JP2010243016A - Oxygen burning boiler plant and method of operating the oxygen burning boiler plant - Google Patents

Oxygen burning boiler plant and method of operating the oxygen burning boiler plant Download PDF

Info

Publication number
JP2010243016A
JP2010243016A JP2009090630A JP2009090630A JP2010243016A JP 2010243016 A JP2010243016 A JP 2010243016A JP 2009090630 A JP2009090630 A JP 2009090630A JP 2009090630 A JP2009090630 A JP 2009090630A JP 2010243016 A JP2010243016 A JP 2010243016A
Authority
JP
Japan
Prior art keywords
amount
boiler
exhaust gas
oxygen
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090630A
Other languages
Japanese (ja)
Inventor
Akihiko Yamada
昭彦 山田
Tsutomu Shibata
強 柴田
Yoshiharu Hayashi
喜治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009090630A priority Critical patent/JP2010243016A/en
Publication of JP2010243016A publication Critical patent/JP2010243016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E20/328
    • Y02E20/344

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately control supply oxygen amount and oxygen concentration even when fuel amount supplied to burners is fluctuated, in an oxygen burning method. <P>SOLUTION: This oxygen burning boiler plant includes: a boiler for burning fuel by the burners by using gas containing oxygen having higher concentration than that in the air and gas containing carbon dioxide having higher concentration than that in the air to generate steam; an exhaust gas circulation means for using part of boiler exhaust gas as the gas containing carbon dioxide as circulating exhaust gas; and a carbon dioxide recovery means for recovering carbon dioxide in the boiler exhaust gas. The oxygen burning boiler plant further includes: a pulverized coal flowmeter for measuring the fuel amount supplied to the burners with respect to each burner or as a total value of the plurality of burners; and an oxygen supply amount determination means for controlling the amount of the gas containing oxygen having high concentration supplied to the burner, based on the fuel amount value measured by the pulverized coal flowmeter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの運転方法に関する。   The present invention relates to an oxyfuel boiler plant and a method for operating an oxyfuel boiler plant.

ボイラと蒸気タービンを主要構成機器とする火力発電プラントでは、地球温暖化の要因となっている二酸化炭素の排出量が他の発電方式に比べて多いことが指摘されている。   It has been pointed out that thermal power plants that have boilers and steam turbines as main components emit more carbon dioxide, which is a cause of global warming, than other power generation systems.

そこで、ボイラで燃料を燃焼させる際に、従来のように空気を用いる代わりに高純度の酸素で燃焼させる方法が提案されている。以降、この方式を酸素燃焼,空気による燃焼方法を空気燃焼と呼ぶことにする。   Therefore, a method of burning with high-purity oxygen instead of using air as in the prior art when fuel is burned in a boiler has been proposed. Hereinafter, this method is referred to as oxygen combustion, and the combustion method using air is referred to as air combustion.

酸素燃焼では、排ガス中の大部分が二酸化炭素になるため、排ガスから二酸化炭素を回収する際に二酸化炭素を濃縮する必要がなく、そのまま排ガスを冷却して二酸化炭素を液化・分離することが可能であり、二酸化炭素排出量削減に有効な方法の一つである。   In oxyfuel combustion, most of the exhaust gas becomes carbon dioxide, so there is no need to concentrate the carbon dioxide when recovering carbon dioxide from the exhaust gas, and the exhaust gas can be cooled as it is to liquefy and separate carbon dioxide. It is one of the effective methods for reducing carbon dioxide emissions.

また、空気中の約8割を占める窒素がボイラへ供給されないため、空気中の窒素から発生する窒素酸化物(サーマルNOx)が発生しなくなり、窒素酸化物の低減効果も期待される。   In addition, since about 80% of nitrogen in the air is not supplied to the boiler, nitrogen oxide (thermal NOx) generated from nitrogen in the air is not generated, and a reduction effect of nitrogen oxide is also expected.

酸素燃焼ボイラは、酸素のみで燃料を燃焼させると、火炎温度が高温になりすぎてバーナやボイラ火炉壁面が損傷する恐れがある。そのため、ボイラ排ガスの一部を循環させて酸素と混合して燃焼させる方式が提案されている。   In the oxyfuel boiler, when the fuel is burned only with oxygen, the flame temperature becomes too high and the burner and the boiler furnace wall surface may be damaged. Therefore, a method has been proposed in which a part of boiler exhaust gas is circulated, mixed with oxygen and burned.

特許文献1には、ボイラの全体収熱量が目標収熱量になるようにボイラ排ガスの循環ガス流量を制御する方法,酸素を循環排ガスに混合してボイラ本体に供給する系統と酸素を直接ボイラ本体に供給する系統とを設け、両系統に供給する酸素の流量割合を変更することによりボイラ本体の収熱量を制御する方法が述べられている。   Patent Document 1 discloses a method for controlling the circulating gas flow rate of boiler exhaust gas so that the total heat recovery amount of the boiler becomes a target heat recovery amount, a system for supplying oxygen to the boiler main body by mixing oxygen with the circulating exhaust gas, and oxygen directly in the boiler main body. And a method for controlling the amount of heat collected in the boiler body by changing the flow rate of oxygen supplied to both systems.

また、起動時には空気燃焼で起動し、所定の負荷で酸素燃焼に切替える方法が提案されている。特許文献2には、起動時にはボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう大気の流量を調節し、起動完了後には、ボイラ本体の出口酸素濃度が出口酸素濃度設定値と等しくなるよう高純度酸素製造装置から供給される酸素の流量を調節し、且つボイラ本体の入口酸素濃度が入口酸素濃度設定値と等しくなるよう排ガス循環流量を調節する方法が述べられている。   In addition, there has been proposed a method of starting with air combustion at the start and switching to oxyfuel combustion with a predetermined load. In Patent Document 2, the flow rate of the atmosphere is adjusted so that the outlet oxygen concentration of the boiler body becomes equal to the outlet oxygen concentration set value at the time of startup, and after the startup is completed, the outlet oxygen concentration of the boiler body is equal to the outlet oxygen concentration set value. A method is described in which the flow rate of oxygen supplied from the high-purity oxygen production apparatus is adjusted and the exhaust gas circulation flow rate is adjusted so that the inlet oxygen concentration of the boiler body becomes equal to the inlet oxygen concentration set value.

特開2007−147162号公報JP 2007-147162 A 特開2001−336736号公報JP 2001-336736 A

酸素燃焼方式のボイラでは、供給ガス中の酸素量と酸素濃度を独立に変化させることができる点が空気燃焼方式と大きく異なる点の一つである。また、これらの量を適切に制御することが、プラントの安定かつ安全な運転につながる。   An oxyfuel boiler is one of the major differences from the air combustion system in that the amount of oxygen in the supply gas and the oxygen concentration can be changed independently. In addition, appropriately controlling these amounts leads to stable and safe operation of the plant.

特に供給酸素量は投入した燃料量に対して少なすぎると不完全燃焼や失火の要因となり、多すぎると火炎温度上昇による過熱の原因になるため重要な要因である。また、特に石炭を燃料とするボイラで顕著なように、供給燃料量の設定値は一定でも実際にボイラに投入される燃料量には時間的な変動があるため、供給酸素量を適切に維持することは容易ではない。酸素燃焼方式では酸素量の変化は酸素濃度にも影響する。上記特許文献のように目標収熱量や入口酸素濃度設定値を指標として排ガス循環流量を調節する場合も、所定の目標値または設定値に酸素濃度を維持することが難しい。   In particular, if the amount of supplied oxygen is too small relative to the amount of fuel added, it will cause incomplete combustion and misfire, and if it is too much, it will cause overheating due to a rise in flame temperature, which is an important factor. In addition, as is evident especially in boilers that use coal as fuel, even if the set value of the supplied fuel is constant, the amount of fuel actually injected into the boiler varies over time, so the amount of supplied oxygen is maintained appropriately. It is not easy to do. In the oxyfuel combustion method, the change in the oxygen amount also affects the oxygen concentration. Even when adjusting the exhaust gas circulation flow rate using the target heat recovery amount and the inlet oxygen concentration set value as an index as in the above-mentioned patent document, it is difficult to maintain the oxygen concentration at a predetermined target value or set value.

ボイラ収熱量を指標として排ガス循環流量を調節する場合、酸素量や酸素濃度が変化してからボイラ収熱量に影響が現れるまでに、ボイラ内の燃焼,ガス流動,蒸気流動,伝熱などに起因する遅れが生じるため、収熱量を目標値に維持することも容易ではない。   When adjusting the exhaust gas circulation flow rate using the boiler heat recovery as an index, it is caused by combustion, gas flow, steam flow, heat transfer, etc. in the boiler from when the oxygen amount or oxygen concentration changes until the boiler heat recovery amount is affected. Therefore, it is not easy to maintain the heat recovery amount at the target value.

本発明は、酸素燃焼方式において、バーナに供給される燃料量が変動しても、供給酸素量と酸素濃度を適切に制御することを目的とする。   An object of the present invention is to appropriately control the amount of oxygen supplied and the oxygen concentration even if the amount of fuel supplied to the burner fluctuates in the oxyfuel combustion system.

本発明は、バーナへ供給する燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、微粉炭流量計で計測した燃料量値に基づいて、バーナに供給する高濃度の酸素を含む気体の量を調節する酸素供給量決定手段とを有することを特徴とする。   The present invention provides a pulverized coal flow meter that measures the amount of fuel supplied to a burner as a total value for each burner or a plurality of burners, and a high concentration that is supplied to the burner based on the fuel amount value measured by the pulverized coal flow meter. And oxygen supply amount determining means for adjusting the amount of the gas containing oxygen.

本発明によれば、酸素燃焼方式において、バーナに供給される燃料量が変動しても、供給酸素量と酸素濃度を適切に制御できる。   According to the present invention, in the oxyfuel combustion system, even if the amount of fuel supplied to the burner fluctuates, the amount of oxygen supplied and the oxygen concentration can be controlled appropriately.

実施例1に係るボイラプラントの構成を説明する図である。It is a figure explaining the structure of the boiler plant which concerns on Example 1. FIG. 実施例における水・蒸気系の構成を説明する図である。It is a figure explaining the structure of the water / steam system in an Example. 実施例におけるボイラ火炉のバーナ配置例を説明する図である。It is a figure explaining the burner arrangement example of the boiler furnace in an Example. 実施例2に係るボイラプラントの構成を説明する図である。It is a figure explaining the structure of the boiler plant which concerns on Example 2. FIG. 主要プロセス量の変化例を説明する図である。It is a figure explaining the example of a change of main process amount.

以下、各実施例について、図を参照しながら説明する。   Hereinafter, each embodiment will be described with reference to the drawings.

図1は石炭を燃料とする発電プラントを例に、本実施例を示したものである。本実施例の制御装置100は制御対象プラントからプロセス値の計測情報を受け取り、これを使用して制御装置100内に予めプログラムされた演算を行ってプラントへの操作指令信号(制御信号)を送信する。プラントは受け取った操作指令信号に従って、例えばバルブの開度やダンパ開度といったアクチュエータを動作させてプラントの状態をコントロールしている。   FIG. 1 shows the present embodiment by taking a power plant using coal as a fuel as an example. The control device 100 of the present embodiment receives process value measurement information from the control target plant, and uses this to perform a preprogrammed operation in the control device 100 and transmit an operation command signal (control signal) to the plant. To do. The plant controls the state of the plant by operating an actuator such as a valve opening or a damper opening in accordance with the received operation command signal.

本実施例はボイラ200、ボイラ200で発生させた蒸気により駆動する蒸気タービン300を主構成要素とする火力発電プラントである(発電機は図示していない)。制御装置100は中央給電指令所からの負荷要求指令10を受信し、これに基づいてプラントを指定された負荷(発電出力)状態に制御する。蒸気加減弁254の弁開度を調節することで、タービン300へ導かれる蒸気流量が変化し発電出力が変化する。   The present embodiment is a thermal power plant having a boiler 200 and a steam turbine 300 driven by steam generated by the boiler 200 as main components (a generator is not shown). The control device 100 receives the load request command 10 from the central power supply command station, and controls the plant to a designated load (power generation output) state based on this. By adjusting the valve opening degree of the steam control valve 254, the flow rate of the steam guided to the turbine 300 changes and the power generation output changes.

その他にも水・蒸気系統には、蒸気タービン300から出た蒸気を冷却して液体にする復水器310、復水器310で冷却された水をボイラ給水として再びボイラ200へ送り込む給水ポンプ320がある。また、図示していないが、実際のプラントには蒸気タービン300の途中段から抜き出した一部の蒸気(抽気)を加熱源としてボイラ給水を予熱する給水加熱器もある。   In addition, the water / steam system includes a condenser 310 that cools the steam emitted from the steam turbine 300 into a liquid, and a water supply pump 320 that feeds water cooled by the condenser 310 back to the boiler 200 as boiler feed water. There is. Although not shown in the drawings, an actual plant also includes a feed water heater that preheats boiler feed water using a part of steam (extracted air) extracted from an intermediate stage of the steam turbine 300 as a heating source.

一方、ボイラから排出される燃焼ガス380の系統には、ガス予熱器330,排ガスを浄化するための排ガス処理装置340,排ガス中の二酸化炭素を冷却・液化して回収する二酸化炭素回収装置350,二酸化炭素を回収した後の残りの窒素と酸素が主体のガス351を放出する煙突370がある。   On the other hand, the system of the combustion gas 380 discharged from the boiler includes a gas preheater 330, an exhaust gas treatment device 340 for purifying the exhaust gas, a carbon dioxide recovery device 350 for cooling and liquefying and recovering carbon dioxide in the exhaust gas, There is a chimney 370 that discharges a gas 351 mainly composed of nitrogen and oxygen after the carbon dioxide is recovered.

本実施例は、燃料を空気で燃焼させていた空気燃焼ボイラに対して、空気の代わりに高純度の酸素を含むガスを用いて燃焼させる酸素燃焼方式のボイラ及び酸素燃焼方式のボイラを含むプラントを対象としている。   In this embodiment, an air combustion boiler in which fuel is burned with air is burned using a gas containing high-purity oxygen instead of air, and a plant including an oxyfuel combustion boiler and an oxyfuel combustion boiler Is targeted.

そのため、図1に示したように、空気を窒素主体のガスと、酸素主体のガスに分離して高濃度の酸素を製造する酸素製造装置360を備えている。酸素製造装置は空気を冷却して酸素と窒素の沸点の違いを利用して分離する方式である。本実施例は酸素製造の方法に依存するものではなく、窒素分子と酸素分子の大きさの違いを利用して分離する膜分離方式など、他の方法でもよい。   Therefore, as shown in FIG. 1, an oxygen production apparatus 360 for producing high-concentration oxygen by separating air into a nitrogen-based gas and an oxygen-based gas is provided. The oxygen production apparatus is a system in which air is cooled and separated using the difference between the boiling points of oxygen and nitrogen. This embodiment does not depend on the oxygen production method, and may be another method such as a membrane separation method that uses a difference in size between nitrogen molecules and oxygen molecules.

酸素製造装置では空気363を高純度の酸素ガス362と窒素主体のガス361に分離し、窒素主体ガス361は煙突370から大気に放出される。   In the oxygen production apparatus, the air 363 is separated into a high-purity oxygen gas 362 and a nitrogen-based gas 361, and the nitrogen-based gas 361 is discharged from the chimney 370 to the atmosphere.

空気の代わりに高純度の酸素のみを用いて燃焼させると、火炎の温度が高温になり過ぎるため、燃料を燃焼させるバーナやボイラ壁面が損傷する可能性がある。そのため、酸素製造装置360で製造した高純度の酸素362をボイラから排出される排ガスの一部である循環排ガス390と混合してバーナ210へ供給する。   If combustion is performed using only high-purity oxygen instead of air, the temperature of the flame becomes too high, and there is a possibility that the burner or boiler wall surface that burns fuel may be damaged. Therefore, the high-purity oxygen 362 produced by the oxygen production apparatus 360 is mixed with the circulating exhaust gas 390 that is part of the exhaust gas discharged from the boiler and supplied to the burner 210.

循環排ガス390は排ガス処理装置340で浄化された後のガスの一部を取り出し、ガス予熱器330で昇温させる。弁開度指令22に基づき循環排ガス流量調整弁391の開度を変化させることで循環排ガスの流量を調節する。   Circulating exhaust gas 390 takes out part of the gas after being purified by exhaust gas treatment device 340 and raises the temperature by gas preheater 330. The flow rate of the circulating exhaust gas is adjusted by changing the opening degree of the circulating exhaust gas flow rate adjustment valve 391 based on the valve opening degree command 22.

バーナ210へ供給される酸素ガス362は、制御装置100からの弁開度指令14に基づいて流量調整弁211の開度を制御することで流量を調節できる。   The flow rate of the oxygen gas 362 supplied to the burner 210 can be adjusted by controlling the opening degree of the flow rate adjusting valve 211 based on the valve opening degree command 14 from the control device 100.

燃料である石炭400は燃料供給量調整弁401を介して石炭粉砕機410に送られる。石炭粉砕機410で粉末(微粉炭)となり、循環排ガス390の一部で搬送されてバーナ210に供給される。微粉炭の流量は微粉炭流量計420で計測されて、実際にバーナに供給される燃料量を把握することができる。石炭粉砕機410に送られる循環排ガス量は流量調整弁213を制御することにより調節できる。   Coal 400 as fuel is sent to the coal crusher 410 through the fuel supply amount adjustment valve 401. It becomes powder (pulverized coal) by the coal pulverizer 410, is transported by a part of the circulating exhaust gas 390, and is supplied to the burner 210. The flow rate of the pulverized coal is measured by the pulverized coal flow meter 420, and the amount of fuel actually supplied to the burner can be grasped. The amount of circulating exhaust gas sent to the coal pulverizer 410 can be adjusted by controlling the flow rate adjustment valve 213.

次にボイラの構成について説明する。   Next, the configuration of the boiler will be described.

燃料を燃焼させる火炉の炉内は高温になるため、壁面全体を冷却すると共に燃焼ガスの熱を回収する水壁230と呼ばれる冷却壁がある。ボイラ200内には他にも節炭器290,1次過熱器280,2次過熱器240,3次過熱器250,4次過熱器260からなる熱交換器があり、これらによって燃焼ガスの熱を回収して高温蒸気を生成する。   Since the inside of the furnace that burns fuel becomes high temperature, there is a cooling wall called a water wall 230 that cools the entire wall surface and collects the heat of the combustion gas. In the boiler 200, there are other heat exchangers including a economizer 290, a primary superheater 280, a secondary superheater 240, a tertiary superheater 250, and a quaternary superheater 260. Is recovered to produce high-temperature steam.

図2に示すように、蒸気の流れとしては、ボイラ給水はまず節炭器290に導かれ、その後水壁230,1次過熱器280,2次過熱器240,3次過熱器250,4次過熱器260の順に通って昇温され、主蒸気251となって蒸気タービン300へ入る。高圧蒸気タービン300で仕事をした蒸気は復水器310で液体となり、給水ポンプ320で再びボイラへ送られるというサイクルである。   As shown in FIG. 2, as steam flow, the boiler feed water is first led to the economizer 290, and then the water wall 230, primary superheater 280, secondary superheater 240, tertiary superheater 250, quaternary. The temperature is raised in the order of the superheater 260, becomes main steam 251, and enters the steam turbine 300. In this cycle, the steam that has worked in the high-pressure steam turbine 300 becomes liquid in the condenser 310 and is sent again to the boiler by the feed water pump 320.

次に、本実施例に関する制御装置100の構成と機能について説明する。制御装置100は、中央給電指令所からの負荷要求指令10に基づいてプラントを制御している。基準燃料量決定手段11は負荷要求指令10に対して予め設定されている燃料量を演算し、基準燃料量信号12として燃料供給量調整弁制御手段17に出力する。燃料供給量調整弁制御手段17は入力された基準燃料量信号12と微粉炭流量計420の計測値421とを比較し、その偏差量に基づいて比例積分制御により燃料供給量調整弁401の弁開度指令信号18を演算して燃料供給量調整弁401に出力する。   Next, the configuration and function of the control device 100 according to the present embodiment will be described. The control device 100 controls the plant based on the load request command 10 from the central power supply command station. The reference fuel amount determination unit 11 calculates a fuel amount set in advance with respect to the load request command 10 and outputs the fuel amount as a reference fuel amount signal 12 to the fuel supply amount adjustment valve control unit 17. The fuel supply amount adjusting valve control means 17 compares the input reference fuel amount signal 12 with the measured value 421 of the pulverized coal flow meter 420, and the valve of the fuel supply amount adjusting valve 401 by proportional integral control based on the deviation amount. The opening command signal 18 is calculated and output to the fuel supply amount adjustment valve 401.

給水流量決定手段15は、入力される負荷要求指令10に対して予め設定されているボイラへの給水流量を演算して給水流量信号19としてとして給水ポンプ320に出力する。給水ポンプ320は給水流量信号19に基づいてポンプの回転数または回転翼の開度を変化させることにより、ボイラへの供給水量が変化する。   The feed water flow rate determining means 15 calculates a feed water flow rate to the boiler that is set in advance with respect to the input load request command 10, and outputs the calculated feed water flow rate signal 19 to the feed water pump 320. The water supply pump 320 changes the amount of water supplied to the boiler by changing the rotation speed of the pump or the opening of the rotor blades based on the water supply flow rate signal 19.

酸素供給量決定手段23では、微粉炭流量計420の計測値421に対して設定された燃料量と酸素量の比率となるように、基準酸素量決定手段13で基準酸素量信号14を演算する。この基準酸素量信号14を供給酸素の流量調整弁211に出力して酸素流量を調節すれば、実際にバーナに供給される燃料量が変動しても、設定された燃料量と酸素量の比率を維持しながら酸素を供給することができる。これにより、バーナでは望ましい状態の燃焼状態を保つことができる。   In the oxygen supply amount determination means 23, the reference oxygen amount determination means 13 calculates the reference oxygen amount signal 14 so that the ratio between the fuel amount and the oxygen amount set with respect to the measured value 421 of the pulverized coal flow meter 420 is obtained. . If the reference oxygen amount signal 14 is output to the supply oxygen flow rate adjustment valve 211 to adjust the oxygen flow rate, the ratio of the set fuel amount to the oxygen amount even if the amount of fuel actually supplied to the burner fluctuates. Oxygen can be supplied while maintaining Thereby, the combustion state of a desirable state can be maintained in the burner.

循環排ガス量調節手段16では、入力される負荷要求指令10に対して予め設定されている基準循環排ガス量を演算する。また、条件比較手段20では計測器262で測定したボイラ出口における蒸気温度・圧力の計測値263と、計測器321で測定したボイラ入口の給水温度・圧力の計測値322と、給水流量決定手段15で決定した給水流量信号19を用いてボイラの熱吸収量を計算する。計算した熱吸収量を予め負荷要求指令10に対して設定された基準熱吸収量と比較して、その偏差量から比例積分制御により循環排ガス量に対する補正信号25を演算して循環排ガス量調節手段16に出力する。   The circulating exhaust gas amount adjusting means 16 calculates a reference circulating exhaust gas amount that is preset for the input load request command 10. In the condition comparison means 20, the measured value 263 of the steam temperature / pressure at the boiler outlet measured by the measuring instrument 262, the measured value 322 of the feed water temperature / pressure at the boiler inlet measured by the measuring instrument 321, and the feed water flow rate determining means 15. The heat absorption amount of the boiler is calculated using the feed water flow rate signal 19 determined in step (1). The calculated heat absorption amount is compared with a reference heat absorption amount set in advance with respect to the load request command 10, and a correction signal 25 for the circulation exhaust gas amount is calculated from the deviation amount by proportional-integral control to thereby adjust the circulation exhaust gas amount adjusting means. 16 is output.

循環排ガス量調節手段16の機能として、負荷要求指令10から決定した基準循環排ガス量に補正信号25を加えた信号を作成し、これに基づいて循環排ガス流量調整弁391の開度指令信号22を作成する方法も考えられる。こうすることで、燃料量の変動や石炭種変更等による燃料発熱量の変化に対しても所望のボイラ熱吸収量を維持するように排ガス循環流量すなわち酸素濃度を制御することができ、安定な運転が可能になる。   As a function of the circulating exhaust gas amount adjusting means 16, a signal obtained by adding the correction signal 25 to the reference circulating exhaust gas amount determined from the load request command 10 is created, and based on this, the opening command signal 22 of the circulating exhaust gas flow rate adjusting valve 391 is obtained. A method of creating is also conceivable. By doing so, the exhaust gas circulation flow rate, that is, the oxygen concentration can be controlled so as to maintain the desired boiler heat absorption amount even when the fuel heat generation amount changes due to the change in the fuel amount or the change of the coal type. Driving becomes possible.

また、本実施例は、燃料量が変動したとしても酸素濃度を維持するために、循環排ガス量調節手段16では燃料量の計測値421に基づいて決定した基準酸素量信号14の増減に対応して循環排ガス流量調整弁391の開度指令を先行的に増減させるように補正を加える。すなわち、負荷要求指令10から決定した基準循環排ガス量に、補正信号25と基準酸素量信号14に対応する補正信号を加えた信号で循環排ガス流量調整弁391の開度指令信号22を作成する。   Further, in this embodiment, in order to maintain the oxygen concentration even if the fuel amount fluctuates, the circulating exhaust gas amount adjusting means 16 corresponds to the increase or decrease of the reference oxygen amount signal 14 determined based on the measured value 421 of the fuel amount. Then, a correction is made so that the opening degree command of the circulating exhaust gas flow rate adjustment valve 391 is increased or decreased in advance. That is, the opening degree command signal 22 of the circulating exhaust gas flow rate adjustment valve 391 is created by adding a correction signal 25 and a correction signal corresponding to the reference oxygen amount signal 14 to the reference circulating exhaust gas amount determined from the load request command 10.

これにより、燃料量の時間変動に対しても、酸素濃度を安定に目標値に維持することが可能となり、結果的に火炉内の熱負荷やボイラ収熱量が適切な範囲で運転を継続することができる。   This makes it possible to stably maintain the oxygen concentration at the target value even with respect to time fluctuations in the fuel amount, and as a result, keep the heat load in the furnace and the amount of heat collected from the boiler within an appropriate range. Can do.

なお、ボイラのバーナは図3に示すように火炉前後に水平方向に複数本、高さ方向に複数段設置されるのが一般的である。バーナ段毎またはバーナ一本毎の微粉炭流量を計測してそれぞれ独立に酸素量や循環排ガス量を調節することが望ましい。   In general, as shown in FIG. 3, a plurality of boiler burners are installed in the horizontal direction and in a plurality of stages in the height direction before and after the furnace. It is desirable to measure the flow rate of pulverized coal for each burner stage or for each burner and independently adjust the amount of oxygen and the amount of circulating exhaust gas.

図5は、本実施例適用による酸素量,燃料/酸素比率,循環排ガス量,酸素濃度の挙動例を示す。本図は負荷要求が一定の条件で、燃料量が時間的に変動した場合を示したものである。適用前を破線、適用後を実線で表している。   FIG. 5 shows an example of the behavior of the oxygen amount, fuel / oxygen ratio, circulating exhaust gas amount, and oxygen concentration according to this embodiment. This figure shows the case where the amount of fuel fluctuates with time under a constant load requirement. A broken line before application and a solid line after application.

適用前は負荷要求が一定のため、一定量の酸素が供給される。そのため、燃料/酸素比率は燃料量の変動に対応して変動してしまうことにより、安定な燃焼状態が得られにくい。   Since the load demand is constant before application, a certain amount of oxygen is supplied. For this reason, the fuel / oxygen ratio fluctuates in accordance with the fluctuation of the fuel amount, so that it is difficult to obtain a stable combustion state.

また、循環排ガス量はボイラ収熱量をフィードバックして制御しているため、収熱量に影響がでるまでに時間遅れが生じることになり、酸素濃度を一定に保つことは難しい。   Further, since the amount of circulating exhaust gas is controlled by feeding back the amount of heat collected from the boiler, a time delay occurs until the amount of heat collected is affected, and it is difficult to keep the oxygen concentration constant.

これに対して、本実施例の適用により、燃料量変動を計測することにより速やかに燃料量の変動に対応でき、燃料/酸素比率をほぼ一定に維持することができる。また、循環排ガス量に対しても酸素量の増減を速やかに反映するため、酸素濃度もほぼ一定に維持することができる。   On the other hand, by applying the present embodiment, it is possible to quickly cope with the fuel amount variation by measuring the fuel amount variation, and to maintain the fuel / oxygen ratio almost constant. Moreover, since the increase / decrease in the amount of oxygen is also quickly reflected in the amount of circulating exhaust gas, the oxygen concentration can be maintained substantially constant.

これにより、燃料量が変動しても望ましい燃焼状態が維持できるため、過熱や失火などの可能性を抑制でき、安全かつ安定な運転を実現できる。   As a result, a desirable combustion state can be maintained even if the amount of fuel fluctuates. Therefore, the possibility of overheating or misfire can be suppressed, and safe and stable operation can be realized.

酸素燃焼方式では燃料を空気で燃焼させる空気燃焼方式と比較して、空気中の約8割を占める窒素がボイラに投入されないため、主として空気中の窒素に由来する窒素酸化物(サーマルNOx)の発生が無くなり、窒素酸化物の排出量が減少する。また、燃料中のほとんどの炭素は燃焼によって二酸化炭素になるため、排ガスは高濃度の二酸化炭素ガスとなる。   Compared with the air combustion method in which the fuel is burned with air, the oxyfuel combustion method does not input about 80% of the nitrogen in the air into the boiler. Therefore, nitrogen oxides (thermal NOx) derived mainly from nitrogen in the air Occurrence is eliminated and nitrogen oxide emissions are reduced. Further, since most carbon in the fuel becomes carbon dioxide by combustion, the exhaust gas becomes high-concentration carbon dioxide gas.

そのため、空気燃焼方式のボイラ排ガスから二酸化炭素を回収する場合に比べて二酸化炭素を濃縮する工程が不要であり、二酸化炭素の回収に適したシステムである。   Therefore, compared with the case of recovering carbon dioxide from air combustion type boiler exhaust gas, a process of concentrating carbon dioxide is unnecessary, and the system is suitable for recovering carbon dioxide.

本実施例により、安全かつ安定に運転できるようになるため、酸素燃焼ボイラシステムの最大のメリットである二酸化炭素排出量の大幅な削減が期待できる火力発電システムとなり、電力の安定供給と環境保全を両立することができるようになる。   This example makes it possible to operate safely and stably, so it becomes a thermal power generation system that can be expected to significantly reduce carbon dioxide emissions, which is the greatest merit of the oxyfuel boiler system. It becomes possible to achieve both.

次に、図4を用いて実施例2を説明する。   Next, Example 2 will be described with reference to FIG.

図1と異なる点は主に、制御装置100における条件比較手段20と酸素供給量決定手段23の機能である。酸素燃焼方式では、酸素量や酸素濃度が大きすぎると燃焼時の火炎温度が過大となりバーナ210や水壁230が過熱して損傷する可能性もある。   The difference from FIG. 1 is mainly the functions of the condition comparison means 20 and the oxygen supply amount determination means 23 in the control device 100. In the oxyfuel combustion method, if the amount of oxygen and the oxygen concentration are too large, the flame temperature during combustion becomes excessive, and the burner 210 and the water wall 230 may be overheated and damaged.

そのため、本例ではバーナ210付近のメタル温度を温度計測器215で計測している。計測した温度216は条件比較手段20に入力される。条件比較手段20では、温度216と、予め設定された許容温度との偏差量26を演算して酸素供給量決定手段23に出力する。   Therefore, in this example, the metal temperature near the burner 210 is measured by the temperature measuring device 215. The measured temperature 216 is input to the condition comparison means 20. In the condition comparison unit 20, a deviation amount 26 between the temperature 216 and a preset allowable temperature is calculated and output to the oxygen supply amount determination unit 23.

酸素供給量決定手段23には基準酸素量決定手段13の他に酸素量補正手段19がある。酸素量補正手段19は基準酸素量信号14に対して、バーナ付近の温度216と許容温度との偏差量26に基づいて補正を加える。温度216が許容温度以下の場合は補正量をゼロとする。また、許容温度を超える場合は、その偏差量26に比例して酸素供給量を減少させる補正を加えて酸素量信号21を作成する。   The oxygen supply amount determination means 23 includes an oxygen amount correction means 19 in addition to the reference oxygen amount determination means 13. The oxygen amount correction means 19 corrects the reference oxygen amount signal 14 based on the deviation amount 26 between the temperature 216 near the burner and the allowable temperature. When the temperature 216 is lower than the allowable temperature, the correction amount is set to zero. When the temperature exceeds the allowable temperature, the oxygen amount signal 21 is generated by adding a correction for decreasing the oxygen supply amount in proportion to the deviation amount 26.

これにより、バーナ付近が過熱して損傷することを防止することができる。ただし、酸素供給量を減らしすぎると、安定な燃焼状態が維持できなくなる可能性があるため、補正は基準酸素量信号14に対して予め設定した範囲内で行うものとしている。   Thereby, it can prevent that the burner vicinity overheats and is damaged. However, if the oxygen supply amount is reduced too much, there is a possibility that a stable combustion state cannot be maintained. Therefore, the correction is performed within a preset range with respect to the reference oxygen amount signal 14.

また、補正後の酸素量信号21は、実施例1における基準酸素量信号14の代わりとして、循環排ガス量調節手段16に出力される。   The corrected oxygen amount signal 21 is output to the circulating exhaust gas amount adjusting means 16 instead of the reference oxygen amount signal 14 in the first embodiment.

なお、本例ではバーナ付近の温度216と許容温度との偏差量26に基づいて酸素量を補正しているが、循環排ガス量を補正して酸素濃度を変化させても良い。この場合、温度216が許容温度を超える時、循環排ガス量を増加する方向に補正して酸素濃度を低下させると良い。   In this example, the oxygen amount is corrected based on the deviation amount 26 between the temperature 216 near the burner and the allowable temperature, but the oxygen concentration may be changed by correcting the circulating exhaust gas amount. In this case, when the temperature 216 exceeds the allowable temperature, the oxygen concentration may be lowered by correcting the amount of circulating exhaust gas so as to increase.

また、本例では最も火炎に近いと思われるバーナ付近の温度を計測して、この温度を補正の指標に用いている。ただし、水壁やボイラ内の熱交換器の金属温度または伝熱管内の蒸気温度、またはガス温度などを指標としても良く、その計測位置を限定するものではない。さらに、燃料と酸素の割合、酸素濃度は燃焼排ガスの組成にも影響するため、排ガス中の窒素酸化物濃度または硫黄酸化物または二酸化炭素または一酸化炭素などの排ガス中の成分濃度を測定して、それが望ましい値に近づくように酸素量または循環排ガス量を調節することも考えられる。   In this example, the temperature in the vicinity of the burner that is considered to be closest to the flame is measured, and this temperature is used as an index for correction. However, the metal temperature of the heat exchanger in the water wall or the boiler, the steam temperature in the heat transfer tube, or the gas temperature may be used as an index, and the measurement position is not limited. In addition, since the ratio of fuel to oxygen and the oxygen concentration also affect the composition of the combustion exhaust gas, measure the concentration of components in the exhaust gas such as nitrogen oxide concentration or sulfur oxide or carbon dioxide or carbon monoxide in the exhaust gas. It is also possible to adjust the amount of oxygen or the amount of circulating exhaust gas so that it approaches a desired value.

11 基準燃料量決定手段
12 基準燃料量信号
13 基準酸素量決定手段
14 基準酸素量信号
15 給水流量決定手段
16 循環排ガス量調節手段
17 燃料供給量調整弁制御手段
18 弁開度指令信号
19 給水流量信号
20 条件比較手段
22 開度指令信号
23 酸素供給量決定手段
25 補正信号
100 制御装置
200 ボイラ
210 バーナ
211,213 流量調整弁
230 水壁
240 2次過熱器
250 3次過熱器
251 主蒸気
254 蒸気加減弁
260 4次過熱器
262,321 温度・圧力計測器
263,322 計測値
280 1次過熱器
290 節炭器
300 蒸気タービン
310 復水器
320 給水ポンプ
330 ガス予熱器
340 排ガス処理装置
350 CO2回収装置
351 窒素・酸素主体ガス
360 酸素製造装置
361 窒素主体ガス
362 高純度の酸素ガス
363 空気
370 煙突
380 排ガス
390 循環排ガス
391 循環排ガス流量調整弁
392 空気流量調整弁
400 石炭
401 燃料供給量調整弁
410 石炭粉砕機
420 微粉炭流量計
421 微粉炭流量計測値
11 Reference fuel amount determination means 12 Reference fuel amount signal 13 Reference oxygen amount determination means 14 Reference oxygen amount signal 15 Supply water flow rate determination means 16 Circulating exhaust gas amount adjustment means 17 Fuel supply amount adjustment valve control means 18 Valve opening command signal 19 Supply water flow rate Signal 20 Condition comparison means 22 Opening command signal 23 Oxygen supply amount determination means 25 Correction signal 100 Controller 200 Boiler 210 Burners 211, 213 Flow rate adjusting valve 230 Water wall 240 Secondary superheater 250 Third superheater 251 Main steam 254 Steam control valve 260 4 superheater 262,321 temperature and pressure measuring instruments 263,322 measurements 280 primary superheater 290 economiser 300 steam turbine 310 condenser 320 feed pump 330 gas preheater 340 pollution control apparatus 350 CO 2 Recovery device 351 Nitrogen / oxygen main gas 360 Oxygen production device 361 Nitrogen main gas 3 2 high-purity oxygen gas 363 air 370 chimney 380 exhaust 390 circulation exhaust gas 391 circulation flue gas flow rate regulating valve 392 air flow control valve 400 Coal 401 fuel supply amount adjusting valve 410 coal pulverizer 420 pulverized coal flowmeter 421 pulverized coal flow rate measurement value

Claims (8)

空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントにおいて、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、該微粉炭流量計で計測した燃料量値に基づいて、前記バーナに供給する前記高濃度の酸素を含む気体の量を調節する酸素供給量決定手段とを有することを特徴とする酸素燃焼ボイラプラント。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulation exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
The pulverized coal flow meter that measures the amount of fuel supplied to the burner as a total value of one or more burners, and the high amount supplied to the burner based on the fuel amount value measured by the pulverized coal flow meter An oxyfuel boiler plant comprising oxygen supply amount determination means for adjusting an amount of gas containing oxygen at a concentration.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントにおいて、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、該微粉炭流量計で計測した燃料量値に基づいて、前記バーナに供給する前記高濃度の酸素を含む気体の量を調節する酸素供給量決定手段と、該酸素量調節手段で決定した前記高濃度の酸素を含む気体の量を用いて前記循環排ガスの量を調節する循環排ガス量調節手段とを有することを特徴とする酸素燃焼ボイラプラント。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulation exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
The pulverized coal flow meter that measures the amount of fuel supplied to the burner as a total value of one or more burners, and the high amount supplied to the burner based on the fuel amount value measured by the pulverized coal flow meter An oxygen supply amount determining means for adjusting the amount of gas containing oxygen at a concentration, and a circulating exhaust gas amount for adjusting the amount of the circulating exhaust gas using the amount of gas containing oxygen at a high concentration determined by the oxygen amount adjusting means An oxyfuel boiler plant characterized by comprising an adjusting means.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントにおいて、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、
前記ボイラの熱吸収量,バーナ部温度,前記ボイラ内の熱交換器所定位置のメタル温度,前記ボイラ内所定位置のガス温度,前記ボイラの排ガス中の窒素酸化物濃度または硫黄酸化物または二酸化炭素または一酸化炭素のうち少なくとも一つについて、予め定めた条件値との偏差量を演算する条件比較手段と、前記微粉炭流量計で計測した燃料量値に基づいて、前記バーナに供給する前記高濃度の酸素を含む気体の量を調節する酸素供給量決定手段とを有することを特徴とする酸素燃焼ボイラプラント。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulation exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
A pulverized coal flow meter for measuring the amount of fuel supplied to the burner as a total value of one or more burners;
Heat absorption amount of the boiler, burner temperature, metal temperature at a predetermined position of the heat exchanger in the boiler, gas temperature at a predetermined position of the boiler, nitrogen oxide concentration or sulfur oxide or carbon dioxide in the exhaust gas of the boiler Alternatively, for at least one of the carbon monoxide, the condition comparison means for calculating a deviation amount from a predetermined condition value, and the high amount supplied to the burner based on the fuel amount value measured by the pulverized coal flow meter. An oxyfuel boiler plant comprising oxygen supply amount determination means for adjusting an amount of gas containing oxygen at a concentration.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントにおいて、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、該微粉炭流量計で計測した燃料量値に対応して予め設定した関係に基づいて対応する前記バーナに供給する前記高濃度の酸素を含む気体の基準量を決定する基準酸素量決定手段と、
前記ボイラの熱吸収量,バーナ部温度,前記ボイラ内の熱交換器所定位置のメタル温度,前記ボイラ内所定位置のガス温度,前記ボイラの排ガス中の窒素酸化物濃度または硫黄酸化物または二酸化炭素または一酸化炭素のうち少なくとも一つについて、予め定めた条件値と比較してその偏差量を演算する条件比較手段と、
前記条件比較手段で演算した偏差量に基づいて、前記基準酸素量決定手段で決定した酸素量基準量に対する補正値を決定する酸素量補正手段と、前記酸素量基準量に前記補正値で補正を加えた酸素量を決定する酸素供給量決定手段とを有することを特徴とする酸素燃焼ボイラプラント。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulation exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
Based on a pulverized coal flow meter that measures the amount of fuel supplied to the burner as a total value for each burner or a plurality of burners, and a relationship set in advance corresponding to the fuel amount value measured by the pulverized coal flow meter Reference oxygen amount determining means for determining a reference amount of the gas containing the high concentration oxygen supplied to the corresponding burner;
Heat absorption amount of the boiler, burner temperature, metal temperature at a predetermined position of the heat exchanger in the boiler, gas temperature at a predetermined position of the boiler, nitrogen oxide concentration or sulfur oxide or carbon dioxide in the exhaust gas of the boiler Or, for at least one of carbon monoxide, a condition comparing means for calculating a deviation amount in comparison with a predetermined condition value;
Based on the deviation amount calculated by the condition comparison means, an oxygen amount correcting means for determining a correction value for the oxygen amount reference amount determined by the reference oxygen amount determining means, and correcting the oxygen amount reference amount with the correction value An oxygen combustion boiler plant comprising oxygen supply amount determination means for determining an added oxygen amount.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントにおいて、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測する微粉炭流量計と、該微粉炭流量計で計測した燃料量値に対応して予め設定した関係に基づいて対応する前記バーナに供給する前記高濃度の酸素を含む気体の基準量を決定する基準酸素量決定手段と、
前記ボイラの熱吸収量,バーナ部温度,前記ボイラ内の熱交換器所定位置のメタル温度,前記ボイラ内所定位置のガス温度,前記ボイラの排ガス中の窒素酸化物濃度または硫黄酸化物または二酸化炭素または一酸化炭素のうち少なくとも一つについて、予め定めた条件値と比較してその偏差量を演算する条件比較手段と、
前記条件比較手段で演算した偏差量に基づいて、前記基準酸素量決定手段で決定した酸素量基準量に対する補正値を決定する酸素量補正手段と、該酸素量補正手段で決定した前記高濃度の酸素を含む気体の量を用いて前記循環排ガスの量を調節する循環排ガス量調節手段とを有することを特徴とする酸素燃焼ボイラプラント。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulation exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
Based on a pulverized coal flow meter that measures the amount of fuel supplied to the burner as a total value for each burner or a plurality of burners, and a relationship set in advance corresponding to the fuel amount value measured by the pulverized coal flow meter Reference oxygen amount determining means for determining a reference amount of the gas containing the high concentration oxygen supplied to the corresponding burner;
Heat absorption amount of the boiler, burner temperature, metal temperature at a predetermined position of the heat exchanger in the boiler, gas temperature at a predetermined position of the boiler, nitrogen oxide concentration or sulfur oxide or carbon dioxide in the exhaust gas of the boiler Or, for at least one of carbon monoxide, a condition comparing means for calculating a deviation amount in comparison with a predetermined condition value;
Based on the deviation calculated by the condition comparison unit, an oxygen amount correction unit that determines a correction value for the oxygen amount reference amount determined by the reference oxygen amount determination unit, and the high concentration determined by the oxygen amount correction unit An oxyfuel boiler plant comprising a circulating exhaust gas amount adjusting means for adjusting the amount of the circulating exhaust gas using an amount of a gas containing oxygen.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントの運転方法において、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測したバーナ燃料量値に基づいて、前記バーナに供給する前記高濃度の酸素を含む気体の量を調節することを特徴とする酸素燃焼ボイラプラントの運転方法。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an operation method of an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulating exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
Adjusting the amount of the gas containing the high-concentration oxygen supplied to the burner based on a burner fuel amount value obtained by measuring the amount of fuel supplied to the burner as a total value of one or more burners. A method for operating an oxyfuel boiler plant.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントの運転方法において、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測したバーナ燃料量値に基づいて対応する前記バーナに供給する前記高濃度の酸素を含む気体の量を決定し、決定した前記高濃度の酸素を含む気体の量を用いて前記循環排ガスの量を調節することを特徴とする酸素燃焼ボイラプラントの運転方法。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an operation method of an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulating exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
Determining the amount of gas containing the high-concentration oxygen to be supplied to the corresponding burner based on a burner fuel amount value obtained by measuring the amount of fuel supplied to the burner as a total value of one or more burners; An operating method of an oxyfuel boiler plant, characterized in that the amount of the circulating exhaust gas is adjusted using the determined amount of gas containing high-concentration oxygen.
空気中よりも高濃度の酸素を含む気体及び空気中よりも高濃度の二酸化炭素を含む気体を用いて燃料をバーナで燃焼させて蒸気を発生させるボイラと、前記二酸化炭素を含む気体としてボイラ排ガスの一部を循環排ガスとして用いるための排ガス循環手段と、前記ボイラの排ガス中の二酸化炭素を回収する二酸化炭素回収手段とを備えた酸素燃焼ボイラプラントの運転方法において、
前記バーナへ供給する前記燃料量をバーナ一本毎または複数本の合計値として計測したバーナ燃料量値に対して予め設定した関係を用いて、該バーナへ供給する前記高濃度の酸素を含む気体の基準量を決定し、
前記ボイラの熱吸収量,バーナ部温度,前記ボイラ内の熱交換器所定位置のメタル温度,前記ボイラ内所定位置のガス温度,前記ボイラの排ガス中の窒素酸化物濃度または硫黄酸化物または二酸化炭素または一酸化炭素のうち少なくとも一つについて、予め定めた条件値との偏差を演算して、該偏差に基づいて前記高濃度の酸素を含む気体量の補正量を演算し、前記基準量と該補正量から前記バーナに供給する前記高濃度の酸素を含む気体の量を決定することを特徴とする酸素燃焼ボイラプラントの運転方法。
A boiler that generates steam by burning a fuel with a burner using a gas containing oxygen at a higher concentration than in air and a gas containing carbon dioxide at a higher concentration than in air, and boiler exhaust gas as the gas containing carbon dioxide In an operation method of an oxyfuel boiler plant comprising exhaust gas circulation means for using a part of the exhaust gas as circulating exhaust gas, and carbon dioxide recovery means for recovering carbon dioxide in the exhaust gas of the boiler,
The gas containing the high-concentration oxygen supplied to the burner using a preset relationship with respect to the burner fuel amount value obtained by measuring the amount of fuel supplied to the burner as a total value of one or more burners. Determine the reference amount of
Heat absorption amount of the boiler, burner temperature, metal temperature at a predetermined position of the heat exchanger in the boiler, gas temperature at a predetermined position of the boiler, nitrogen oxide concentration or sulfur oxide or carbon dioxide in the exhaust gas of the boiler Alternatively, for at least one of the carbon monoxide, a deviation from a predetermined condition value is calculated, a correction amount for the gas amount containing the high concentration oxygen is calculated based on the deviation, and the reference amount and the An operation method of an oxyfuel boiler plant, wherein an amount of gas containing the high concentration oxygen supplied to the burner is determined from a correction amount.
JP2009090630A 2009-04-03 2009-04-03 Oxygen burning boiler plant and method of operating the oxygen burning boiler plant Pending JP2010243016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090630A JP2010243016A (en) 2009-04-03 2009-04-03 Oxygen burning boiler plant and method of operating the oxygen burning boiler plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090630A JP2010243016A (en) 2009-04-03 2009-04-03 Oxygen burning boiler plant and method of operating the oxygen burning boiler plant

Publications (1)

Publication Number Publication Date
JP2010243016A true JP2010243016A (en) 2010-10-28

Family

ID=43096206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090630A Pending JP2010243016A (en) 2009-04-03 2009-04-03 Oxygen burning boiler plant and method of operating the oxygen burning boiler plant

Country Status (1)

Country Link
JP (1) JP2010243016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130340A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Control system and control method for coal burning thermal power plant with co2 recovery device
US10731846B2 (en) 2016-09-09 2020-08-04 Geesco Co., Ltd. Boiler facility and operating method thereof
CN113359442A (en) * 2021-05-27 2021-09-07 华北电力科学研究院有限责任公司 Coal-water ratio control method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130340A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Control system and control method for coal burning thermal power plant with co2 recovery device
US10731846B2 (en) 2016-09-09 2020-08-04 Geesco Co., Ltd. Boiler facility and operating method thereof
CN113359442A (en) * 2021-05-27 2021-09-07 华北电力科学研究院有限责任公司 Coal-water ratio control method and system
CN113359442B (en) * 2021-05-27 2024-01-30 华北电力科学研究院有限责任公司 Coal water ratio control method and system

Similar Documents

Publication Publication Date Title
JP5417068B2 (en) Oxyfuel boiler and control method for oxygen fired boiler
JP4920051B2 (en) Oxyfuel combustion boiler plant and operation method of oxygen combustion boiler plant
JP5210799B2 (en) Oxyfuel boiler plant and control method for oxygen fired boiler plant
JP5178453B2 (en) Oxyfuel boiler and control method for oxygen fired boiler
JP4896195B2 (en) Oxyfuel combustion boiler plant and operation method of oxygen combustion boiler plant
JP2011153819A (en) Oxy-fuel combustion system with closed loop flame temperature control
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
JP5130145B2 (en) Boiler plant, boiler plant control device and control method thereof
JP2010243016A (en) Oxygen burning boiler plant and method of operating the oxygen burning boiler plant
US10914467B2 (en) Method and apparatus for reheat steam temperature control of oxy-fired boilers
JP5352548B2 (en) Control device, control method, and display method for oxyfuel boiler plant
Luo et al. A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JP4859512B2 (en) Combustion boiler control method
JP5850311B2 (en) Heating medium boiler
JP5850304B2 (en) Combustion device
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2021021554A (en) Boiler control device, boiler system, power generation plant, and boiler control method
WO2014013559A1 (en) Coal-fired power plant
WO2023120404A1 (en) Ammonia fuel boiler system
JP2013057417A (en) Coal thermal power plant
JP2022144706A (en) Boiler control system, power generation plant, and boiler control method
JP6707058B2 (en) Waste heat boiler, waste heat recovery system, and waste heat recovery method
JP2023106935A (en) Boiler controller, boiler control method and program
Okazaki et al. The future of R&D requirements for oxyfuel combustion