JP2007221933A - Charger for capacitor storage power supply - Google Patents

Charger for capacitor storage power supply Download PDF

Info

Publication number
JP2007221933A
JP2007221933A JP2006040764A JP2006040764A JP2007221933A JP 2007221933 A JP2007221933 A JP 2007221933A JP 2006040764 A JP2006040764 A JP 2006040764A JP 2006040764 A JP2006040764 A JP 2006040764A JP 2007221933 A JP2007221933 A JP 2007221933A
Authority
JP
Japan
Prior art keywords
charging
current
storage power
capacitor storage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006040764A
Other languages
Japanese (ja)
Other versions
JP3907123B1 (en
Inventor
Masaaki Shimizu
正明 清水
Katsushi Mitsui
克司 三井
Masahiko Shimizu
雅彦 清水
Masahiko Shinozuka
政彦 篠塚
Atsushi Shimizu
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006040764A priority Critical patent/JP3907123B1/en
Priority to EP07102294A priority patent/EP1821386A2/en
Priority to US11/707,097 priority patent/US7622898B2/en
Priority to CNA2007100841897A priority patent/CN101026316A/en
Application granted granted Critical
Publication of JP3907123B1 publication Critical patent/JP3907123B1/en
Publication of JP2007221933A publication Critical patent/JP2007221933A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E10/58

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a function equivalent to a power limiter function of a charger by a simple constitution and enable reduction in the power consumption of a parallel monitor and the size of a capacitor storage power supply. <P>SOLUTION: A charger for a capacitor storage power supply is configured to control a charging current for the capacitor storage power supply 7 that stores power in an electric double layer capacitor 71 and charge the power supply. This charger is provided with a signal generating means 2 that compares a current reference value for reducing a charging current I in inverse proportion to increase in the charging voltage Vc of the capacitor storage power supply 7 with the charging current I, and generates an error amplification signal. Pulse width modulation is carried out from a charging power supply 5 by a pulse width modulation means 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電電源からパルス幅変調手段によりパルス幅変調して充電電流を制御し充電を行うように構成したキャパシタ蓄電電源用充電装置に関する。   The present invention relates to a charging device for a capacitor storage power source configured to charge a capacitor storage power source that stores power in an electric double layer capacitor by performing pulse width modulation from a charging power source by pulse width modulation means to control a charging current.

複数の電気二重層キャパシタを直列接続して構成する高電圧大容量の蓄電電源装置においては、充放電量に応じて端子電圧が大きく変動する。したがって、二次電池のような定電圧充電を行うと効率が悪く、また、充電初期には大きな充電電流が流れ耐電流の問題が生じることもあって、定電流充電を行うことにより効率のよい充電を実現している。また、電気二重層キャパシタからなる蓄電電源では、直列接続したキャパシタ間のバラツキによる問題を解決するため、各電気二重層キャパシタに所定の基準電圧で充電電流をバイパスして端子電圧(充電電圧)を制限する並列モニタが接続される。並列モニタは、所定の基準電圧で充電電流をバイパスすることにより、充電電圧を所定値(耐電圧の範囲内)に制限し、充電電圧のバラツキを低減するものであるが、充電電圧の上昇とともに各電気二重層キャパシタの並列モニタが順次バイパス動作していくと、並列モニタでの電力損失が大きくなり、並列モニタには耐電流上限値があって、大電流で長時間のバイパス動作を回避させることが必要である。また、充電装置には、無駄な電力損失を低減するため、定電流充電による蓄電電源装置全体の充電電圧が所定値を越えると、充電電圧の増加とともに充電電流を減少させて一定の電力となるように定電力充電へ切り換える電力リミッタ機能が必要となる(例えば、非特許文献1、特許文献1、2参照)。
岡村廸夫著「電気二重層キャパシタと蓄電システム」日刊工業新聞社、2005年9月30日第3版第1刷発行、第134〜第139頁 特許第2894444号公報 特許第3306325号公報
In a high-voltage, large-capacity storage power supply device configured by connecting a plurality of electric double layer capacitors in series, the terminal voltage varies greatly depending on the amount of charge / discharge. Therefore, when performing constant voltage charging such as a secondary battery, the efficiency is low, and a large charging current flows in the initial stage of charging, which may cause a problem with current resistance. Realizes charging. In addition, in an electricity storage power source composed of an electric double layer capacitor, in order to solve the problem due to the variation between capacitors connected in series, each electric double layer capacitor is bypassed with a predetermined reference voltage and a terminal voltage (charging voltage) is bypassed. Limited parallel monitors are connected. The parallel monitor limits the charging voltage to a predetermined value (within the withstand voltage range) by bypassing the charging current at a predetermined reference voltage, and reduces the variation in the charging voltage. If the parallel monitor of each electric double layer capacitor is bypassed in sequence, the power loss in the parallel monitor increases, and the parallel monitor has a current withstand upper limit value, avoiding bypass operation for a long time with a large current. It is necessary. In addition, in order to reduce wasteful power loss in the charging device, when the charging voltage of the entire power storage device by constant current charging exceeds a predetermined value, the charging current is decreased and constant power is obtained as the charging voltage increases. Thus, a power limiter function for switching to constant power charging is required (see, for example, Non-Patent Document 1, Patent Documents 1 and 2).
Okamura Ikuo, “Electric Double Layer Capacitor and Power Storage System”, Nikkan Kogyo Shimbun, September 30, 2005, 3rd edition, 1st edition, pages 134-139 Japanese Patent No. 2894444 Japanese Patent No. 3306325

しかし、上記のように充電電圧が所定値を越えると、充電電圧の増加とともに充電電流を減少させて一定の電力となるように定電力充電へ切り換える電力リミッタ機能を実現する場合、従来は一般に電圧値と電流値を入力して電力値を演算しその演算結果を用いて制御を行うようにしているが、数A、数Vという小容量の電源に対し大容量のキャパシタ蓄電電源では、数十〜数百A、数百〜数kVにもなり、しかも、電圧は0V近傍から満充電電圧まで広いレンジで変化するため、このような乗算器は、コストが高く、かつ調整を要するなどの問題がある。その結果、部品のコスト高にともない装置のコストも高いものになってしまう。   However, when the charge voltage exceeds a predetermined value as described above, when the power limiter function for switching to constant power charge so as to reduce the charge current as the charge voltage increases and to maintain a constant power is generally used, A power value is calculated by inputting a value and a current value, and control is performed using the calculation result. -Several hundreds A, hundreds to several kV, and the voltage varies in a wide range from near 0 V to the full charge voltage, so such a multiplier is expensive and requires adjustment. There is. As a result, the cost of the apparatus increases as the cost of the parts increases.

本発明は、上記課題を解決するものであって、簡単な構成により充電装置の電力リミッタ機能に相当する機能を実現し、並列モニタの小電力化、キャパシタ蓄電電源の小型化を可能にするものである。   The present invention solves the above-described problem, and realizes a function corresponding to the power limiter function of the charging device with a simple configuration, enabling reduction in power consumption of the parallel monitor and reduction of the capacity of the capacitor storage power source. It is.

そのために本発明は、電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電電源からパルス幅変調手段によりパルス幅変調して充電電流を制御し充電を行うように構成したキャパシタ蓄電電源用充電装置において、前記キャパシタ蓄電電源の充電電圧の増加に逆比例して充電電流を低減させる電流基準値と充電電流とを比較して誤差増幅信号を発生させる信号発生手段を備えたことを特徴とする。   Therefore, the present invention provides a charging device for a capacitor storage power source configured to charge a capacitor storage power source that stores power in an electric double layer capacitor by performing pulse width modulation from a charging power source by pulse width modulation means to control a charging current. And a signal generating means for generating an error amplification signal by comparing the charging current with a current reference value for reducing the charging current in inverse proportion to the increase in the charging voltage of the capacitor storage power source.

また、前記電流基準値は、前記キャパシタ蓄電電源の充電電圧を反転させてオフセット値により正値化して発生させ、前記電流基準値は、演算増幅器の反転入力端子に抵抗を介してキャパシタ蓄電電源の充電電圧の検出信号を入力し、非反転入力端子にオフセット値を入力して、反転入力端子と出力端子との間に抵抗を接続して構成される減算回路より取り出され、前記信号発生手段の誤差増幅信号は、充電電流を一定に制御する定電流信号発生手段の誤差増幅信号とオア論理回路を通して前記パルス幅変調手段に入力され、前記電気二重層キャパシタに所定の電圧で充電電流をバイパスする並列モニタを備えると共に、前記信号発生手段と前記オア論理回路との間にスイッチ回路を備え、前記並列モニタのバイパス動作信号により前記スイッチ回路を制御し、前記誤差増幅信号の有効/無効を制御するように構成したことを特徴とする。   Further, the current reference value is generated by inverting the charging voltage of the capacitor storage power source and making it positive by an offset value, and the current reference value is generated by connecting the capacitor storage power source through a resistor to the inverting input terminal of the operational amplifier. A charge voltage detection signal is input, an offset value is input to a non-inverting input terminal, and a resistor is connected between the inverting input terminal and the output terminal. The error amplification signal is input to the pulse width modulation means through the error amplification signal of the constant current signal generation means for controlling the charging current to be constant and the OR logic circuit, and bypasses the charging current with a predetermined voltage to the electric double layer capacitor. A parallel monitor, and a switch circuit between the signal generating means and the OR logic circuit, and the switch according to a bypass operation signal of the parallel monitor. Controls switch circuit, characterized by being configured to control the validity / invalidity of the error amplification signal.

本発明によれば、キャパシタ蓄電電源の充電電圧の増加に逆比例する基準値を発生させるので、簡単な回路構成で基準値を発生させることができ、この基準値に基づき充電電流を制御する回路と充電電流を一定に制御する定電流の充電回路とを並列にするので、定電流充電によりキャパシタ蓄電電源の充電電圧が所定の値まで充電されると充電電圧の増加に逆比例して充電電流を低減させることが簡単な回路構成により実現できる。したがって、定電流の充電モードから定電力充電と同等の充電モードに切り換えるようにした充電装置を、コストの高い乗算器を使うことなく実現し、しかも基準値の設定を調整するだけの簡単な調整で切り換えポイントを設定できるようにすることができ、部品、ひいては装置のコストの大幅な低減を図ることができる。   According to the present invention, since the reference value that is inversely proportional to the increase in the charging voltage of the capacitor storage power source is generated, the reference value can be generated with a simple circuit configuration, and the circuit that controls the charging current based on this reference value And a constant-current charging circuit that controls the charging current to be constant, so that when the charging voltage of the capacitor storage power supply is charged to a predetermined value by constant-current charging, the charging current is inversely proportional to the increase in charging voltage. Can be realized with a simple circuit configuration. Therefore, it is possible to realize a charging device that switches from a constant current charging mode to a charging mode equivalent to constant power charging without using an expensive multiplier, and simple adjustment that only adjusts the reference value setting. Thus, it is possible to set the switching point, and it is possible to significantly reduce the cost of the parts and the apparatus.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ蓄電電源用充電装置の実施の形態を示す図、図2は電流逓減充電(V−I制御)を説明する図である。図中、1は定電流信号発生回路、2は電流逓減信号発生回路、3は定電圧信号発生回路、4はPWM制御回路、5は充電電源、6は充電装置、7はキャパシタ蓄電電源、D11、D21、D31はダイオード、Rは電流検出用抵抗、Vrefiは電流基準値設定回路、Vrefvは電圧基準値設定回路、Voff-set はオフセット値設定回路、Iは充電電流、Vcは充電電圧を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a charging device for a capacitor storage power source according to the present invention, and FIG. 2 is a diagram for explaining current diminishing charging (VI control). In the figure, 1 is a constant current signal generating circuit, 2 is a current decreasing signal generating circuit, 3 is a constant voltage signal generating circuit, 4 is a PWM control circuit, 5 is a charging power supply, 6 is a charging device, 7 is a capacitor storage power supply, D11 D21 and D31 are diodes, R is a current detection resistor, Vrefi is a current reference value setting circuit, Vrefv is a voltage reference value setting circuit, Voff-set is an offset value setting circuit, I is a charging current, and Vc is a charging voltage. .

図1に示す本実施形態に係るキャパシタ蓄電電源用充電装置は、充電電源5から充電装置6を通して複数の電気二重層キャパシタを直列接続したキャパシタ蓄電電源7を充電し蓄電するものである。キャパシタ蓄電電源7を構成する複数の電気二重層キャパシタのそれぞれは、例えば充電電圧が所定の基準電圧まで増加すると充電電流をバイパスする、所謂並列モニタが並列接続されるものもある。そして、充電時において、それぞれの電気二重層キャパシタの充電電圧が不均等に充電されていっても、所定の基準電圧まで充電された電気二重層キャパシタの並列モニタから順次バイパス動作することにより、充電電流をバイパスして充電電圧を所定の基準電圧に制限する。したがって、最終的には電気二重層キャパシタの満充電電圧を所定の基準電圧として設定すると、各電気二重層キャパシタを満充電電圧に均等に充電することができる。   The capacitor storage power supply charging device according to the present embodiment shown in FIG. 1 charges and stores a capacitor storage power supply 7 in which a plurality of electric double layer capacitors are connected in series from the charging power supply 5 through the charging device 6. Each of the plurality of electric double layer capacitors constituting the capacitor storage power source 7 may be connected in parallel with a so-called parallel monitor that bypasses the charging current when the charging voltage increases to a predetermined reference voltage, for example. When charging, even if the charging voltage of each electric double layer capacitor is charged unevenly, by performing bypass operation sequentially from the parallel monitor of the electric double layer capacitor charged to a predetermined reference voltage, Bypassing the current, the charging voltage is limited to a predetermined reference voltage. Therefore, finally, when the full charge voltage of the electric double layer capacitor is set as a predetermined reference voltage, each electric double layer capacitor can be evenly charged to the full charge voltage.

所定の基準電圧まで充電された電気二重層キャパシタの並列モニタが充電電流をバイパスするとき、その並列モニタでは、所定の基準電圧と充電電流、つまり、バイパス時の電圧と電流との積からなる電力が熱消費される。このことにより、並列モニタの動作時間が長いほど、またその数が多いほどキャパシタ蓄電電源7として電力損失、熱損失が大きくなる。その結果、並列モニタは、放熱効率を上げるため容量を大きくし構造的にも大型にしなければならなくなり、電力の無駄とともにスペースの無駄も大きくキャパシタ蓄電電源7の小型化が実現しにくくなる。そのため、本実施形態に係る充電装置6では、複数の電気二重層キャパシタのいずれかの並列モニタが動作する初期段階をキャパシタ蓄電電源7の充電電圧で判断し、充電電圧の増加に逆比例して充電電流を逓減させることで、並列モニタの小容量化、小型化を可能にする。   When a parallel monitor of an electric double layer capacitor charged to a predetermined reference voltage bypasses the charging current, the parallel monitor uses a power that is the product of the predetermined reference voltage and the charging current, that is, the voltage and current at the time of bypass. Is consumed. As a result, the longer the operation time of the parallel monitor and the greater the number, the greater the power loss and heat loss of the capacitor storage power supply 7. As a result, the parallel monitor has to be increased in capacity and structurally large in order to increase heat dissipation efficiency, and waste of power and waste of space are large, and it is difficult to realize downsizing of the capacitor storage power source 7. Therefore, in the charging device 6 according to the present embodiment, the initial stage in which any one of the plurality of electric double layer capacitors operates in parallel is determined based on the charging voltage of the capacitor storage power supply 7, and inversely proportional to the increase in the charging voltage. By reducing the charging current, the capacity and size of the parallel monitor can be reduced.

充電装置6は、充電電流Iを検出して電流基準値設定回路で設定された所定の電流基準値Vrefiと比較し、充電電流Iが一定(定電流充電)になるように、所定電圧までキャパシタ蓄電電源7が充電されると、充電電圧の増加に逆比例して充電電流を逓減(電流逓減制御:V−I制御)させるようにPWM(Pulse Width Modulation :パルス幅変調)制御する。そのための具体的な構成として、例えばPWM制御回路4、定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3、これら信号発生回路からの誤差増幅信号をPWM制御回路4に選択切り換え入力するためのダイオードD11、D21、D31からなるオア論理回路等を備える。   The charging device 6 detects the charging current I and compares it with a predetermined current reference value Vrefi set by the current reference value setting circuit. The charging device 6 has a capacitor up to a predetermined voltage so that the charging current I is constant (constant current charging). When the power storage power supply 7 is charged, PWM (Pulse Width Modulation) control is performed so that the charging current is gradually decreased (current diminishing control: V-I control) in inverse proportion to the increase in the charging voltage. For example, the PWM control circuit 4, the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, the constant voltage signal generation circuit 3, and error amplification signals from these signal generation circuits are supplied to the PWM control circuit 4 as specific configurations for that purpose. An OR logic circuit including diodes D11, D21, and D31 for selection switching input is provided.

定電流信号発生回路1は、充電回路に直列に挿入接続した電流検出用抵抗Rの端子間の電圧降下を充電電流Iの検出信号として取り出してこれを制御対象として入力し、コンパレータの基準値として電流基準値設定回路で設定されている電流基準値Vrefiと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電流信号発生回路1から出力される誤差増幅信号は、入力される制御対象の充電電流Iが電流基準値Vrefiより小さければ出力値は大きくなり、充電電流Iが電流基準値Vrefiより大きければ出力値は小さくなる。PWM制御回路4では、この誤差増幅信号を入力すると、充電電流Iが電流基準値Vrefiより小さいときは充電電流Iを大きくし、逆に充電電流Iが電流基準値Vrefiより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電流基準値Vrefiに基づき充電電流Iが一定になるように充電電流を制御する、定電流充電の制御モードCCが実行される。   The constant current signal generating circuit 1 takes out the voltage drop between the terminals of the current detection resistor R inserted and connected in series with the charging circuit as a detection signal of the charging current I, and inputs this as a control object, as a reference value for the comparator Compared with the current reference value Vrefi set by the current reference value setting circuit, the error amplification circuit is configured to output the error amplification signal. Therefore, the error amplification signal output from the constant current signal generation circuit 1 has a larger output value if the input charging current I to be controlled is smaller than the current reference value Vrefi, and the charging current I is larger than the current reference value Vrefi. The output value becomes smaller. When this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging current I is smaller than the current reference value Vrefi, and conversely when the charging current I is larger than the current reference value Vrefi. Since the pulse width (duty ratio) is controlled according to the magnitude of the input error amplification signal so as to decrease the charging current, the charging current is controlled so that the charging current I becomes constant based on the current reference value Vrefi as a result. The constant current charging control mode CC is executed.

定電流信号発生回路1に対し、電流逓減信号発生回路2は、図2(a)に示すようにキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例して充電電流Iを小さくする電流基準値Vref(v-i)を発生させ、この電流基準値Vref(v-i)と制御対象の充電電流Iを比較して、その誤差増幅信号を出力するものである。電流基準値Vref(v-i)は、例えば図2(a)に示すようにキャパシタ蓄電電源7の充電電圧Vcを反転させ(Vout =−Vin)、オフセット値Voff-set で正値化(=Voff-set −Vin)することにより発生させる。したがって、PWM制御回路4では、この誤差増幅信号を入力すると、キャパシタ蓄電電源7の充電電圧Vcが小さいときには充電電流Iを大きくし、キャパシタ蓄電電源7の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減の制御モードV−Iが実行される。   In contrast to the constant current signal generating circuit 1, the current diminishing signal generating circuit 2 is a current reference value that decreases the charging current I in inverse proportion to the increase in the charging voltage Vc of the capacitor storage power source 7 as shown in FIG. Vref (vi) is generated, the current reference value Vref (vi) is compared with the charging current I to be controlled, and an error amplification signal is output. For example, as shown in FIG. 2A, the current reference value Vref (vi) is obtained by inverting the charging voltage Vc of the capacitor storage power source 7 (Vout = −Vin) and making it positive by the offset value Voff-set (= Voff− set-Vin). Therefore, when this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging voltage Vc of the capacitor storage power supply 7 is small, and the charging voltage Vc of the capacitor storage power supply 7 increases and reverses the increase. A current diminishing control mode V-I is executed in which the charging current is controlled to decrease the charging current I in proportion.

定電圧信号発生回路3は、キャパシタ蓄電電源7の充電電圧Vcを検出し、これを制御対象の充電電圧Vcとして入力し電圧基準値設定回路で予め設定される電圧基準値Vrefvと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電圧信号発生回路3から出力される誤差増幅信号は、入力される制御対象の充電電圧Vcが電圧基準値Vrefvより小さければ出力値は大きくなり、充電電圧Vcが電圧基準値Vrefvより大きければ出力値は小さくなる。PWM制御回路4は、この誤差増幅信号を入力すると、充電電圧Vcが電圧基準値Vrefvより小さいときは充電電流Iを大きくし、逆に充電電圧Vcが電圧基準値Vrefvより大きいときは充電電流Iを小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   The constant voltage signal generation circuit 3 detects the charging voltage Vc of the capacitor storage power supply 7, inputs this as the charging voltage Vc to be controlled, and compares it with the voltage reference value Vrefv preset by the voltage reference value setting circuit. An error amplification circuit that outputs the error amplification signal is configured. Therefore, the error amplification signal output from the constant voltage signal generation circuit 3 has an output value that is larger if the input charging voltage Vc to be controlled is smaller than the voltage reference value Vrefv, and the charging voltage Vc is larger than the voltage reference value Vrefv. The output value becomes smaller. When this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging voltage Vc is smaller than the voltage reference value Vrefv, and conversely, when the charging voltage Vc is larger than the voltage reference value Vrefv. The constant voltage charging control mode CV is executed to control the charging current so as to reduce the current.

ダイオードD11、D21、D31は、誤差増幅信号を出力する定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3のそれぞれから逆方向の極性でPWM制御回路4の入力に接続されているので、定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3の出力するそれぞれの誤差増幅信号のうち最も小さい誤差増幅信号をPWM制御回路4の入力とするオア論理回路を構成している。次に、図2(b)を参照しつつこのオア論理回路により行われる充電モードの切り換え制御(CC→V−I→CV)について説明する。   The diodes D11, D21, and D31 are connected to the input of the PWM control circuit 4 with opposite polarities from the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, and the constant voltage signal generation circuit 3 that output error amplification signals, respectively. Therefore, the smallest error amplification signal among the error amplification signals output from the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, and the constant voltage signal generation circuit 3 is input to the PWM control circuit 4. A logic circuit is configured. Next, charge mode switching control (CC → VI → CV) performed by the OR logic circuit will be described with reference to FIG.

まず、充電を開始する初期の段階では、ダイオードD11がオン、ダイオードD21、D31がオフの状態で定電流充電の制御モードCCが実行される。すなわち、初期の段階でキャパシタ蓄電電源7の充電電圧Vcが小さく、定電流信号発生回路1の出力する誤差増幅信号に基づきPWM制御回路4が定電流充電の制御モードCCを実行しているときには、電流逓減信号発生回路2、定電圧信号発生回路3においてはいずれも制御対象が、比較する基準値より小さく、大きい値の誤差増幅信号を出力しても、充電電流Iもキャパシタ蓄電電源7の充電電圧Vcも大きくならず誤差増幅信号が上限値にはりついた状態になるから、ダイオードD21、D31が逆方向にバイアスされオフとなる。   First, in the initial stage of starting charging, the constant current charging control mode CC is executed with the diode D11 turned on and the diodes D21 and D31 turned off. That is, when the charging voltage Vc of the capacitor storage power source 7 is small in the initial stage and the PWM control circuit 4 is executing the constant current charging control mode CC based on the error amplification signal output from the constant current signal generating circuit 1, In both the current diminishing signal generating circuit 2 and the constant voltage signal generating circuit 3, even if the control target is smaller than the reference value to be compared and outputs an error amplification signal having a large value, the charging current I is charged to the capacitor storage power source 7 as well. Since the voltage Vc does not increase and the error amplification signal is stuck to the upper limit value, the diodes D21 and D31 are biased in the reverse direction and turned off.

次に、定電流充電を続けることによりキャパシタ蓄電電源7の充電電圧Vcが増加してゆき、電流逓減信号発生回路2における電流基準値Vref(v-i)が徐々に小さくなって、電流基準値Vref(v-i)が定電流信号発生回路1の電流基準値Vrefiより小さくなると、電流逓減信号発生回路2から出力される誤差増幅信号が定電流信号発生回路1から出力される誤差増幅信号より小さくなる。ここから、定電流信号発生回路1の出力に接続されたダイオードD11がオフになって、電流逓減信号発生回路2の出力に接続されたダイオードD21がオンに切り換わり、キャパシタ蓄電電源7の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減の制御モードV−Iが実行される。この切り換えポイントを図2(b)ではキャパシタ蓄電電源7の充電電圧VcがVstとなるポイントで表している。   Next, by continuing constant current charging, the charging voltage Vc of the capacitor storage power source 7 increases, and the current reference value Vref (vi) in the current diminishing signal generation circuit 2 gradually decreases, so that the current reference value Vref ( When vi) becomes smaller than the current reference value Vrefi of the constant current signal generation circuit 1, the error amplification signal output from the current diminishing signal generation circuit 2 becomes smaller than the error amplification signal output from the constant current signal generation circuit 1. From this point, the diode D11 connected to the output of the constant current signal generation circuit 1 is turned off, the diode D21 connected to the output of the current diminishing signal generation circuit 2 is turned on, and the charging voltage of the capacitor storage power supply 7 is switched on. A current diminishing control mode V-I is executed in which the charging current is controlled to decrease the charging current I in inverse proportion to the increase in Vc. In FIG. 2B, this switching point is represented by a point at which the charging voltage Vc of the capacitor storage power source 7 becomes Vst.

さらに、キャパシタ蓄電電源7の充電電圧Vcが増加してゆき、定電圧信号発生回路3における電圧基準値Vrefvより大きくなると、定電圧信号発生回路3から出力される誤差増幅信号が電流逓減信号発生回路2から出力される誤差増幅信号より小さくなり、電流逓減信号発生回路2の出力に接続されたダイオードD21がオフになって、定電圧信号発生回路3の出力に接続されたダイオードD31がオンに切り換わり、充電電圧Vcを電圧基準値Vrefvより小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。この切り換えポイントを図2(b)ではキャパシタ蓄電電源7の充電電圧VcがVfuとなるポイントで表している。   Further, when the charging voltage Vc of the capacitor storage power supply 7 increases and becomes larger than the voltage reference value Vrefv in the constant voltage signal generation circuit 3, the error amplification signal output from the constant voltage signal generation circuit 3 is converted into a current diminishing signal generation circuit. 2 is smaller than the error amplification signal output from 2, the diode D21 connected to the output of the current diminishing signal generation circuit 2 is turned off, and the diode D31 connected to the output of the constant voltage signal generation circuit 3 is turned on. Instead, a constant voltage charging control mode CV is executed in which the charging current is controlled so that the charging voltage Vc is smaller than the voltage reference value Vrefv. In FIG. 2B, this switching point is represented by a point where the charging voltage Vc of the capacitor storage power source 7 becomes Vfu.

次に、具体的な信号発生回路の構成について説明する。図3は定電流信号発生回路及び電流逓減信号発生回路の実施の形態を示す図、図4は電流逓減信号発生回路の他の実施形態を示す図、図5は基準値設定回路の実施の形態を示す図であり、11、21、22は演算増幅器、23は論理処理回路、71は電気二重層キャパシタ、72は並列モニタ、AS、AS1、AS1′はアナログスイッチ、C11、C21、Cr1はコンデンサ、R11、R21、R22、R23、Rr1は抵抗、Rrv、Rrv′は可変抵抗、+Vはバイアス電源を示す。   Next, a specific configuration of the signal generation circuit will be described. 3 is a diagram showing an embodiment of a constant current signal generating circuit and a current decreasing signal generating circuit, FIG. 4 is a diagram showing another embodiment of the current decreasing signal generating circuit, and FIG. 5 is an embodiment of a reference value setting circuit. 11, 21 and 22 are operational amplifiers, 23 is a logic processing circuit, 71 is an electric double layer capacitor, 72 is a parallel monitor, AS, AS1 and AS1 ′ are analog switches, and C11, C21 and Cr1 are capacitors. , R11, R21, R22, R23, Rr1 are resistors, Rrv, Rrv ′ are variable resistors, and + V is a bias power source.

図3において、定電流信号発生回路1は、演算増幅器11において、その反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vrefiを入力して、反転入力端子−と出力端子との間にコンデンサC11と抵抗R11との直列回路を接続することにより誤差増幅回路を構成している。同様に、電流逓減信号発生回路2は、演算増幅器21において、その反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vref(v-i)を入力して、反転入力端子−と出力端子との間にコンデンサC21と抵抗R21との直列回路を接続することにより誤差増幅回路を構成している。   In FIG. 3, the constant current signal generation circuit 1 inputs the detection signal of the charging current I to its inverting input terminal − and inputs the current reference value Vrefi to the non-inverting input terminal + in the operational amplifier 11, and inputs the inverting input. An error amplifying circuit is configured by connecting a series circuit of a capacitor C11 and a resistor R11 between the terminal-and the output terminal. Similarly, the current diminishing signal generating circuit 2 inputs the detection signal of the charging current I to the inverting input terminal − and inputs the current reference value Vref (vi) to the non-inverting input terminal + in the operational amplifier 21. An error amplifier circuit is configured by connecting a series circuit of a capacitor C21 and a resistor R21 between the inverting input terminal − and the output terminal.

また、電流基準値Vref(v-i)は、先に述べたようにキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例する値であり、例えば図3(b)に示すように演算増幅器22において、その反転入力端子−に抵抗R22を介してキャパシタ蓄電電源7の充電電圧Vcの検出信号を入力し、非反転入力端子+にオフセット値Voff-set を入力して、反転入力端子−と出力端子との間に抵抗R23を接続することにより減算回路を構成している。この減算回路によればVoff-set +(Voff-set −Vc)R23/R22(ここで、R23=R22とすると、2Voff-set −Vc)の電流基準値Vref(v-i)が取り出され、Voff-set を図2(b)のVstと一致する値に設定すると、キャパシタ蓄電電源7の充電電圧VcがVoff-set まで増加したとき、定電流信号発生回路1と電流逓減信号発生回路2の基準値が同値となるので、ここから電流逓減の制御モードに切り換わる設定となる。   Also, the current reference value Vref (vi) is a value that is inversely proportional to the increase in the charging voltage Vc of the capacitor storage power supply 7 as described above. For example, in the operational amplifier 22 as shown in FIG. A detection signal of the charging voltage Vc of the capacitor storage power supply 7 is input to the inverting input terminal − via the resistor R22, an offset value Voff-set is input to the non-inverting input terminal +, and the inverting input terminal − and the output terminal A subtracting circuit is configured by connecting a resistor R23 between the two. According to this subtraction circuit, a current reference value Vref (vi) of Voff-set + (Voff-set−Vc) R23 / R22 (where R23 = R22 is 2Voff-set−Vc) is taken out and Voff− When set is set to a value that matches Vst in FIG. 2B, when the charging voltage Vc of the capacitor storage power supply 7 increases to Voff-set, the reference values of the constant current signal generation circuit 1 and the current diminishing signal generation circuit 2 are set. Since the values are equal to each other, the setting is switched from here to the current decreasing control mode.

図3に示す実施の形態は、一定になるように充電電流を制御する定電流信号発生回路1からの信号とキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例して小さくなるように充電電流を制御する電流逓減信号発生回路2からの信号とをダイオードD11、D21のオア論理回路で自動切り換えするものであるが、キャパシタ蓄電電源7の各電気二重層キャパシタに接続されている並列モニタの動作を条件に制御モードを切り換えるように構成した実施の形態を示したのが図4である。   In the embodiment shown in FIG. 3, the charging current is reduced in inverse proportion to the signal from the constant current signal generation circuit 1 that controls the charging current so as to be constant and the increase in the charging voltage Vc of the capacitor storage power source 7. The operation of the parallel monitor connected to each electric double layer capacitor of the capacitor storage power source 7 is automatically switched by the OR logic circuit of the diodes D11 and D21. FIG. 4 shows an embodiment configured to switch the control mode on the condition of.

図4に示す実施の形態では、電流逓減信号発生回路2における演算増幅器21の出力とオア論理回路のダイオードD21との間にアナログスイッチASを直列に挿入し、論理処理回路23の出力によりアナログスイッチASを制御している。ここで、論理処理回路23は、キャパシタ蓄電電源7の各電気二重層キャパシタ71に接続されている並列モニタ72の動作信号を論理処理するものであり、例えばオア論理処理することにより、いずれかの1つの並列モニタ72がオンになったことを条件としてアナログスイッチASをオンにする。この場合、図3(b)に示す減算回路において、R23とR22の比を変えることにより、電流基準値Vref(v-i)の勾配を変えるようにしてもよい。このことにより、いずれか1つの並列モニタ72がオンになるまでは、定電流充電を継続し、いずれか1つの並列モニタ72がオンになった後は、図4(b)に示すように充電電流を低減させると共に、電流逓減の制御モードV−Iに切り換えるようにする。このようにしてさらに図2(b)に示すVstのポイント(オフセット値Voff-set )を小さめに設定しておくと、キャパシタ蓄電電源7の各電気二重層キャパシタ71の充電電圧にバラツキが大きく、キャパシタ蓄電電源7の充電電圧Vcが小さめで最初の並列モニタがバイパス動作すると、図4(b)に示すイのタイミングで制御モードが切り換わり、バラツキが小さく、キャパシタ蓄電電源7の充電電圧Vcが大きくなって最初の並列モニタがバイパス動作すると、図4(b)に示すロのタイミングまで制御モードの切り換えを延ばし、充電効率を上げることができる。また、オンになった並列モニタ72が所定数であることを判断してその条件によりアナログスイッチASをオンにする論理処理回路23の構成としてもよい。   In the embodiment shown in FIG. 4, an analog switch AS is inserted in series between the output of the operational amplifier 21 in the current diminishing signal generating circuit 2 and the diode D 21 of the OR logic circuit, and the analog switch is output by the output of the logic processing circuit 23. AS is controlled. Here, the logic processing circuit 23 performs logic processing on the operation signal of the parallel monitor 72 connected to each electric double layer capacitor 71 of the capacitor storage power source 7. The analog switch AS is turned on on condition that one parallel monitor 72 is turned on. In this case, in the subtraction circuit shown in FIG. 3B, the gradient of the current reference value Vref (v−i) may be changed by changing the ratio of R23 and R22. Thus, constant current charging is continued until any one parallel monitor 72 is turned on, and after any one parallel monitor 72 is turned on, charging is performed as shown in FIG. The current is reduced and the mode is switched to the current diminishing control mode VI. If the Vst point (offset value Voff-set) shown in FIG. 2 (b) is set to be smaller in this way, the charging voltage of each electric double layer capacitor 71 of the capacitor storage power source 7 has a large variation. When the charging voltage Vc of the capacitor storage power supply 7 is small and the first parallel monitor performs a bypass operation, the control mode is switched at the timing shown in FIG. 4B, the variation is small, and the charging voltage Vc of the capacitor storage power supply 7 is When the first parallel monitor is increased and the bypass operation is performed, the switching of the control mode can be extended to the timing shown in FIG. 4B to increase the charging efficiency. Alternatively, the logic processing circuit 23 may be configured to determine that the number of parallel monitors 72 turned on is a predetermined number and turn on the analog switch AS according to the condition.

上記の各基準値設定回路は、周知の様々な回路で構成することができるが、例えば図5に示すように構成することができる。すなわち、図5(a)に示すように安定化されたバイアス電源+Vを固定抵抗Rr1と可変抵抗Rrvとの分圧回路で分圧し、その分圧接続点から基準値Vrefを取り出し、可変抵抗Rrvにより所定の電圧に調整する。なお、コンデンサCr1はノイズ対策用として可変抵抗Rrvに並列接続しているものである。また、図5(b)に示すようにアナログスイッチAS1を介して同様の回路を並列に接続してアナログスイッチAS1のオン/オフにより基準値を切り換えられるようにしてもよいし、また、このような基準値の切り換えは、アナログスイッチAS1′を介して可変抵抗Rrvと並列に可変抵抗Rrv′を接続できるようにしてもよい。このように基準値の切り換えをアナログスイッチAS1、AS1′により行うように構成した場合には、例えばこれを電流基準値設定回路Vrefiに採用すると、所定の条件により定電流充電の値を段階的に切り換えることができるので、先に説明した論理処理回路23の出力信号を切り換え信号とすることにより、並列モニタ72の動作に応じて定電流充電の充電電流を切り換えることができる。   Each of the reference value setting circuits described above can be configured by various known circuits. For example, it can be configured as shown in FIG. That is, as shown in FIG. 5A, a stabilized bias power source + V is divided by a voltage dividing circuit of a fixed resistor Rr1 and a variable resistor Rrv, a reference value Vref is taken out from the voltage dividing connection point, and a variable resistor Rrv is obtained. To adjust to a predetermined voltage. The capacitor Cr1 is connected in parallel to the variable resistor Rrv as a noise countermeasure. Further, as shown in FIG. 5B, a similar circuit may be connected in parallel via the analog switch AS1, and the reference value may be switched by turning on / off the analog switch AS1. For switching the reference value, the variable resistor Rrv ′ may be connected in parallel with the variable resistor Rrv via the analog switch AS1 ′. When the reference value is switched by the analog switches AS1 and AS1 ′ in this way, for example, when this is adopted in the current reference value setting circuit Vrefi, the constant current charging value is stepwise according to a predetermined condition. Since the switching can be performed, the charging current for constant current charging can be switched according to the operation of the parallel monitor 72 by using the output signal of the logic processing circuit 23 described above as a switching signal.

図6はPWM制御されるスイッチングコンバータを備えた充電装置の実施の形態を示す図であり、61は制御回路、62は誤差信号発生回路、C1、C2はコンデンサ、Dはダイオード、Lはコイル、Rは電流検出抵抗、SW1、SW2はスイッチ回路、Iは充電電流、Vcは充電電圧、Viは電源電圧を示す。   FIG. 6 is a diagram showing an embodiment of a charging device including a PWM-controlled switching converter, in which 61 is a control circuit, 62 is an error signal generation circuit, C1 and C2 are capacitors, D is a diode, L is a coil, R is a current detection resistor, SW1 and SW2 are switch circuits, I is a charging current, Vc is a charging voltage, and Vi is a power supply voltage.

図6(a)に示す充電装置は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のスイッチ回路SWとチョークコイルLを直列に接続し、これらの直列接続点に並列にダイオードD(同期整流回路)を接続するとともに、入力側及び出力側に並列にコンデンサC1、C2を接続して、PWM信号によりスイッチ回路SWをオン/オフして充電電流を供給する降圧タイプのスイッチングコンバータを備え、充電電流を検出するため電流検出用抵抗Rを直列に挿入接続している。また、図6(b)に示す充電装置は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のチョークコイルLとスイッチ回路SW2を直列に接続し、これらの直列接続点に並列にスイッチ回路SW1を接続するとともに、入力側及び出力側に並列にコンデンサC1、C2を接続して、PWM信号によりスイッチ回路SW1をオン/オフし同期整流回路としてスイッチ回路SW2をその逆相でオフ/オンして充電電流を供給する昇圧タイプのスイッチングコンバータを備え、充電電流を検出するため電流検出用抵抗Rを直列に挿入接続している。そして、PWM制御回路61がPWM信号をスイッチ回路SW、SW1、SW2を供給し、誤差信号発生回路62がPWM制御回路61に充電電流I、キャパシタ蓄電電源7の充電電圧Vc、基準値、オフセット値に基づき先に述べた誤差増幅信号を供給する。   In the charging apparatus shown in FIG. 6A, a charging control switch circuit SW and a choke coil L are connected in series between a charging power source 5 and a capacitor storage power source 7, and a diode D is connected in parallel to these series connection points. A step-down switching converter that connects a synchronous rectifier circuit and connects capacitors C1 and C2 in parallel on the input side and output side, and turns on / off the switch circuit SW by a PWM signal to supply a charging current. In order to detect the charging current, a current detection resistor R is inserted and connected in series. In the charging device shown in FIG. 6B, a charging control choke coil L and a switch circuit SW2 are connected in series between the charging power source 5 and the capacitor storage power source 7, and in parallel with these series connection points. The switch circuit SW1 is connected, and capacitors C1 and C2 are connected in parallel to the input side and the output side. The switch circuit SW1 is turned on / off by a PWM signal, and the switch circuit SW2 is turned off / off as a synchronous rectifier circuit. A step-up type switching converter that is turned on to supply a charging current is provided, and a current detection resistor R is inserted and connected in series to detect the charging current. The PWM control circuit 61 supplies the PWM signal to the switch circuits SW, SW1, and SW2, and the error signal generation circuit 62 supplies the PWM control circuit 61 with the charging current I, the charging voltage Vc of the capacitor storage power source 7, the reference value, and the offset value. Based on the above, the error amplification signal described above is supplied.

なお、本発明は、上記の実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、定電流充電CC、電流逓減充電V−I、定電圧充電CVの各制御モードを有し、それぞれ所定の条件で切り換えるようにしたが、定電流充電CC、電流逓減充電V−Iの制御モードを有するだけで、電流逓減充電V−Iで満充電まで充電し、或いは満充電電圧で充電を停止させるようにしてもよい。また、定電流信号発生回路や電流逓減信号発生回路等も図3に示す回路に限らず同等の代替する回路で適宜設計可能であり、キャパシタ蓄電電源については、各電気二重層キャパシタがそれぞれ並列モニタを有するものとして説明したが、並列モニタを有しないものであってもよいことをいうまでもない。   In addition, this invention is not limited to said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the control modes of constant current charging CC, current diminishing charge VI, and constant voltage charging CV are provided and switched under predetermined conditions. Only by having the control mode of V-I, it is possible to charge to full charge with the current diminishing charge V-I, or to stop charging at the full charge voltage. Further, the constant current signal generating circuit, the current diminishing signal generating circuit, etc. can be appropriately designed not only with the circuit shown in FIG. 3 but also with an equivalent alternative circuit. For the capacitor storage power source, each electric double layer capacitor is monitored in parallel. However, it goes without saying that it may be one without a parallel monitor.

本発明に係るキャパシタ蓄電電源用充電装置の実施の形態を示す図である。It is a figure which shows embodiment of the charging device for capacitor electrical storage power supplies which concerns on this invention. 電流逓減充電(V−I制御)を説明する図である。It is a figure explaining electric current gradual charge (VI control). 定電流信号発生回路及び電流逓減信号発生回路の実施の形態を示す図である。It is a figure which shows embodiment of a constant current signal generation circuit and a current decreasing signal generation circuit. 電流逓減信号発生回路の他の実施形態を示す図である。It is a figure which shows other embodiment of a current decreasing signal generation circuit. 基準値設定回路の実施の形態を示す図である。It is a figure which shows embodiment of a reference value setting circuit. PWM制御されるスイッチングコンバータを備えた充電装置の実施の形態を示す図である。It is a figure which shows embodiment of the charging device provided with the switching converter by which PWM control is carried out.

符号の説明Explanation of symbols

1…定電流信号発生回路、2…電流逓減信号発生回路、3…定電圧信号発生回路、4…PWM制御回路、5…充電電源、6…充電装置、7…キャパシタ蓄電電源、D11、D21、D31…ダイオード、R…電流検出用抵抗、Vrefi…電流基準値設定回路、Vrefv…電圧基準値設定回路、Voff-set …オフセット値設定回路、I…充電電流、Vc…充電電圧   DESCRIPTION OF SYMBOLS 1 ... Constant current signal generation circuit, 2 ... Current decreasing signal generation circuit, 3 ... Constant voltage signal generation circuit, 4 ... PWM control circuit, 5 ... Charging power supply, 6 ... Charging apparatus, 7 ... Capacitor storage power supply, D11, D21, D31 ... Diode, R ... Current detection resistor, Vrefi ... Current reference value setting circuit, Vrefv ... Voltage reference value setting circuit, Voff-set ... Offset value setting circuit, I ... Charging current, Vc ... Charging voltage

Claims (5)

電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電電源からパルス幅変調手段によりパルス幅変調して充電電流を制御し充電を行うように構成したキャパシタ蓄電電源用充電装置において、
前記キャパシタ蓄電電源の充電電圧の増加に逆比例して充電電流を低減させる電流基準値と充電電流とを比較して誤差増幅信号を発生させる信号発生手段を備えたことを特徴とするキャパシタ蓄電電源用充電装置。
In a charging device for a capacitor storage power source configured to perform charging by controlling a charging current by performing pulse width modulation by a pulse width modulation unit from a charging power source with respect to a capacitor storage power source storing power in an electric double layer capacitor,
A capacitor storage power supply comprising signal generation means for generating an error amplification signal by comparing a charge current with a current reference value for reducing a charge current in inverse proportion to an increase in the charge voltage of the capacitor storage power supply. Charging device.
前記電流基準値は、前記キャパシタ蓄電電源の充電電圧を反転させてオフセット値により正値化して発生させることを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power source according to claim 1, wherein the current reference value is generated by inverting the charging voltage of the capacitor storage power source and making it positive by an offset value. 前記電流基準値は、演算増幅器の反転入力端子に抵抗を介してキャパシタ蓄電電源の充電電圧の検出信号を入力し、非反転入力端子にオフセット値を入力して、反転入力端子と出力端子との間に抵抗を接続して構成される減算回路より取り出されることを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 The current reference value is obtained by inputting a detection signal of the charging voltage of the capacitor storage power source through a resistor to the inverting input terminal of the operational amplifier, inputting an offset value to the non-inverting input terminal, and connecting the inverting input terminal and the output terminal. 2. The charging device for a capacitor storage power source according to claim 1, wherein the charging device is taken out from a subtracting circuit configured by connecting a resistor therebetween. 前記信号発生手段の誤差増幅信号は、充電電流を一定に制御する定電流信号発生手段の誤差増幅信号とオア論理回路を通して前記パルス幅変調手段に入力されることを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The error amplification signal of the signal generation means is input to the pulse width modulation means through an error amplification signal of an constant current signal generation means for controlling the charging current to be constant and an OR logic circuit. Charging device for capacitor storage power supply. 前記電気二重層キャパシタに所定の電圧で充電電流をバイパスする並列モニタを備えると共に、前記信号発生手段と前記オア論理回路との間にスイッチ回路を備え、前記並列モニタのバイパス動作信号により前記スイッチ回路を制御し、前記誤差増幅信号の有効/無効を制御するように構成したことを特徴とする請求項4記載のキャパシタ蓄電電源用充電装置。 The electric double layer capacitor is provided with a parallel monitor that bypasses a charging current at a predetermined voltage, and a switch circuit is provided between the signal generating means and the OR logic circuit, and the switch circuit according to a bypass operation signal of the parallel monitor. 5. The charging device for a capacitor storage power source according to claim 4, wherein the charging / discharging control unit controls the validity / invalidity of the error amplification signal.
JP2006040764A 2006-02-17 2006-02-17 Charging device for capacitor storage power supply Expired - Fee Related JP3907123B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006040764A JP3907123B1 (en) 2006-02-17 2006-02-17 Charging device for capacitor storage power supply
EP07102294A EP1821386A2 (en) 2006-02-17 2007-02-13 Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US11/707,097 US7622898B2 (en) 2006-02-17 2007-02-16 Charging or discharging apparatus for electrically charging or discharging a capacitor storage type power source adapted to store electric energy in electric double layer capacitors
CNA2007100841897A CN101026316A (en) 2006-02-17 2007-02-17 Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040764A JP3907123B1 (en) 2006-02-17 2006-02-17 Charging device for capacitor storage power supply

Publications (2)

Publication Number Publication Date
JP3907123B1 JP3907123B1 (en) 2007-04-18
JP2007221933A true JP2007221933A (en) 2007-08-30

Family

ID=38036314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040764A Expired - Fee Related JP3907123B1 (en) 2006-02-17 2006-02-17 Charging device for capacitor storage power supply

Country Status (2)

Country Link
JP (1) JP3907123B1 (en)
CN (1) CN101026316A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501933A (en) * 2007-09-10 2011-01-13 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド Adaptive current limit for any power supply with output equivalent series resistance
EP2034587A3 (en) * 2007-09-10 2012-08-15 Teknoware Oy Method and arrangement in conjunction with emergency light
JP2013048535A (en) * 2011-08-29 2013-03-07 Kano:Kk Charger for weak power
JP2013066279A (en) * 2011-09-16 2013-04-11 Seiko Epson Corp Circuit device and electronic device
JP2013150412A (en) * 2012-01-18 2013-08-01 Kyushu Electric Power Co Inc Variable output charger
JP2013211972A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Circuit device and electronic apparatus
US10587142B2 (en) 2017-05-31 2020-03-10 Denso Ten Limited Charge control device

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259219B2 (en) * 2008-03-19 2013-08-07 株式会社三社電機製作所 Power supply
JP5226753B2 (en) * 2010-10-04 2013-07-03 レノボ・シンガポール・プライベート・リミテッド Charging system and charging method
CN102081419B (en) * 2010-10-28 2013-06-12 华南理工大学 Automatic voltage regulating circuit and method for solar photovoltaic power generation system
CN201898358U (en) * 2010-11-04 2011-07-13 何大经 Multi-channel parallel connection CC battery charge-discharge circuit and component content/capacity detecting equipment comprising same
CN102487211B (en) * 2010-12-03 2015-04-22 比亚迪股份有限公司 Battery charging equipment
EP2512021B1 (en) * 2011-04-14 2017-07-19 Nxp B.V. A controller for a switched mode power converter
CN102946184B (en) * 2011-08-16 2017-04-19 惠州市科信达电子有限公司 Digital multifunctional driver
JP5786655B2 (en) * 2011-11-02 2015-09-30 ソニー株式会社 Control system, control device, and control method
CN102570408A (en) * 2011-12-31 2012-07-11 南京德朔实业有限公司 Over-discharge protection circuit for lithium battery
TWI479293B (en) 2012-06-06 2015-04-01 Mult-channel constant voltage and constant current converting controler and apparatus
CN103488218B (en) * 2012-06-14 2015-06-17 登丰微电子股份有限公司 Multi-channel constant-voltage and constant-current switching control circuit and multi-channel constant-voltage and constant-current switching control device
US9190900B2 (en) 2012-10-15 2015-11-17 Infineon Technologies Ag Active power factor corrector circuit
US9300326B2 (en) * 2012-11-01 2016-03-29 Qualcomm Incorporated Prevention of output supply boosting upon removal of input adapter
CN104167768B (en) * 2013-05-16 2018-05-15 中兴通讯股份有限公司 A kind of charging unit and charging method
CN104426473B (en) * 2013-09-03 2018-06-15 深圳市金威源科技股份有限公司 A kind of solar energy photovoltaic system control method and control device
CN103501032B (en) * 2013-10-11 2016-04-06 成都芯源系统有限公司 Battery discharge circuit and discharge method
EP3087653A4 (en) 2013-12-27 2017-08-02 Intel Corporation Charger of an electronic device
CN103701312A (en) * 2013-12-29 2014-04-02 上海艾为电子技术有限公司 Current limiting circuit and method of boost converter
US9601938B2 (en) * 2014-05-15 2017-03-21 Intel Corporation Battery charger for different power sources
US9660473B2 (en) * 2014-11-17 2017-05-23 O2Micro Inc Controllers for DC/DC converter
GB2534158A (en) * 2015-01-14 2016-07-20 Univ Plymouth Electrical conversion
CN106611986A (en) * 2015-10-26 2017-05-03 通用电气公司 System and method for pre-charging capacitor bank
KR20170071307A (en) * 2015-12-15 2017-06-23 엘지이노텍 주식회사 Power apparatus and method for controlling output current of the same
WO2017159035A1 (en) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 Discharge circuit and power storage device
CN105823920B (en) * 2016-05-16 2020-03-06 Tcl移动通信科技(宁波)有限公司 Charging voltage detection method and system
CN105896687B (en) * 2016-06-18 2018-03-27 河北工业大学 Intelligent charger based on PWM double-closed-loop controls
US10128751B1 (en) * 2017-05-10 2018-11-13 Lg Chem, Ltd. Control system for controlling a DC-DC voltage converter circuit
JP6711466B2 (en) * 2017-09-15 2020-06-17 株式会社村田製作所 Buck-boost device for power storage device and power storage device
WO2019058821A1 (en) * 2017-09-22 2019-03-28 株式会社村田製作所 Power storage apparatus
CN108445301A (en) * 2018-04-02 2018-08-24 华中科技大学 Metallization film capacitor discharging efficiency measuring device and method under a kind of high field intensity
CN108491024A (en) * 2018-04-24 2018-09-04 北京汉能光伏投资有限公司 Solar maximum power point tracks of device and method are realized using output controllable electric power
CN108572275B (en) * 2018-05-25 2024-04-02 杭州得诚电力科技股份有限公司 Inrush current detection system and detection method
CN110677041B (en) * 2018-07-03 2022-03-18 株式会社村田制作所 Control method and control device for DC converter
CN109302145B (en) * 2018-11-16 2019-11-29 合肥工业大学 A kind of photovoltaic array I-V characteristic detection device and detection method
JP7025716B2 (en) * 2018-11-29 2022-02-25 トヨタ自動車株式会社 Power system
US11919441B2 (en) 2018-12-14 2024-03-05 Rohm Co., Ltd. Lamp control device
CN110932531A (en) * 2019-11-26 2020-03-27 上海军陶电源设备有限公司 Drive circuit and power supply control circuit
CN113541286A (en) 2020-04-20 2021-10-22 台达电子企业管理(上海)有限公司 Self-adaptive power supply method of mobile X-ray machine and high-voltage generating device
CN111857228B (en) * 2020-07-27 2021-10-15 合肥工业大学 Micro-energy collection system and method using on-chip photovoltaic cell
CN112018844B (en) * 2020-08-24 2022-04-22 维沃移动通信有限公司 Charging parameter detection circuit and method and charger
CN113264144A (en) * 2021-07-19 2021-08-17 江苏巨亨智能科技有限公司 Self-charging auxiliary equipment of electric vehicle
CN114153258A (en) * 2021-11-26 2022-03-08 中国电子科技集团公司第四十三研究所 Power supply closed-loop feedback control circuit and control method
CN116403517B (en) * 2023-06-09 2023-08-29 中科(深圳)无线半导体有限公司 Self-adaptive control method for power source of LED display system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501933A (en) * 2007-09-10 2011-01-13 マキシム・インテグレーテッド・プロダクツ・インコーポレーテッド Adaptive current limit for any power supply with output equivalent series resistance
EP2034587A3 (en) * 2007-09-10 2012-08-15 Teknoware Oy Method and arrangement in conjunction with emergency light
JP2013048535A (en) * 2011-08-29 2013-03-07 Kano:Kk Charger for weak power
JP2013066279A (en) * 2011-09-16 2013-04-11 Seiko Epson Corp Circuit device and electronic device
JP2013150412A (en) * 2012-01-18 2013-08-01 Kyushu Electric Power Co Inc Variable output charger
JP2013211972A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Circuit device and electronic apparatus
US10587142B2 (en) 2017-05-31 2020-03-10 Denso Ten Limited Charge control device

Also Published As

Publication number Publication date
JP3907123B1 (en) 2007-04-18
CN101026316A (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP3907123B1 (en) Charging device for capacitor storage power supply
JP3922650B1 (en) Charging device for capacitor storage power supply
JP3922649B1 (en) Charging device for capacitor storage power supply
JP3945658B1 (en) Charging device for capacitor storage power supply
US20070139982A1 (en) Charge pump circuit and power supply apparatus
JP4049333B1 (en) Charge control device
US20120062189A1 (en) Switching regulator and control circuit and control method thereof
JP2007325445A (en) Capacitor storage power supply and charge/discharge controller for capacitor storage power supply
TWI634728B (en) Control circuit operating in pulse skip mode (psm) and voltage converter having the same
JP2010041891A (en) Charger
KR101962176B1 (en) Single inductor multi output dc/dc converter
US20100231184A1 (en) Step up and down switching power converter&#39;s output current detect and control scheme
US20220069692A1 (en) High efficiency, parallel, power conversion system with adaptive dynamic efficiency optimization
JP2008243728A (en) Power supply circuit device
JP2011024305A (en) Parallel drive power supply
JP2005287249A (en) Switching power supply
US9455632B1 (en) Voltage converter
JP2009100532A (en) Charger for capacitor storage power supplies
CN102684483B (en) Control circuit of switch-type adjuster and control method thereof
JP3871220B1 (en) Charging device for capacitor storage power supply
US8610420B2 (en) Switched and smart switched tracking power supply
JP4832240B2 (en) Multi-output power supply
JP6976145B2 (en) Power converter
JP6902719B2 (en) Converter system
CN116961158A (en) Switching charger for fast dynamic response load conversion state

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees