JP2007231475A - Undrawn conjugated fiber - Google Patents

Undrawn conjugated fiber Download PDF

Info

Publication number
JP2007231475A
JP2007231475A JP2006056426A JP2006056426A JP2007231475A JP 2007231475 A JP2007231475 A JP 2007231475A JP 2006056426 A JP2006056426 A JP 2006056426A JP 2006056426 A JP2006056426 A JP 2006056426A JP 2007231475 A JP2007231475 A JP 2007231475A
Authority
JP
Japan
Prior art keywords
fiber
composite
crimp
component
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006056426A
Other languages
Japanese (ja)
Inventor
Masato Yoshimoto
正人 吉本
Shigeru Morioka
茂 森岡
Satoshi Yasui
聡 安井
Taku Nakajima
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006056426A priority Critical patent/JP2007231475A/en
Publication of JP2007231475A publication Critical patent/JP2007231475A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a undrawn conjugated fiber having a characteristic of "opacity" in wet state and imparting improved windbreaking and heat retaining property to a cloth by decrease of gap, and stably expressing the characteristic even after being subjected to a dyeing, finishing process, or the like, and imparts a soft feeling. <P>SOLUTION: The undrawn conjugated fiber has a cross sectional shape in which a polyester component and a polyamide component are bonded, and the conjugated fiber has a crimping percentage DC of 1.5-6.0% and has a crimping percentage HC after being soaked in water of 2.0-12.0%, and has a difference ΔC in crimping percentage of 1.5-8.0%, which is represented by the following formula, and the fiber has a rupture elongation of 40-140% and a stress at 60% extension of 0.55-1.30 cN/dtex, after being subjected to the treatments of a boiling water treatment for 30 min, dry heat treatment at 100°C for 30 min to crimp the fiber and then heat treatment of the fiber at 160°C for 1 min. Formula: ΔC(%)=HC(%)-DC(%). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、湿度により可逆的に捲縮率が大きく変化する複合未延伸繊維に関する。より詳しくは、染色や仕上げ工程を経ても優れた捲縮率変化特性を発揮し、湿潤時の空隙が乾燥時のそれよりも低下し、同時に極めてソフトな風合いを有する布帛が得られる複合未延伸繊維に関する。   The present invention relates to a composite unstretched fiber whose crimping rate reversibly changes greatly depending on humidity. More specifically, a composite unstretched fabric that exhibits excellent crimp rate change characteristics even after dyeing and finishing processes, the wet voids are lower than those during drying, and at the same time a fabric having a very soft texture is obtained. Regarding fiber.

木綿・羊毛・羽毛等の天然繊維が湿度変化にて可逆的に形態・捲縮率が変化することは、従来良く知られている。合成繊維にかかる機能を持たせようとする検討が古くから行われており、ナイロン6と変性ポリエチレンテレフタレートとをサイドバイサイド型複合繊維での提案がすでに特許文献1及び2等でなされている。これら公知の複合繊維では湿度変化による可逆的な捲縮率の変化が小さいため実用に到っていない。   It has been well known that natural fibers such as cotton, wool and feathers reversibly change in form and crimp rate due to changes in humidity. Studies have been conducted for a long time to provide a function for synthetic fibers, and proposals for side-by-side type composite fibers of nylon 6 and modified polyethylene terephthalate have already been made in Patent Documents 1 and 2, etc. These known composite fibers have not been put to practical use because the reversible crimp rate change due to humidity change is small.

その後、熱処理条件を改良した特許文献3及び4等が提案されている。さらに、特許文献5〜8等、上記従来技術を応用したものが提案されている。しかしながら、上記の従来技術は、染色や仕上げといった工程を経ると、捲縮率の変化が小さくなり、実用的なレベルに到達していないのが実情である。   Thereafter, Patent Documents 3 and 4 and the like with improved heat treatment conditions have been proposed. Furthermore, the thing which applied the said prior art, such as patent documents 5-8 is proposed. However, in the above-described conventional technology, the change in the crimp rate becomes small after passing through processes such as dyeing and finishing, and the actual situation is that the practical level has not been reached.

これに対して、特許文献9には、ポリエステル成分とポリアミド成分とが扁平状に接合され、且つ、ポリアミド成分をナイロン4の如く吸湿率の高いポリアミドを用い前述の課題を改善する試みもなされているが、ナイロン4の製糸安定性が悪く、捲縮性能が熱処理を経ての低下し、やはりかかる複合繊維でも実用面で限界がある。   On the other hand, in Patent Document 9, an attempt is made to improve the above-mentioned problem by using a polyamide component and a polyamide component having a high moisture absorption rate, such as nylon 4, in which the polyester component and the polyamide component are joined in a flat shape. However, nylon 4 has poor yarn-making stability, the crimping performance is lowered after heat treatment, and there is a limit in practical use even for such a composite fiber.

一方、上記のような製糸性及び仕上げ加工における安定品質確保の他、近年では要求特性の多様化により『透け』が問題になってきている。すなわち、合成繊維や天然繊維などからなる通常の織編物を、スイミングウェアー、スポーツウェアーなどに使用すると、水や雨による布帛の湿潤の結果、『透け』やすくなり、防風性・保温性も低下するといった問題が生じている。さらに、要求特性の多様化に伴い単なる機能性だけでなく、ソフトな風合いを有する素材が求められている。   On the other hand, in addition to ensuring the stable quality in the above-described yarn-making property and finishing, “translucency” has become a problem in recent years due to diversification of required characteristics. In other words, when a normal woven or knitted fabric made of synthetic fiber or natural fiber is used for swimming wear, sports wear, etc., the fabric becomes wet due to water or rain, so that it becomes easy to see through, and windproof and heat retaining properties are also reduced. Such a problem has arisen. Furthermore, with the diversification of required characteristics, there is a demand for materials that have a soft texture as well as simple functionality.

特公昭45−28728号公報Japanese Examined Patent Publication No. 45-28728 特公昭46−847号公報Japanese Patent Publication No.46-847 特開昭58−46118号公報JP 58-46118 A 特開昭58−46119号公報JP 58-46119 A 特開昭61−19816号公報Japanese Patent Laid-Open No. 61-19816 特開2003−82543号公報JP 2003-82543 A 特開2003−41444号公報JP 2003-41444 A 特開2003−41462号公報JP 2003-41462 A 特開平3−213518号公報JP-A-3-213518

本発明は、上記の従来の技術を背景になされたもので、その目的は、水にぬれても『透けない』特性を有し、さらにその際布帛の空隙が減少して防風性・保温性が向上する布帛とすることができ、染色・仕上げ等の工程を経た後でもこれらの優れた特性を安定して発揮し、しかもソフトな風合いが得られる複合未延伸繊維を提供することにある。   The present invention has been made against the background of the above-described conventional technology, and its purpose is to have a property of “not transparent” even when wet with water, and further, the voids of the fabric are reduced at that time, thereby preventing wind and heat retention. It is an object of the present invention to provide a composite unstretched fiber that can stably produce these excellent characteristics even after passing through processes such as dyeing and finishing, and can obtain a soft texture.

本発明者らの研究によれば、上記目的は、ポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合未延伸繊維であって、該繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維の捲縮率DCが1.5〜6.0%であり、該繊維を水浸漬後の捲縮率HCが2.0〜12.0%であり、下記式で表されるこれらの捲縮率の差△Cが1.5〜8.0%であり、破断伸度が40〜140%、60%伸長時の応力が0.55〜1.30cN/dtexであることを特徴とする複合未延伸繊維により達成できることを見出した。
ΔC(%)=HC(%)−DC(%)
According to the study by the present inventors, the above object is a composite unstretched fiber having a fiber cross-sectional shape in which a polyester component and a polyamide component are joined, and the fiber is treated with boiling water for 30 minutes, and further 100 ° C. And 30 minutes of dry heat treatment to develop crimp, and the fiber crimped DC for 1 minute at 160 ° C. has a crimp ratio DC of 1.5 to 6.0%, and the fiber is crimped after being immersed in water. The rate HC is 2.0 to 12.0%, the difference ΔC between these crimping rates represented by the following formula is 1.5 to 8.0%, the elongation at break is 40 to 140%, It has been found that this can be achieved with a composite unstretched fiber characterized by a stress at 60% elongation of 0.55 to 1.30 cN / dtex.
ΔC (%) = HC (%) − DC (%)

本発明によれば、水にぬれても『透けない』特性を有し、その結果防水性・保温性に優れた特性を有し、さらに布帛の空隙が減少することによって防風性・保温性が向上し、さらに極めてソフトな風合いを有し、しかも、染色、仕上げなどの工程を経た後でもこれらの特性を安定して発揮する複合未延伸繊維を提供することができる。このため、上記複合未延伸繊維は、極めて実用性に優れており、衣料などの最終製品として従来にない高い快適性と風合いを同時に達成するものである。   According to the present invention, even when wet, it has a property of “not transparent”, and as a result, has excellent properties of waterproofness and heat retention. It is possible to provide a composite unstretched fiber that is improved, has a very soft texture, and that stably exhibits these characteristics even after undergoing steps such as dyeing and finishing. For this reason, the composite unstretched fiber is extremely excellent in practicality, and at the same time, achieves high comfort and texture that are unprecedented as a final product such as clothing.

本発明の複合未延伸繊維を構成するポリエステル成分としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等を挙げることができ、中でもコスト及び汎用性の観点からポリエチレンテレフタレートがより好ましい。   Examples of the polyester component constituting the composite unstretched fiber of the present invention include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and the like. Among these, polyethylene terephthalate is more preferable from the viewpoint of cost and versatility.

本発明においては、上記ポリエステル成分は、5−スルフォイソフタル酸が共重合されている変性ポリエステルであることが好ましい。その際、5−ナトリウムスルフォイソフタル酸の共重合量が多すぎると、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じにくくなる反面、優れた捲縮性能が得られなくなり、逆に、上記共重合量が少なすぎる、優れた捲縮特性が得られる反面、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じ易くなる傾向にあるので好ましくない。このため、5−ナトリウムスルフォイソフタル酸の共重合量は、2.0〜4.5モル%が好ましく、2.3〜3.5モル%がより好ましい。   In the present invention, the polyester component is preferably a modified polyester in which 5-sulfoisophthalic acid is copolymerized. At that time, if the copolymerization amount of 5-sodium sulfoisophthalic acid is too large, peeling is less likely to occur at the bonding interface between the polyamide component and the polyester component, but excellent crimping performance cannot be obtained. Although the amount of copolymerization is too small and excellent crimp characteristics are obtained, it is not preferable because peeling tends to occur at the bonding interface between the polyamide component and the polyester component. For this reason, the copolymerization amount of 5-sodium sulfoisophthalic acid is preferably 2.0 to 4.5 mol%, and more preferably 2.3 to 3.5 mol%.

また、ポリエステル成分の固有粘度が低すぎると、製糸性が低下すると共に毛羽が発生しやすくなり、工業的な生産および品質の面で好ましくない。逆に、上記固有粘度が高すぎても、5−ナトリウムスルフォイソフタル酸の共重合による増粘作用にてポリエステル成分側の紡糸性および延伸性が低下して、毛羽や断糸が発生しやすくなる。したがって、ポリエステル成分の固有粘度は、0.30〜0.43が好ましく、0.35〜0.41がより好ましい。   On the other hand, if the intrinsic viscosity of the polyester component is too low, the yarn-forming property is lowered and fluff is easily generated, which is not preferable in terms of industrial production and quality. On the other hand, even if the intrinsic viscosity is too high, the spinnability and stretchability on the polyester component side are lowered by the thickening action by copolymerization of 5-sodium sulfoisophthalic acid, and fluff and yarn breakage are likely to occur. Become. Accordingly, the intrinsic viscosity of the polyester component is preferably 0.30 to 0.43, and more preferably 0.35 to 0.41.

一方、ポリアミド成分は、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン4、ナイロン6、ナイロン66、ナイロン46、ナイロン12等が挙げられ、中でも、製糸安定性、汎用性の観点から特にナイロン6、ナイロン66が好ましい。また、上記ポリアミド成分には、これらをベースに他の成分が共重合されていてもよい。
また、以上に説明した両成分には、酸化チタンやカーボンブラック等の顔料、公知の抗酸化剤、帯電防止剤耐光剤等がそれぞれ含有されていてもよい。
On the other hand, the polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon 4, nylon 6, nylon 66, nylon 46, nylon 12, and the like. Nylon 6 and nylon 66 are particularly preferable from the viewpoints of stability and versatility. The polyamide component may be copolymerized with other components based on these.
Further, both components described above may contain pigments such as titanium oxide and carbon black, known antioxidants, antistatic agents, light-proofing agents, and the like.

本発明の複合未延伸繊維は、上記のポリエステル成分と上記のポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合繊維である。ポリアミド成分とポリエステル成分との複合の形態としては、両成分がサイドバイサイド型に接合した形態が捲縮発現の観点から好ましい。上記複合未延伸繊維の断面形状としては、円形断面でも非円形断面でもよく、非円形断面では例えば三角断面や四角断面等を採用することができる。なお、上記複合繊維の断面内には中空部が存在していてもかまわない。   The composite unstretched fiber of the present invention is a composite fiber having a fiber cross-sectional shape in which the polyester component, the polyester component, and the polyamide component are joined. As a composite form of the polyamide component and the polyester component, a form in which both components are joined in a side-by-side manner is preferable from the viewpoint of crimp development. The cross-sectional shape of the composite unstretched fiber may be a circular cross section or a non-circular cross section. For the non-circular cross section, for example, a triangular cross section or a square cross section can be adopted. In addition, a hollow part may exist in the cross section of the said composite fiber.

また、繊維横断面におけるポリエステル成分とポリアミド成分との比率としては、面積を基準として、ポリエステル成分/ポリアミド成分が30/70〜70/30が好ましく、60/40〜40/60がより好ましい。   The ratio of the polyester component to the polyamide component in the fiber cross section is preferably 30/70 to 70/30, more preferably 60/40 to 40/60, based on the area.

本発明においては、上記複合未延伸繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維が、次に述べる、捲縮率DC、水浸漬後の捲縮率HC、およびこれらの捲縮率の差ΔCに関する要件を同時に満足していること、さらに該複合未延伸繊維が後述する伸度及び60%応力を満足していることが肝要である。本発明者らの検討した結果、かかる捲縮特性を有する複合繊維は、吸湿によって捲縮率が増加し、水に濡れても布帛が『透ける』ことがなく、かつその際、布帛の目が詰まって空隙が少なくなり防風性・保温性が向上し、しかも染色や仕上げなどの工程を経た後でもかかる特性を安定して発揮することを見出した。また、特に後述する特定の伸度や60%応力を有する複合未延伸繊維であることによって、捲縮率変化が大きくなり上記の透け防止効果や防風性・保温性向上効果を一層高め、かつ捲縮のバラツキがなく品位の面でも優れていることがわかった。   In the present invention, the composite unstretched fiber is treated with boiling water for 30 minutes, further subjected to a dry heat treatment at 100 ° C. for 30 minutes to develop crimps, and a fiber subjected to a dry heat treatment at 160 ° C. for 1 minute is described below. The requirements regarding the crimp rate DC, the crimp rate HC after immersion in water, and the difference ΔC between these crimp rates are satisfied at the same time, and the composite unstretched fiber satisfies the elongation and 60% stress described later. It is important to do. As a result of the study by the present inventors, the composite fiber having such crimp characteristics has an increased crimp rate due to moisture absorption, and the fabric does not become “translucent” even when wetted with water. It has been found that the air gap and the heat retention are improved due to clogging, and the properties are stably exhibited even after dyeing and finishing processes. In addition, the composite unstretched fiber having a specific elongation and 60% stress, which will be described later, greatly increases the crimp rate change and further enhances the above-mentioned see-through prevention effect and windproof / heat retention improvement effect, and It was found that there was no variation in shrinkage and that it was excellent in terms of quality.

すなわち、捲縮率DCを1.5〜6.0%、好ましくは2.0〜5.5%、より好ましくは2.3〜5.4%とする必要がある。上記捲縮率DCが1.5%未満の場合は、布帛とした際の風合いが悪くなる傾向にあり好ましくない。一方、上記捲縮率DCが6.0%を超える場合は、捲縮率DCが水浸漬後の捲縮率HCより大きくなりやすく、透け難くかつ布帛の空隙が小さくなって防風性・保温性が向上する布帛を得るのが難しくなる傾向にあり好ましくない。   That is, the crimp rate DC needs to be 1.5 to 6.0%, preferably 2.0 to 5.5%, more preferably 2.3 to 5.4%. If the crimp ratio DC is less than 1.5%, the texture when used as a fabric tends to deteriorate. On the other hand, when the crimp ratio DC exceeds 6.0%, the crimp ratio DC tends to be larger than the crimp ratio HC after water immersion, and it is difficult to see through, and the gap of the fabric is reduced, thereby preventing wind and heat retention. This is not preferable because it tends to be difficult to obtain a fabric with improved resistance.

水浸漬後の捲縮率HCは2.0〜12.0%が好ましく、2.5〜10.0%がより好ましい。捲縮率HCが2.0%未満の場合は水浸漬後の捲縮率が低すぎて目的とする透け防止効果や、防風性・保温性向上効果が不十分となるので好ましくない。一方、捲縮率HCの値が12.0%を越える場合は、水を含んだとき布帛が大きく収縮するため実用的でなく風合いも低下するので好ましくない。   The crimp ratio HC after immersion in water is preferably 2.0 to 12.0%, more preferably 2.5 to 10.0%. When the crimping ratio HC is less than 2.0%, the crimping ratio after immersion in water is too low, and the desired effect of preventing see-through and the effect of improving windproof and heat retaining properties are insufficient. On the other hand, if the value of the crimp ratio HC exceeds 12.0%, it is not preferable because the fabric shrinks greatly when it contains water, and it is not practical and the texture is lowered.

又、上記HCとDCとの差ΔCは1.5〜8.0%、好ましくは1.8〜7.5%、より好ましくは2.0〜7.0%である。ΔCの値が1.5%未満の場合は、水浸漬後の捲縮率向上効果が小さく、水に濡れたとき透け難くかつ布帛の空隙が減少して防風性・保温性が向上する布帛が得られず好ましくない。一方、ΔCが8.0%を超える場合は、水を含んだとき布帛が大きく収縮するため実用的でなく風合いも低下するので好ましくない。   The difference ΔC between the HC and DC is 1.5 to 8.0%, preferably 1.8 to 7.5%, more preferably 2.0 to 7.0%. When the value of ΔC is less than 1.5%, there is a small effect of improving the crimp rate after immersion in water, and it is difficult to see through when wet with water, and the fabric has reduced voids and improved windproof and heat retaining properties. It is not preferable because it cannot be obtained. On the other hand, when ΔC exceeds 8.0%, it is not practical because the fabric shrinks greatly when water is contained, and the texture is also lowered.

本発明においては、複合繊維が、破断伸度が40%〜140%、かつ60%応力が0.55〜1.30cN/dtexである複合未延伸繊維であることが大切であり、これにより湿度による捲縮率変化を大きくすることができ、布帛としたとき極めてソフトな風合いを得ることができる。また、同時に捲縮のバラツキを小さくし、染色斑を防止するといった効果がある。   In the present invention, it is important that the composite fiber is a composite unstretched fiber having a breaking elongation of 40% to 140% and a 60% stress of 0.55 to 1.30 cN / dtex. The change in crimp rate due to can be increased, and an extremely soft texture can be obtained when the fabric is used. At the same time, there is an effect of reducing the variation in crimps and preventing stained spots.

すなわち、破断伸度が40%未満または60%応力が1.30cN/dtexを超える場合は、布帛としたときソフトな風合いが得られず、ΔCが1.5未満となりやすく、その結果、透け防止効果や、防風性・保温性向上効果が得られ難くなる傾向にある。一方、60%応力が0.55cN/dtex未満または破断伸度が140%を超える場合は、捲縮のバラツキが大きくなり品位が低下し、ΔCが8.0%より大きくなり水にぬれて布帛が大きく収縮し風合いが低下する傾向にある。また、染め斑は発生し易くなり、取り扱い性も低下する傾向にあり好ましくない。   That is, when the elongation at break is less than 40% or the stress at 60% exceeds 1.30 cN / dtex, a soft texture is not obtained when the fabric is used, and ΔC tends to be less than 1.5, thereby preventing see-through. There is a tendency that it is difficult to obtain the effect and the effect of improving windproof and heat insulation. On the other hand, when the 60% stress is less than 0.55 cN / dtex or the elongation at break exceeds 140%, the variation in crimp becomes large and the quality deteriorates, and ΔC becomes larger than 8.0% and becomes wet with water. Tend to shrink and the texture tends to decrease. In addition, dyeing spots tend to occur, and the handleability tends to decrease, which is not preferable.

本発明の複合未延伸繊維の形態は、基本的にポリエステル成分を捲縮形態の内側に配置し、ポリアミド成分を捲縮の外側に配置した形態にする必要がある。この形態では水を含むことによりポリアミド成分が伸長してより捲縮が増加する為である。その意味において、ポリエステル成分及びポリアミド成分共に余り結晶性を高めないほうが好ましい結果を与える。   The form of the composite unstretched fiber of the present invention basically needs to be a form in which the polyester component is disposed inside the crimped form and the polyamide component is disposed outside the crimped form. This is because, in this form, the inclusion of water causes the polyamide component to stretch and crimps to increase. In that sense, it is preferable that neither the polyester component nor the polyamide component increase the crystallinity.

本発明の複合未延伸繊維の総繊度は、通常の衣料用素材として用いられるのは40〜200dtex、単糸繊度は1〜6dtexのものを用いることができる。なお、必要に応じて交絡処理を施して良い。   The total fineness of the composite unstretched fiber of the present invention can be 40 to 200 dtex, and the single yarn fineness is 1 to 6 dtex. In addition, you may perform a confounding process as needed.

本発明の複合未延伸繊維を製造するには例えば特開2000−144518号公報に記載されているような、高粘度成分側と低粘度側の吐出孔を分離し且つ、高粘度側の吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金を用い、高粘度側吐出孔に溶融ポリエステルを通過させ低粘度側吐出孔側に溶融ポリアミドを通過させて接合させ、冷却固化させることにて得ることができる。   In order to produce the composite unstretched fiber of the present invention, for example, as described in JP-A No. 2000-144518, the high-viscosity component side and the low-viscosity side discharge holes are separated and the high-viscosity side discharge line is separated. By using a spinneret with a reduced speed (with a larger discharge cross-sectional area), the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be joined and cooled and solidified. Obtainable.

その際、延伸熱処理を付与しないで、高速にて巻き取る必要がある。巻取り速度は2500〜5000m/分が好ましい結果を与える。巻取り速度は2500m/分未満の場合は得られる複合繊維の破断伸度が大きくなりすぎるので好ましくない。一方、巻取り速度が5000m/分を超える場合は製糸時の糸切れが多発するので好ましくない。   In that case, it is necessary to wind up at high speed, without providing extending | stretching heat processing. A winding speed of 2500 to 5000 m / min gives preferable results. When the winding speed is less than 2500 m / min, the resulting composite fiber has an excessively high elongation at break, which is not preferable. On the other hand, when the winding speed exceeds 5000 m / min, yarn breakage frequently occurs during yarn production, which is not preferable.

本発明の複合未延伸繊維において、捲縮を発現させるためには、まずこれを沸騰水で処理する。これにて、ポリエステル成分が内側に配置された捲縮が得られる。ただ、この状態では水分を含んだ状態であるため、水の可塑化効果にてポリアミドが伸びてくるので捲縮自体は時間と共に変化して不安定なものとなるので、乾熱処理して水分を除き、捲縮を安定化させる。この捲縮特性の安定化の基準として、その捲縮特性は前述の如き複合繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理することが必要であり、かかる方法にて評価した複合繊維は通常実施される仕上げ工程での熱処理を施しても目的の性能を有する布帛を得ることができる。   In order to develop crimp in the composite undrawn fiber of the present invention, this is first treated with boiling water. Thereby, the crimp by which the polyester component is arrange | positioned inside is obtained. However, in this state, since moisture is contained, the polyamide grows due to the plasticizing effect of water, so the crimp itself changes over time and becomes unstable. Except for stabilizing crimp. As a standard for stabilizing the crimp characteristics, the crimp characteristics are as follows. The composite fiber as described above is treated with boiling water for 30 minutes, and further subjected to dry heat treatment at 100 ° C. for 30 minutes to develop crimps. The composite fiber evaluated by such a method must be subjected to a dry heat treatment for a minute, and a fabric having the desired performance can be obtained even if heat treatment is performed in a finishing step that is usually performed.

本発明の複合未延伸繊維は単独で使用することができるのはもちろん、他繊維と混繊しての混繊糸としても使用できる。又、必要に応じて更に仮撚り加工を行い仮撚り加工糸としても使用することができる、又、伸度の異なる複合仮撚りとしても使用することができる。   The composite undrawn fiber of the present invention can be used alone, and can also be used as a mixed fiber mixed with other fibers. Moreover, it can be used as a false twisted yarn by further false twisting if necessary, and can also be used as a composite false twist having different elongations.

本発明の複合未延伸繊維は衣料用の各種の用途に使用することができ、例えば、水着や各種のスポーツウェアー、インナー素材、ユニフォーム等快適性を要求される用途において、特に好ましく使用することができる。
勿論、本複合繊維と天然繊維との複合にてもより一層効果を発揮することができ、更に、ウレタンあるいはポリトリメチレンテレフタレートとの組み合わせにて更にストレッチ性を付与して用いても構わない。
The composite unstretched fiber of the present invention can be used for various applications for clothing. For example, it is particularly preferably used in applications requiring comfort such as swimwear, various sportswear, inner materials, uniforms, and the like. it can.
Needless to say, the present composite fiber and natural fiber can be further combined and further effective, and a combination of urethane or polytrimethylene terephthalate may be used for further stretching.

以下実施例により、本発明を更に具体的に説明する。尚、実施例における各項目は次の方法で測定した。
(1)ポリアミド及びポリエステルの固有粘度
ポリアミドはm−クレゾールを溶媒として使用し30℃で測定した。又、ポリエステルはオルソクロロフェノールを溶媒として使用し35℃で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity of polyamide and polyester Polyamide was measured at 30 ° C. using m-cresol as a solvent. The polyester was measured at 35 ° C. using orthochlorophenol as a solvent.

(2)製糸性
良好 :10時間連続紡糸を行い、糸切れが0〜1回と製糸性は良好である。
やや不良:10時間連続紡糸を行い、糸切れが2〜4回と製糸性はやや悪い。
不良 :10時間連続紡糸を行い、糸切れが5回以上と製糸性は極めて悪い。
(2) Good yarn-making property: Spinning is carried out continuously for 10 hours, and the yarn-making property is good with 0 to 1 yarn breakage.
Slightly poor: Spinning is carried out continuously for 10 hours, and the yarn breakage is slightly worse, 2 to 4 times.
Defective: Spinning is performed continuously for 10 hours, and yarn breakage is 5 or more times.

(3)ポリアミド成分とポリエステル成分との界面剥離
複合未延伸繊維の任意の断面について、1070倍のカラー断面写真をとり、フィラメント中のポリアミド成分とポリエステル成分との界面剥離の状況を調査した。
無 :界面での剥離が殆ど(0〜1個)存在しなかった。
やや有:界面での剥離が2〜10個のフィラメントに存在していた。
有 :殆ど全てのフィラメントに界面での剥離が存在していた。
(3) Interfacial Peeling between Polyamide Component and Polyester Component An arbitrary cross section of the composite unstretched fiber was photographed 1070 times in color, and the situation of interfacial peeling between the polyamide component and the polyester component in the filament was investigated.
None: There was almost no peeling (0 to 1) at the interface.
Slightly present: Peeling at the interface was present in 2 to 10 filaments.
Existence: Peeling at the interface was present in almost all filaments.

(4)破断伸度(%)
繊維試料を気温25℃、湿度60%の恒温恒湿に保たれた部屋に一昼夜放置した後、サンプルの長さ100mmを(株)島津製作所製引っ張り試験機テンシロンにセットし、200mm/分の速度にて伸張し、破断時の強度、伸度を測定した。
(4) Elongation at break (%)
After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and 60% humidity for a whole day and night, the sample length of 100 mm was set on a tensile tester Tensilon manufactured by Shimadzu Corporation, and the speed was 200 mm / min. The strength and elongation at break were measured.

(5)60%伸長応力(cN/dtex)
上記の強度及び伸度を測定した応力−伸度曲線から、60%伸長時の応力を求め、その値を複合繊維の繊度にて除した値より求めた。
(5) 60% elongation stress (cN / dtex)
From the stress-elongation curve obtained by measuring the above strength and elongation, the stress at 60% elongation was obtained, and the value was obtained by dividing the value by the fineness of the composite fiber.

(6)捲縮率DC、水浸漬後の捲縮率HC、およびそれらの差ΔC
複合繊維にて2700dtexのカセを作り、6g(2.2mg/dtex)の軽荷重の下で沸騰水中にて30分間処理した。濾紙にて水分を軽くのぞき、次いで6g(2.2mg/dtex)の荷重下で100℃の乾熱にて30分間乾燥して水分を除去した。さらに、このカセを6g(2.2mg/dtex)の荷重下で160℃の乾熱にて1分間熱処理して測定試料とした。
(a)捲縮率DC(%)
上記の処理を行なった測定資料(カセ)を6g(2.2mg/dtex)の荷重下にて5分処理し、次いで、このかせを取り出し、さらに600g(合計606g:2.2mg/dtex+220mg/dtex)の荷重をかけ1分放置しそのカセの長さL0を求めた。次いで、600gの荷重を外し、6g(2.2mg/dtex)の荷重下にて1分放置しその長さL1を求めた。下記の計算式より、捲縮率DCを求めた。
DC(%)=L0−L1/L0×100
(b)水浸漬後の捲縮率HC(%)
捲縮率DCを求めた後の同じカセを用い、6g(2.2mg/dtex)の荷重下で水中(室温)にて10時間処理した。このカセを濾紙にて水をふき取り、更に600g(合計606g:2.2mg/dtex+220mg/dtex)の荷重を更にかけ1分放置し、そのカセの長さL2を求めた。次いで、600gの荷重を外し、6g(2.2mg/dtex)の荷重下にて1分放置しその長さL3を求めた。下記の計算式より、水浸漬後の捲縮率DCを求めた。
HC(%)=L2−L3/L2×100
(c)ΔC(%)
上記の捲縮率DCと水浸漬後の捲縮率HCとの差ΔCは次の式により求めた。
ΔC(%)=HC(%)−DC(%)
(d)捲縮のバラツキ
HC(%)の測定を3回行い、測定値のバラツキにより下記のように判定した。
良好:バラツキが0.5%未満
不良:バラツキが0.5%以上
(6) Crimp rate DC, crimp rate HC after water immersion, and their difference ΔC
A 2700 dtex case was made from the composite fiber and treated in boiling water for 30 minutes under a light load of 6 g (2.2 mg / dtex). The moisture was removed by lightly removing with a filter paper, followed by drying at 100 ° C. for 30 minutes under a load of 6 g (2.2 mg / dtex). Furthermore, this casserole was heat-treated at 160 ° C. for 1 minute under a load of 6 g (2.2 mg / dtex) to obtain a measurement sample.
(A) Crimp rate DC (%)
The measurement material (cassette) subjected to the above treatment was treated under a load of 6 g (2.2 mg / dtex) for 5 minutes, and then this skein was taken out and further 600 g (total 606 g: 2.2 mg / dtex + 220 mg / dtex). ) And left for 1 minute to determine the length L0 of the case. Next, the load of 600 g was removed, and the load was left for 1 minute under a load of 6 g (2.2 mg / dtex), and the length L1 was determined. The crimp rate DC was determined from the following calculation formula.
DC (%) = L0−L1 / L0 × 100
(B) Crimp rate HC (%) after water immersion
Using the same case after obtaining the crimp rate DC, it was treated in water (room temperature) for 10 hours under a load of 6 g (2.2 mg / dtex). The casserole was wiped off with a filter paper, and a load of 600 g (total 606 g: 2.2 mg / dtex + 220 mg / dtex) was further applied and left for 1 minute to determine the length L2 of the casserole. Next, the load of 600 g was removed, and the product was left for 1 minute under a load of 6 g (2.2 mg / dtex), and the length L3 was determined. The crimp rate DC after water immersion was calculated | required from the following formula.
HC (%) = L2-L3 / L2 × 100
(C) ΔC (%)
The difference ΔC between the above-described crimp rate DC and the crimp rate HC after water immersion was determined by the following equation.
ΔC (%) = HC (%) − DC (%)
(D) Variation in crimp HC (%) was measured three times, and the determination was made as follows based on the variation in measured values.
Good: Variation is less than 0.5% Defect: Variation is 0.5% or more

(7)筒編の特性
複合未延伸繊維を筒編みし、カチオン染料にてボイル染色を行い、水洗後160℃の乾熱中にて1分セットし、測定試料とした。この筒編に水を滴下し、筒編の側面写真(倍率200)にて水滴下部及びその周辺の状況を調査し、水滴下による編目の膨らみ或いは縮み状況、及び筒編の透け感を肉眼にて判定した。
(a)編目変化(空隙の減少の程度)
良好 :水滴下にて編目が顕著に縮んでいる(空隙が減少している)。
やや不良:水滴下による編目変化は殆ど見られない(空隙の変化が殆ど無い)。
不良 :水滴下にて編目がむしろ伸びている(空隙が大きくなっている)。
(b)透け防止
良好 :水滴下にて透け感が減少している。
やや不良:水滴下による透け感変化は見られない。
不良 :水滴下にて透け感が大きくなっている。
(7) Characteristics of cylinder knitting Composite unstretched fiber was knitted, and was dyed with boil with a cationic dye. Water is dropped onto this tubular knitting, and the situation of the water dripping part and its surroundings is investigated with a side photograph (magnification 200) of the tubular knitting. Was judged.
(A) Stitch change (degree of reduction of voids)
Good: The stitches are remarkably shrunk by water dripping (voids are reduced).
Slightly poor: Almost no change in stitches due to water dripping (almost no change in voids).
Defect: The stitches are rather elongated due to water dripping (the voids are enlarged).
(B) Good prevention of see-through: The sense of see-through is reduced by dripping water.
Slightly poor: No change in the sense of transparency due to dripping water
Defect: The feeling of see-through is increased by dripping water.

(8)風合い
複合未延伸繊維を筒編みし、カチオン染料にてボイル染色を行い、水洗後160℃の乾熱中にて1分セットし、測定試料とし、その触感を評価した。
良好:風合いがソフトである。
不良:風合いが粗荒である。
(8) Texture The composite unstretched fiber was knitted, boiled with a cationic dye, washed with water, set in a dry heat at 160 ° C. for 1 minute, used as a measurement sample, and its feel was evaluated.
Good: The texture is soft.
Poor: The texture is rough.

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で3.0モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとを夫々270℃、290℃にて溶融し、特開2000−144518号公報記載の複合紡糸口金を用い、それぞれ19.4.7g/分の吐出量にて押し出しサイドバイサイド型複合糸条を形成させ、冷却固化・油剤を付与したあと、糸状を速度3500m/分の速度で巻き取り110dtex24filの複合未延伸繊維を得た。製糸性は極めて良好であり、10時間連続紡糸して、糸切れが全く無かった。結果を表1に示す。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 3.0 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. It melts at 290 ° C., and uses a composite spinneret described in JP 2000-144518 A to form extruded side-by-side type composite yarns at a discharge rate of 19.4.7 g / min. Then, the yarn was wound at a speed of 3500 m / min to obtain a composite unstretched fiber of 110 dtex24 fil. The yarn-making property was extremely good, and the yarn was continuously spun for 10 hours and there was no yarn breakage. The results are shown in Table 1.

[実施例2〜6、比較例1〜2]
紡糸における各成分の吐出量(ポリエステル成分、ポリアミド成分とも同じ量)、表1のように変更した以外は実施例1と同様にして複合未延伸繊維を得た。結果を表1に示す。
[Examples 2-6, Comparative Examples 1-2]
A composite undrawn fiber was obtained in the same manner as in Example 1 except that the discharge amount of each component in spinning (the same amount for both the polyester component and the polyamide component) was changed as shown in Table 1. The results are shown in Table 1.

[実施例7〜9、比較例3]
変性ポリエステル成分の5−スルフォイソフル酸の共重合量を表1のように変更した以外は実施例1と同様にして複合未延伸繊維を得た。結果を表1に示す。
[Examples 7 to 9, Comparative Example 3]
A composite unstretched fiber was obtained in the same manner as in Example 1 except that the amount of copolymerization of the modified polyester component 5-sulfoisofluric acid was changed as shown in Table 1. The results are shown in Table 1.

[実施例10〜11、比較例4〜5]
変性ポリエステル成分の固有粘度〔η〕を表1のように変更した以外は実施例1と同様にして複合未延伸繊維を得た。結果を表1に示す。
[Examples 10 to 11 and Comparative Examples 4 to 5]
A composite undrawn fiber was obtained in the same manner as in Example 1 except that the intrinsic viscosity [η] of the modified polyester component was changed as shown in Table 1. The results are shown in Table 1.

Figure 2007231475
Figure 2007231475

本発明によれば、湿度により捲縮率が可逆的に変化する複合未延伸繊維を提供することができ、水にぬれても『透けない』特性を有し、吸湿によって布帛の目が詰まり、空隙が減少することによって防風性、保温性が向上するといった優れた機能を発揮する複合未延伸繊維を提供することができる。また、上記複合未延伸繊維は染色・仕上げ工程の経た後でも安定した捲縮率変化特性を発揮するため、従来にない極めて実用性に優れている。また、布帛としたとき極めてソフトな風合いが得られ、かつ捲縮のバラツキも少ないため、衣料などの最終製品として優れた快適性を有しているのみならず、高い品位を兼ね備えたものが得られ、その産業的価値が極めて高いものである。   According to the present invention, it is possible to provide a composite unstretched fiber in which the crimp rate reversibly changes depending on humidity, and has a property of “not transparent” even when wet, and the fabric is clogged by moisture absorption. It is possible to provide a composite unstretched fiber that exhibits an excellent function such that wind resistance and heat retention are improved by reducing the voids. Further, the composite unstretched fiber exhibits a stable crimp rate change characteristic even after the dyeing / finishing process, and is therefore extremely excellent in practicality. In addition, when used as a fabric, a very soft texture is obtained and there is little variation in crimping, so that not only has excellent comfort as a final product such as clothing, but also has high quality. And its industrial value is extremely high.

Claims (2)

ポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合未延伸繊維であって、該繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維の捲縮率DCが1.5〜6.0%であり、該繊維を水浸漬後の捲縮率HCが2.0〜12.0%であり、下記式で表されるこれらの捲縮率の差ΔCが1.5〜8.0%であり、破断伸度が40〜140%、60%伸長時の応力が0.55〜1.30cN/dtexであることを特徴とする複合未延伸繊維。
ΔC(%)=HC(%)−DC(%)
A composite unstretched fiber having a cross-sectional shape of a fiber in which a polyester component and a polyamide component are bonded. The fiber is treated with boiling water for 30 minutes and further subjected to a dry heat treatment at 100 ° C. for 30 minutes to develop crimps. The crimp rate DC of the fiber subjected to dry heat treatment at 160 ° C. for 1 minute is 1.5 to 6.0%, and the crimp rate HC after water immersion is 2.0 to 12.0%, The difference ΔC between these crimping rates represented by the following formula is 1.5 to 8.0%, the elongation at break is 40 to 140%, and the stress at 60% elongation is 0.55 to 1.30 cN / A composite undrawn fiber characterized by being dtex.
ΔC (%) = HC (%) − DC (%)
ポリエステル成分が、固有粘度(IV)が0.30〜0.43であり、5−ナトリウムスルフォイソフタル酸が酸成分を基準として2.0〜4.5モル%共重合されている変性ポリエステルである請求項1項記載の複合未延伸繊維。   The polyester component is a modified polyester having an intrinsic viscosity (IV) of 0.30 to 0.43 and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized based on the acid component. The composite unstretched fiber according to claim 1.
JP2006056426A 2006-03-02 2006-03-02 Undrawn conjugated fiber Withdrawn JP2007231475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056426A JP2007231475A (en) 2006-03-02 2006-03-02 Undrawn conjugated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056426A JP2007231475A (en) 2006-03-02 2006-03-02 Undrawn conjugated fiber

Publications (1)

Publication Number Publication Date
JP2007231475A true JP2007231475A (en) 2007-09-13

Family

ID=38552351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056426A Withdrawn JP2007231475A (en) 2006-03-02 2006-03-02 Undrawn conjugated fiber

Country Status (1)

Country Link
JP (1) JP2007231475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790024A (en) * 2014-01-20 2014-05-14 南通全技纺织涂层有限公司 High-density waterproof coated fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103790024A (en) * 2014-01-20 2014-05-14 南通全技纺织涂层有限公司 High-density waterproof coated fabric
CN103790024B (en) * 2014-01-20 2016-04-27 南通全技纺织涂层有限公司 A kind of high density waterproof coating fabric

Similar Documents

Publication Publication Date Title
JP7135854B2 (en) Eccentric core-sheath composite fiber and mixed fiber yarn
JP4870795B2 (en) Manufacturing method of composite fiber
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
KR101355669B1 (en) Conjugated fiber containing yarn
TWI723152B (en) Yarn, fabric and fiber products
JP2012036541A (en) Stretchable woven fabric
JP4866103B2 (en) Composite fiber
ITPI20100123A1 (en) ELASTICIZED YARN, ELASTICIZED FABRIC PRODUCED WITH THESE ELASTICIZED YARN AND METHOD FOR THE PRODUCTION OF THESE YARN
JP2010229599A (en) Chemical composite yarn and woven or knitted fabric
JP2019173224A (en) socks
JP4866109B2 (en) False twisted yarn
JP2007231475A (en) Undrawn conjugated fiber
JP4923173B2 (en) Polyester knitted fabric
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
JP4123646B2 (en) Polyester fiber yarn and fabric
JP2007231474A (en) Thick and thin conjugated fiber
JP4866110B2 (en) Blended yarn
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JP4292893B2 (en) Polymer alloy crimped yarn
JP2008274478A (en) Moisture-sensitive latently crimping conjugate fiber
JP2007239139A (en) Composite false-twisted yarn
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP3992604B2 (en) Polyester blended yarn
JP2005089892A (en) Composite yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100816