JP2007231474A - Thick and thin conjugated fiber - Google Patents

Thick and thin conjugated fiber Download PDF

Info

Publication number
JP2007231474A
JP2007231474A JP2006056425A JP2006056425A JP2007231474A JP 2007231474 A JP2007231474 A JP 2007231474A JP 2006056425 A JP2006056425 A JP 2006056425A JP 2006056425 A JP2006056425 A JP 2006056425A JP 2007231474 A JP2007231474 A JP 2007231474A
Authority
JP
Japan
Prior art keywords
fiber
thick
composite fiber
crimp
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006056425A
Other languages
Japanese (ja)
Inventor
Masato Yoshimoto
正人 吉本
Shigeru Morioka
茂 森岡
Satoshi Yasui
聡 安井
Taku Nakajima
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006056425A priority Critical patent/JP2007231474A/en
Priority to US12/278,373 priority patent/US8153253B2/en
Priority to AT07715257T priority patent/ATE480652T1/en
Priority to PCT/JP2007/054366 priority patent/WO2007102522A1/en
Priority to CN2007800073640A priority patent/CN101395307B/en
Priority to CA2640570A priority patent/CA2640570C/en
Priority to KR1020087021442A priority patent/KR101355669B1/en
Priority to EP07715257A priority patent/EP1995358B1/en
Priority to DE602007009059T priority patent/DE602007009059D1/en
Priority to TW096107029A priority patent/TWI413715B/en
Publication of JP2007231474A publication Critical patent/JP2007231474A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick and thin conjugated fiber having a characteristic of "opacity" in wet state and imparting improved windbreaking and heat retaining property to a cloth by decrease of gap, and stably expressing the characteristic after being subjected to a dyeing and finishing process, and imparts a spun like feeling. <P>SOLUTION: The conjugated fiber has a fiber cross sectional shape in which a polyester component and a polyamide component are bonded, and the conjugated fiber has a crimping percentage DC of 4.0-12.0%, and has a crimping percentage HC after being soaked water of 5.0-13.0%, and has a difference ΔC in crimping percentage of 0.3-8.0%, which is represented by following formula, after being subjected to the following treatments of a boiling water treatment for 30 min, dry heat treatment at 100°C for 30 min to crimp the fiber and then heat treating the fiber at 160°C for 1 min, wherein the fiber is the thick and thin conjugated fiber having a thick part and a thin part in longitudinal direction. Formula: ΔC(%)=HC(%)-DC(%). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、湿度により可逆的に捲縮率が大きく変化する太細複合繊維に関する。さらに詳しくは、染色や仕上げ工程を経ても優れた捲縮率変化特性を発揮し、湿潤時の空隙が乾燥時のそれよりも低下する特性を有し、かつスパンライクな風合いを呈する布帛を得ることができる太細複合繊維に関する。   The present invention relates to a thick and thin composite fiber whose crimping rate reversibly changes greatly depending on humidity. More specifically, a fabric that exhibits excellent crimp rate change characteristics even after dyeing and finishing processes, has a characteristic that voids when wet are lower than those when dried, and has a spun-like texture is obtained. It relates to a thick and fine composite fiber.

木綿・羊毛・羽毛等の天然繊維が湿度変化にて可逆的に形態・捲縮率が変化することは、従来良く知られている。合成繊維にかかる機能を持たせようとする検討が古くから行われており、ナイロン6と変性ポリエチレンテレフタレートとをサイドバイサイド型複合繊維での提案がすでに特許文献1及び2等でなされている。これら公知の複合繊維では湿度変化による可逆的な捲縮率の変化が小さいため実用に到っていない。   It has been well known that natural fibers such as cotton, wool and feathers reversibly change in form and crimp rate due to changes in humidity. Studies have been conducted for a long time to provide a function for synthetic fibers, and proposals for side-by-side type composite fibers of nylon 6 and modified polyethylene terephthalate have already been made in Patent Documents 1 and 2, etc. These known composite fibers have not been put to practical use because the reversible crimp rate change due to humidity change is small.

その後、熱処理条件を改良した特許文献3及び4等が提案されている。さらに、特許文献5〜8等、上記従来技術を応用したものが提案されている。しかしながら、上記の従来技術は、染色や仕上げといった工程を経ると、捲縮率の変化が小さくなり、実用的なレベルに到達していないのが実情である。   Thereafter, Patent Documents 3 and 4 and the like with improved heat treatment conditions have been proposed. Furthermore, the thing which applied the said prior art, such as patent documents 5-8 is proposed. However, in the above-described conventional technology, the change in the crimp rate becomes small after passing through processes such as dyeing and finishing, and the actual situation is that the practical level has not been reached.

これに対して、特許文献9には、ポリエステル成分とポリアミド成分とが扁平状に接合され、且つ、ポリアミド成分をナイロン4の如く吸湿率の高いポリアミドを用い前述の課題を改善する試みもなされているが、ナイロン4の製糸安定性が悪く、捲縮性能が熱処理を経ての低下し、やはりかかる複合繊維でも実用面で限界がある。   On the other hand, in Patent Document 9, an attempt is made to improve the above-mentioned problem by using a polyamide component and a polyamide component having a high moisture absorption rate, such as nylon 4, in which the polyester component and the polyamide component are joined in a flat shape. However, nylon 4 has poor yarn-making stability, the crimping performance is lowered after heat treatment, and there is a limit in practical use even for such a composite fiber.

上記の如く製糸性面及び仕上げ加工面からの安定品質確保の他、近年は要求特性の多様化にて、『透け』が問題になっている。すなわち、合成繊維や天然繊維などからなる通常の織編物を、スイミングウェアー、スポーツウェアーなどに使用すると、水や雨による布帛の湿潤の結果、『透け』やすくなり、防風性・保温性が低下するといった問題も生じる。さらに、要求特性の多様化に伴い単なる機能性だけでなく優れた風合いを有する繊維が要求されている。   In addition to ensuring stable quality from the yarn-making surface and finished surface as described above, in recent years, “translucency” has become a problem due to diversification of required characteristics. In other words, if ordinary woven or knitted fabrics made of synthetic fibers or natural fibers are used for swimming wear, sports wear, etc., the fabric becomes wet through water or rain, resulting in easy see-through and reduced wind resistance and heat retention. Such a problem also occurs. Furthermore, with the diversification of required properties, there is a demand for fibers having not only mere functionality but also excellent texture.

特公昭45−28728号公報Japanese Examined Patent Publication No. 45-28728 特公昭46−847号公報Japanese Patent Publication No.46-847 特開昭58−46118号公報JP 58-46118 A 特開昭58−46119号公報JP 58-46119 A 特開昭61−19816号公報Japanese Patent Laid-Open No. 61-19816 特開2003−82543号公報JP 2003-82543 A 特開2003−41444号公報JP 2003-41444 A 特開2003−41462号公報JP 2003-41462 A 特開平3−213518号公報JP-A-3-213518

本発明は、上記の従来の技術を背景になされたもので、その目的は、水にぬれても『透けない』特性を有し、さらにその際布帛の空隙が減少して防風性・保温性が向上する布帛とすることができ、染色・仕上げ等の工程を経た後でもこれらの優れた特性を安定して発揮し、しかも、スパンライクな風合いを得ることができる太細複合繊維を提供することにある。   The present invention has been made against the background of the above-described conventional technology, and its purpose is to have a property of “not transparent” even when wet with water, and further, the voids of the fabric are reduced at that time, thereby preventing wind and heat retention. The present invention provides a thick and thin composite fiber that can stably produce these excellent characteristics even after undergoing steps such as dyeing and finishing, and can obtain a spun-like texture. There is.

本発明者らの研究によれば、上記目的は、ポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合繊維であって、該複合繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維の捲縮率DCが4.0〜12.0%であり、さらに該繊維を水浸漬後の捲縮率HCが5.0〜13.0%であり、下記式で表されるこれらの捲縮率の差ΔCが0.3〜8.0%であり、かつ、長手方向に太部と細部を有することを特徴とする太細複合繊維により達成できることを見出した。
ΔC(%)=HC(%)−DC(%)
According to the studies by the present inventors, the above object is a composite fiber having a fiber cross-sectional shape in which a polyester component and a polyamide component are joined, and the composite fiber is treated with boiling water for 30 minutes, and further at 100 ° C. Crimp was developed by dry heat treatment for 30 minutes, and the crimp ratio DC of the fiber subjected to dry heat treatment at 160 ° C. for 1 minute was 4.0 to 12.0%, and the fiber was further crimped after being immersed in water. The rate HC is 5.0 to 13.0%, the difference ΔC between these crimping ratios expressed by the following formula is 0.3 to 8.0%, and the thick part and the details in the longitudinal direction It has been found that this can be achieved by a thick and thin composite fiber characterized by having the same.
ΔC (%) = HC (%) − DC (%)

本発明によれば、捲縮率変化と太細部の相乗効果により水にぬれても『透けない』特性を有し、さらに布帛の空隙が減少することによって防風性・保温性が向上し、さらにスパンライクな風合いを呈し、しかも、染色、仕上げなどの工程を経た後でもこれらの特性を安定して発揮する太細複合繊維を提供することができる。このため、上記太細複合繊維は、極めて実用的であり、衣料などの最終製品として、従来にない高い快適性と審美性の効果を同時に奏するものである。   According to the present invention, it has a characteristic of “not transparent” even when wetted by a synergistic effect of the crimp rate change and the thick details, and further, the windproof property and the heat retaining property are improved by reducing the gap of the fabric, It is possible to provide a fine composite fiber that exhibits a spun-like texture and that stably exhibits these characteristics even after undergoing processes such as dyeing and finishing. For this reason, the above-mentioned thick and thin composite fiber is extremely practical, and at the same time, has an unprecedented high comfort and aesthetic effect as a final product such as clothing.

本発明の太細複合繊維を構成するポリエステル成分としては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等を挙げることができ、中でもコスト及び汎用性の観点からポリエチレンテレフタレートがより好ましい。   Examples of the polyester component constituting the thick and fine composite fiber of the present invention include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and the like. Among these, polyethylene terephthalate is more preferable from the viewpoint of cost and versatility.

本発明においては、上記ポリエステル成分は、5−スルフォイソフタル酸が共重合されている変性ポリエステルであることが好ましい。その際、5−ナトリウムスルフォイソフタル酸の共重合量が多すぎると、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じにくくなる反面、優れた捲縮性能が得られなくなり、又、捲縮性能を上げるためには結晶化を促進する必要があるが、結晶化を促進するために延伸熱処理温度を上げると糸切れが発生し易くなり製糸の面で好ましくない。逆に、上記共重合量が少なすぎる、延伸熱処理でポリエステル成分の結晶化が進み易くなり、優れた捲縮特性が得られる反面、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じ易くなる傾向にあるので好ましくない。このため、5−ナトリウムスルフォイソフタル酸の共重合量は、2.0〜4.5モル%が好ましく、2.3〜3.5モル%がより好ましい。   In the present invention, the polyester component is preferably a modified polyester in which 5-sulfoisophthalic acid is copolymerized. At that time, if the copolymerization amount of 5-sodium sulfoisophthalic acid is too large, peeling is less likely to occur at the bonding interface between the polyamide component and the polyester component, but excellent crimping performance cannot be obtained. In order to improve the shrinkage performance, it is necessary to promote crystallization. However, if the temperature of the drawing heat treatment is increased to promote crystallization, yarn breakage tends to occur, which is not preferable in terms of yarn production. On the other hand, the amount of copolymerization is too small, and the crystallization of the polyester component is facilitated by the stretching heat treatment, and excellent crimping characteristics can be obtained. On the other hand, peeling easily occurs at the bonding interface between the polyamide component and the polyester component. It is not preferable because it is in a tendency. For this reason, the copolymerization amount of 5-sodium sulfoisophthalic acid is preferably 2.0 to 4.5 mol%, and more preferably 2.3 to 3.5 mol%.

また、ポリエステル成分の固有粘度が低すぎると、製糸性が低下すると共に毛羽が発生しやすくなり、工業的な生産および品質の面で好ましくない。逆に、上記固有粘度が高すぎても、5−ナトリウムスルフォイソフタル酸の共重合による増粘作用にてポリエステル成分側の紡糸性および延伸性が低下して、毛羽や断糸が発生しやすくなる。したがって、ポリエステル成分の固有粘度は、0.30〜0.43が好ましく、0.35〜0.41がより好ましい。   On the other hand, if the intrinsic viscosity of the polyester component is too low, the yarn-forming property is lowered and fluff is easily generated, which is not preferable in terms of industrial production and quality. On the other hand, even if the intrinsic viscosity is too high, the spinnability and stretchability on the polyester component side are lowered by the thickening action by copolymerization of 5-sodium sulfoisophthalic acid, and fluff and yarn breakage are likely to occur. Become. Accordingly, the intrinsic viscosity of the polyester component is preferably 0.30 to 0.43, and more preferably 0.35 to 0.41.

一方、ポリアミド成分は、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン4、ナイロン6、ナイロン66、ナイロン46、ナイロン12等が挙げられ、中でも、製糸安定性、汎用性の観点から特にナイロン6、ナイロン66が好ましい。また、上記ポリアミド成分には、これらをベースに他の成分が共重合されていてもよい。
また、以上に説明した両成分には、酸化チタンやカーボンブラック等の顔料、公知の抗酸化剤、帯電防止剤耐光剤等がそれぞれ含有されていてもよい。
On the other hand, the polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon 4, nylon 6, nylon 66, nylon 46, nylon 12, and the like. Nylon 6 and nylon 66 are particularly preferable from the viewpoints of stability and versatility. The polyamide component may be copolymerized with other components based on these.
Further, both components described above may contain pigments such as titanium oxide and carbon black, known antioxidants, antistatic agents, light-proofing agents, and the like.

本発明の複合繊維は、上記のポリエステル成分と上記のポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合繊維である。ポリアミド成分とポリエステル成分との複合の形態としては、両成分がサイドバイサイド型に接合した形態が捲縮発現の観点から好ましい。上記複合繊維の断面形状としては、円形断面でも非円形断面でもよく、非円形断面では例えば三角断面や四角断面等を採用することができる。なお、上記複合繊維の断面内には中空部が存在していてもかまわない。   The conjugate fiber of the present invention is a conjugate fiber having a fiber cross-sectional shape in which the polyester component, the polyester component, and the polyamide component are joined. As a composite form of the polyamide component and the polyester component, a form in which both components are joined in a side-by-side manner is preferable from the viewpoint of crimp development. The cross-sectional shape of the composite fiber may be a circular cross-section or a non-circular cross-section. For example, a triangular cross-section or a square cross-section can be adopted as the non-circular cross-section. In addition, a hollow part may exist in the cross section of the said composite fiber.

また、繊維横断面におけるポリエステル成分とポリアミド成分との比率としては、面積を基準として、ポリエステル成分/ポリアミド成分が30/70〜70/30が好ましく、60/40〜40/60がより好ましい。   The ratio of the polyester component to the polyamide component in the fiber cross section is preferably 30/70 to 70/30, more preferably 60/40 to 40/60, based on the area.

本発明においては、上記複合繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維が、次に述べる、捲縮率DC、水浸漬後の捲縮率HC、およびこれらの捲縮率の差ΔCに関する要件を同時に満足していること、さらに該複合繊維が長手方向に太部と細部を有していることが肝要である。本発明者らの検討した結果、かかる捲縮特性を有する複合繊維は、吸湿によって捲縮率が増加し、水に濡れても布帛が『透ける』ことがなく、かつその際、布帛の目が詰まって空隙が少なくなり防風性・保温性が向上し、しかも染色や仕上げなどの工程を経た後でもかかる特性を安定して発揮することを見出した。また、繊維の長さ方向に太部と細部を有することによって、特に太部が存在することによって捲縮率変化が大きくなり『透け』を防止する効果が大きくなることがわかった。   In the present invention, the above-mentioned composite fiber is treated with boiling water for 30 minutes, and further subjected to a dry heat treatment at 100 ° C. for 30 minutes to develop crimps. The requirements regarding the rate DC, the crimp rate HC after immersion in water, and the difference ΔC between these crimp rates are satisfied at the same time, and the composite fiber has thick portions and details in the longitudinal direction. It is essential. As a result of the study by the present inventors, the composite fiber having such crimp characteristics has an increased crimp rate due to moisture absorption, and the fabric does not become “translucent” even when wetted with water. It has been found that the air gap and the heat retention are improved due to clogging, and the properties are stably exhibited even after dyeing and finishing processes. Further, it has been found that by having a thick portion and details in the length direction of the fiber, especially when the thick portion is present, the change in the crimping rate is increased, and the effect of preventing “through” is increased.

すなわち、捲縮率DCを4.0〜12.0%、好ましくは4.5〜10.0%、より好ましくは5.0〜8.5%とする必要がある。上記捲縮率DCが4.0%未満の場合は、布帛とした際の風合いが悪くなる傾向にあり好ましくない。一方、上記捲縮率DCが12.0%を超える場合は、捲縮率DCが水浸漬後の捲縮率HCより大きくなりやすく、透け難くかつ布帛の空隙が小さくなって防風性・保温性が向上する布帛を得るのが難しくなる傾向にあり好ましくない。   That is, the crimp ratio DC needs to be 4.0 to 12.0%, preferably 4.5 to 10.0%, more preferably 5.0 to 8.5%. If the crimp ratio DC is less than 4.0%, the texture when used as a fabric tends to deteriorate. On the other hand, when the crimp ratio DC exceeds 12.0%, the crimp ratio DC tends to be larger than the crimp ratio HC after being immersed in water, and it is difficult to see through and the gap of the fabric is reduced, thereby preventing wind and heat retention. This is not preferable because it tends to be difficult to obtain a fabric with improved resistance.

また、水浸漬後の捲縮率HCは5.0〜13.0%、好ましくは5.5〜11.0%、より好ましくは6.0〜10.5%である。捲縮率HCが5.0%未満の場合は水浸漬後の捲縮率が低すぎて目的とする透け防止効果や、防風性・保温性向上効果が不十分となるので好ましくない。一方、捲縮率HCの値が13.0%を越える場合は、水を含んだとき布帛が大きく収縮するため実用的でなく風合いも低下するので好ましくない。   The crimp ratio HC after immersion in water is 5.0 to 13.0%, preferably 5.5 to 11.0%, and more preferably 6.0 to 10.5%. A crimping ratio HC of less than 5.0% is not preferable because the crimping ratio after water immersion is too low, and the intended effect of preventing see-through and the effect of improving windproof and heat retaining properties are insufficient. On the other hand, when the value of the crimping ratio HC exceeds 13.0%, the fabric shrinks greatly when it contains water, which is not practical and the texture is lowered.

又、上記HCとDCとの差ΔCは0.3〜8.0%、好ましくは1.0〜5.5%、より好ましくは1.5〜4.5%である。ΔCが0.3%未満の場合は、水浸漬後の捲縮率向上効果が小さく、水に濡れたとき透け難くかつ布帛の空隙が減少して防風性・保温性が向上する布帛が得られず好ましくない。一方、ΔCが8.0%を超える場合は、水を含んだとき布帛が大きく収縮するため実用的でなく風合いも低下するので好ましくない。   Further, the difference ΔC between the HC and DC is 0.3 to 8.0%, preferably 1.0 to 5.5%, more preferably 1.5 to 4.5%. When ΔC is less than 0.3%, the effect of improving the crimp rate after immersion in water is small, and it is difficult to see through when wet with water, and the fabric has improved void resistance and heat retention by reducing the gaps in the fabric. Not preferable. On the other hand, when ΔC exceeds 8.0%, it is not practical because the fabric shrinks greatly when water is contained, and the texture is also lowered.

本発明の複合繊維は単なる機能性だけでなく、風合い面でも優れている。つまり、本発明の複合繊維は長手方向に太部と細部を有しているため、これを布帛としてスパンライクな風合いを呈することを特徴としている。また、本発明においては複合繊維の太細の程度を示すU%が、2.5〜15.0%であることが好ましく、3.5〜14.5%がより好ましく、4.0〜13.5%であることがさらに好ましい。U%が2.5%未満の時は布帛にした時、スパンライクな風合いとならないので好ましくない。また、吸湿した際の透けを防止する特性も低下する傾向にある。一方、U%が15%を超える場合は複合繊維の強度が低下し、その取り扱いが難しくなるので好ましくない。   The conjugate fiber of the present invention is excellent not only in functionality but also in texture. That is, the composite fiber of the present invention has a thick portion and details in the longitudinal direction, and is characterized by exhibiting a spun-like texture using this as a fabric. Moreover, in this invention, it is preferable that U% which shows the thickness degree of a composite fiber is 2.5 to 15.0%, 3.5 to 14.5% is more preferable, and 4.0 to 13 More preferably, it is 5%. When U% is less than 2.5%, when it is made into a fabric, a spun-like texture is not obtained, which is not preferable. Moreover, the characteristic which prevents the see-through at the time of moisture absorption also tends to deteriorate. On the other hand, when U% exceeds 15%, the strength of the composite fiber is lowered, and its handling becomes difficult.

本発明の複合繊維の総繊度は、通常の衣料用素材として用いられるのは40〜200dtex、単糸繊度は1〜6dtexのものを用いることができる。なお、必要に応じて交絡処理を施して良い。   The total fineness of the conjugate fiber of the present invention may be 40 to 200 dtex, and the single yarn fineness is 1 to 6 dtex. In addition, you may perform a confounding process as needed.

本発明の複合繊維を製造するには例えば特開2000−144518号公報に記載されているような、高粘度成分側と低粘度側の吐出孔を分離し且つ、高粘度側の吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金を用い、高粘度側吐出孔に溶融ポリエステルを通過させ低粘度側吐出孔側に溶融ポリアミドを通過させて接合させ、冷却固化させることにて得ることができる。引き取った紡出糸条の延伸は、一旦これを巻き取った後延伸、必要に応じて熱処理する別延のほか、一旦巻き取らないで延伸、必要に応じて熱処理を行う直延のどちらの方法も採用することができる。紡糸速度としては、比較的低速の1000〜3500m/分が好ましく採用される。   For producing the conjugate fiber of the present invention, for example, as described in JP-A No. 2000-144518, the high-viscosity component side and the low-viscosity side discharge holes are separated, and the high-viscosity side discharge linear velocity is set. Obtained by using a spinneret that has been reduced (increase the discharge cross-sectional area), let the molten polyester pass through the high-viscosity side discharge holes, pass the molten polyamide through the low-viscosity side discharge holes, join them, and cool and solidify them. Can do. Stretching of the spun yarn taken up can be performed by either winding it once and then stretching it separately, heat-treating it as necessary, stretching it without winding it once, or stretching it directly as needed. Can also be adopted. As the spinning speed, a relatively low speed of 1000 to 3500 m / min is preferably employed.

また、例えば、2つのローラーを設置した延伸機で直延により延伸・熱セットを行う場合は、第1ローラー温度は60℃未満の温度で糸条を予熱する必要がある。この予熱温度が60℃を超える場合は目的とする太細が出来にくくなるので好ましくない。次いで第2ローラーを80〜170℃として熱セットする方法を採用することができる。また、第1ローラーと第2ローラー間で実施する延伸の倍率は前述の太細の程度を加味しながら設定すればよく、例えば、複合繊維の破断伸度を少なくとも55%以上になるように低倍率延伸の条件にすることにより本発明の太細複合繊維を容易に得ることができる。   In addition, for example, when stretching and heat setting are performed by direct stretching using a stretching machine having two rollers, the first roller temperature needs to be preheated at a temperature of less than 60 ° C. When this preheating temperature exceeds 60 ° C., it becomes difficult to obtain the desired thickness. Subsequently, the method of heat-setting a 2nd roller as 80-170 degreeC is employable. Further, the stretching ratio performed between the first roller and the second roller may be set in consideration of the above-mentioned thickness, for example, low so that the breaking elongation of the composite fiber is at least 55% or more. By setting the conditions for magnification stretching, the thick and thin composite fiber of the present invention can be easily obtained.

本発明の複合繊維において、捲縮を発現させるためには、まずこれを沸騰水で処理する。これにて、ポリエステル成分が内側に配置された捲縮が得られる。ただ、この状態では水分を含んだ状態であるため、水の可塑化効果にてポリアミドが伸びてくるので捲縮自体は時間と共に変化して不安定なものとなるので、乾熱処理して水分を除き、捲縮を安定化させる。この捲縮特性の安定化の基準として、その捲縮特性は前述の如き複合繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理することが必要であり、かかる方法にて評価した複合繊維は通常実施される仕上げ工程での熱処理を施しても目的の性能を有する布帛を得ることができる。   In order to develop crimp in the conjugate fiber of the present invention, first, this is treated with boiling water. Thereby, the crimp by which the polyester component is arrange | positioned inside is obtained. However, in this state, since moisture is contained, the polyamide grows due to the plasticizing effect of water, so the crimp itself changes over time and becomes unstable. Except for stabilizing crimp. As a standard for stabilizing the crimp characteristics, the crimp characteristics are as follows. The composite fiber as described above is treated with boiling water for 30 minutes, and further subjected to dry heat treatment at 100 ° C. for 30 minutes to develop crimps. The composite fiber evaluated by such a method must be subjected to a dry heat treatment for a minute, and a fabric having the desired performance can be obtained even if heat treatment is performed in a finishing step that is usually performed.

本発明の複合繊維は単独で使用することができるのはもちろん、他繊維と混繊しての混繊糸としても使用できる。又、必要に応じて更に仮撚り加工を行い仮撚加工糸としても使用することができる、又、伸度の異なる複合仮撚りとしても使用することができる。   The composite fiber of the present invention can be used alone or as a mixed yarn mixed with other fibers. Moreover, it can be used as false twisted yarn by further false twisting if necessary, and it can also be used as a composite false twist with different elongation.

本発明の複合繊維は衣料用の各種の用途に使用することができ、例えば、水着や各種のスポーツウェアー、インナー素材、ユニフォーム等快適性を要求される用途において、特に好ましく使用することができる。
勿論、本複合繊維と天然繊維との複合にてもより一層効果を発揮することができ、更に、ウレタンあるいはポリトリメチレンテレフタレートとの組み合わせにて更にストレッチ性を付与して用いても構わない。
The conjugate fiber of the present invention can be used in various applications for clothing, and can be used particularly preferably in applications that require comfort, such as swimwear, various sportswear, inner materials, uniforms, and the like.
Needless to say, the present composite fiber and natural fiber can be further combined and further effective, and a combination of urethane or polytrimethylene terephthalate may be used for further stretching.

以下実施例により、本発明を更に具体的に説明する。尚、実施例における各項目は次の方法で測定した。
(1)ポリアミド及びポリエステルの固有粘度
ポリアミドはm−クレゾールを溶媒として使用し30℃で測定した。又、ポリエステルはオルソクロロフェノールを溶媒として使用し35℃で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity of polyamide and polyester Polyamide was measured at 30 ° C. using m-cresol as a solvent. The polyester was measured at 35 ° C. using orthochlorophenol as a solvent.

(2)製糸性・延伸性
良好 :10時間連続紡糸を行い、糸切れが0〜1回と製糸性は良好である。
やや不良:10時間連続紡糸を行い、糸切れが2〜4回と製糸性はやや悪い。
不良 :10時間連続紡糸を行い、糸切れが5回以上と製糸性は極めて悪い。
(2) Good yarn-making property and stretchability: Spinning is performed continuously for 10 hours, and the yarn-breaking property is good with 0 to 1 yarn breakage.
Slightly poor: Spinning is carried out continuously for 10 hours, and the yarn breakage is slightly worse, 2 to 4 times.
Defective: Spinning is performed continuously for 10 hours, and yarn breakage is 5 or more times.

(3)ポリアミド成分とポリエステル成分との界面剥離
複合繊維の任意の断面について、1070倍のカラー断面写真をとり、フィラメント中のポリアミド成分とポリエステル成分との界面剥離の状況を調査した。
無 :界面での剥離が殆ど(0〜1個)存在しなかった。
やや有:界面での剥離が2〜10個のフィラメントに存在していた。
有 :殆ど全てのフィラメントに界面での剥離が存在していた。
(3) Interfacial exfoliation between polyamide component and polyester component A 1070-fold color cross-sectional photograph of an arbitrary cross section of the composite fiber was taken, and the state of interfacial exfoliation between the polyamide component and the polyester component in the filament was investigated.
None: There was almost no peeling (0 to 1) at the interface.
Slightly present: Peeling at the interface was present in 2 to 10 filaments.
Existence: Peeling at the interface was present in almost all filaments.

(4)強度(cN/dtex)、伸度(%)
繊維試料を気温25℃、湿度60%の恒温恒湿に保たれた部屋に一昼夜放置した後、サンプルの長さ100mmを(株)島津製作所製引っ張り試験機テンシロンにセットし、200mm/分の速度にて伸張し、破断時の強度、伸度を測定した。
(4) Strength (cN / dtex), elongation (%)
After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and 60% humidity for a whole day and night, the sample length of 100 mm was set on a tensile tester Tensilon manufactured by Shimadzu Corporation, and the speed was 200 mm / min. The strength and elongation at break were measured.

(5)U%
計測器工業株式会社製Evness Testerを使用し、ハーフイナートの条件にて規定の条件にて測定した。
(5) U%
Using an Evness Tester manufactured by Keisokuki Kogyo Co., Ltd., measurement was performed under the conditions specified under the half inert conditions.

(6)捲縮率DC、水浸漬後の捲縮率HC、およびそれらの差ΔC
複合繊維にて2700dtexのカセを作り、6g(2.2mg/dtex)の軽荷重の下で沸騰水中にて30分間処理した。濾紙にて水分を軽くのぞき、次いで6g(2.2mg/dtex)の荷重下で100℃の乾熱にて30分間乾燥して水分を除去した。さらに、このカセを6g(2.2mg/dtex)の荷重下で160℃の乾熱にて1分間熱処理して測定試料とした。
(a)捲縮率DC(%)
上記の処理を行なった測定資料(カセ)を6g(2.2mg/dtex)の荷重下にて5分処理し、次いで、このかせを取り出し、さらに600g(合計606g:2.2mg/dtex+220mg/dtex)の荷重をかけ1分放置しそのカセの長さL0を求めた。次いで、600gの荷重を外し、6g(2.2mg/dtex)の荷重下にて1分放置しその長さL1を求めた。下記の計算式より、捲縮率DCを求めた。
DC(%)=L0−L1/L0×100
(b)水浸漬後の捲縮率HC(%)
捲縮率DCを求めた後の同じカセを用い、6g(2.2mg/dtex)の荷重下で水中(室温)にて10時間処理した。このカセを濾紙にて水をふき取り、更に600g(合計606g:2.2mg/dtex+220mg/dtex)の荷重を更にかけ1分放置し、そのカセの長さL2を求めた。次いで、600gの荷重を外し、6g(2.2mg/dtex)の荷重下にて1分放置しその長さL3を求めた。下記の計算式より、水浸漬後の捲縮率DCを求めた。
HC(%)=L2−L3/L2×100
(c)ΔC(%)
上記の捲縮率DCと水浸漬後の捲縮率HCとの差ΔCは次の式により求めた。
ΔC(%)=HC(%)−DC(%)
(6) Crimp rate DC, crimp rate HC after water immersion, and their difference ΔC
A 2700 dtex case was made from the composite fiber and treated in boiling water for 30 minutes under a light load of 6 g (2.2 mg / dtex). The moisture was removed by lightly removing with a filter paper, followed by drying at 100 ° C. for 30 minutes under a load of 6 g (2.2 mg / dtex). Furthermore, this casserole was heat-treated at 160 ° C. for 1 minute under a load of 6 g (2.2 mg / dtex) to obtain a measurement sample.
(A) Crimp rate DC (%)
The measurement material (cassette) subjected to the above treatment was treated under a load of 6 g (2.2 mg / dtex) for 5 minutes, and then this skein was taken out and further 600 g (total 606 g: 2.2 mg / dtex + 220 mg / dtex). ) And left for 1 minute to determine the length L0 of the case. Next, the load of 600 g was removed, and the load was left for 1 minute under a load of 6 g (2.2 mg / dtex), and the length L1 was determined. The crimp rate DC was determined from the following calculation formula.
DC (%) = L0−L1 / L0 × 100
(B) Crimp rate HC (%) after water immersion
Using the same case after obtaining the crimp rate DC, it was treated in water (room temperature) for 10 hours under a load of 6 g (2.2 mg / dtex). The casserole was wiped off with a filter paper, and a load of 600 g (total 606 g: 2.2 mg / dtex + 220 mg / dtex) was further applied and left for 1 minute to determine the length L2 of the casserole. Next, the load of 600 g was removed, and the product was left for 1 minute under a load of 6 g (2.2 mg / dtex), and the length L3 was determined. The crimp rate DC after water immersion was calculated | required from the following formula.
HC (%) = L2-L3 / L2 × 100
(C) ΔC (%)
The difference ΔC between the above-described crimp rate DC and the crimp rate HC after water immersion was determined by the following equation.
ΔC (%) = HC (%) − DC (%)

(7)筒編の特性
複合繊維を筒編みし、カチオン染料にてボイル染色を行い、水洗後160℃の乾熱中にて1分セットし、測定試料とした。この筒編に水を滴下し、筒編の側面写真(倍率200)にて水滴下部及びその周辺の状況を調査し、水滴下による編目の膨らみ或いは縮み状況、及び筒編の透け感を肉眼にて判定した。
(a)編目変化(空隙の減少の程度)
良好 :水滴下にて編目が顕著に縮んでいる(空隙が減少している)。
やや不良:水滴下による編目変化は殆ど見られない(空隙の変化が殆ど無い)。
不良 :水滴下にて編目がむしろ伸びている(空隙が大きくなっている)。
(b)透け防止(不透明感)
良好 :水滴下にて透け感が減少している。
やや不良:水滴下による透け感変化は見られない。
不良 :水滴下にて透け感が大きくなっている。
(7) Characteristics of cylinder knitting The composite fiber was knitted in a cylinder, boiled with a cationic dye, set in a dry heat at 160 ° C. for 1 minute after washing with water, and used as a measurement sample. Water is dropped onto this tubular knitting, and the situation of the water dripping part and its surroundings is investigated with a side photograph (magnification 200) of the tubular knitting. Was judged.
(A) Stitch change (degree of reduction of voids)
Good: The stitches are remarkably shrunk by water dripping (voids are reduced).
Slightly poor: Almost no change in stitches due to water dripping (almost no change in voids).
Defect: The stitches are rather elongated due to water dripping (the voids are enlarged).
(B) See-through prevention (opacity)
Good: The sense of transparency is reduced by dripping water.
Slightly poor: No change in the sense of transparency due to dripping water
Defect: The feeling of see-through is increased by dripping water.

(8)風合い
複合繊維を筒編みし、カチオン染料にてボイル染色を行い、水洗後160℃の乾熱中にて1分セットし、測定試料とし、その触感にて評価した。
良好:スパンライクな風合いを有している。
不良:スパンライクな風合いが不足している。
(8) Texture The composite fiber was knitted, boiled with a cationic dye, washed with water, set in a dry heat at 160 ° C. for 1 minute, used as a measurement sample, and evaluated by its tactile sensation.
Good: Span-like texture.
Defect: The spanlike texture is insufficient.

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で3.0モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとを夫々270℃、290℃にて溶融し、特開2000−144518号公報記載の複合紡糸口金を用い、それぞれ16.9g/分の吐出量にて押し出しサイドバイサイド型複合糸条を形成させ、冷却固化・油剤を付与したあと、糸状を速度1800m/分、温度RT(室温)の第1ローラーにて予熱し、ついで、速度3050m/分、温度130℃に加熱された第2ローラー間で延伸熱処理(延伸倍率1.69倍)を行い、巻き取り110dtex24filの太細複合繊維を得た。製糸性及び延伸性は極めて良好であり、10時間連続紡糸して、糸切れが全く無かった。結果を表1に示す。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 3.0 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. Melted at 290 ° C., formed a side-by-side type composite yarn at a discharge rate of 16.9 g / min using a composite spinneret described in Japanese Patent Application Laid-Open No. 2000-144518, and applied cooling solidification / oil agent After that, the filament was preheated with a first roller at a speed of 1800 m / min and at a temperature RT (room temperature), and then stretched and heat-treated between a second roller heated at a speed of 3050 m / min and a temperature of 130 ° C. 69 times) to obtain a thick and thin composite fiber with a winding of 110 dtex 24 fil. The spinning property and stretchability were very good, and the yarn was continuously spun for 10 hours and there was no breakage. The results are shown in Table 1.

[実施例2〜5、比較例1〜2]
第1ローラー速度を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 2-5, Comparative Examples 1-2]
A composite fiber was obtained in the same manner as in Example 1 except that the first roller speed was changed as shown in Table 1. The results are shown in Table 1.

[実施例6〜7、比較例3]
第1ローラー温度を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 6 to 7, Comparative Example 3]
A composite fiber was obtained in the same manner as in Example 1 except that the first roller temperature was changed as shown in Table 1. The results are shown in Table 1.

[実施例8〜9、比較例4]
第2ローラー温度を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 8 to 9, Comparative Example 4]
A conjugate fiber was obtained in the same manner as in Example 1 except that the second roller temperature was changed as shown in Table 1. The results are shown in Table 1.

[実施例10〜11、比較例5〜6]
変性ポリエチレンテレフタレート成分の5−ナトリウムスルフォイソフタル酸の共重合量を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 10-11, Comparative Examples 5-6]
A composite fiber was obtained in the same manner as in Example 1 except that the copolymerization amount of 5-sodium sulfoisophthalic acid as a modified polyethylene terephthalate component was changed as shown in Table 1. The results are shown in Table 1.

[実施例12〜13、比較例7〜8]
変性ポリエチレンテレフタレート成分固有粘度〔η〕を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 12 to 13, Comparative Examples 7 to 8]
A composite fiber was obtained in the same manner as in Example 1 except that the intrinsic viscosity [η] of the modified polyethylene terephthalate component was changed as shown in Table 1. The results are shown in Table 1.

[実施例14〜15、比較例9]
各成分の吐出量及び第2ローラーの速度を表1のように変更した以外は実施例1と同様にして複合繊維を得た。結果を表1に示す。
[Examples 14 to 15, Comparative Example 9]
A composite fiber was obtained in the same manner as in Example 1 except that the discharge amount of each component and the speed of the second roller were changed as shown in Table 1. The results are shown in Table 1.

Figure 2007231474
Figure 2007231474

本発明によれば、湿度により捲縮率が可逆的に変化する複合繊維を提供することができ、水にぬれても『透けない』特性を有し、吸湿によって布帛の目が詰まり、空隙が減少することによって防風性、保温性が向上するといった優れた機能を発揮する複合繊維を提供することができる。また、上記複合繊維は染色・仕上げ工程の経た後でも安定した捲縮率変化特性を発揮するため、従来にない極めて実用性に優れている。また、布帛としたときスパンライクな風合いが得られ、衣料などの最終製品として優れた快適性を有しているのみならず、高い品位を兼ね備えたものが得られ、その産業的価値が極めて高いものである。   According to the present invention, it is possible to provide a composite fiber in which the crimp rate reversibly changes depending on humidity, and has a property of “not transparent” even when wetted with water. The composite fiber which exhibits the outstanding function that windproof property and heat retention improve by decreasing can be provided. Further, the composite fiber exhibits a stable crimp rate change characteristic even after the dyeing / finishing process, and thus is extremely practical and unprecedented. In addition, when used as a fabric, a spun-like texture is obtained, and not only has excellent comfort as a final product such as clothing, but also has a high quality, and its industrial value is extremely high. Is.

Claims (3)

ポリエステル成分とポリアミド成分とが接合された繊維横断面形状を有する複合繊維であって、該複合繊維を30分間沸水処理し、さらに100℃で30分間乾熱処理して捲縮を発現させ、これを160℃で1分間乾熱処理した繊維の捲縮率DCが4.0〜12.0%であり、さらに該繊維を水浸漬後の捲縮率HCが5.0〜13.0%であり、下記式で表されるこれらの捲縮率の差△Cが0.3〜8.0%で、かつ該繊維の長手方向に太部と細部を有することを特徴とする太細複合繊維。
ΔC(%)=HC(%)−DC(%)
A composite fiber having a cross-sectional shape of a fiber in which a polyester component and a polyamide component are bonded. The composite fiber is treated with boiling water for 30 minutes, and further subjected to a dry heat treatment at 100 ° C. for 30 minutes to develop crimps. The crimp rate DC of the fiber heat-dried at 160 ° C. for 1 minute is 4.0 to 12.0%, and the crimp rate HC after water immersion is 5.0 to 13.0%. A thick and thin composite fiber characterized in that the difference ΔC between these crimping ratios expressed by the following formula is 0.3 to 8.0% and has a thick portion and details in the longitudinal direction of the fiber.
ΔC (%) = HC (%) − DC (%)
太細複合繊維のU%が2.5〜15.0%である請求項1記載の太細複合繊維。   The thick and fine composite fiber according to claim 1, wherein U% of the thick and fine composite fiber is 2.5 to 15.0%. ポリエステル成分が、固有粘度(IV)が0.30〜0.43であり、5−ナトリウムスルフォイソフタル酸が酸成分を基準として2.0〜4.5モル%共重合されている変性ポリエステルである請求項1又は2項記載の太細複合繊維。   The polyester component is a modified polyester having an intrinsic viscosity (IV) of 0.30 to 0.43 and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized based on the acid component. The thick and fine composite fiber according to claim 1 or 2.
JP2006056425A 2006-03-01 2006-03-02 Thick and thin conjugated fiber Withdrawn JP2007231474A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006056425A JP2007231474A (en) 2006-03-02 2006-03-02 Thick and thin conjugated fiber
US12/278,373 US8153253B2 (en) 2006-03-01 2007-02-28 Conjugate fiber-containing yarn
AT07715257T ATE480652T1 (en) 2006-03-01 2007-02-28 YARN MADE OF CONJUGATE FIBER
PCT/JP2007/054366 WO2007102522A1 (en) 2006-03-01 2007-02-28 Cojugated fiber containing yarn
CN2007800073640A CN101395307B (en) 2006-03-01 2007-02-28 Conjugate fiber-containing yarn
CA2640570A CA2640570C (en) 2006-03-01 2007-02-28 Conjugate fiber-containing yarn
KR1020087021442A KR101355669B1 (en) 2006-03-01 2007-02-28 Conjugated fiber containing yarn
EP07715257A EP1995358B1 (en) 2006-03-01 2007-02-28 Cojugated fiber containing yarn
DE602007009059T DE602007009059D1 (en) 2006-03-01 2007-02-28 YARN OF CONJUGATE FIBER
TW096107029A TWI413715B (en) 2006-03-01 2007-03-01 Conjugate fiber-containing yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006056425A JP2007231474A (en) 2006-03-02 2006-03-02 Thick and thin conjugated fiber

Publications (1)

Publication Number Publication Date
JP2007231474A true JP2007231474A (en) 2007-09-13

Family

ID=38552350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056425A Withdrawn JP2007231474A (en) 2006-03-01 2006-03-02 Thick and thin conjugated fiber

Country Status (1)

Country Link
JP (1) JP2007231474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651962A (en) * 2015-01-21 2015-05-27 东华大学 Double-component hollow high-moisture-absorption curly composite fiber and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651962A (en) * 2015-01-21 2015-05-27 东华大学 Double-component hollow high-moisture-absorption curly composite fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7135854B2 (en) Eccentric core-sheath composite fiber and mixed fiber yarn
JP4870795B2 (en) Manufacturing method of composite fiber
TWI413715B (en) Conjugate fiber-containing yarn
WO2006035968A1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
WO2006043677A1 (en) Woven/knit fabric including crimped fiber and decreasing in porosity upon humidification, process for producing the same, and textile product
TWI723152B (en) Yarn, fabric and fiber products
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP2006214056A (en) Woven fabric
JP2012036541A (en) Stretchable woven fabric
JP4866103B2 (en) Composite fiber
JP5735377B2 (en) Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance
JP4866109B2 (en) False twisted yarn
JP2007231474A (en) Thick and thin conjugated fiber
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
JP2007231475A (en) Undrawn conjugated fiber
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JP4292893B2 (en) Polymer alloy crimped yarn
JP4866110B2 (en) Blended yarn
JP2008274478A (en) Moisture-sensitive latently crimping conjugate fiber
JP2006207065A (en) Garment exerting ventilation effect when wetted
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP4733879B2 (en) Polyester composite patchy yarn with latent crimp performance
JP2007239139A (en) Composite false-twisted yarn
JP3992604B2 (en) Polyester blended yarn
JP2007046212A (en) Conjugate yarn and fabric product containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081212

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20100816

Free format text: JAPANESE INTERMEDIATE CODE: A761