JP2019090559A - Temperature controller of heat exchanger for boiler exhaust gas - Google Patents

Temperature controller of heat exchanger for boiler exhaust gas Download PDF

Info

Publication number
JP2019090559A
JP2019090559A JP2017218812A JP2017218812A JP2019090559A JP 2019090559 A JP2019090559 A JP 2019090559A JP 2017218812 A JP2017218812 A JP 2017218812A JP 2017218812 A JP2017218812 A JP 2017218812A JP 2019090559 A JP2019090559 A JP 2019090559A
Authority
JP
Japan
Prior art keywords
heat
heat medium
exhaust gas
temperature
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017218812A
Other languages
Japanese (ja)
Inventor
雅章 木本
Masaaki Kimoto
雅章 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017218812A priority Critical patent/JP2019090559A/en
Publication of JP2019090559A publication Critical patent/JP2019090559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

To provide a temperature controller of a heat exchanger for boiler exhaust gas, capable of controlling deterioration of heat exchanging performance of a heat recovery device paired with a reheater, and of reducing steam consumption.SOLUTION: The temperature controller of a heat exchanger for a boiler exhaust gas comprises: a heat recovery device 4 that recovers heat of exhaust gas discharged from a boiler 1, using a heat medium; and a reheater 9 that re-heats the exhaust gas using the heat medium having recovered the heat of the exhaust gas in the heat recovery device 4. The reheater 9 comprises: a first heat exchanging part 9A that re-heats the exhaust gas using a first heat medium; and a second heat exchanging part 9B that re-heats the exhaust gas using a second heat medium of a higher temperature relative to the first heat medium. The temperature controller of a heat exchanger for a boiler exhaust gas further comprises: a first heat-medium flow-rate control mechanism 15 for controlling a flow rate of the first heat medium introduced into the first heat exchanging part 9A according to a temperature Tof the first heat medium at an outlet side of the first heat exchanging part 9A; and a second heat-medium flow-rate control mechanism 20 for controlling a flow rate of the second heat medium introduced into the second heat exchanging part 9B according to the temperature Tof the exhaust gas at an outlet side of the reheater 9.SELECTED DRAWING: Figure 1

Description

本発明は、ボイラ排ガス用熱交換器の温度制御装置に関するものである。   The present invention relates to a temperature control device for a boiler exhaust gas heat exchanger.

一般に、石炭等の化石燃料を使用する火力発電所のボイラプラントにおいては、排ガス中に含まれる硫黄酸化物を除去するために脱硫装置が設けられている。   Generally, in a boiler plant of a thermal power plant using a fossil fuel such as coal, a desulfurization device is provided to remove sulfur oxides contained in exhaust gas.

前記脱硫装置としては、石灰−石膏法を利用した湿式脱硫装置が主流となっているが、該湿式脱硫装置の吸収塔の内部では排ガスを吸収液と接触させるため、吸収塔の出口における排ガスは水分飽和ガスとなり、吸収塔からの飛散ミスト及び凝縮水による排ガスラインの腐食や煙突出口で白煙が生じる原因となる。これらを防止するために、吸収塔の下流側に再加熱器を設置して排ガスの温度を高め、煙突から排出することが行われている。   As the desulfurization apparatus, a wet desulfurization apparatus using a lime-gypsum method is mainly used, but in the absorption tower of the wet desulfurization apparatus, the exhaust gas at the outlet of the absorption tower is in contact with the absorption liquid. It becomes a water saturated gas, which causes corrosion of the exhaust gas line due to scattered mist and condensed water from the absorption tower and causes white smoke at the chimney exit. In order to prevent these, a reheater is installed downstream of the absorption tower to raise the temperature of the exhaust gas and exhaust it from the chimney.

前記再加熱器による排ガスの温度制御と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   As a thing showing the general technical level relevant to the temperature control of the waste gas by the said reheater, there exists patent document 1, for example.

前記特許文献1に開示されたものでは、ボイラの排ガスライン途中における吸収塔の上流側に設置された熱回収器により排ガスの熱を熱媒体によって回収し、該排ガスの熱を回収した熱媒体を吸収塔の下流側に設置された再加熱器に導入し、排ガスを昇温させるようになっており、前記再加熱器の熱媒体導入ラインには、ボイラで生成される蒸気によって熱媒体を加熱する熱媒体ヒータが設けられている。そして、前記再加熱器の出側の排ガスラインに設けられた排ガス温度センサで検出された排ガスの温度が設定温度(例えば、90〜93℃程度)未満である場合には、前記熱媒体ヒータに蒸気が供給され、該熱媒体ヒータにおいて蒸気との熱交換により前記再加熱器に導入される熱媒体の温度が高められ、該熱媒体により再加熱器の出側排ガス温度が設定温度以上に保持される。尚、前記熱媒体ヒータにおいて熱媒体の昇温に利用された蒸気は蒸気ドレンとなり蒸気ドレンラインから蒸気ドレンタンクに貯蔵される。その後、蒸気ドレンは、蒸気ドレンポンプによって、前記再加熱器の出側の排ガスラインに配設された蒸気ドレン用伝熱管群に供給され、再度熱交換した後、ボイラプラント側へ送られるようになっている。   In the one disclosed in Patent Document 1, the heat recovery device installed on the upstream side of the absorption tower in the middle of the exhaust gas line of the boiler recovers the heat of the exhaust gas by the heat medium, and the heat medium having the heat of the exhaust gas recovered is It is introduced into the reheater installed on the downstream side of the absorption tower to raise the temperature of the exhaust gas, and the heat medium introduction line of the reheater heats the heat medium by the steam generated by the boiler. A heating medium heater is provided. When the temperature of the exhaust gas detected by the exhaust gas temperature sensor provided in the exhaust gas line on the outlet side of the reheater is less than a set temperature (for example, about 90 to 93 ° C.), Steam is supplied, and the temperature of the heat medium introduced into the reheater is raised by heat exchange with the steam in the heat medium heater, and the temperature of the outlet side exhaust gas of the reheater is kept above the set temperature by the heat medium Be done. The steam used to raise the temperature of the heat medium in the heat medium heater becomes a steam drain and is stored in the steam drain tank from the steam drain line. Thereafter, the steam drain is supplied by the steam drain pump to the steam drain heat transfer pipe group disposed in the exhaust gas line on the outlet side of the reheater, and after being subjected to heat exchange again, sent to the boiler plant side. It has become.

特開平11−153318号公報Japanese Patent Application Laid-Open No. 11-153318

しかしながら、特許文献1に開示されたものでは、再加熱器の出側排ガス温度を設定温度以上に保持しようとした場合、熱媒体ヒータに供給される蒸気の流量が増加し、再加熱器の出側熱媒体温度が必要以上に上昇してしまい、その設定温度(例えば、70℃程度)を超えてしまうことがあった。この場合、蒸気が無駄に消費されることになる。   However, in the case disclosed in Patent Document 1, when trying to keep the temperature of the outlet side exhaust gas of the reheater above the set temperature, the flow rate of the steam supplied to the heating medium heater increases, and the reheater discharges. The side heat medium temperature may rise more than necessary and may exceed the set temperature (for example, about 70 ° C.). In this case, steam is consumed wastefully.

しかも、前記再加熱器の出側排ガス温度を設定温度以上に保持するために再加熱器の出側熱媒体温度が必要以上に上昇してしまうと、前記再加熱器と対を成す熱回収器へ導入される入側熱媒体温度が高くなる。該熱回収器への入側熱媒体温度が高くなると、前記熱回収器の対数平均温度差(LMTD:Logarithmic Mean Temperature Difference)が小さくなるため、熱交換性能が低下する虞があった。該熱回収性能が低下すると、前記再加熱器で必要となる熱量が熱回収器で回収できなくなって熱媒体ヒータで使用される蒸気の流量が増え、前記再加熱器の出側熱媒体温度が更に上昇して悪循環に陥り、蒸気の無駄が更に増えてしまうという不具合を有していた。   Moreover, when the temperature of the heat medium on the outlet side of the reheater rises more than necessary to maintain the temperature of the outlet side exhaust gas of the reheater above the set temperature, a heat recovery unit forming a pair with the reheater The temperature of the incoming heat medium introduced to the When the temperature of the heat transfer medium entering the heat recovery device is increased, the logarithmic mean temperature difference (LMTD) of the heat recovery device is reduced, so that the heat exchange performance may be reduced. When the heat recovery performance is lowered, the heat required for the reheater can not be recovered by the heat recovery unit, the flow rate of steam used in the heat medium heater increases, and the temperature of the heat medium on the outlet side of the reheater becomes Furthermore, it has risen and it has fallen into a vicious circle, and it had the fault that the waste of steam will further increase.

本発明は、上記従来の問題点に鑑みてなしたもので、再加熱器と対を成す熱回収器の熱交換性能低下を抑制し、蒸気の消費量削減を図り得るボイラ排ガス用熱交換器の温度制御装置を提供しようとするものである。   The present invention has been made in view of the above-mentioned conventional problems, and it is a heat exchanger for a boiler exhaust gas that can suppress the decrease in heat exchange performance of a heat recovery unit forming a pair with a reheater and reduce the consumption of steam. It is an object of the present invention to provide a temperature control device for

上記目的を達成するために、本発明のボイラ排ガス用熱交換器の温度制御装置は、ボイラから排出される排ガスの熱を熱媒体により回収する熱回収器と、
該熱回収器で排ガスの熱を回収した熱媒体により排ガスを再加熱する再加熱器と
を備えたボイラ排ガス用熱交換器の温度制御装置において、
前記再加熱器は、第一熱媒体により排ガスを再加熱する第一熱交換部と、前記第一熱媒体より高温の第二熱媒体により排ガスを再加熱する第二熱交換部とを備え、
前記第一熱交換部の出側第一熱媒体温度に基づき該第一熱交換部へ導入される第一熱媒体の流量を調節する第一熱媒体流量調節機構と、
前記再加熱器の出側排ガス温度に基づき前記第二熱交換部へ導入される第二熱媒体の流量を調節する第二熱媒体流量調節機構と
を備えることができる。
In order to achieve the above object, the temperature control device for a boiler exhaust gas heat exchanger according to the present invention comprises a heat recovery device for recovering heat of exhaust gas discharged from the boiler by a heat medium;
A temperature controller for a boiler exhaust gas heat exchanger, comprising: a reheater reheating the exhaust gas with a heat medium in which the heat of the exhaust gas is recovered by the heat recovery unit;
The reheater includes a first heat exchange unit that reheats the exhaust gas with a first heat medium, and a second heat exchange unit that reheats the exhaust gas with a second heat medium that is hotter than the first heat medium.
A first heat medium flow control mechanism for adjusting the flow rate of the first heat medium introduced into the first heat exchange section based on the temperature of the first heat medium output side of the first heat exchange section;
And a second heat medium flow control mechanism for adjusting the flow rate of the second heat medium introduced to the second heat exchange unit based on the temperature of the outlet side exhaust gas of the reheater.

ボイラ排ガス用熱交換器の温度制御装置において、前記第一熱媒体流量調節機構は、
前記第一熱交換部への第一熱媒体導入ラインと前記第一熱交換部からの第一熱媒体導出ラインとをつなぐバイパスラインと、
該バイパスラインへ迂回する第一熱媒体の流量を調節する第一熱媒体流量調節バルブと
を備えることができる。
In the temperature control device for a boiler exhaust gas heat exchanger, the first heat medium flow control mechanism is
A bypass line connecting a first heat medium introduction line to the first heat exchange section and a first heat medium lead line from the first heat exchange section;
And a first heat medium flow control valve for adjusting the flow rate of the first heat medium diverted to the bypass line.

前記ボイラ排ガス用熱交換器の温度制御装置において、前記第一熱媒体流量調節機構は、
前記出側第一熱媒体温度を検出して前記第一熱媒体流量調節バルブへ開度調節信号を出力する第一熱媒体温度センサ
を備えることができる。
In the temperature control device of the boiler exhaust gas heat exchanger, the first heat medium flow control mechanism is
A first heat medium temperature sensor may be provided that detects the temperature of the output first heat medium and outputs an opening adjustment signal to the first heat medium flow control valve.

前記ボイラ排ガス用熱交換器の温度制御装置において、前記第二熱媒体流量調節機構は、
前記第二熱交換部へ導入される第二熱媒体の流量を調節する第二熱媒体流量調節バルブと、
前記出側排ガス温度を検出して前記第二熱媒体流量調節バルブへ開度調節信号を出力する排ガス温度センサと
を備えることができる。
In the temperature control device of the boiler exhaust gas heat exchanger, the second heat medium flow control mechanism includes:
A second heat medium flow control valve for adjusting the flow rate of the second heat medium introduced into the second heat exchange unit;
And an exhaust gas temperature sensor that detects an outlet side exhaust gas temperature and outputs an opening degree adjustment signal to the second heat medium flow rate adjustment valve.

前記ボイラ排ガス用熱交換器の温度制御装置において、前記第一熱媒体は水であり、前記第二熱媒体は前記ボイラで生成された蒸気であるようにすることができる。   In the temperature control device of the boiler exhaust gas heat exchanger, the first heat medium may be water, and the second heat medium may be steam generated by the boiler.

本発明のボイラ排ガス用熱交換器の温度制御装置によれば、再加熱器と対を成す熱回収器の熱交換性能低下を抑制し、蒸気の消費量削減を図り得るという優れた効果を奏し得る。   According to the temperature control device for a boiler exhaust gas heat exchanger of the present invention, it is possible to suppress the decrease in heat exchange performance of the heat recovery unit forming a pair with the reheater, and to achieve an excellent effect of reducing the consumption of steam. obtain.

本発明のボイラ排ガス用熱交換器の温度制御装置の実施例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole outline | summary block diagram which shows the Example of the temperature control apparatus of the heat exchanger for boiler waste gases of this invention.

以下、本発明の実施の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

図1は本発明のボイラ排ガス用熱交換器の温度制御装置の実施例である。   FIG. 1 shows an embodiment of a temperature control system for a boiler exhaust gas heat exchanger according to the present invention.

図1に示す実施例において、ボイラ1の排ガスライン2には、上流側から順次、空気予熱器3、熱回収器4、電気集塵機5、誘引通風機6、脱硫装置7の吸収塔8、再加熱器9及び煙突10が配置されている。   In the embodiment shown in FIG. 1, in the exhaust gas line 2 of the boiler 1, from the upstream side, the air preheater 3, the heat recovery device 4, the electric precipitator 5, the induction ventilator 6, the absorption tower 8 of the desulfurization device 7, A heater 9 and a chimney 10 are arranged.

前記ボイラ1は、石炭等の燃料を燃焼させ蒸気を発生するようになっている。   The boiler 1 burns fuel such as coal and generates steam.

前記空気予熱器3は、前記ボイラ1へ導入される燃焼用空気を排ガスによって予熱するようになっている。   The air preheater 3 preheats the combustion air introduced into the boiler 1 with exhaust gas.

前記熱回収器4は、前記ボイラ1から排出されて空気予熱器3を通過した排ガスの熱を熱媒体(第一熱媒体)により回収するようになっている。   The heat recovery unit 4 is configured to recover the heat of the exhaust gas discharged from the boiler 1 and passed through the air preheater 3 by a heat transfer medium (first heat transfer medium).

前記電気集塵機5は、前記熱回収器4を通過した排ガス中に含まれる煤塵を捕集するようになっている。   The electrostatic precipitator 5 is adapted to collect dust contained in the exhaust gas that has passed through the heat recovery unit 4.

前記誘引通風機6は、前記電気集塵機5で煤塵が捕集された排ガスを昇圧して前記脱硫装置7の吸収塔8へ送給するようになっている。   The induction ventilator 6 pressurizes the exhaust gas from which dust is collected by the electrostatic precipitator 5 and feeds it to the absorption tower 8 of the desulfurization apparatus 7.

前記脱硫装置7の吸収塔8は、前記誘引通風機6から送給される排ガスを吸収液と接触させ、排ガス中に含まれる硫黄酸化物を除去するようになっている。   The absorption tower 8 of the desulfurization apparatus 7 is configured to bring the exhaust gas fed from the induced draft fan 6 into contact with the absorbing liquid to remove sulfur oxides contained in the exhaust gas.

前記再加熱器9は、第一熱交換部9Aと、第二熱交換部9Bとを備えている。前記第一熱交換部9Aは、前記熱回収器4から延びる第一熱媒体導入ライン11と、前記熱回収器4へ通じる第一熱媒体導出ライン12とが接続され、第一熱媒体により排ガスを再加熱するようになっている。尚、前記第一熱媒体は、例えば、前記熱回収器4と第一熱交換部9Aとの間をポンプ(図示せず)の作動により循環する水(薬品処理された純水)である。前記第二熱交換部9Bは、前記ボイラ1から延びる第二熱媒体導入ライン13と、ドレン排出ライン14とが接続され、前記第一熱媒体より高温の第二熱媒体により排ガスを再加熱するようになっている。尚、前記第二熱媒体は前記ボイラ1で生成された蒸気である。   The reheater 9 includes a first heat exchange unit 9A and a second heat exchange unit 9B. In the first heat exchange unit 9A, a first heat medium introduction line 11 extending from the heat recovery unit 4 and a first heat medium lead line 12 leading to the heat recovery unit 4 are connected, and an exhaust gas is generated by the first heat medium. Is supposed to reheat. The first heat medium is, for example, water (chemically treated pure water) circulated between the heat recovery unit 4 and the first heat exchange unit 9A by the operation of a pump (not shown). The second heat exchange unit 9B is connected to the second heat medium introduction line 13 extending from the boiler 1 and the drain discharge line 14, and reheats the exhaust gas by the second heat medium having a temperature higher than that of the first heat medium. It is supposed to be. The second heat medium is steam generated by the boiler 1.

前記再加熱器9の第一熱交換部9Aには、第一熱媒体流量調節機構15が設けられている。該第一熱媒体流量調節機構15は、前記第一熱交換部9Aへの第一熱媒体導入ライン11と前記第一熱交換部9Aからの第一熱媒体導出ライン12とをバイパスライン16でつなぎ、該バイパスライン16と第一熱媒体導入ライン11に第一熱媒体流量調節バルブ17a,17bを設け、前記バイパスライン16へ迂回する第一熱媒体の流量を第一熱媒体流量調節バルブ17a,17bによって調節するように構成されている。前記第一熱媒体流量調節バルブ17bは、バイパスライン16の分岐点より下流側における第一熱媒体導入ライン11に設けられている。前記第一熱媒体流量調節バルブ17a,17bは、開度調節自在なオリフィスを用いることもできる。更に、前記バイパスライン16の合流点より下流側における第一熱媒体導出ライン12には、第一熱媒体温度センサ18が設けられ、該第一熱媒体温度センサ18により出側第一熱媒体温度Tを検出して前記第一熱媒体流量調節バルブ17a,17bへ開度調節信号19a,19bを出力するようになっている。前記第一熱媒体温度センサ18には、前記再加熱器9の内部で酸による腐食が発生しない設定温度TS1(例えば、70℃程度)が予め記憶されている。これにより、前記第一熱媒体流量調節機構15は、前記第一熱交換部9Aの出側第一熱媒体温度Tに基づき該第一熱交換部9Aへ導入される第一熱媒体の流量を調節するようになっている。 The first heat exchange unit 9A of the reheater 9 is provided with a first heat medium flow rate adjusting mechanism 15. The first heat medium flow control mechanism 15 includes a first heat medium introduction line 11 to the first heat exchange unit 9A and a first heat medium discharge line 12 from the first heat exchange unit 9A as a bypass line 16. The first heat medium flow control valves 17a and 17b are provided in the bypass line 16 and the first heat medium introduction line 11, and the flow rate of the first heat medium diverted to the bypass line 16 is the first heat medium flow control valve 17a. , 17b are configured to adjust. The first heat medium flow control valve 17 b is provided in the first heat medium introduction line 11 downstream of the branch point of the bypass line 16. The first heat medium flow control valves 17a and 17b may use orifices whose opening degree can be adjusted. Furthermore, a first heat medium temperature sensor 18 is provided on the first heat medium lead-out line 12 downstream of the junction point of the bypass line 16, and the first heat medium temperature sensor 18 outputs the first heat medium temperature wherein detecting a T 1 first heat medium flow control valve 17a, and outputs opening adjustment signal 19a, and 19b to 17b. The first heat medium temperature sensor 18 stores in advance a set temperature T S1 (for example, about 70 ° C.) at which corrosion by acid does not occur inside the reheater 9. Thus, the first heat medium flow rate control mechanism 15, the flow rate of the first heat medium introduced into the delivery side first heat based on the medium temperature T 1 of said first heat exchange portion 9A of the first heat exchanger 9A Is supposed to adjust.

前記再加熱器9の第二熱交換部9Bには、第二熱媒体流量調節機構20が設けられている。該第二熱媒体流量調節機構20は、前記第二熱媒体導入ライン13に第二熱媒体流量調節バルブ21を設け、前記第二熱交換部9Bへ導入される第二熱媒体の流量を第二熱媒体流量調節バルブ21によって調節するように構成されている。前記第二熱媒体流量調節バルブ21は、開度調節自在なオリフィスを用いることもできる。更に、前記再加熱器9の出側の排ガスライン2には、排ガス温度センサ22が設けられ、該排ガス温度センサ22により前記出側排ガス温度Tを検出して前記第二熱媒体流量調節バルブ21へ開度調節信号23を出力するようになっている。前記排ガス温度センサ22には、煙突10からの白煙発生を抑制できる設定温度TS2(例えば、90〜93℃程度)が予め記憶されている。これにより、前記第二熱媒体流量調節機構20は、前記再加熱器9の出側排ガス温度Tに基づき前記第二熱交換部9Bへ導入される第二熱媒体の流量を調節するようになっている。 A second heat medium flow control mechanism 20 is provided in the second heat exchange unit 9B of the reheater 9. The second heat medium flow control mechanism 20 is provided with a second heat medium flow control valve 21 in the second heat medium introduction line 13, and the flow rate of the second heat medium introduced to the second heat exchange unit 9B is It is configured to be adjusted by the dual heat medium flow control valve 21. The second heat medium flow control valve 21 may use an adjustable orifice. Further, wherein the exhaust gas line 2 exit side of the reheater 9, the exhaust gas temperature sensor 22 is provided, said detecting the exit-side exhaust gas temperature T 2 by the exhaust gas temperature sensor 22 second heat medium flow rate control valve An opening adjustment signal 23 is output to 21. In the exhaust gas temperature sensor 22, a set temperature T S2 (for example, about 90 to 93 ° C.) which can suppress the generation of white smoke from the chimney 10 is stored in advance. Thus, the second heat medium flow rate control mechanism 20, so as to adjust the flow rate of the second heat medium introduced into the reheater 9 of exit side based on the exhaust gas temperature T 2 the second heat exchanger 9B It has become.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

ボイラ1において石炭等の燃料を燃焼させることにより発生した排ガスは、空気予熱器3において、前記ボイラ1へ導入される燃焼用空気を予熱した後、熱回収器4において、熱が熱媒体により回収される。   The exhaust gas generated by burning a fuel such as coal in the boiler 1 preheats the combustion air introduced to the boiler 1 in the air preheater 3 and then the heat is recovered by the heat medium in the heat recovery unit 4 Be done.

前記熱回収器4を通過した排ガス中に含まれる煤塵は、電気集塵機5で捕集され、該電気集塵機5で煤塵が捕集された排ガスは、誘引通風機6で昇圧されて脱硫装置7の吸収塔8へ送給される。   The dust contained in the exhaust gas that has passed through the heat recovery unit 4 is collected by the electrostatic precipitator 5, and the exhaust gas from which the dust is collected by the electrostatic precipitator 5 is pressurized by the induction ventilator 6. It is sent to absorber 8.

前記脱硫装置7の吸収塔8において、前記誘引通風機6から送給される排ガスは吸収液と接触し、排ガス中に含まれる硫黄酸化物が除去される。   In the absorption tower 8 of the desulfurization apparatus 7, the exhaust gas fed from the induction ventilator 6 comes in contact with the absorbing liquid, and the sulfur oxides contained in the exhaust gas are removed.

前記脱硫装置7の吸収塔8で硫黄酸化物が除去された排ガスは、再加熱器9へ導かれる。   The exhaust gas from which sulfur oxides have been removed by the absorption tower 8 of the desulfurization device 7 is led to a reheater 9.

前記再加熱器9の第一熱交換部9A及び第二熱交換部9Bにおいて、前記排ガスは加熱されるが、この時、排ガス温度センサ22により前記再加熱器9の出側排ガス温度Tが検出されると共に、第一熱媒体温度センサ18により出側第一熱媒体温度Tが検出される。 In the first heat exchanger 9A and the second heat exchanging portion 9B of the reheater 9, wherein at the exhaust gas is heated, this time, the exit-side exhaust gas temperature T 2 of the reheater 9 by the exhaust gas temperature sensor 22 together is detected, the delivery side first heat medium temperature T 1 of the first heat medium temperature sensor 18 is detected.

前記出側第一熱媒体温度Tは、再加熱器9の内部で酸による腐食が発生しない設定温度TS1(例えば、70℃程度)となるよう、第一熱媒体流量調節機構15により制御される。より詳しくは、検出された出側第一熱媒体温度Tに基づき前記第一熱媒体温度センサ18から第一熱媒体流量調節バルブ17a,17bへ開度調節信号19a,19bが出力され、該第一熱媒体流量調節バルブ17a,17bの開度が調節される。これにより、前記出側第一熱媒体温度Tが設定温度TS1を下回らないため、再加熱器9の内部で酸による腐食が発生せず、又、前記出側第一熱媒体温度Tが設定温度TS1を必要以上に上回ることもない。因みに、前記再加熱器9の内部で酸による腐食が発生しないようにするための出側第一熱媒体の設定温度TS1は、再加熱器9の内部の構成部材の材質を耐食性の高いものとすることでより低く抑えることも可能となる。 The first heat medium flow control mechanism 15 controls the first heat medium temperature T 1 on the outgoing side to a set temperature T S1 (eg, about 70 ° C.) at which corrosion by acid does not occur inside the reheater 9. Be done. More specifically, the first heat medium flow rate control valve 17a from the basis of the detected output side first heat medium temperature T 1 of the first heat medium temperature sensor 18, the opening degree adjustment signal 19a to 17b, 19b are output, the The opening degree of the first heat medium flow control valves 17a and 17b is adjusted. Accordingly, since the output-side first heat medium temperature T 1 is not lower than the set temperature T S1, not corroded by acid within the reheater 9 is generated, also, the exit-side first heat medium temperatures T 1 Does not exceed the set temperature TS1 more than necessary. Incidentally, the set temperature T S1 of the outgoing side first heat medium for corrosion by internal acid of the reheater 9 is prevented from occurring, a high the material of the internal components of the reheater 9 anticorrosive By doing this, it is also possible to keep it lower.

一方、前記出側排ガス温度Tは、煙突10からの白煙発生を抑制できる設定温度TS2(例えば、90〜93℃程度)となるよう、第二熱媒体流量調節機構20により制御される。より詳しくは、検出された出側排ガス温度Tに基づき排ガス温度センサ22から第二熱媒体流量調節バルブ21へ開度調節信号23が出力され、該第二熱媒体流量調節バルブ21の開度が調節される。これにより、前記第一熱交換部9Aで不足する熱量のみが第二熱交換部9Bで補われる形となり、第二熱媒体即ち蒸気の無駄が最小限に抑えられ、しかも、前記出側排ガス温度Tが設定温度TS2を下回らないため、煙突10から白煙が発生することが防止される。 Meanwhile, the exit-side exhaust gas temperature T 2 is the set temperature T S2 can be suppressed white smoke generation from the stack 10 (e.g., about 90 to 93 ° C.) and so as, is controlled by the second heat medium flow control mechanism 20 . More specifically, the opening degree adjustment signal 23 from the exhaust gas temperature sensor 22 based on the detected output side exhaust gas temperature T 2 to the second heat medium flow rate regulating valve 21 is output, the opening degree of the second heat medium flow rate control valve 21 Is adjusted. As a result, only the amount of heat deficient in the first heat exchange section 9A is compensated by the second heat exchange section 9B, and waste of the second heat medium, that is, steam is minimized, and the temperature of the exhaust gas on the output side since T 2 is not lower than the set temperature T S2, white smoke is prevented from being generated from the stack 10.

この結果、本実施例では、第一熱交換部9Aと第二熱交換部9Bでそれぞれ個別に温度制御がなされるため、特許文献1に開示されたものとは異なり、蒸気で熱媒体を加熱する熱媒体ヒータは必要なく、再加熱器9の出側排ガス温度Tを設定温度TS2以上に保持しようとした場合、第一熱交換部9Aの第一熱媒体温度に影響が及ぶことはない。即ち、前記再加熱器9の出側第一熱媒体温度Tは、必要以上に上昇せず、その設定温度TS1(例えば、70℃程度)を超えてしまうことが避けられる。 As a result, in the present embodiment, since the temperature control is individually performed in the first heat exchange unit 9A and the second heat exchange unit 9B, unlike the one disclosed in Patent Document 1, the heat medium is heated by steam. heat medium heater without the need to, if you try to hold the output-side exhaust gas temperature T 2 of the reheater 9 above the set temperature T S2, the influence to the first heat medium temperature of the first heat exchanger 9A is spanned Absent. That is, the reheater outlet side first heat medium temperature T 1 of the 9 does not rise more than necessary, the set temperature T S1 (e.g., about 70 ° C.) is avoided that exceeds.

しかも、前記再加熱器9の出側排ガス温度Tを設定温度TS2以上に保持するために再加熱器9の出側第一熱媒体温度Tが必要以上に上昇してしまうことがないということは、前記再加熱器9と対を成す熱回収器4へ導入される入側熱媒体温度が高くなる心配もないことを意味する。該熱回収器4への入側熱媒体温度が高くならず低く抑えられるということは、前記熱回収器4の対数平均温度差(LMTD:Logarithmic Mean Temperature Difference)が大きくなるため、熱交換性能が低下しない。該熱回収性能が低下しなければ、前記再加熱器9で必要となる熱量が熱回収器4で回収でき、前記第二熱交換部9Bで使用される第二熱媒体(蒸気)の流量が抑えられ、前記再加熱器9の出側第一熱媒体温度Tが更に上昇して悪循環に陥るようなことが避けられる。 Moreover, it never rises to the reheater 9 exit side exhaust gas temperature T 2 a more than necessary exit side first heat medium temperature T 1 of the reheater 9 to hold more than the set temperature T S2 of That means that there is no concern that the temperature of the heat transfer medium introduced into the heat recovery unit 4 paired with the reheater 9 will be high. That the temperature of the heat medium entering the heat recovery unit 4 can be kept low and not high means that the logarithmic mean temperature difference (LMTD) of the heat recovery unit 4 becomes large, so heat exchange performance is improved. It does not decline. If the heat recovery performance does not decrease, the heat required for the reheater 9 can be recovered by the heat recovery unit 4, and the flow rate of the second heat medium (steam) used in the second heat exchange unit 9B is suppressed to the reheater outlet side first heat medium temperature T 1 of the 9 it is avoided as falling into a vicious circle with increased further.

こうして、再加熱器9と対を成す熱回収器4の熱交換性能低下を抑制し、第二熱媒体(蒸気)の消費量削減を図り得る。   Thus, the heat exchange performance deterioration of the heat recovery unit 4 paired with the reheater 9 can be suppressed, and the consumption of the second heat medium (steam) can be reduced.

そして、本実施例の場合、前記第一熱媒体流量調節機構15は、前記第一熱交換部9Aへの第一熱媒体導入ライン11と前記第一熱交換部9Aからの第一熱媒体導出ライン12とをつなぐバイパスライン16と、該バイパスライン16へ迂回する第一熱媒体の流量を調節する第一熱媒体流量調節バルブ17a,17bとを備えている。このように構成すると、第一熱媒体流量調節バルブ17a,17bの開度調節によりバイパスライン16へ迂回する第一熱媒体の流量を調節でき、前記出側第一熱媒体温度Tを設定温度TS1に保持して、再加熱器9の内部における酸による腐食の発生を防止する上で好ましい。 Further, in the case of the present embodiment, the first heat medium flow rate adjusting mechanism 15 is configured to lead the first heat medium introduction line 11 to the first heat exchange unit 9A and the first heat medium delivery from the first heat exchange unit 9A. A bypass line 16 connecting to the line 12 and first heat medium flow control valves 17 a and 17 b for adjusting the flow rate of the first heat medium diverted to the bypass line 16 are provided. According to this structure, the first heat medium flow control valve 17a, the opening adjustment of 17b to adjust the flow rate of the first heat medium bypasses to the bypass line 16, sets the output-side first heat medium temperature T 1 of the temperature It is preferable to hold it at T S1 to prevent the occurrence of acid corrosion inside the reheater 9.

又、前記第一熱媒体流量調節機構15は、前記出側第一熱媒体温度Tを検出して前記第一熱媒体流量調節バルブ17a,17bへ開度調節信号19a,19bを出力する第一熱媒体温度センサ18を備えている。このように構成すると、第一熱媒体温度センサ18により検出した出側第一熱媒体温度Tに基づいて前記第一熱媒体流量調節バルブ17a,17bへ開度調節信号19a,19bを出力することができ、温度制御の精度を高める上で有効となる。 Further, the first heat medium flow rate control mechanism 15, the outputs the detecting the exit-side first heat medium temperature T 1 of the first heat medium flow control valve 17a, the opening degree adjustment signal 19a to 17b, and 19b One heat medium temperature sensor 18 is provided. According to this structure, on the basis of the exit-side first heat medium temperatures T 1 detected by the first heat medium temperature sensor 18 first heat medium flow control valve 17a, the opening degree adjustment signal 19a to 17b, and outputs the 19b It is effective in improving the accuracy of temperature control.

又、前記第二熱媒体流量調節機構20は、前記第二熱交換部9Bへ導入される第二熱媒体の流量を調節する第二熱媒体流量調節バルブ21と、前記出側排ガス温度Tを検出して前記第二熱媒体流量調節バルブ21へ開度調節信号23を出力する排ガス温度センサ22とを備えている。このように構成すると、排ガス温度センサ22で検出した出側排ガス温度Tに基づいて第二熱媒体流量調節バルブ21へ開度調節信号23を出力することができ、出側排ガス温度Tを設定温度TS2未満とならないように保持し、煙突10から白煙が発生することを防止する上で好ましい。 The second heat medium flow control mechanism 20 also includes a second heat medium flow control valve 21 for adjusting the flow rate of the second heat medium introduced to the second heat exchange unit 9B, and the outlet exhaust gas temperature T 2. And an exhaust gas temperature sensor 22 for outputting an opening degree adjustment signal 23 to the second heat medium flow rate adjustment valve 21. With this configuration, it is possible to output a degree of opening adjustment signal 23 to the second heat medium flow rate control valve 21 based on the delivery side exhaust gas temperature T 2 detected by the exhaust gas temperature sensor 22, an outgoing-side exhaust gas temperature T 2 It is preferable in order to keep the temperature not lower than the set temperature TS2 and to prevent white smoke from being generated from the chimney 10.

更に又、前記第一熱媒体は水であり、前記第二熱媒体は前記ボイラ1で生成された蒸気である。このように構成すると、第一熱交換部9Aと第二熱交換部9Bでそれぞれ個別に温度制御を行う上で有効となる。   Furthermore, the first heat medium is water, and the second heat medium is steam generated by the boiler 1. This configuration is effective in performing temperature control individually in the first heat exchange unit 9A and the second heat exchange unit 9B.

尚、本発明のボイラ排ガス用熱交換器の温度制御装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The temperature control device for a boiler exhaust gas heat exchanger according to the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention. .

1 ボイラ
4 熱回収器
9 再加熱器
9A 第一熱交換部
9B 第二熱交換部
11 第一熱媒体導入ライン
12 第一熱媒体導出ライン
15 第一熱媒体流量調節機構
16 バイパスライン
17a 第一熱媒体流量調節バルブ
17b 第一熱媒体流量調節バルブ
18 第一熱媒体温度センサ
19a 開度調節信号
19b 開度調節信号
20 第二熱媒体流量調節機構
21 第二熱媒体流量調節バルブ
22 排ガス温度センサ
23 開度調節信号
出側第一熱媒体温度
出側排ガス温度
Reference Signs List 1 boiler 4 heat recovery unit 9 reheater 9A first heat exchange unit 9B second heat exchange unit 11 first heat medium introduction line 12 first heat medium lead line 15 first heat medium flow control mechanism 16 bypass line 17a first Heat medium flow control valve 17b First heat medium flow control valve 18 First heat medium temperature sensor 19a Opening degree control signal 19b Opening degree control signal 20 Second heat medium flow control mechanism 21 Second heat medium flow control valve 22 Exhaust gas temperature sensor 23 Opening adjustment signal T 1 Outgoing first heat medium temperature T 2 Outgoing exhaust gas temperature

Claims (5)

ボイラから排出される排ガスの熱を熱媒体により回収する熱回収器と、
該熱回収器で排ガスの熱を回収した熱媒体により排ガスを再加熱する再加熱器と
を備えたボイラ排ガス用熱交換器の温度制御装置において、
前記再加熱器は、第一熱媒体により排ガスを再加熱する第一熱交換部と、前記第一熱媒体より高温の第二熱媒体により排ガスを再加熱する第二熱交換部とを備え、
前記第一熱交換部の出側第一熱媒体温度に基づき該第一熱交換部へ導入される第一熱媒体の流量を調節する第一熱媒体流量調節機構と、
前記再加熱器の出側排ガス温度に基づき前記第二熱交換部へ導入される第二熱媒体の流量を調節する第二熱媒体流量調節機構と
を備えたボイラ排ガス用熱交換器の温度制御装置。
A heat recovery unit for recovering heat of exhaust gas discharged from the boiler by a heat medium;
A temperature controller for a boiler exhaust gas heat exchanger, comprising: a reheater reheating the exhaust gas with a heat medium in which the heat of the exhaust gas is recovered by the heat recovery unit;
The reheater includes a first heat exchange unit that reheats the exhaust gas with a first heat medium, and a second heat exchange unit that reheats the exhaust gas with a second heat medium that is hotter than the first heat medium.
A first heat medium flow control mechanism for adjusting the flow rate of the first heat medium introduced into the first heat exchange section based on the temperature of the first heat medium output side of the first heat exchange section;
A second heat medium flow control mechanism for adjusting the flow rate of the second heat medium introduced into the second heat exchange unit based on the outlet side exhaust gas temperature of the reheater; temperature control of the boiler exhaust gas heat exchanger apparatus.
前記第一熱媒体流量調節機構は、
前記第一熱交換部への第一熱媒体導入ラインと前記第一熱交換部からの第一熱媒体導出ラインとをつなぐバイパスラインと、
該バイパスラインへ迂回する第一熱媒体の流量を調節する第一熱媒体流量調節バルブと
を備えた請求項1記載のボイラ排ガス用熱交換器の温度制御装置。
The first heat medium flow control mechanism
A bypass line connecting a first heat medium introduction line to the first heat exchange section and a first heat medium lead line from the first heat exchange section;
The temperature control device for a boiler exhaust gas heat exchanger according to claim 1, further comprising: a first heat medium flow control valve for adjusting a flow rate of the first heat medium diverted to the bypass line.
前記第一熱媒体流量調節機構は、
前記出側第一熱媒体温度を検出して前記第一熱媒体流量調節バルブへ開度調節信号を出力する第一熱媒体温度センサ
を備えた請求項2記載のボイラ排ガス用熱交換器の温度制御装置。
The first heat medium flow control mechanism
The temperature of the heat exchanger for a boiler exhaust gas according to claim 2, further comprising: a first heat medium temperature sensor that detects the temperature of the first heat medium on the output side and outputs an opening adjustment signal to the first heat medium flow control valve. Control device.
前記第二熱媒体流量調節機構は、
前記第二熱交換部へ導入される第二熱媒体の流量を調節する第二熱媒体流量調節バルブと、
前記出側排ガス温度を検出して前記第二熱媒体流量調節バルブへ開度調節信号を出力する排ガス温度センサと
を備えた請求項1〜3の何れか一項に記載のボイラ排ガス用熱交換器の温度制御装置。
The second heat medium flow control mechanism is
A second heat medium flow control valve for adjusting the flow rate of the second heat medium introduced into the second heat exchange unit;
The heat exchange system for boiler exhaust gas according to any one of claims 1 to 3, further comprising: an exhaust gas temperature sensor that detects the outlet side exhaust gas temperature and outputs an opening adjustment signal to the second heat medium flow control valve. Controller temperature controller.
前記第一熱媒体は水であり、前記第二熱媒体は前記ボイラで生成された蒸気である請求項1〜4の何れか一項に記載のボイラ排ガス用熱交換器の温度制御装置。   The temperature control device for a boiler exhaust gas heat exchanger according to any one of claims 1 to 4, wherein the first heat medium is water, and the second heat medium is steam generated by the boiler.
JP2017218812A 2017-11-14 2017-11-14 Temperature controller of heat exchanger for boiler exhaust gas Pending JP2019090559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218812A JP2019090559A (en) 2017-11-14 2017-11-14 Temperature controller of heat exchanger for boiler exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218812A JP2019090559A (en) 2017-11-14 2017-11-14 Temperature controller of heat exchanger for boiler exhaust gas

Publications (1)

Publication Number Publication Date
JP2019090559A true JP2019090559A (en) 2019-06-13

Family

ID=66836156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218812A Pending JP2019090559A (en) 2017-11-14 2017-11-14 Temperature controller of heat exchanger for boiler exhaust gas

Country Status (1)

Country Link
JP (1) JP2019090559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883544A (en) * 2021-09-30 2022-01-04 中国石油大学(华东) Sulfur-containing flue gas waste heat recovery device and control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144325A (en) * 1980-04-11 1981-11-10 Mitsubishi Heavy Ind Ltd Exhaust gas cooling/desulfurizing/reheating system
JPS57136919A (en) * 1981-02-19 1982-08-24 Mitsubishi Heavy Ind Ltd Method for regulating gaseous temperature in stack gas desulfurization
JPH0330032U (en) * 1989-07-18 1991-03-25
JPH06238127A (en) * 1993-02-16 1994-08-30 Babcock Hitachi Kk Flue gas treating device and controller for same
JPH1199317A (en) * 1997-07-30 1999-04-13 Babcock Hitachi Kk Flue gas desulfurizer and its operation
JPH11153318A (en) * 1997-11-21 1999-06-08 Babcock Hitachi Kk Flue gas processing apparatus
JPH11230537A (en) * 1998-02-17 1999-08-27 Babcock Hitachi Kk Flue gas desulfurizer and operation method thereof
CN204987054U (en) * 2015-07-07 2016-01-20 大唐环境产业集团股份有限公司 A hierarchical heat transfer device for wet flue gas desulfurization system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144325A (en) * 1980-04-11 1981-11-10 Mitsubishi Heavy Ind Ltd Exhaust gas cooling/desulfurizing/reheating system
JPS57136919A (en) * 1981-02-19 1982-08-24 Mitsubishi Heavy Ind Ltd Method for regulating gaseous temperature in stack gas desulfurization
JPH0330032U (en) * 1989-07-18 1991-03-25
JPH06238127A (en) * 1993-02-16 1994-08-30 Babcock Hitachi Kk Flue gas treating device and controller for same
JPH1199317A (en) * 1997-07-30 1999-04-13 Babcock Hitachi Kk Flue gas desulfurizer and its operation
JPH11153318A (en) * 1997-11-21 1999-06-08 Babcock Hitachi Kk Flue gas processing apparatus
JPH11230537A (en) * 1998-02-17 1999-08-27 Babcock Hitachi Kk Flue gas desulfurizer and operation method thereof
CN204987054U (en) * 2015-07-07 2016-01-20 大唐环境产业集团股份有限公司 A hierarchical heat transfer device for wet flue gas desulfurization system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113883544A (en) * 2021-09-30 2022-01-04 中国石油大学(华东) Sulfur-containing flue gas waste heat recovery device and control method

Similar Documents

Publication Publication Date Title
JP5260585B2 (en) Coal-fired power plant and method for operating coal-fired power plant
JP4839273B2 (en) Steam power plant
RU2543096C1 (en) METHOD AND DEVICE FOR SELECTIVE CATALYTIC REDUCTION OF NOx IN POWER BOILER
KR101920110B1 (en) Coal fired oxy plant with heat integration
US10436096B2 (en) Heat exchanger and method for controlling heat exchanger
JP5900604B2 (en) Oxy-combustion boiler system
TWI646286B (en) Thermally integrated coal-fired oxygen plant
DK2442061T3 (en) Process for cooling a combustion plant's flue gases in a heat exchanger in a steam generating plant
US20190099714A1 (en) Air pollution control system
JP2008032367A (en) Control method for once-through waste heat recovery boiler
JP2014009877A (en) Flue gas treatment equipment and method
JP2007248018A (en) Control system for supply water preheater of reheat boiler
JP2019090559A (en) Temperature controller of heat exchanger for boiler exhaust gas
JP2014206329A (en) Exhaust gas treatment device
CN111495175A (en) Exhaust gas treatment device
CN105889899A (en) Superheated steam temperature adjusting system and method suitable for SCR low-load operation
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP2019100612A (en) Heat exchanger for boiler exhaust gas
JP2012057860A (en) Exhaust heat recovery device
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
JP2009216279A (en) Gas-gas heat exchanger and its heat exchanging method
JP3783122B2 (en) Smoke removal equipment
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
JP2014009835A (en) Exhaust gas treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928