JP2007285553A - Control method of combustion boiler - Google Patents

Control method of combustion boiler Download PDF

Info

Publication number
JP2007285553A
JP2007285553A JP2006111570A JP2006111570A JP2007285553A JP 2007285553 A JP2007285553 A JP 2007285553A JP 2006111570 A JP2006111570 A JP 2006111570A JP 2006111570 A JP2006111570 A JP 2006111570A JP 2007285553 A JP2007285553 A JP 2007285553A
Authority
JP
Japan
Prior art keywords
damper
exhaust gas
gmf
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006111570A
Other languages
Japanese (ja)
Other versions
JP4859512B2 (en
Inventor
Masaharu Todo
正治 藤堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006111570A priority Critical patent/JP4859512B2/en
Publication of JP2007285553A publication Critical patent/JP2007285553A/en
Application granted granted Critical
Publication of JP4859512B2 publication Critical patent/JP4859512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a combustion boiler capable of providing stable combustion without excessively increasing NOx concentration even in output runup and output fall. <P>SOLUTION: In this combustion boiler comprising air supply pipe conduits 11a, 11b, an exhaust gas discharging pipe conduit 19, an exhaust gas recirculation pipe conduit 17 for recirculating a part of exhaust gas to the air supply pipe conduit, a GMF damper 16 disposed on the way of the exhaust gas recirculation pipe conduit for adjusting the amount of recirculation of the exhaust gas, an OFA damper 14 for adjusting the amount of air when a part of the air is injected from the wake of flame, a high-pressure turbine 31 for rotating the generated vapor of high temperature and high pressure, and a reheater 32 for reheating the vapor expanded by the high-pressure turbine 31, an opening of the OFA damper 14 is controlled by performing the correction on the basis of an air flow rate and an opening of the GMF damper 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃焼ボイラの制御方法に関し、特にOFAダンパの開度を調節して窒素酸化物の生成を抑制する燃焼ボイラの制御方法に関する。   The present invention relates to a method for controlling a combustion boiler, and more particularly to a method for controlling a combustion boiler that suppresses the generation of nitrogen oxides by adjusting the opening of an OFA damper.

火力発電所などで使用するボイラから排出される排ガス中には、窒素酸化物(NOx)が含まれているため、脱硝装置、アンモニア注入装置、NOx計などからなる排煙脱硝設備を用いてNOxを除去した後、排ガスを煙突から大気放出している。また、NOx除去手段に加え、NOxが当初から生成しないように種々の燃焼方式が採用されている。高温で燃焼するとNOxが多量に発生し、燃焼温度が低いと発生量は少なくなることから、ボイラ内の燃焼温度を抑え、NOxの生成を抑えるため、2段燃焼方式、排ガス再循環方式等の燃焼方式が採用されている。   Since exhaust gas discharged from boilers used in thermal power plants and the like contains nitrogen oxides (NOx), NOx using a flue gas denitration facility consisting of a denitration device, ammonia injection device, NOx meter, etc. After removing the exhaust gas, the exhaust gas is released from the chimney to the atmosphere. In addition to the NOx removing means, various combustion methods are employed so that NOx is not generated from the beginning. When burning at high temperatures, a large amount of NOx is generated, and when the combustion temperature is low, the amount of generation is reduced. Therefore, in order to suppress the combustion temperature in the boiler and suppress the generation of NOx, the two-stage combustion method, exhaust gas recirculation method, etc. The combustion method is adopted.

図3を参照して、二段燃焼方式のボイラを説明する。二段燃焼方式のボイラは、火炉のバーナ付近へ燃焼用空気を供給する空気供給管11aに加え、火炎の後流に燃焼用空気を供給する二段燃焼用空気供給管11bが設けられている。   A two-stage combustion type boiler will be described with reference to FIG. The two-stage combustion boiler is provided with a two-stage combustion air supply pipe 11b for supplying combustion air downstream of the flame in addition to an air supply pipe 11a for supplying combustion air to the vicinity of the burner of the furnace. .

二段燃焼用空気供給管に、火炎の後流に供給する空気量を調節するOFA(Over Fire Air)ダンパ(オーバーエアポートダンパ、オーバーファイアポートダンパともいう)14が設けられている。一般的に排出ガス中のNOx濃度や供給する空気量に基づくOFAダンパ14の開度指令信号により、OFAダンパ14の開度が制御されている。   The two-stage combustion air supply pipe is provided with an OFA (Over Fire Air) damper (also referred to as an over-air port damper or an over-fire port damper) 14 for adjusting the amount of air supplied to the wake of the flame. Generally, the opening degree of the OFA damper 14 is controlled by the opening degree command signal of the OFA damper 14 based on the NOx concentration in the exhaust gas and the amount of air to be supplied.

二段燃焼用空気供給管を通じて、燃焼用空気の一部を火炎の後流から注入し、NOxの生成に影響が大きいバーナ3回りの空気比を下げることによりNOxの生成を抑え、未燃分を後流から注入した空気で再燃焼させる方式である。   Through the two-stage combustion air supply pipe, a part of the combustion air is injected from the wake of the flame, reducing the air ratio around the burner 3 which has a large influence on the generation of NOx, thereby suppressing the generation of NOx, Is recombusted with air injected from the downstream.

次に図4を参照して、排ガス再循環方式のボイラを説明する。排ガス再循環方式のボイラは、排出ガスを再度火炉内に循環させるための排ガス再循環管路17を有し、排ガス再循環管路17には再循環ガス量を調節するGMF(Gas Mixing Fan)ダンパ16が設けられている。   Next, an exhaust gas recirculation boiler will be described with reference to FIG. The exhaust gas recirculation boiler has an exhaust gas recirculation pipe 17 for circulating the exhaust gas into the furnace again, and the exhaust gas recirculation pipe 17 adjusts the amount of the recirculation gas (GMF (Gas Mixing Fan)). A damper 16 is provided.

GMFダンパは主に再熱蒸気温度を制御すべく開度が調節されており、再熱蒸気温度が下降するとGMFダンパが開き方向になり、火炉内により多くの再循環ガスが供給される。排ガスは酸素量が少ないため、燃焼用空気の酸素濃度が低下し、酸素濃度の低い燃焼用空気で燃焼を行うことにより局度的な高温域がなくなり、火炎温度の低下によってNOx発生量を低減することができる。   The opening of the GMF damper is adjusted mainly to control the reheat steam temperature. When the reheat steam temperature is lowered, the GMF damper is opened and more recirculation gas is supplied into the furnace. Since the exhaust gas has a small amount of oxygen, the oxygen concentration in the combustion air is reduced, and combustion is performed with combustion air with a low oxygen concentration, so there is no localized high temperature range, and the amount of NOx generated is reduced by lowering the flame temperature. can do.

しかし、発電所などの発電出力は常に一定ではない。ボイラの負荷上昇時又は下降時に空気と燃料比のバランスが崩れ、燃焼状態が不安定となり、過度的にNOx濃度が変化する。排出ガス中のNOx濃度によりOFAダンパ開度指令信号を補正するフィードバック制御方式を採用した場合でも、返答遅れが生じるために急激なNOx濃度の変化に追随することが困難であった。   However, the power generation output of a power plant is not always constant. When the boiler load increases or decreases, the balance between the air and the fuel ratio is lost, the combustion state becomes unstable, and the NOx concentration changes excessively. Even when a feedback control system that corrects the OFA damper opening command signal based on the NOx concentration in the exhaust gas is employed, it is difficult to follow a rapid change in the NOx concentration because a response delay occurs.

これに対して、出力指令が変化しても空燃比が急激に上昇するのを押さえ、NOxの濃度が低減できるようにしたボイラのNOxの低減方法が提案されている(例えば特許文献1)。   On the other hand, there has been proposed a boiler NOx reduction method that suppresses the rapid increase in the air-fuel ratio even when the output command changes, thereby reducing the NOx concentration (for example, Patent Document 1).

特許文献1に記載の技術は、二段燃焼ボイラにおいて、バーナに供給される燃焼用空気の圧力とボイラ火炉内の圧力との圧力差からOFAダンパの開度に補正を加える技術である。出力指令が変化して燃料供給の始動又は停止する際のバーナの空燃比が急激に上昇するのを抑えて窒素酸化物の濃度を低減している。   The technique described in Patent Document 1 is a technique for correcting the opening of the OFA damper from the pressure difference between the pressure of combustion air supplied to the burner and the pressure in the boiler furnace in a two-stage combustion boiler. Nitrogen oxide concentration is reduced by suppressing a sudden rise in the air-fuel ratio of the burner when the output command is changed and fuel supply is started or stopped.

また、更なるNOxの低減化を求め、二段燃焼方式と排ガス再循環方式を組み合わせたボイラも稼働している。
特開平8−261410号公報
In addition, a boiler that combines a two-stage combustion method and an exhaust gas recirculation method is also in operation in order to further reduce NOx.
JP-A-8-261410

しかしながら、二段燃焼方式と排ガス再循環方式を組み合わせたボイラの場合、OFAダンパ及びGMFダンパは通常別々に制御されているため、以下の課題が生ずる。   However, in the case of a boiler that combines a two-stage combustion method and an exhaust gas recirculation method, the OFA damper and the GMF damper are usually controlled separately, and the following problems arise.

ボイラの負荷上昇時には再熱蒸気温度が上がり易く、GMFダンパ開度は閉じ方向になる。このため再循環ガス量の減少に伴い、負荷下降時に対して相対空気密度が大きくなりNOx濃度が過度的に上昇するという問題がある。生成したNOxは脱硝装置、アンモニア注入装置、NOx計などからなる排煙脱硝設備を用いてNOxを除去しているが、急激にNOxの量が増大すると排煙脱硝設備にかかる負担が大きくなり処理が困難になるという課題を有する。   When the load on the boiler rises, the reheat steam temperature tends to rise, and the GMF damper opening degree is in the closing direction. For this reason, as the amount of recirculated gas decreases, there is a problem that the relative air density increases and the NOx concentration rises excessively when the load drops. The generated NOx is removed using a flue gas denitration facility consisting of a denitration device, ammonia injection device, NOx meter, etc., but if the amount of NOx increases rapidly, the burden on the flue gas denitration facility will increase. Has the problem of becoming difficult.

一方、ボイラの負荷下降時には再熱蒸気温度が下がり勝手のため、GMFダンパは開き方向になる。このため再循環ガス量の増加に伴って、空気密度が小さくなりNOx濃度は減少するが、空気密度が小さくなり過ぎ、燃焼自体の悪化を招くという課題を有する。   On the other hand, when the boiler load is lowered, the reheat steam temperature is lowered and the GMF damper is opened. For this reason, as the amount of recirculated gas increases, the air density decreases and the NOx concentration decreases. However, there is a problem that the air density becomes too small and the combustion itself deteriorates.

また、特許文献1に記載の技術は、二段燃焼方式を用いたボイラにおいては、ボイラの各負荷時に過度的なNOxの抑制をすることができ、NOx濃度の低減に有効な技術ではあるが、二段燃焼方式と排ガス再循環方式を組み合わせたボイラについては何ら記載されていない。   Moreover, although the technique described in Patent Document 1 is a technique that can suppress NOx excessively at each load of the boiler in a boiler using a two-stage combustion method, and is effective in reducing the NOx concentration. No mention is made of a boiler that combines a two-stage combustion method and an exhaust gas recirculation method.

本発明はかかる事情に鑑みてなされたもので、空気供給管路と、排ガス排出管路と、排ガスの一部を空気供給管路へ再循環するための排ガス再循環管路と、排ガス再循環管路の途中に設けられた排ガスの再循環量を調節するGMFダンパと、空気の一部を火炎の後流から注入する空気量を調節するOFAダンパと、発生した高温高圧の蒸気が回転させる高圧タービンと、高圧タービンで膨張した蒸気を再度加熱する再熱器とを備え、空気流量から前記OFAダンパの開度を制御し、再熱蒸気温度からGMFダンパの開度を制御する燃焼ボイラの制御方法において、前記OFAダンパの開度に前記GMFダンパの開度に基づく補正を加えることを特徴とする。   The present invention has been made in view of such circumstances, an air supply pipe, an exhaust gas discharge pipe, an exhaust gas recirculation pipe for recirculating a part of the exhaust gas to the air supply pipe, and an exhaust gas recirculation. A GMF damper that adjusts the recirculation amount of exhaust gas provided in the middle of the pipeline, an OFA damper that adjusts the amount of air injected from the wake of the flame, and the generated high-temperature and high-pressure steam rotate. A combustion boiler that includes a high-pressure turbine and a reheater that reheats the steam expanded in the high-pressure turbine, controls the opening of the OFA damper from the air flow rate, and controls the opening of the GMF damper from the reheat steam temperature. In the control method, the opening of the OFA damper is corrected based on the opening of the GMF damper.

また、本発明は燃焼ボイラの出力を上昇する際に、前記GMFダンパに基づく補正は、前記OFAダンパを、より開口するように補正することを特徴とする。   Further, the present invention is characterized in that when the output of the combustion boiler is increased, the correction based on the GMF damper corrects the OFA damper so as to open more.

更に、本発明は燃焼ボイラの出力を降下する際に、前記GMFダンパに基づく補正は、前記OFAダンパを、より閉口するように補正することを特徴とする。   Furthermore, the present invention is characterized in that when the output of the combustion boiler is lowered, the correction based on the GMF damper is performed so as to close the OFA damper.

本発明による燃焼ボイラの制御方法では、別途独自に制御されていたOFAダンパとGMFダンパを連関させることにより、ボイラ内の燃焼状態に適したOFAダンパ開度の制御が可能となる。   In the combustion boiler control method according to the present invention, the OFA damper opening degree suitable for the combustion state in the boiler can be controlled by associating the separately controlled OFA damper and the GMF damper.

特に出力上昇時には実際の燃焼状態に対して再循環ガス量過少に基づく過度的なNOx発生の抑制が可能となり、脱硝装置の負担を低減することができる。また、出力降下時には実際の燃焼状態に対して再循環ガス量過多に基づく燃焼状態の悪化を回避でき、安定した燃焼状態を維持することが可能となる。   In particular, when the output is increased, excessive NOx generation based on an insufficient amount of recirculated gas can be suppressed with respect to the actual combustion state, and the burden on the denitration device can be reduced. Further, when the output is lowered, deterioration of the combustion state based on the excessive amount of recirculated gas can be avoided with respect to the actual combustion state, and a stable combustion state can be maintained.

図1は二段燃焼方式及び排ガス再循環方式を組み合わせた燃焼ボイラの概略的構成図である。図2はOFAダンパの開度制御方法を示すフロー図である。   FIG. 1 is a schematic configuration diagram of a combustion boiler that combines a two-stage combustion method and an exhaust gas recirculation method. FIG. 2 is a flowchart showing a method for controlling the opening degree of the OFA damper.

図1を参照して、二段燃焼方式及び排ガス再循環方式を組み合わせた燃焼ボイラの概略的構成を説明する。ボイラは主に、燃焼用空気を供給する空気供給ラインと、燃焼後の排ガスを排出する排ガス排出・循環ラインと、蒸気がタービンを駆動した後に水に状態変化し、再度ボイラへ送水される蒸気循環ラインと、燃料を燃焼するバーナ3と、燃料を供給する燃料供給ラインとで構成される。   With reference to FIG. 1, the schematic structure of the combustion boiler which combined the two-stage combustion system and the exhaust gas recirculation system is demonstrated. The boiler is mainly an air supply line that supplies combustion air, an exhaust gas discharge / circulation line that discharges exhaust gas after combustion, and steam that changes its state to water after the steam drives the turbine and is sent to the boiler again It comprises a circulation line, a burner 3 for burning fuel, and a fuel supply line for supplying fuel.

空気供給ラインは、空気供給管路11aと、二段燃焼用空気供給管路11bと、通風機12と、OFAダンパ14で構成される。空気供給管路11aは、一端が通風機12に接続され、他端は火炉2下部のバーナ3付近へ接続されている。二段燃焼用空気供給管路11bは、一端が空気供給管路に接続され、他端は火炉2の上部に接続される。OFAダンパ14は、二段燃焼用空気供給管路11bの途中に設けられている。   The air supply line includes an air supply line 11a, a two-stage combustion air supply line 11b, a ventilator 12, and an OFA damper 14. One end of the air supply pipe 11 a is connected to the ventilator 12, and the other end is connected to the vicinity of the burner 3 below the furnace 2. The two-stage combustion air supply pipe 11 b has one end connected to the air supply pipe and the other end connected to the upper portion of the furnace 2. The OFA damper 14 is provided in the middle of the two-stage combustion air supply pipe 11b.

通風機12により、燃焼用空気13は空気供給管路内を通り、バーナ3付近へ送り込まれ、燃料供給管4を通じて火炉2内に注入される燃料5と共に燃焼される。また、OFAダンパ14の開度は、通常、空気流量に基づくボイラの燃焼量を検出することにより制御されている。ボイラの負荷を上昇させるためには、燃料及び空気供給量の増加が必要である。空気供給量が多いと酸素濃度が高くなり、バーナ周辺の燃焼は良くなるがNOxの発生も激しくなる。このため、NOxの生成に影響が大きいバーナ3周辺の空気比を下げるべく、OFAダンパ14が開き方向になり、燃焼用空気15bが火炉2の上部へ送り込まれ、燃料過剰で不完全燃焼の未燃分が完全燃焼される。   By the ventilator 12, the combustion air 13 passes through the air supply pipe, is sent to the vicinity of the burner 3, and is combusted together with the fuel 5 injected into the furnace 2 through the fuel supply pipe 4. The opening degree of the OFA damper 14 is normally controlled by detecting the combustion amount of the boiler based on the air flow rate. In order to increase the load on the boiler, it is necessary to increase the supply amount of fuel and air. When the air supply amount is large, the oxygen concentration becomes high and combustion around the burner is improved, but the generation of NOx is also intense. For this reason, in order to reduce the air ratio around the burner 3 that greatly affects the generation of NOx, the OFA damper 14 opens and the combustion air 15b is sent to the upper portion of the furnace 2 to cause incomplete combustion due to excessive fuel. The fuel is completely burned.

排ガス排出・循環ラインは、排ガス排出管路19と、排ガス再循環管路17と、GMFダンパ16と、再循環ダンパ20と、ガス混合ダンパ10と、脱硝装置6とから構成される。排ガス排出管路19は、一端が火炉2に接続され、他端は脱硝装置6に接続されている。排ガス再循環管路17は、一端が排ガス排出管路19に接続され、他端は二股に枝分かれしており、二股に分岐した一端が火炉2に接続され、二股に分岐した他端は空気供給管路11aに接続されている。排ガス再循環管路17にはGMFダンパ16、再循環ダンパ20、及びガス混合ダンパ10が設けられている。   The exhaust gas discharge / circulation line includes an exhaust gas discharge line 19, an exhaust gas recirculation line 17, a GMF damper 16, a recirculation damper 20, a gas mixing damper 10, and a denitration device 6. One end of the exhaust gas discharge pipe 19 is connected to the furnace 2, and the other end is connected to the denitration device 6. One end of the exhaust gas recirculation pipe 17 is connected to the exhaust gas discharge pipe 19, the other end is branched into two branches, one end branched into two branches is connected to the furnace 2, and the other end branched into two branches is supplied with air. It is connected to the pipe line 11a. The exhaust gas recirculation pipeline 17 is provided with a GMF damper 16, a recirculation damper 20, and a gas mixing damper 10.

燃焼により生じた排ガス18aは排ガス排出管路19を通じて脱硝装置6へ送られた後に煙突(図示を省略)から排出される。排ガスの一部は排ガス再循環管路17に設けられたGMFダンパ16、及び、再循環ダンパ20を介して再度火炉2内に送り込まれる。また、排ガス再循環管路17に送られた排ガスの一部はGMFダンパ16、及び、ガス混合ダンパ10を介して空気供給管路11aに送り込まれ、燃焼用空気13と混合されて混合ガス15a、15bとして再度火炉2内へ送り込まれる。   The exhaust gas 18 a generated by the combustion is sent to the denitration device 6 through the exhaust gas discharge pipe 19 and then discharged from the chimney (not shown). Part of the exhaust gas is sent again into the furnace 2 through the GMF damper 16 and the recirculation damper 20 provided in the exhaust gas recirculation pipe 17. Further, a part of the exhaust gas sent to the exhaust gas recirculation pipe 17 is sent to the air supply pipe 11a via the GMF damper 16 and the gas mixing damper 10, and mixed with the combustion air 13 to be mixed gas 15a. , 15b and sent again into the furnace 2.

GMFダンパ16は、通常、低圧タービン33を駆動する再熱蒸気43の温度により制御されている。火炉2内の燃焼温度の下降過多によって再熱蒸気温度が下降すると、GMFダンパ16が開き方向になり、火炉2内により多くの再循環ガスが供給される。排ガスは酸素量が少ないため、火炉2内の空気密度が小さくなり、酸素濃度の低い燃焼用空気で燃焼が行われる。このため局度的な高温域がなくなり、火炎温度の低下によってNOx発生量を低減することができる。   The GMF damper 16 is normally controlled by the temperature of the reheat steam 43 that drives the low-pressure turbine 33. When the reheat steam temperature decreases due to excessive decrease in the combustion temperature in the furnace 2, the GMF damper 16 opens and more recirculation gas is supplied into the furnace 2. Since the exhaust gas has a small amount of oxygen, the air density in the furnace 2 is reduced, and combustion is performed with combustion air having a low oxygen concentration. For this reason, there is no localized high temperature region, and the amount of NOx generated can be reduced by lowering the flame temperature.

蒸気循環ラインは、主に高圧タービン31と、再熱器32と、低圧タービン33と、復水器34と、給水ポンプ35から構成される。高圧タービン31は、一端が過熱蒸気管路22に接続し、他端は高圧タービン排出蒸気管路23に接続している。低圧タービン33は、一端が再熱蒸気管路24に接続し、他端が低圧タービン排出蒸気管路25に接続している。再熱器32は、一端が高圧タービン排出蒸気管路23に接続し、他端が低圧タービン33に接続している。復水器34は、一端が低圧タービン排出蒸気管路25に接続し、他端が給水管路26に接続している。また、給水ポンプ35は、一端が給水管路26に接続し、他端は蒸発管21に接続されている。   The steam circulation line mainly includes a high-pressure turbine 31, a reheater 32, a low-pressure turbine 33, a condenser 34, and a feed water pump 35. The high pressure turbine 31 has one end connected to the superheated steam line 22 and the other end connected to the high pressure turbine exhaust steam line 23. The low-pressure turbine 33 has one end connected to the reheat steam line 24 and the other end connected to the low-pressure turbine exhaust steam line 25. The reheater 32 has one end connected to the high pressure turbine exhaust steam line 23 and the other end connected to the low pressure turbine 33. One end of the condenser 34 is connected to the low-pressure turbine exhaust steam line 25, and the other end is connected to the water supply line 26. The water supply pump 35 has one end connected to the water supply pipe 26 and the other end connected to the evaporation pipe 21.

蒸発管21内で過熱された過熱蒸気41は、高圧タービン31を駆動し、タービンに接続する発電機(図示を省略)により電力を得る。高圧タービンを駆動した過熱蒸気41は高圧タービン排出蒸気管路を経て、再熱器32へ送られる。再熱器32により加熱された再熱蒸気43は低圧タービン33を駆動した後、低圧タービン排出蒸気として復水器34へ送られる。復水器34に送り込まれた蒸気は、熱交換により水へと状態変化し、給水ポンプ35を介して蒸発管へと注水される。   The superheated steam 41 heated in the evaporation pipe 21 drives the high-pressure turbine 31 and obtains electric power by a generator (not shown) connected to the turbine. The superheated steam 41 that has driven the high-pressure turbine is sent to the reheater 32 through the high-pressure turbine exhaust steam line. The reheat steam 43 heated by the reheater 32 drives the low pressure turbine 33 and is then sent to the condenser 34 as low pressure turbine exhaust steam. The steam sent to the condenser 34 changes its state into water by heat exchange, and is poured into the evaporation pipe through the water supply pump 35.

次に図2を参照して、本発明で実施されるOFAダンパ14の制御方法を説明する。   Next, a method for controlling the OFA damper 14 implemented in the present invention will be described with reference to FIG.

OFAダンパ14開度を制御する燃焼用空気量に基づくベース信号が出力され、また、GMFダンパ16の開度に基づく補正信号が出力される。ベース信号と補正信号とからOFAダンパ14の開度指令信号を出力することにより、OFAダンパ14の開度が制御される。   A base signal based on the amount of combustion air for controlling the opening degree of the OFA damper 14 is output, and a correction signal based on the opening degree of the GMF damper 16 is output. By opening the opening command signal of the OFA damper 14 from the base signal and the correction signal, the opening of the OFA damper 14 is controlled.

前述のようにGMFダンパ16の開度は、再熱器32で加熱されて排出された再熱蒸気43の温度によって、制御されている。   As described above, the opening degree of the GMF damper 16 is controlled by the temperature of the reheat steam 43 heated by the reheater 32 and discharged.

ボイラの出力上昇時には再熱蒸気温度が上昇勝手となり、GMFダンパ16の開度は閉じ方向になる。このため再循環ガス量は減少傾向にある。よって、バーナ3付近の相対空気密度が大きくなり、燃焼状態は向上する反面、NOx濃度が過度的に上昇する傾向にある。したがって、ベース信号に基づくOFAダンパ開度を、より開き方向に補正することで、バーナ3付近の相対空気密度を保ち、NOxが過度に生成するのを防ぐことができる。   When the output of the boiler is increased, the reheat steam temperature is increased, and the opening of the GMF damper 16 is closed. For this reason, the amount of recirculated gas tends to decrease. Therefore, the relative air density in the vicinity of the burner 3 is increased and the combustion state is improved, but the NOx concentration tends to be excessively increased. Therefore, by correcting the OFA damper opening based on the base signal in the opening direction, the relative air density in the vicinity of the burner 3 can be maintained and NOx can be prevented from being excessively generated.

一方、ボイラの出力降下時には再熱蒸気温度が下がり勝手となり、GMFダンパ16は開き方向になる。このため再循環ガス量は増加傾向にある。よって、バーナ3付近の相対空気密度が小さくなるため、NOx濃度は減少する。しかし、空気密度が小さくなり過ぎ、ボイラ1内の燃焼状態の悪化を招くことになる。このため、ベース信号に基づくOFAダンパ14開度を、より閉じ方向に補正することで、バーナ3付近の相対密度を保ち、安定した燃焼を図ることが可能となる。   On the other hand, when the output of the boiler is lowered, the reheat steam temperature is lowered and the GMF damper 16 is opened. For this reason, the amount of recirculated gas tends to increase. Therefore, since the relative air density near the burner 3 becomes small, the NOx concentration decreases. However, the air density becomes too small and the combustion state in the boiler 1 is deteriorated. For this reason, by correcting the opening degree of the OFA damper 14 based on the base signal in the closing direction, it is possible to maintain the relative density near the burner 3 and achieve stable combustion.

二段燃焼方式及び排ガス再循環方式を組み合わせた燃焼ボイラの概略的構成を示す図である。It is a figure which shows schematic structure of the combustion boiler which combined the two-stage combustion system and the exhaust gas recirculation system. 本発明で実施されるOFAダンパの制御方法を示すフロー図である。It is a flowchart which shows the control method of the OFA damper implemented by this invention. 二段燃焼ボイラの概略的構成を示す図である。It is a figure which shows schematic structure of a two-stage combustion boiler. 排ガス再循環ボイラの概略的構成を示す図である。It is a figure which shows the schematic structure of an exhaust gas recirculation boiler.

符号の説明Explanation of symbols

1 ボイラ
2 火炉
3 バーナ
4 燃料供給管路
5 燃料
6 脱硝装置
10 ガス混合ダンパ
11a 燃焼用空気供給管路
11b 二段燃焼用空気供給管路
12 通風機
13 燃焼用空気
14 OFAダンパ
15a 燃焼用空気又は混合ガス
15b 二段燃焼用空気又は混合ガス
16 GMFダンパ
17 排ガス再循環管路
18a 排ガス
18b 再循環ガス
19 排ガス排出管路
20 再循環ダンパ
21 蒸発管
22 過熱蒸気管路
24 再熱蒸気管路
26 給水管路
31 高圧タービン
32 再熱器
33 低圧タービン
41 過熱蒸気
42 高圧タービン排出蒸気
43 再熱蒸気
44 低圧タービン排出蒸気
45 水
DESCRIPTION OF SYMBOLS 1 Boiler 2 Furnace 3 Burner 4 Fuel supply line 5 Fuel 6 Denitration apparatus 10 Gas mixing damper 11a Combustion air supply line 11b Two-stage combustion air supply line 12 Ventilator 13 Combustion air 14 OFA damper 15a Combustion air Or mixed gas 15b Two-stage combustion air or mixed gas 16 GMF damper 17 Exhaust gas recirculation line 18a Exhaust gas 18b Recirculation gas 19 Exhaust gas discharge line 20 Recirculation damper 21 Evaporation pipe 22 Superheated steam line 24 Reheat steam line 26 Water supply line 31 High pressure turbine 32 Reheater 33 Low pressure turbine 41 Superheated steam 42 High pressure turbine exhaust steam 43 Reheat steam 44 Low pressure turbine exhaust steam 45 Water

Claims (3)

空気供給管路と、排ガス排出管路と、排ガスの一部を空気供給管路へ再循環するための排ガス再循環管路と、排ガス再循環管路の途中に設けられた排ガスの再循環量を調節するGMFダンパと、空気の一部を火炎の後流から注入する空気量を調節するOFAダンパと、発生した高温高圧の蒸気が回転させる高圧タービンと、高圧タービンで膨張した蒸気を再度加熱する再熱器とを備え、空気流量から前記OFAダンパの開度を制御し、再熱蒸気温度からGMFダンパの開度を制御する燃焼ボイラの制御方法において、
前記OFAダンパの開度に前記GMFダンパの開度に基づく補正を加えることを特徴とする燃焼ボイラの制御方法。
An air supply pipe, an exhaust gas discharge pipe, an exhaust gas recirculation pipe for recirculating a part of the exhaust gas to the air supply pipe, and an exhaust gas recirculation amount provided in the middle of the exhaust gas recirculation pipe A GMF damper that adjusts the pressure, an OFA damper that controls the amount of air that is injected from the wake of the flame, a high-pressure turbine that rotates the generated high-temperature and high-pressure steam, and reheats the steam expanded in the high-pressure turbine A combustion boiler control method for controlling the opening of the OFA damper from the air flow rate and controlling the opening of the GMF damper from the reheat steam temperature.
A combustion boiler control method, comprising: adding a correction based on the opening of the GMF damper to the opening of the OFA damper.
燃焼ボイラの出力を上昇する際に、前記GMFダンパに基づく補正は、前記OFAダンパを、より開口するように補正することを特徴とする請求項1に記載の燃焼ボイラの制御方法。   The combustion boiler control method according to claim 1, wherein when the output of the combustion boiler is increased, the correction based on the GMF damper is performed so that the OFA damper is opened more. 燃焼ボイラの出力を降下する際に、前記GMFダンパに基づく補正は、前記OFAダンパを、より閉口するように補正することを特徴とする請求項1に記載の燃焼ボイラの制御方法。   The combustion boiler control method according to claim 1, wherein when the output of the combustion boiler is lowered, the correction based on the GMF damper is performed so as to close the OFA damper.
JP2006111570A 2006-04-14 2006-04-14 Combustion boiler control method Expired - Fee Related JP4859512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111570A JP4859512B2 (en) 2006-04-14 2006-04-14 Combustion boiler control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111570A JP4859512B2 (en) 2006-04-14 2006-04-14 Combustion boiler control method

Publications (2)

Publication Number Publication Date
JP2007285553A true JP2007285553A (en) 2007-11-01
JP4859512B2 JP4859512B2 (en) 2012-01-25

Family

ID=38757507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111570A Expired - Fee Related JP4859512B2 (en) 2006-04-14 2006-04-14 Combustion boiler control method

Country Status (1)

Country Link
JP (1) JP4859512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161563B1 (en) 2010-12-16 2012-07-03 비에이치아이 주식회사 Suppressor contrary current for flue gas of industrial boiler
CN108592015A (en) * 2018-06-15 2018-09-28 清华大学 A kind of boiler smoke recirculating system and its method
JP7042960B1 (en) 2021-11-04 2022-03-28 三菱重工パワーインダストリー株式会社 Combustion equipment
JP7460096B1 (en) 2023-01-18 2024-04-02 株式会社プランテック Vertical waste incinerator and combustion method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130506A (en) * 1980-03-14 1981-10-13 Hitachi Ltd Reheated steam temperature controller at start-up
JP2002276903A (en) * 2001-03-14 2002-09-25 Babcock Hitachi Kk Exhaust gas recirculating device and exhaust gas recirculating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130506A (en) * 1980-03-14 1981-10-13 Hitachi Ltd Reheated steam temperature controller at start-up
JP2002276903A (en) * 2001-03-14 2002-09-25 Babcock Hitachi Kk Exhaust gas recirculating device and exhaust gas recirculating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161563B1 (en) 2010-12-16 2012-07-03 비에이치아이 주식회사 Suppressor contrary current for flue gas of industrial boiler
CN108592015A (en) * 2018-06-15 2018-09-28 清华大学 A kind of boiler smoke recirculating system and its method
CN108592015B (en) * 2018-06-15 2024-08-06 清华大学 Boiler flue gas recirculation system and method thereof
JP7042960B1 (en) 2021-11-04 2022-03-28 三菱重工パワーインダストリー株式会社 Combustion equipment
JP2023068693A (en) * 2021-11-04 2023-05-18 三菱重工パワーインダストリー株式会社 Combustion facility
JP7460096B1 (en) 2023-01-18 2024-04-02 株式会社プランテック Vertical waste incinerator and combustion method thereof

Also Published As

Publication number Publication date
JP4859512B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
JP2009062981A (en) Method and system for gas turbine part-load operating condition
JP5130145B2 (en) Boiler plant, boiler plant control device and control method thereof
JP2009257751A (en) Oxygen combustion coal fired boiler and method of transition between air and oxygen combustion
JP2009197800A (en) Power generation system including exhaust gas temperature adjusting device and system for controlling temperature of exhaust gas
JP2003214182A (en) Gas turbine combined plant and its operating method
JP2001336736A (en) Method and device for controlling concentration of exhaust gas oxygen of oxygen combustion boiler equipment
KR101439883B1 (en) Method for controlling oxy fuel combustion boiler
JP4859512B2 (en) Combustion boiler control method
JP6247503B2 (en) Exhaust gas recirculation combustion control method for equipment equipped with a combustion device
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
JP2010243016A (en) Oxygen burning boiler plant and method of operating the oxygen burning boiler plant
JP2004092426A (en) Cogeneration method and cogeneration system
JP2004205129A (en) Combustion control method for boiler and its device
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
JP2005146940A (en) Method for operating cogeneration system
KR100919290B1 (en) Circulation Water Temperature Control System for Low NOx Engine Cogeneration Plant
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JPS6237607A (en) Starting procedure of burning device
KR20210023007A (en) Combustion System Combined with Pressurized Oxygen Combustion and Pulverized Coal Fuel Combustion
JP4182414B2 (en) Combustion control method for steam injection gas turbine
JP2004308596A (en) Output control method of steam jet gas turbine
JP3159737B2 (en) Control unit for desulfurization unit
JP2022097122A (en) Boiler and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees