JP2007242724A - マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器 - Google Patents

マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器 Download PDF

Info

Publication number
JP2007242724A
JP2007242724A JP2006059966A JP2006059966A JP2007242724A JP 2007242724 A JP2007242724 A JP 2007242724A JP 2006059966 A JP2006059966 A JP 2006059966A JP 2006059966 A JP2006059966 A JP 2006059966A JP 2007242724 A JP2007242724 A JP 2007242724A
Authority
JP
Japan
Prior art keywords
outflow
inflow
opening
end plate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006059966A
Other languages
English (en)
Inventor
Makoto Zakouji
誠 座光寺
Satoshi Kinoshita
悟志 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006059966A priority Critical patent/JP2007242724A/ja
Publication of JP2007242724A publication Critical patent/JP2007242724A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】簡易な構成で、低コスト化を図ることが可能なマイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器を提供すること。
【解決手段】第1の端板7と、流入用開口部2aが長さ方向の一部の領域に設けられた流入部材2と、流出用開口部3aが長さ方向の一部に設けられた流出部材3と、第1の端板7上の流入部材2及び流出部材3の位置に対応した孔21,26,27が設けられ、孔21,26,27に流入部材2及び流出部材3が挿通された状態で、流入用開口部2a及び流出用開口部3aが設けられた領域に積層され複数の微細流路を構成する複数の流路板5,6と、第1の端板7上の流入部材2及び流出部材3の位置に対応した2つの孔8cが設けられ、2つの孔8cのそれぞれに流入部材2及び流出部材3が挿通された状態で、複数の流路板5,6上に積層された第2の端板8とを備えることを特徴とする。
【選択図】図4

Description

本発明は、マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器に関する。
近年、半導体の高密度化に伴い、単位体積あたりの発熱量が増大し、ヒートシンク及びファンを備えた冷却装置では冷却能力が不足することが課題となっている。そこで、発熱体を冷却する手法として、マイクロチャンネルと呼ばれる微細な流路に冷媒を流す手法が提案されている(例えば、特許文献1参照。)。この特許文献1に記載の電子機器の液冷システムは、金属として銅からなる薄板を用い、この薄板を矩形管状に打ち抜き加工し、複数枚積層することにより流路が形成されている。そして、複数の薄板を積層した後、冷却液の入口及び出口それぞれにパイプを接続している。
特開2005−166855号公報
しかしながら、上記特許文献1に記載の液冷システムでは、入口及び出口に設けるパイプを接続するために、パイプを薄板に溶接したり、パイプ形状を作り込んだブロックを積層する必要がある。これにより、コストが高くなるという問題が生じる。
また、薄板を積層するために、薄板同士の位置関係を決めるための位置決めピン等が必要である。この場合、位置決めピン等を冷却液の流路以外に配置する必要があり、無駄なスペースが存在することになる。
本発明は、上記の課題を解決するためになされたものであって、簡易な構成で、低コスト化を図ることが可能なマイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器を提供することを目的とする。
上記目的を達成するために、本発明は、以下の手段を提供する。
本発明のマイクロチャンネル構造体は、流体が流れる複数の微細流路を有するマイクロチャンネル構造体であって、第1の端板と、前記第1の端板に固定され、前記微細流路に流体を流入させる流入用開口部が長さ方向の一部の領域に設けられた流入部材と、前記第1の端板に固定され、前記微細流路から流体を流出させる流出用開口部が長さ方向の一部に設けられた流出部材と、前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した孔が設けられ、前記孔に前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられた領域に積層され前記複数の微細流路を構成する複数の流路板と、前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した2つの孔が設けられ、前記2つの孔のそれぞれに前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられていない領域の前記複数の流路板上に積層された第2の端板とを備えることを特徴とする。
本発明に係るマイクロチャンネル構造体では、流入部材から流入した流体は、流入部材の長さ方向の一部に形成された流入用開口部より微細流路に流れる。微細流路を通過した流体は、流出部材の長さ方向の一部に形成された流出用開口部より流出部材に流出する。このとき、微細流路は、流路板が流入部材及び流出部材の長さ方向に積層された構造であるため、簡易な構成で、微細流路に効率良く流体を流すことが可能となる。したがって、マイクロチャンネル構造体に、例えば、発熱体を配置することにより、効率良く冷却することができる。
また、従来のように流路の入口及び出口にパイプを溶接する必要がないため、コストを抑えたマイクロチャンネル構造体を提供することが可能となる。さらには、流路板の位置関係を決める位置決めピン等が必要でないため、無駄なスペースがないので、低コスト化、小型化を図ることが可能となる。
また、本発明のマイクロチャンネル構造体は、前記流入部材の流入用開口部及び前記流出部材の流出用開口部が、前記複数の流路板の積層方向にわたって連続して開口していることが好ましい。
本発明に係るマイクロチャンネル構造体では、流入用開口部及び流出用開口部は、複数の流路板が設けられている領域にわたって開口しているため、流入部材及び流出部材を流れる流体を妨げることがないので、微細流路内に流体を効率良く流すことが可能となる。
また、本発明のマイクロチャンネル構造体は、前記流入部材の流入用開口部及び前記流出部材の流出用開口部が、前記複数の流路板の積層方向にわたって間隔をあけて複数形成されていることが好ましい。
本発明に係るマイクロチャンネル構造体では、流入用開口部及び流出用開口部は、流入部材及び流出部材の長さ方向に間隔をあけて複数形成されているため、開口部の加工が簡単であるため、より簡易な構成にすることが可能となる。
また、本発明のマイクロチャンネル構造体は、前記流入部材の複数の流入用開口部及び前記流出部材の複数の流出用開口部の開口径が、前記第2の端板から前記第1の端板に向けて順に大きくなっていることが好ましい。
本発明に係るマイクロチャンネル構造体では、流入部材の流入口付近で流体の圧力損失は低く、流入部材の下流側に向かうに従い、水の圧力損失が高くなるため、第2の端板から第1の端板に向けて流入用開口部の開口径を大きくすることにより、圧力損失の高くなる側での抵抗を低減し、微細流路での流体の流れる量を均一化することができる。
また、流出部材では、下流側に向かうに従い水の圧力損失が低くなるため、第2の端板から第1の端板に向けて流出用開口部の開口径を順に大きくすることにより、流体を微細流路から流出部材へ流れ易くすることが可能となる。
また、本発明のマイクロチャンネル構造体は、前記複数の微細流路間を相互に流体が流通する流路を有することが好ましい。
本発明に係るマイクロチャンネル構造体では、複数の微細流路間を相互に流体が流通する流路を有しているため、微細流路内において相対的に高い温度の流体と相対的に低い温度の流体とを攪拌混合することができる。これにより、例えば、マイクロチャンネル構造体に発熱体を設けることで、より効率的に冷却することが可能となる。
本発明に係るマイクロチャンネル構造体の製造方法は、流体が流れる複数の微細流路を有するマイクロチャンネル構造体の製造方法であって、前記微細流路に流体を流入させる流入用開口部が長さ方向の一部の領域に設けられた流入部材と、前記微細流路から流体を流出させる流出用開口部が長さ方向の一部に設けられた流出部材とを有する第1の端板を形成する工程と、前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した孔が設けられ、前記孔に前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられた領域に前記複数の微細流路を構成する複数の流路板を積層する工程と、前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した2つの孔が設けられ、前記2つの孔のそれぞれに前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられていない領域の前記複数の流路板上に第2の端板を積層する工程とを有することを特徴とする。
また、本発明に係るマイクロチャンネル構造体の製造方法では、流入部材及び流出部材を基準とし、この流入部材及び流出部材に流路板の孔を通すことにより、微細流路が形成される。すなわち、流入部材及び流出部材が位置決めを兼ねているため、位置決めピン等を設ける必要がない。したがって、簡易な方法により、マイクロチャンネル構造体を製造することができるので、製造コストを抑えることが可能となる。
また、本発明に係るマイクロチャンネル構造体の製造方法は、少なくとも前記第2の端板を焼きバメで封止することが好ましい。
また、本発明に係るマイクロチャンネル構造体の製造方法では、例えば、第2の端板の孔の大きさを、流入部材及び流出部材の外形の大きさより小さくしておく。そして、複数の流路板を流入部材及び流出部材の長さ方向に積層した後、第2の端板を加熱し、この第2の端板の孔を拡張する。その後、この第2の端板を流路に積層した後、冷却する。これにより、第2の端板の孔は収縮し、流入部材及び流出部材に固定される。このように、焼きバメを用いることができるので、安価な方法により、流路板を流入部材及び流出部材に固定することが可能となる。
また、本発明に係るマイクロチャンネル構造体の製造方法は、少なくとも前記第2の端板が、前記流入部材及び前記流出部材より熱膨張係数の高い材料で形成されていることが好ましい。
本発明に係るマイクロチャンネル構造体の製造方法では、焼きバメにより第2の端板を固定する際、例えば、第2の端板の方が熱膨張係数の高い材料で形成されているため、第2の端板を冷却する際に第2の端板の孔が、より収縮するので確実に流入部材及び流出部材に第2の端板が固定される。
本発明に係るマイクロチャンネル構造体の製造方法では、前記複数のマイクロチャネル構造体を同時に形成可能な大判の部材を用い、前記複数のマイクロチャネル構造体を形成した後、切断して分割する工程を有することが好ましい。
本発明に係るマイクロチャンネル構造体の製造方法では、複数のマイクロチャネル構造体を同時に形成する際、位置決めピン等が必要でないため、生産効率が向上する。
また、本発明に係る電子機器は、電流を供給されることによって発光する固体発光光源を有する電子機器であって、上記のマイクロチャンネル構造体の面上に前記固体発光光源が載置されたことを特徴とする。
本発明に係る電子機器では、冷却効率が高く、コストを抑えたマイクロチャンネル構造体を用いることにより、電子機器全体も簡易な構成、かつ、安価で、発光特性の優れたものとなる。
以下、図面を参照して、本発明に係るマイクロチャンネル構造体,マイクロチャンネル構造体の製造方法及び電子機器の実施形態について説明する。なお、以下の図面においては、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
[第1実施形態]
図1は、マイクロチャンネル構造体の概略構成を示す斜視図であって、図1(a)は、斜視図であり、図1(b)は、矢印Pから見た側面図であり、図2(a)は、図1のA−A線における矢視断面図であり、図2(b)は、図1のB−B線における矢視断面図である。
マイクロチャンネル構造体10は、図1(a),図2(a)に示すように、銅やアルミニウムのように熱伝導性が高い金属材料からなる流路板5,6が複数積層された流路部4が形成されており、その内部には、水(流体)W等の液体を流通可能な微細な流路(微細流路)11を複数有する。
マイクロチャンネル構造体10は、図1(a)に示すように、内部に水Wを導入するための円形管状の導入管(流入部材)2と、内部に導入された水Wを排出するための円形管状の排出管3(流出部材)とを備えている。また、マイクロチャンネル構造体10の上面10aは、図1(b)に示すように、発熱体Hと接触するために平坦に形成される。この発熱体Hは、マイクロチャンネル構造体10の上面10aにろう付け、あるいは、ハンダ付け等で接合されている。
さらに、導入管2及び排出管3の外径Lは、図1(b)に示すように、ほぼ同じ大きさとなっている。
マイクロチャンネル構造体10の内部には、図2(a)に示すように、複数の微細な流路11が形成されている。この流路11は、水Wとの接触面積を大きくするために、流路11の断面形状の縦横比(アスペクト比)が大きく形成されている。具体的には、図2(b)に示すように、各流路11の流路板5,6の積層方向の寸法L1は2〜3mm、この積層方向に直交する寸法L2は50〜100μm程度の略矩形に形成されている。
このような構成により、導入管2からマイクロチャンネル構造体10の内部に導入された水Wは、複数の微細な流路11に分流し、その後、排出管3から外部に排出されるようになっている。水Wの流量は、例えば、3cc/秒程度である。
次に、導入管2には、図2(a)に示すように、流路11が形成されている領域にわたって連続して開口部(流入用開口部)2aが形成されている。また、排出管3には、流路11が形成されている領域にわたって連続して開口部(流出用開口部)3aが形成されている。また、開口部2a及び開口部3aは、図4に示すように、長さ方向の一部を切り欠いた形状となっており、断面形状が半円状となっている。
また、この導入管2の開口部2aにより、導入管2を流通した水Wを複数の流路11に流出し、排出管3の開口部3aにより、流路11から流出した水Wを排出管3に流入させるようになっている。
次に、流路部を示す図である。
この流路部4は、図2に示すように、導入管2の下流2b側及び排出管3の上流3b側から順に、平板状の下板7(第1の端板)と、複数の流路板5,6と、上板(第2の端板)8とを備えており、これらにより、複数の微細流路11が形成されている。
流路板5は、図3に示すように、マイクロチャンネル構造体10の内部に形成される複数の流路11を構成するための薄板部材である。流路板5は、図3に示すように、楕円状の抜き穴部(孔)21を有する枠状部材となっている。この抜き穴部21の中央部分は流路11を構成し、長手方向の両端5a,5b側は、導入管2及び排出管3が貫通可能な円弧状となっている。
流路板6は、図3に示すように、マイクロチャンネル構造体10の内部に形成される複数の流路11同士を仕切る壁部12を構成するための薄板部材である。また、流路板6は、図3に示すように、長手方向の両端6a,6b側に抜き穴部(孔)26,27が形成されており、抜き穴部26,27の中央部分が、壁部12を形成している。
抜き穴部26,27は、導入管2及び排出管3の位置に対応して設けられ、抜き穴部26,27の形状は、導入管2及び排出管3が貫通可能な略半円状となっている。
なお、流路板5の外形は、流路板6の外形と同一であり、さらに、流路板5の抜き穴21の両端5a,5b側の一部の形状が、流路板6の抜き穴部26,27と一致するように形成されている。すなわち、マイクロチャンネル構造体10は、抜き穴部26,27に導入管2及び排出管3が挿通された状態で、流路板5,6を導入管2及び排出管3を長さ方向(導入管2及び排出管3内を水Wが流れる方向)の開口部2a及び開口部2bが設けられた領域に積層させることにより、複数の流路11が形成される。
上板8には、図3に示すように、両端8a,8b側の導入管2,排出管3に対応した位置に、外径Mの円形状の2つの抜き穴部(孔)8cが形成されている。また、2つの孔8cのそれぞれに導入管2及び排出管3が挿通された状態で、開口部2a及び開口部3cが設けられていない領域の複数の流路板5,6上に積層されている。
この孔8cの外径Mは、導入管2,排出管3の外径Lより若干径の小さい大きさとなっている。
次に、以上の構成からなる本実施形態のマイクロチャンネル構造体10の製造方法について説明する。
まず、下板7に導入管2,排出管3を固定する。そして、図4に示すように、流路板5の抜き穴部21を導入管2,排出管3に通し、次に、流路板6の抜き穴部26,27を導入管2,排出管3に通す。このように、導入管2,排出管3の開口部2a,3bが形成されている領域にわたって、流路板5及び流路板6を交互に積層し、流路板5,6同士は拡散接合法等の方法で固定する。次に、焼きバメにより上板8を固定する。すなわち、上板8を加熱し、抜き穴部8cを拡張させて、上板8の抜き穴部8cを導入管2,排出管3に通す。その後、上板8を冷却することにより、上板8の抜き穴部8cが収縮し、導入管2,排出管3に上板8が固定される。
本実施形態に係るマイクロチャンネル構造体10では、流路11は、流路板5及び流路板6が導入管2及び排出管3の長さ方向に積層された構造であるため、簡易な構成で、流路11に効率良く水Wを流すことが可能となる。したがって、マイクロチャンネル構造体10の上面10aに設けられた発熱部Hを効率良く冷却することができる。さらには、流路板5,6の位置関係を決める位置決めピンが必要でないため、無駄なスペースがないので、低コスト化、小型化を図ることが可能となる。
また、本実施形態に係るマイクロチャンネル構造体10の製造方法では、従来のように流路11の入口及び出口にパイプを溶接する必要がないため、コストを抑えたマイクロチャンネル構造体10を製造することが可能となる。
さらに、導入管2及び排出管3を基準とし、導入管2及び排出管3を貫通する抜き穴部21が形成された流路板5及び抜き穴部26,27が形成された流路板6を積層することにより流路11が形成されるため、簡易な方法により、マイクロチャンネル構造体を製造することができるので、製造コストを抑えることが可能となる。
なお、導入管2,排出管3,下板7,流路板5,6,上板8は、熱伝導率の高い金属材料からなるとしたが、特に、焼きバメにより下板7を導入管2,排出管3に固定する場合、導入管2,排出管3をCuで形成し、上板8をCuより熱膨張係数の高いAlで形成することが好ましい。このような構成では、上板8を冷却する際に上板8の孔8cが、より収縮するので確実に導入管2及び排出管3に固定される。
[第2実施形態]
次に、本発明に係る第2実施形態について、図5及び図6を参照して説明する。なお、以下に説明する各実施形態において、上述した第1実施形態に係るマイクロチャンネル構造体10と構成を共通とする箇所には同一符号を付けて、説明を省略することにする。
本実施形態に係るマイクロチャンネル構造体30では、導入管31の開口部(流入用開口部)36及び排出管32の開口部(流出用開口部)37の形状において、第1実施形態と異なる。
開口部36及び開口部37は、導入管31,排出管32の長さ方向(導入管31,排出管32内を水Wが流れる方向)に間隔をあけて複数形成されている。
具体的には、開口部36,37は、図5に示すように、複数の開口部36a,37aを備えており、これら開口部36a,37aは、導入管31の下流31b側及び排出管32の上流32b側に向かって順に大きくなっている。すなわち、開口部36は、導入管31の下流31b側の開口径Cが、上流31a側の開口径Dより順に大きく形成されている。また、開口部37も開口部36と同様に、排出管32の上流32b側の開口径Eが、下流32a側の開口径Fより順に大きく形成されている。
次に、以上の構成からなる本実施形態のマイクロチャンネル構造体30の製造方法について説明する。
まず、下板7に導入管31,排出管32を固定する。そして、図6に示すように、第1実施形態と同様に、導入管31の最も上流31a側に位置する開口部36a,排出管32の最も下流32a側に位置する開口部37aまで、流路板5及び流路板6を積層する。そして、最後に、導入管31,排出管32に上板8を焼きバメにより固定する。
本実施形態に係るマイクロチャンネル構造体30及びマイクロチャンネル構造体10の製造方法では、導入管31の上流31a付近では水Wの圧力損失は低く、導入管31の下流31b側に向かうに従い水Wの圧力損失が高くなるため、導入管31の下流31bに向かって開口部36を順に大きくすることにより、圧力損失の高くなる側での抵抗を低減し、流路11での水Wの流れる量を均一化することができる。
また、排出管32では、下流32a側に向かうに従い水Wの圧力損失が低くなるため、排出管32の上流32b側に向かって開口部37を大きくすることにより、水Wを流路11から排出管32へ流れ易くすることが可能となる。
なお、開口部36a,37aの開口径を同じにすることによって、穴開け加工が容易になるが、圧力損失を考慮すると、本実施形態のように開口径を変えることが好ましい。
[第3実施形態]
次に、本発明に係る第3実施形態について、図7から図9を参照して説明する。
本実施形態に係るマイクロチャンネル構造体40では、流路板46及び流路板47が、導入管(流入部材)41及び排出管(流出部材)42の長さ方向に複数積層され、流路板46,流路板47に平行な方向及び流路板46,流路板47の積層方向に流路48が複数形成される点で、第1実施形態と異なる。すなわち、流路48は、複数の微細流路48a間を相互に水Wが流通することを可能にしている。
図7(a)は、マイクロチャンネル構造体の概略構成を示す斜視図であって、図7(b)は、図7(a)の上板50,流路板46及び流路板47を外した状態を示す斜視図であり、図8(a)は、図7(a)の矢印Qから見た裏面図であり、図8(b)は、図7(a)のA1−A1線における矢視断面図である。なお、本実施形態において、発熱体Hは、図8(a)に示すように、下板49上に設けられている。
流路部45は、図7(a),図7(b)に示すように、導入管41の下流41b側及び排出管42の上流42b側から順に、平板状の下板49と、複数の流路板46,47と、上板(第2の端板)50とを備えており、これらにより、図7(b)に示すように、流路板46,47に平行な方向(図中のx方向)及び流路板46,47の積層方向(図中のz方向)に複数の流路48が形成されている。
また、導入管41及び排出管42には、図7(b)に示すように、流路48が形成されている領域にわたって連続して開口部(流入用開口部)41a,開口部(流出用開口部)42aが形成されている。この導入管41の開口部41aにより、導入管41を流通した水Wを複数の流路48に流出し、排出管42の開口部42aにより、複数の流路48から流出した水Wを排出管42に流入させるようになっている。
具体的に、流路板46は、図9(a)に示すように、水Wが流れる方向(図中のy方向)に順に抜き穴部51,52及び開口部53が形成され、この抜き穴部51,52及び開口部53が、流路板46の水Wの流れる方向と直交する方向(x方向)に複数列形成されたものである。また、流路板47は、図9(b)に示すように、流路板46を、裏返したものである。すなわち、水Wが流れる方向に向かって、開口部53,抜き穴部52,51が順に形成されている。
また、流路板46,47には、図9(c)に示すように、開口部46aから流出した水Wを複数の流路48に流入させる導入側拡大穴部55が形成され、また、複数の流路48から流出した水Wを開口部47aに流入させる排出側穴部56が形成されている。さらに、この導入側拡大穴部55及び排出側穴部56には、導入管41及び排出管42が貫通可能な略半円状の抜き穴部55a及び抜き穴部56aがそれぞれ形成されている。
このような流路板46及び流路板47を、図7(b),図8(b)に示すように、を交互に積層することにより、抜き穴部51,52及び開口部53の一部が重なり、複数の流路48が構成される。すなわち、複数の抜き穴部51,52及び開口部53が形成された流路板46,47が積層されることによって構成されているため、図8(b)に示すように、上下の流路板46,47の抜き穴部51,52及び開口部53の一部が重なった部分に、複数の流路48が形成される。この流路48は、流路部45に流入した水Wを、図7(b),図8(b)に示す流路板46,47に平行な方向(図中のx方向),水Wの流れる方向(y方向)及び流路板46,47の積層方向(図中のz方向)、すなわち、3次元的に拡散させている。したがって、相対的に発熱体Hに近いことによって高温とされる流体と、相対的に発熱体Hから遠いことによって低温とされる流体とが、流路48によって攪拌されるため、これらの流体が混合されることになる。
次に、以上の構成からなる本実施形態のマイクロチャンネル構造体40の製造方法について説明する。
まず、下板49に導入管41,排出管42を固定する。そして、図7(b)に示すように、第1実施形態と同様に、流路板46,47の抜き穴部55a及び抜き穴部56aを導入管41,排出管42に通すことにより、導入管41の開口部41a,排出管42の開口部42aまで、流路板46及び流路板47を積層する。そして、最後に、導入管41,排出管42に上板50を焼きバメにより固定する。
本実施形態に係るマイクロチャンネル構造体40では、流路板46,47を積層することにより、水Wを攪拌させることが可能であるため、吸熱性能が向上し、効率的に発熱体Hを冷却することが可能となる。
また、マイクロチャンネル構造体40の製造方法では、流路板46,47を積層することにより、流路48が形成されるため、短時間で安価にマイクロチャンネル構造体を製造することが可能となる。また、流路板46及び流路板47は、抜き穴部51,52及び開口部53の形成パターンが同一であるため、2種類の流路板を作らなくて済むので、コストを低減させることができる。
[第4実施形態]
次に、本発明に係る第4実施形態について、図10から図12を参照して説明する。
本実施形態に係るマイクロチャンネル構造体60では、流路48部分の構成は、第3実施形態と同様であるが、導入管61の開口部(流入用開口部)65及び排出管62の開口部(流出用開口部)66の形状において、第3実施形態と異なる。
すなわち、開口部65及び流出用開口部66は、図10(a),(b)に示すように、導入管61,排出管62の長さ方向(導入管61,排出管62内を水Wが流れる方向)に間隔をあけて複数形成されている。
このマイクロチャンネル構造体60には、図10(b)に示すように、開口部65が形成されており、この開口部65は、導入管61の下流61b側の流路板46の平面方向(x方向)に形成された円形状の2つの開口部65a,65bが形成されている。さらに、開口部65は、この2つの開口部65a,65bよりも上板50側には、円形状の開口部65cが形成されている。
また、排出管62には、導入管61と同様に、排出管62の上流62b側の円形状の2つの開口部66a,66b及び下流62a側の円形状の開口部66cを有する開口部66が形成されている。
このマイクロチャンネル構造体60では、導入管61を流通した水Wは、開口部66a,66bにより強制的に流路板46,47の平面方向(図中のx方向)に放射上に流出する。したがって、より吸熱性能が向上し、効率的に発熱体Hを冷却することが可能となる。
また、このマイクロチャンネル構造体60の製造方法では、円形状の穴開け加工であるため、より安価により製造することが可能となる。
なお、本実施形態において、開口部65及び開口部66の形状を、図12に示すように、開口部65c及び開口部66cに位置する開口部65d及び開口部66dを開口部65a,66a,開口部65b,66bに比べ小さく形成した導入管71及び排出管72を用いても良い。この構成では、流路48を流れる水Wの量をより均一化することができる。
[第5実施形態]
次に、本発明の第5実施形態として、上記第1実施形態のマイクロチャンネル構造体10を有するプロジェクタ500について説明する。
図13は、上記実施形態のマイクロチャンネル構造体10を備えたプロジェクタ(電子機器)500の説明図である。図中、符号512、513、514は上記実施形態のマイクロチャンネル構造体10を備えた3個の光源装置(固体発光光源)、522、523、524は液晶ライトバルブ、525はクロスダイクロイックプリズム、526は投写レンズを示している。
各光源装置512、513、514には、それぞれ赤(R)、緑(G)、青(B)に発光するLEDチップが採用されている。なお、光源光の照度分布を均一化させるための均一照明系として、各光源装置の後方にロッドレンズやフライアイレンズを配置してもよい。
赤色光源装置512からの光束は、重畳レンズ535Rを透過して反射ミラー517で反射され、赤色光用液晶ライトバルブ522に入射する。また、緑色光源装置513からの光束は、重畳レンズ535Gを透過して緑色光用液晶ライトバルブ523に入射する。また、青色光源装置514からの光束は、重畳レンズ535Bを透過して反射ミラー516で反射され、青色光用液晶ライトバルブ524に入射する。なお、均一照明系としてフライアイレンズを用いた場合には、各光源からの光束は重畳レンズを介することにより液晶ライトバルブの表示領域において重畳され、液晶ライトバルブが均一に照明されるようになっている。
また、各液晶ライトバルブの入射側および出射側には、偏光板(図示せず)が配置されている。そして、各光源からの光束のうち所定方向の直線偏光のみが入射側偏光板を透過して、各液晶ライトバルブに入射する。また、入射側偏光板の前方に偏光変換手段(図示せず)を設けてもよい。この場合、入射側偏光板で反射された光束をリサイクルして各液晶ライトバルブに入射させることが可能になり、光の利用効率を向上させることができる。
各液晶ライトバルブ522、523、524によって変調された3つの色光は、クロスダイクロイックプリズム525に入射する。このプリズムは4つの直角プリズムを貼り合わせて形成され、その内面に赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが十字状に配置されている。これらの誘電体多層膜によって3つの色光が合成され、カラー画像を表す光が形成される。そして、合成された光は投写光学系である投写レンズ526により投写スクリーン527上に投写され、拡大された画像が表示される。
上述した本実施形態のプロジェクタ500は、LEDチップがマイクロチャンネル構造体10により、冷却されることによって大きな電流を供給でき、高輝度化される。したがって、上述したマイクロチャンネル構造体10を有することにより、表示特性の優れたプロジェクタ500を提供することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記各実施形態では、導入管2,排出管3を1ユニットのみ有する場合を示しているが、図14に示すように、複数の導入管102及び排出管103が形成されたマイクロチャンネル構造体100であっても良い。この構成の場合、大判の下板(部材)101に導入管102及び排出管103が複数固定され、図14に示す抜き穴部21が複数形成された大判の流路板105(部材)及び抜き穴部26,27が複数形成された大判の流路板106(部材)を積層する。そして、最後に、複数の抜き穴部8cを有する上板(図示略,部材)を複数の導入管102,排出管103に固定し、切断して分割することにより、複数の微細流路を有するマイクロチャンネル構造体10を得ることができる。したがって、従来では、図15に示すように、マイクロチャンネル構造体の形成領域Rの位置決めとして、例えば、位置決めピン110が必要となっていたが、本発明では、複数の導入管102,排出管103が位置決めの基準となるため、このような位置決めピン110が不必要となる。すなわち、位置決めピン110及び位置決めピン110を設けるスペースが不要となるため、大判の下板,流路板,上板が小さくて済みコストを抑えることが可能となる。
なお、図14に示すマイクロチャンネル構造体100では、第1実施形態のマイクロチャンネル10の導入管2,3を複数備える場合であるが、第2,第3,第4実施形態に示したマイクロチャンネル構造体の導入管2,31,41,61,71,排出管3,32,42,62,72を複数備えた場合でも、同様の効果が得られる。
また、導入管及び排出管を円形管状としたが、矩形管状であっても良い。この構成の場合、抜き穴部を矩形状とし、導入管及び排出管が貫通可能な形状にすれば良い。
また、下板に導入管、排出管を固定したが、下板と導入管と排出管3とが一体成型されていても良い。
また、流体として水Wを用いた液冷構造を示したが、水以外の液体を用いても良いし、空冷であっても良い。
また、開口部36,37,65,66は、円形状であるとしたが、矩形状にしても良い。さらに、最後に積層される上板8,50を焼きバメにより固定したが、例えば、すべての流路部4,45を焼きバメにより固定しても良い。
本発明の第1実施形態に係るマイクロチャンネル構造体を示す斜視図である。 図1のマイクロチャンネル構造体の(a)は図1(a)のA−A線における矢視断面図であり、(b)は図1のB−B線における矢視断面図である。 図1のマイクロチャンネル構造体の流路板を示す斜視図である。 図1のマイクロチャンネル構造体の製造方法を示す斜視図である。 本発明の第2実施形態に係るマイクロチャンネル構造体を示す断面図である。 図5のマイクロチャンネル構造体の製造方法を示す斜視図である。 本発明の第3実施形態に係るマイクロチャンネル構造体を示す断面図である。 図7のマイクロチャンネル構造体の(a)は矢印Qから見た正面図であり、(b)はA1−A1線における矢視断面図である。 図7のマイクロチャンネル構造体の製造方法を示す斜視図である。 本発明の第4実施形態に係るマイクロチャンネル構造体を示す断面図である。 本発明のマイクロチャンネル構造体の変形例を示す断面図である。 図11のマイクロチャンネル構造体の第1,2流路を示す平面図である。 本発明の第5実施形態に係る電子機器を示す概略図である。 本発明のマイクロチャンネル構造体の変形例を示す斜視図である。 従来のマイクロチャンネル構造体の一例を示す斜視図である。
符号の説明
1…マイクロチャンネル構造体、2,31,41,61,71…導入管(流入部材)、3,32,42,62,72…排出管(流出部材)、2a,36,41a,65…開口部(流入用開口部)、3a,37,42a,66…開口部(流出用開口部)、8…上板(第2の端板)、7…下板(第1の端板)、5,6…流路板、8c…抜き穴部(孔)、11…流路(微細流路)、21…抜き穴部(孔)、26,27…抜き穴部(孔)、512,513,514…光源装置(固体発光光源)

Claims (10)

  1. 流体が流れる複数の微細流路を有するマイクロチャンネル構造体であって、
    第1の端板と、
    前記第1の端板に固定され、前記微細流路に流体を流入させる流入用開口部が長さ方向の一部の領域に設けられた流入部材と、
    前記第1の端板に固定され、前記微細流路から流体を流出させる流出用開口部が長さ方向の一部に設けられた流出部材と、
    前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した孔が設けられ、前記孔に前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられた領域に積層され前記複数の微細流路を構成する複数の流路板と、
    前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した2つの孔が設けられ、前記2つの孔のそれぞれに前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられていない領域の前記複数の流路板上に積層された第2の端板とを備えることを特徴とするマイクロチャンネル構造体。
  2. 前記流入部材の流入用開口部及び前記流出部材の流出用開口部が、前記複数の流路板の積層方向にわたって連続して開口していることを特徴とする請求項1に記載のマイクロチャンネル構造体。
  3. 前記流入部材の流入用開口部及び前記流出部材の流出用開口部が、前記複数の流路板の積層方向にわたって間隔をあけて複数形成されていることを特徴とする請求項1に記載のマイクロチャンネル構造体。
  4. 前記流入部材の複数の流入用開口部及び前記流出部材の複数の流出用開口部の開口径が、前記第2の端板から前記第1の端板に向けて順に大きくなっていることを特徴とする請求項3に記載のマイクロチャンネル構造体。
  5. 前記複数の微細流路間を相互に流体が流通する流路を有することを特徴とする請求項1から請求項4のいずれか1項に記載のマイクロチャンネル構造体。
  6. 流体が流れる複数の微細流路を有するマイクロチャンネル構造体の製造方法であって、
    前記微細流路に流体を流入させる流入用開口部が長さ方向の一部の領域に設けられた流入部材と、前記微細流路から流体を流出させる流出用開口部が長さ方向の一部に設けられた流出部材とを有する第1の端板を形成する工程と、
    前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した孔が設けられ、前記孔に前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられた領域に前記複数の微細流路を構成する複数の流路板を積層する工程と、
    前記第1の端板上の前記流入部材及び前記流出部材の位置に対応した2つの孔が設けられ、前記2つの孔のそれぞれに前記流入部材及び前記流出部材が挿通された状態で、前記流入用開口部及び前記流出用開口部が設けられていない領域の前記複数の流路板上に第2の端板を積層する工程とを有することを特徴とするマイクロチャンネル構造体の製造方法。
  7. 少なくとも前記第2の端板を焼きバメで封止することを特徴とする請求項6に記載のマイクロチャンネル構造体の製造方法。
  8. 少なくとも前記第2の端板が、前記流入部材及び前記流出部材より熱膨張係数の高い材料で形成されていることを特徴とする請求項7に記載のマイクロチャンネル構造体の製造方法。
  9. 前記複数のマイクロチャネル構造体を同時に形成可能な大判の部材を用い、前記複数のマイクロチャネル構造体を形成した後、切断して分割する工程を有することを特徴とする請求項6から請求項8のいずれか1項に記載のマイクロチャンネル構造体の製造方法。
  10. 電流を供給されることによって発光する固体発光光源を有する電子機器であって、
    請求項1から請求項5のいずれか1項に記載のマイクロチャンネル構造体の面上に前記固体発光光源が載置されたことを特徴とする電子機器。
JP2006059966A 2006-03-06 2006-03-06 マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器 Withdrawn JP2007242724A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059966A JP2007242724A (ja) 2006-03-06 2006-03-06 マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059966A JP2007242724A (ja) 2006-03-06 2006-03-06 マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器

Publications (1)

Publication Number Publication Date
JP2007242724A true JP2007242724A (ja) 2007-09-20

Family

ID=38588007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059966A Withdrawn JP2007242724A (ja) 2006-03-06 2006-03-06 マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器

Country Status (1)

Country Link
JP (1) JP2007242724A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206271A (ja) * 2008-02-27 2009-09-10 Aisin Aw Co Ltd 発熱体冷却装置
JP2011017516A (ja) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp プレート積層型冷却装置及びその製造方法
JP2012124261A (ja) * 2010-12-07 2012-06-28 Toyota Motor Corp 積層型冷却器
JP2013030713A (ja) * 2011-07-29 2013-02-07 T Rad Co Ltd 液冷ヒートシンク
WO2014013764A1 (ja) * 2012-07-20 2014-01-23 株式会社新川 ボンディング装置用ヒータ及びその冷却方法
KR20140070589A (ko) * 2011-10-12 2014-06-10 후지 덴키 가부시키가이샤 반도체 모듈용 냉각기 및 반도체 모듈
JP2014120720A (ja) * 2012-12-19 2014-06-30 Toyota Motor Corp 半導体積層冷却ユニット
JP2014175559A (ja) * 2013-03-12 2014-09-22 Kyocera Corp 冷却基板、素子収納用パッケージ、および実装構造体
JP2014187228A (ja) * 2013-03-25 2014-10-02 Fujitsu Ltd 半導体装置及びその製造方法
JP2014225938A (ja) * 2013-05-15 2014-12-04 株式会社デンソー 電力変換装置
JP2015090905A (ja) * 2013-11-05 2015-05-11 株式会社豊田自動織機 放熱装置
JP2016518722A (ja) * 2013-05-08 2016-06-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冷却構造のための搭載層
JP2016149567A (ja) * 2016-03-29 2016-08-18 株式会社新川 ボンディング装置用ヒータ、ボンディング装置用ヒータ組立体及びボンディング装置
WO2017047824A1 (ja) * 2015-09-18 2017-03-23 株式会社ティラド 積層コア型ヒートシンク
WO2018012558A1 (ja) * 2016-07-11 2018-01-18 株式会社ティラド 積層型ヒートシンクのコア
CN109387096A (zh) * 2018-11-12 2019-02-26 东莞运宏模具有限公司 积层式水冷散热器

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206271A (ja) * 2008-02-27 2009-09-10 Aisin Aw Co Ltd 発熱体冷却装置
JP2011017516A (ja) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp プレート積層型冷却装置及びその製造方法
JP2012124261A (ja) * 2010-12-07 2012-06-28 Toyota Motor Corp 積層型冷却器
JP2013030713A (ja) * 2011-07-29 2013-02-07 T Rad Co Ltd 液冷ヒートシンク
KR20140070589A (ko) * 2011-10-12 2014-06-10 후지 덴키 가부시키가이샤 반도체 모듈용 냉각기 및 반도체 모듈
KR20140088089A (ko) * 2011-10-12 2014-07-09 후지 덴키 가부시키가이샤 반도체 모듈용 냉각기 및 반도체 모듈
CN104520980A (zh) * 2012-07-20 2015-04-15 株式会社新川 接合装置用加热器及其冷却方法
US10350692B2 (en) 2012-07-20 2019-07-16 Shinkawa Ltd. Heater for bonding apparatus and method of cooling the same
JP2014022629A (ja) * 2012-07-20 2014-02-03 Shinkawa Ltd ボンディング装置用ヒータ及びその冷却方法
WO2014013764A1 (ja) * 2012-07-20 2014-01-23 株式会社新川 ボンディング装置用ヒータ及びその冷却方法
JP2014120720A (ja) * 2012-12-19 2014-06-30 Toyota Motor Corp 半導体積層冷却ユニット
JP2014175559A (ja) * 2013-03-12 2014-09-22 Kyocera Corp 冷却基板、素子収納用パッケージ、および実装構造体
JP2014187228A (ja) * 2013-03-25 2014-10-02 Fujitsu Ltd 半導体装置及びその製造方法
JP2016518722A (ja) * 2013-05-08 2016-06-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冷却構造のための搭載層
JP2014225938A (ja) * 2013-05-15 2014-12-04 株式会社デンソー 電力変換装置
JP2015090905A (ja) * 2013-11-05 2015-05-11 株式会社豊田自動織機 放熱装置
WO2017047824A1 (ja) * 2015-09-18 2017-03-23 株式会社ティラド 積層コア型ヒートシンク
US10837718B2 (en) 2015-09-18 2020-11-17 T.Rad Co., Ltd. Laminated core type heat sink
JPWO2017047824A1 (ja) * 2015-09-18 2018-08-02 株式会社ティラド 積層コア型ヒートシンク
JP2016149567A (ja) * 2016-03-29 2016-08-18 株式会社新川 ボンディング装置用ヒータ、ボンディング装置用ヒータ組立体及びボンディング装置
JPWO2018012558A1 (ja) * 2016-07-11 2019-05-16 株式会社ティラド 積層型ヒートシンクのコア
US10739085B2 (en) 2016-07-11 2020-08-11 T.Rad Co., Ltd. Laminated heat sink core
WO2018012558A1 (ja) * 2016-07-11 2018-01-18 株式会社ティラド 積層型ヒートシンクのコア
CN109387096A (zh) * 2018-11-12 2019-02-26 东莞运宏模具有限公司 积层式水冷散热器

Similar Documents

Publication Publication Date Title
JP2007242724A (ja) マイクロチャンネル構造体、マイクロチャンネル構造体の製造方法及び電子機器
US7549460B2 (en) Thermal transfer devices with fluid-porous thermally conductive core
JP5916603B2 (ja) 放熱装置および半導体装置
US20060237166A1 (en) High Efficiency Fluid Heat Exchanger and Method of Manufacture
MXPA04012515A (es) Eliminador de calor con fluido forzado.
JP4218677B2 (ja) マイクロチャンネル構造体及びその製造方法、光源装置、並びにプロジェクタ
TW201315960A (zh) 疊層式散熱器
JP2005166855A (ja) 電子機器
JP4682775B2 (ja) マイクロチャンネル構造体、熱交換システム及び電子機器
WO2014171095A1 (ja) 熱交換器
JP2008235725A (ja) 水冷式ヒートシンク
WO2005100896A1 (ja) 熱交換器及びその製造方法
JP2009507202A (ja) 流体の急速な加熱若しくは冷却のための熱交換装置
KR20080076222A (ko) 적층형 열교환기 및 그의 제조방법
JP2009266936A (ja) 積層型冷却器
KR20190016489A (ko) 라미네이트 마이크로채널 열 교환기
JP5012824B2 (ja) 積層型冷却装置、及びそれに用いる冷却管の製造方法
JP2004340442A (ja) 複合型熱交換器
JP2004266247A (ja) 発熱性部品の冷却構造
JP2003279283A (ja) 熱交換器及びその製造方法
US20130056186A1 (en) Heat exchanger produced from laminar elements
JP2005326068A (ja) 熱交換器用プレート及び熱交換器
JP2006220387A (ja) 熱交換器及びその製造方法
JP2006097970A (ja) 熱交換器
JP2006224253A (ja) マイクロチャンネル構造体及びその製造方法、光源装置、並びにプロジェクタ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512