it is a broken line when the cooling tower is not operated. As shown in FIG. Therefore, when the same compressor is used, the discharge pressure of the former is about 312 kPa, whereas the latter can only rise to about 206 kPa. Since general industrial steam is used as saturated steam, the utility value of steam is greatly different between about 312 kPa and about 206 kPa. Furthermore, in this embodiment, an effect of increasing the amount of water vapor as a working medium can be obtained. When the cooling tower 136 is operated, the amount of water vapor is 1.17 times, whereas when the cooling tower 136 is not operated, the increase amount is zero.

なお、補給水に含まれている不純物が濃縮して液溜り74の水質が悪化することを防ぐため、前記実施例1および前記実施例2と同様、調整弁39を操作して、連続的あるいは断続的に液相水の一部を系外へ排出することが望ましい。   In order to prevent the impurities contained in the makeup water from concentrating and deteriorating the water quality of the liquid reservoir 74, as in the first and second embodiments, the regulating valve 39 is operated continuously or It is desirable to intermittently discharge part of the liquid phase water out of the system.

また、本実施例では、冷却塔136a,136b,136cの液溜り74への補給水源として、なるべく温度が近い水源を利用するよう計画したが、低温の補給水31からそれぞれの冷却塔へ直接補給してもよい。この場合も基本的な動作はほぼ同様である。ただし、それぞれの液分散器80からの散水水温が低くなるため、過熱蒸気から奪われる顕熱が増加し水蒸気の新たな生成量が減少することになるが、主流水蒸気の冷却効果は高くなる。   Further, in this embodiment, it is planned to use a water source having a temperature as close as possible as a supply water source to the liquid pool 74 of the cooling towers 136a, 136b, and 136c. May be. In this case, the basic operation is almost the same. However, since the temperature of sprinkling water from each liquid disperser 80 is lowered, the sensible heat taken from the superheated steam is increased and the amount of new water vapor generated is reduced, but the cooling effect of the mainstream water vapor is enhanced.

このように本実施例によれば、水蒸気圧縮機110において、コンパクトかつ低コストであり、不純物を極微量まで除去した純水を必要としない中間冷却機構を提供することができ、中間冷却の際に、過熱蒸気が保有していた熱エネルギーを、水蒸気の質量エネルギーに変換できるため、システム全体の効率を高めることができる。   As described above, according to the present embodiment, the steam compressor 110 can provide an intermediate cooling mechanism that is compact and low-cost and does not require pure water from which impurities are removed to an extremely small amount. Furthermore, since the thermal energy possessed by the superheated steam can be converted into the mass energy of the steam, the efficiency of the entire system can be increased.

なお、循環ポンプ6や給水ポンプ7として、本実施例では機械式を想定したが、吐出配管25や、吐出配管186のより高圧な水蒸気を利用して、蒸気ジェットポンプを構成することも可能である。この場合、機器を簡素化でき、機械式のポンプと比較して、軸封部分からの流体のリークや、外部からの不純物の混入の可能性を少なくすることができる。   Although the mechanical pump is assumed in this embodiment as the circulation pump 6 and the water supply pump 7, a steam jet pump can be configured by using higher-pressure steam in the discharge pipe 25 and the discharge pipe 186. is there. In this case, the device can be simplified, and the possibility of fluid leakage from the shaft seal portion and mixing of impurities from the outside can be reduced as compared with a mechanical pump.

次に、本実施例の水蒸気ヒートポンプシステムの起動方法を説明する。圧縮機110a,110b,110c,110dを起動する前に、冷却塔136a,136b,136cの内部には、所定の水位まで水を注入しておく。注水が完了した後、調整弁84a,84b,84cを開け、冷却塔136a,136b,136cの充填物71に水を散水し、循環ポンプ6a,6b,6cにより、それぞれの冷却塔内で水を循環させる。   Next, a startup method of the steam heat pump system of this embodiment will be described. Before starting the compressors 110a, 110b, 110c, and 110d, water is injected into the cooling towers 136a, 136b, and 136c to a predetermined water level. After the water injection is completed, the regulating valves 84a, 84b, and 84c are opened, water is sprayed into the packing 71 of the cooling towers 136a, 136b, and 136c, and water is supplied in the respective cooling towers by the circulation pumps 6a, 6b, and 6c. Circulate.

この状態で、圧縮機110a,110b,110c,110dを駆動させ、吸入配管185,吐出配管186,冷却塔136の内部に存在する空気を、圧縮機の流体駆動作用により吐出配管25から図示しない排気スタックを経由させて徐々に大気中に排出させる。この際、圧縮機110a,110b,110c,110dを駆動するのではなく、図示しない真空ポンプを用いて空気を排出してもよい。空気の排出を圧縮機110で行うように設計すれば、排気用の真空ポンプは不要である。一方、排気用の真空ポンプにより空気を排出するよう設計すれば、圧縮機110を低圧の水蒸気専用に設計でき、定常運転時に高い性能を発揮する圧縮機を適用可能である。圧縮機110にて空気を排出させる場合には、水蒸気だけでなく、空気を圧縮する場合にもサージなどの不安定事象が発生しないように圧縮機の流量・圧力比特性を設計する必要があるからである。   In this state, the compressors 110a, 110b, 110c, and 110d are driven, and the air existing in the suction pipe 185, the discharge pipe 186, and the cooling tower 136 is exhausted from the discharge pipe 25 by the fluid driving action of the compressor. It is gradually discharged into the atmosphere via the stack. At this time, instead of driving the compressors 110a, 110b, 110c, and 110d, air may be discharged using a vacuum pump (not shown). If it is designed so that the air is discharged by the compressor 110, an exhaust vacuum pump is unnecessary. On the other hand, if the exhaust vacuum pump is designed to discharge air, the compressor 110 can be designed exclusively for low-pressure steam, and a compressor that exhibits high performance during steady operation can be applied. When the compressor 110 discharges air, it is necessary to design the flow rate / pressure ratio characteristics of the compressor so that an unstable event such as a surge does not occur when compressing not only water vapor but also air. Because.

蒸発器42の上部空間は、空気が排出された後は、絶対圧力約23kPaの水蒸気で満たされた空間となる。また、冷却塔136a,136b,136cでは、圧縮機110a,110b,110c,110dが駆動されると、温度と圧力が定常状態に到達し起動が完了する。この間、温度が上昇する過程で、起動時に低温であった冷却塔136,吸入配管185,吐出配管186を昇温するために水蒸気の熱が使われ、一部の水蒸気は凝縮する。この凝縮水は冷却塔136のミスト除去器72に捕集され、液溜り74に流下する。
起動時に水蒸気の凝縮量が多い場合には液溜り74の水位が上昇するので、配管79の調整弁39を自動制御して液相水を系外へ排出する。
The upper space of the evaporator 42 becomes a space filled with water vapor having an absolute pressure of about 23 kPa after the air is discharged. Further, in the cooling towers 136a, 136b, and 136c, when the compressors 110a, 110b, 110c, and 110d are driven, the temperature and pressure reach a steady state and the start-up is completed. During this time, in the process of increasing the temperature, the heat of the steam is used to raise the temperature of the cooling tower 136, the suction pipe 185, and the discharge pipe 186, which were low in temperature, and some of the steam is condensed. This condensed water is collected by the mist remover 72 of the cooling tower 136 and flows down to the liquid reservoir 74.
When the amount of water vapor condensation is large at the time of startup, the water level of the liquid pool 74 rises, so that the control valve 39 of the pipe 79 is automatically controlled to discharge the liquid phase water out of the system.

以上説明したように、水蒸気の圧縮は、冷却塔136の充填物71への散水を開始した後に開始することが望ましい。この理由は、以下二点の問題の発生を抑制するためである。一点目の問題は、圧縮機を起動した後に冷却塔の散水を開始すると、各圧縮機110a,110b,110c,110dの吐出温度,圧力,流量が急激に変動し、圧縮機の流量・圧力比が不安定に振動するサージ領域に入る可能性があり、圧縮機の信頼性が低下することである。二点目の問題は、冷却塔の散水なしで圧縮機を駆動した場合、最も下流側の冷却塔36cの水蒸気温度は約300℃となり、機器および配管も高温になることである。このような高温状態の冷却塔136に散水を開始した場合、高温の部材に接触した液相水の突沸現象が生じて急激な圧力上昇に至る可能性がある。本実施例のように、予め冷却塔136への散水を開始した後に水蒸気の圧縮を開始することにより、水蒸気流路内での急激な温度や圧力,流量の変化を回避することができ、信頼性の高い運転を行うことができる。   As described above, it is desirable that the compression of the water vapor is started after the sprinkling of the packing 71 of the cooling tower 136 is started. The reason for this is to suppress the occurrence of the following two problems. The first problem is that when the cooling tower is sprinkled after starting the compressor, the discharge temperature, pressure, and flow rate of each of the compressors 110a, 110b, 110c, and 110d change rapidly, and the flow rate / pressure ratio of the compressor. May enter a surge region that oscillates in an unstable manner, reducing the reliability of the compressor. The second problem is that when the compressor is driven without watering the cooling tower, the water vapor temperature of the cooling tower 36c on the most downstream side is about 300 ° C., and the equipment and piping are also hot. When sprinkling is started in the cooling tower 136 in such a high temperature state, there is a possibility that a sudden boiling phenomenon may occur due to a sudden boiling phenomenon of liquid phase water in contact with the high temperature member. As in the present embodiment, by starting the compression of the water vapor after starting the water spraying to the cooling tower 136 in advance, it is possible to avoid a sudden change in temperature, pressure, and flow rate in the water vapor flow path. High performance driving can be performed.

一方、本実施例の水蒸気ヒートポンプシステムを停止させる際には、起動時と逆の手順、すなわち圧縮機を停止してから冷却塔136への散水を停止することが望ましい。圧縮機の駆動中に冷却塔136への散水を停止した場合、それぞれの圧縮機110a,110b,110c,110dにおいて、水蒸気の吐出温度,圧力,流量が急激に変化し、圧縮機のサージ領域への遷移や、散水の突沸が起きる可能性があるためである。   On the other hand, when the steam heat pump system of the present embodiment is stopped, it is desirable to stop the water spraying to the cooling tower 136 after the procedure opposite to the start-up, that is, the compressor is stopped. When water spraying to the cooling tower 136 is stopped while the compressor is being driven, the discharge temperature, pressure, and flow rate of water vapor in each of the compressors 110a, 110b, 110c, and 110d change abruptly to the compressor surge region. This is because there is a possibility that the transition of water and bumping of watering may occur.

本実施例のように、圧縮機を停止してから、冷却塔136への散水を停止することにより、圧縮機の駆動中に被圧縮流体の急激な温度や圧力,流量の変化を回避することができ、信頼性の高い運転を行うことができる。   As in this embodiment, by stopping the water spraying to the cooling tower 136 after stopping the compressor, abrupt changes in temperature, pressure, and flow rate of the fluid to be compressed can be avoided during driving of the compressor. Can be operated with high reliability.

各実施例では、複数の圧縮機を用い、各圧縮機間に冷却塔36,冷却塔136を設けた例を示したが、本発明は複数の圧縮機を用いた場合に限られるものではなく、圧縮機は一台でも複数段のものを用いた場合であれば適用できる。複数段圧縮機を用いた場合には圧縮機各段の段間に冷却塔36,冷却塔136を設ければ、各実施例で示したものと同様の効果が得られる。   In each embodiment, a plurality of compressors are used and the cooling tower 36 and the cooling tower 136 are provided between the compressors. However, the present invention is not limited to the case where a plurality of compressors are used. Any compressor can be used as long as it has a plurality of stages. When a multi-stage compressor is used, if the cooling tower 36 and the cooling tower 136 are provided between the stages of the compressor, the same effects as those shown in the embodiments can be obtained.

5…補給水ポンプ、6,6a,6b,6c…循環ポンプ、7…給水ポンプ、10a,10b、110,110a,110b,110c,110d…圧縮機、12…燃焼器、14…タービン、16…発電機、25,86,86a,86b、186,186a,186b,186c,186d…吐出配管、31…補給水、35…液水、36,36a,36b,36c,136,136a,136b,136c,136d…冷却塔、38,39,83,84…調整弁、40…温水、42…蒸発器、50…燃料、60…再生熱交換器、61…出口配管、70…ガス分散器、71…充填物、72…ミスト除去器、74…液溜り、75,76,79…配管、78…水位計、80…液分散器、82…スタック、85,85a,85b,185,185a,185b,185c,185d…吸入配管、90…熱交換器、91…冷却水、92…多孔板、93…スプレイノズル。   5 ... makeup water pump, 6, 6a, 6b, 6c ... circulation pump, 7 ... feed water pump, 10a, 10b, 110, 110a, 110b, 110c, 110d ... compressor, 12 ... combustor, 14 ... turbine, 16 ... Generator, 25, 86, 86a, 86b, 186, 186a, 186b, 186c, 186d ... discharge pipe, 31 ... makeup water, 35 ... liquid water, 36, 36a, 36b, 36c, 136, 136a, 136b, 136c, 136d ... Cooling tower, 38, 39, 83, 84 ... Regulating valve, 40 ... Warm water, 42 ... Evaporator, 50 ... Fuel, 60 ... Regenerative heat exchanger, 61 ... Outlet piping, 70 ... Gas distributor, 71 ... Packing 72 ... Mist remover, 74 ... Liquid reservoir, 75, 76, 79 ... Piping, 78 ... Water level gauge, 80 ... Liquid disperser, 82 ... Stack, 85, 85a, 85b, 185, 185a, 1 5b, 185c, 185d ... suction pipe, 90 ... heat exchanger, 91 ... cooling water, 92 ... perforated plate, 93 ... spray nozzle.

Claims (6)

作動流体を圧縮する第一の圧縮機と、
前記第一の圧縮機で圧縮された作動流体を水との直接接触熱交換で冷却する第一の中間冷却器と、
前記第一の中間冷却器で冷却された作動媒体を圧縮する第二の圧縮機と、
前記第二の圧縮機で圧縮された作動媒体を水との直接接触熱交換で冷却する第二の中間冷却器と、
前記第二の中間冷却器で冷却された作動媒体を圧縮する第三の圧縮機とを備えたシステムであって、
前記第一の中間冷却器に水を供給する系統と、前記第一の中間冷却器から前記第二の中間冷却器へ水を供給する系統とを有することを特徴とするシステム。
A first compressor for compressing the working fluid;
A first intercooler for cooling the working fluid compressed by the first compressor by direct contact heat exchange with water;
A second compressor for compressing the working medium cooled by the first intercooler;
A second intercooler that cools the working medium compressed by the second compressor by direct contact heat exchange with water;
A third compressor for compressing the working medium cooled by the second intercooler,
A system comprising: a system for supplying water to the first intermediate cooler; and a system for supplying water from the first intermediate cooler to the second intermediate cooler.
作動媒体を圧縮する複数の圧縮機と、
前記複数の圧縮機の間に設けられ、水との直接接触熱交換で作動媒体を冷却する複数の中間冷却器とを備えたシステムであって、
前記複数の中間冷却器のうち作動媒体の流れ方向で最上流に備えられた中間冷却器に水を供給する系統と、前記最上流に備えられた中間冷却器から、下流に設けられた中間冷却器へ水を供給する系統を備えたことを特徴とするシステム。
A plurality of compressors for compressing the working medium;
A system comprising a plurality of intermediate coolers provided between the plurality of compressors and cooling the working medium by direct contact heat exchange with water,
A system for supplying water to an intermediate cooler provided in the uppermost stream in the flow direction of the working medium among the plurality of intermediate coolers, and an intermediate cooling provided downstream from the intermediate cooler provided in the uppermost stream A system characterized by having a system for supplying water to the vessel.
水を供給する水供給系統と、
前記供給系統から供給された水を蒸発させて蒸気を生成する蒸発器と、
前記蒸発器で生成された蒸気を圧縮する第一の圧縮機と、
前記第一の圧縮機で圧縮された蒸気を水との直接接触熱交換で冷却する第一の中間冷却器と、
前記第一の中間冷却器で冷却された蒸気を圧縮する第二の圧縮機と、
前記第二の圧縮機で圧縮された蒸気を水との直接接触熱交換で冷却する第二の中間冷却器と、
前記第二の中間冷却器で冷却された蒸気を圧縮する第三の圧縮機と、
前記第三の圧縮機で圧縮された蒸気を蒸気利用施設に供給する蒸気供給系統とを備えたヒートポンプシステムであって、
前記第一の中間冷却器から前記第二の中間冷却器へ水を供給する系統を備えたことを特徴とするヒートポンプシステム。
A water supply system for supplying water;
An evaporator for evaporating water supplied from the supply system to generate steam;
A first compressor for compressing the steam generated in the evaporator;
A first intercooler that cools the steam compressed by the first compressor by direct contact heat exchange with water;
A second compressor for compressing the steam cooled by the first intercooler;
A second intercooler for cooling the steam compressed by the second compressor by direct contact heat exchange with water;
A third compressor for compressing the steam cooled by the second intercooler;
A heat pump system comprising a steam supply system for supplying steam compressed by the third compressor to a steam utilization facility,
A heat pump system comprising a system for supplying water from the first intermediate cooler to the second intermediate cooler.
請求項1−3に記載のシステムまたはヒートポンプシステムにおいて、
前記中間冷却器は、所望量以上の液体の散布により冷却されるように供給され、蒸発せずに残った散布水が液溜りに流下するよう構成されていることを特徴とするシステムまたはヒートポンプシステム。
In the system or heat pump system according to claim 1-3,
The intermediate cooler is supplied so as to be cooled by spraying a liquid of a desired amount or more, and is configured such that spray water remaining without evaporating flows down to a liquid pool. .
請求項4に記載のシステムまたはヒートポンプシステムにおいて、
前記中間冷却器で散布した水の一部は回収され、回収された液体は再び散布可能な構成としたことを特徴とするシステムまたはヒートポンプシステム。
The system or heat pump system according to claim 4,
A system or heat pump system characterized in that a part of the water sprayed by the intermediate cooler is recovered and the recovered liquid can be sprayed again.
作動流体を圧縮する第一の圧縮機と、
前記第一の圧縮機で圧縮された作動流体を水との直接接触熱交換で冷却する第一の中間冷却器と、
前記第一の中間冷却器で冷却された作動媒体を圧縮する第二の圧縮機と、
前記第二の圧縮機で圧縮された作動媒体を水との直接接触熱交換で冷却する第二の中間冷却器と、
前記第二の中間冷却器で冷却された作動媒体を圧縮する第三の圧縮機とを備えたシステムにおける作動媒体の冷却方法であって、
前記第一の中間冷却器から抜き出した水を前記第二の中間冷却器内に供給し、前記第二の圧縮機で圧縮された作動媒体を冷却することを特徴とする作動媒体の冷却方法。
A first compressor for compressing the working fluid;
A first intercooler for cooling the working fluid compressed by the first compressor by direct contact heat exchange with water;
A second compressor for compressing the working medium cooled by the first intercooler;
A second intercooler that cools the working medium compressed by the second compressor by direct contact heat exchange with water;
A method of cooling a working medium in a system comprising a third compressor for compressing the working medium cooled by the second intercooler,
A method of cooling a working medium, comprising supplying water extracted from the first intermediate cooler into the second intermediate cooler and cooling the working medium compressed by the second compressor.
JP2009043316A 2009-02-26 2009-02-26 System having compressor equipped with multiple middle coolers, and cooling method Pending JP2009133318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043316A JP2009133318A (en) 2009-02-26 2009-02-26 System having compressor equipped with multiple middle coolers, and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043316A JP2009133318A (en) 2009-02-26 2009-02-26 System having compressor equipped with multiple middle coolers, and cooling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006174723A Division JP4311415B2 (en) 2006-06-26 2006-06-26 COOLING DEVICE, GAS TURBINE SYSTEM USING COOLING DEVICE, HEAT PUMP SYSTEM USING COOLING MECHANISM, COOLING METHOD, COOLING DEVICE OPERATION METHOD

Publications (1)

Publication Number Publication Date
JP2009133318A true JP2009133318A (en) 2009-06-18

Family

ID=40865409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043316A Pending JP2009133318A (en) 2009-02-26 2009-02-26 System having compressor equipped with multiple middle coolers, and cooling method

Country Status (1)

Country Link
JP (1) JP2009133318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033559A1 (en) * 2009-09-16 2011-03-24 株式会社日立製作所 Cogeneration power plant and biomass reforming combined cycle plant
CN107677497A (en) * 2017-10-30 2018-02-09 上海齐耀膨胀机有限公司 Water vapour compressor test unit and its test method
CN112302964A (en) * 2020-10-29 2021-02-02 西安西热节能技术有限公司 Method for measuring efficiency of independent condensing steam-driven water supply pump
CN114777187A (en) * 2020-05-26 2022-07-22 万众热工科技(广州)有限公司 Heat energy recovery management system and recovery management method for centrifugal air compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160265A (en) * 1979-04-25 1980-12-13 Gen Electric Multiistage open cycle heat pump
JPH03279683A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Multiple stage compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160265A (en) * 1979-04-25 1980-12-13 Gen Electric Multiistage open cycle heat pump
JPH03279683A (en) * 1990-03-28 1991-12-10 Hitachi Ltd Multiple stage compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033559A1 (en) * 2009-09-16 2011-03-24 株式会社日立製作所 Cogeneration power plant and biomass reforming combined cycle plant
JP5331890B2 (en) * 2009-09-16 2013-10-30 株式会社日立製作所 Cogeneration plant and biomass reforming combined power plant
CN107677497A (en) * 2017-10-30 2018-02-09 上海齐耀膨胀机有限公司 Water vapour compressor test unit and its test method
CN107677497B (en) * 2017-10-30 2024-02-13 上海齐耀膨胀机有限公司 Water vapor compressor test device and test method thereof
CN114777187A (en) * 2020-05-26 2022-07-22 万众热工科技(广州)有限公司 Heat energy recovery management system and recovery management method for centrifugal air compressor
CN112302964A (en) * 2020-10-29 2021-02-02 西安西热节能技术有限公司 Method for measuring efficiency of independent condensing steam-driven water supply pump

Similar Documents

Publication Publication Date Title
JP4311415B2 (en) COOLING DEVICE, GAS TURBINE SYSTEM USING COOLING DEVICE, HEAT PUMP SYSTEM USING COOLING MECHANISM, COOLING METHOD, COOLING DEVICE OPERATION METHOD
JP2008175149A (en) Suction air spray device for compressor
JP4099944B2 (en) Gas turbine power generation equipment and air humidifier
KR100762029B1 (en) Control system and method for gas turbine inlet-air water-saturation and supersaturation system
JPH11324710A (en) Gas turbine power plant
CN204301389U (en) In conjunction with evaporative cooling and mechanically refrigerated power generating plant cooling tower water-saving system
JP2007016640A (en) Gas turbine facilities using humid air
US20140178176A1 (en) Axial Compressor and Operation Method of the Same
JP2005105908A (en) Gas turbine facility
JP2013160233A (en) System and method for gas turbine inlet air heating
JP2009133318A (en) System having compressor equipped with multiple middle coolers, and cooling method
US20110173947A1 (en) System and method for gas turbine power augmentation
JPH1172027A (en) Exhaust gas recirculation type combined plant
US20130139517A1 (en) Solar Assisted Gas Turbine System
JP2001214757A (en) Gas turbine facility
JP5909429B2 (en) Moisture gas turbine system
JP5433590B2 (en) Gas turbine system
JP6137831B2 (en) Gas turbine cogeneration system using high humidity air
JP4483505B2 (en) GAS TURBINE EQUIPMENT AND ITS CONTROL DEVICE, GAS TURBINE EQUIPMENT CONTROL METHOD AND TURBINE COOLING COOLING METHOD
JP2002322916A (en) Cooling apparatus of gas turbine suction air
JP4120699B2 (en) Gas turbine power generation equipment and air humidifier
JPH11287132A (en) Gas turbine, combined cycle plant, and compressor
JP5483625B2 (en) Gas turbine system
JP2004132297A (en) Intake air cooling device, intake air cooling method, and gas turbine plant
JP3567090B2 (en) Gas turbines, combined cycle plants and compressors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214