JP2009100532A - Charger for capacitor storage power supplies - Google Patents

Charger for capacitor storage power supplies Download PDF

Info

Publication number
JP2009100532A
JP2009100532A JP2007268907A JP2007268907A JP2009100532A JP 2009100532 A JP2009100532 A JP 2009100532A JP 2007268907 A JP2007268907 A JP 2007268907A JP 2007268907 A JP2007268907 A JP 2007268907A JP 2009100532 A JP2009100532 A JP 2009100532A
Authority
JP
Japan
Prior art keywords
current
charging
voltage
capacitor
storage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268907A
Other languages
Japanese (ja)
Inventor
Katsushi Mitsui
克司 三井
Atsushi Shimizu
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2007268907A priority Critical patent/JP2009100532A/en
Publication of JP2009100532A publication Critical patent/JP2009100532A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously charge a capacitor with a charging current slightly smaller than a charging current when it is fully charged. <P>SOLUTION: A capacitor storage power supply is so constructed that power is stored by series-connecting multiple electrical double layer capacitors bypassing a charging current with a predetermined voltage and having a parallel monitor outputting a full charge signal. A charger for capacitor storage power supplies is so constructed as to carry out pulse width modulation on charging power by a pulse width modulating means to control charging current and charge the capacitor storage power supply. A current reference value (Vref), which is one factor for the pulse width modulating means to determine a pulse width, is so controlled that it varies according to the frequency of an F signal, or the logical sum of full charge signals from the multiple parallel monitors. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定の電圧で充電電流をバイパスする並列モニタを備えた複数の電気二重層キャパシタを直列接続して蓄電するキャパシタ蓄電電源のための充電装置に関する。   The present invention relates to a charging device for a capacitor storage power source that stores a plurality of electric double layer capacitors connected in series with a parallel monitor that bypasses a charging current at a predetermined voltage.

複数の電気二重層キャパシタを直列接続して構成する高電圧大容量の蓄電電源装置においては、充放電量に応じて端子電圧が大きく変動する。したがって、二次電池のような定電圧充電を行うと効率が悪く、また、充電初期には大きな充電電流が流れ耐電流の問題が生じることもあって、定電流充電を行うことにより効率のよい充電を実現している。また、電気二重層キャパシタからなる蓄電電源では、直列接続した個々のキャパシタ間のバラツキによる問題を解決するため、各電気二重層キャパシタに所定の基準電圧で充電電流をバイパスして端子電圧(充電電圧)を制限する並列モニタが接続される。   In a high-voltage, large-capacity storage power supply device configured by connecting a plurality of electric double layer capacitors in series, the terminal voltage varies greatly depending on the amount of charge / discharge. Therefore, when performing constant voltage charging such as a secondary battery, the efficiency is low, and a large charging current flows in the initial stage of charging, which may cause a problem with current resistance. Realizes charging. In addition, in an electric storage power source composed of an electric double layer capacitor, in order to solve the problem due to the variation between individual capacitors connected in series, each electric double layer capacitor is bypassed with a predetermined reference voltage and a terminal voltage (charging voltage) is bypassed. ) Is connected to the parallel monitor.

並列モニタは、所定の基準電圧で充電電流をバイパスすることにより、充電電圧を所定値(耐電圧の範囲内)に制限し、充電電圧のバラツキを低減するものであるが、充電電圧の上昇とともに各電気二重層キャパシタの並列モニタが順次バイパス動作していくと、並列モニタでの電力損失が大きくなってしまう。並列モニタには耐電流上限値があるので、大電流で長時間のバイパス動作を回避させることが必要である。(例えば、非特許文献1、特許文献1参照)。
岡村廸夫著「電気二重層キャパシタと蓄電システム」1999年3月31日初版第1刷、日刊工業新聞社発行、第135頁、第145頁〜第159頁 特許第3306325号公報
The parallel monitor limits the charging voltage to a predetermined value (within the withstand voltage range) by bypassing the charging current at a predetermined reference voltage, and reduces the variation in the charging voltage. When the parallel monitor of each electric double layer capacitor sequentially performs a bypass operation, the power loss in the parallel monitor increases. Since the parallel monitor has a withstand current upper limit value, it is necessary to avoid a long-time bypass operation with a large current. (For example, refer nonpatent literature 1 and patent literature 1).
Ikuo Okamura “Electric Double Layer Capacitor and Power Storage System” March 31, 1999, first edition, first edition, published by Nikkan Kogyo Shimbun, pages 135, 145-159 Japanese Patent No. 3306325

上記のような並列モニタの概略について説明する。図7は並列モニタの回路構成の概略を示す図である。図7中、Cは電気二重層キャパシタ、CMPはコンパレータ、Dはダイオード、Trはトランジスタ、Vrは設定電圧を示す。複数の大容量のキャパシタを組み合わせて蓄電装置を構成する際に不可欠な条件として、キャパシタの直列接続時に生ずる、負担電圧の均等化の問題がある。並列モニタは、蓄電装置を構成する直列接続された複数のキャパシタのそれぞれの端子間に接続され、各キャパシタの充電電圧を設定電圧と比較するコンパレータを有し、その設定電圧を越えると充電電流をバイパスしたり、満充電を検出し満充電信号を発信したりする電圧監視制御装置であり、キャパシタの耐電圧の範囲で最大限の充電が可能となるようにしている。例えば図7に示すようにコンパレータCMPによってキャパシタCの電圧を設定電圧Vrと比較して監視し、キャパシタCの電圧が設定電圧Vrを越えるとトランジスタTrをオンにして充電電流をバイパスする。   An outline of the parallel monitor as described above will be described. FIG. 7 is a diagram showing an outline of the circuit configuration of the parallel monitor. In FIG. 7, C is an electric double layer capacitor, CMP is a comparator, D is a diode, Tr is a transistor, and Vr is a set voltage. As an indispensable condition for configuring a power storage device by combining a plurality of large-capacity capacitors, there is a problem of equalization of burden voltage that occurs when capacitors are connected in series. The parallel monitor is connected between terminals of a plurality of capacitors connected in series constituting the power storage device, and has a comparator that compares the charging voltage of each capacitor with a set voltage. It is a voltage monitoring and control device that bypasses or detects a full charge and transmits a full charge signal, so that the maximum charge is possible within the withstand voltage range of the capacitor. For example, as shown in FIG. 7, the voltage of the capacitor C is monitored by comparing with the set voltage Vr by the comparator CMP. When the voltage of the capacitor C exceeds the set voltage Vr, the transistor Tr is turned on to bypass the charging current.

以上のような並列モニタを備えた電気二重層キャパシタを直列接続してこのキャパシタに充電する充電装置について説明する。図8は、並列モニタを備えた複数の電気二重層キャパシタの充電装置の概略を示す図である。図8において、C1、C2、・・・Cnは直列接続された電気二重層キャパシタ、それぞれの電気二重層キャパシタC1、C2、・・・Cnに対して並列に接続されたM1、M2、・・・Mnは並列モニタを、CHは充電装置を示す。並列モニタM1、M2、・・・Mnは、電気二重層キャパシタC1、C2、・・・Cnのうちどれか一つのキャパシタが所定の電圧値となったとき、そのキャパシタにかかる電流をバイパスすると共に、所定の電圧値となったことを満充電信号として充電装置CHに対して出力する。   A charging device for charging an electric double layer capacitor provided with a parallel monitor as described above in series will be described. FIG. 8 is a diagram schematically showing a charging device for a plurality of electric double layer capacitors provided with a parallel monitor. 8, C1, C2,... Cn are electric double layer capacitors connected in series, M1, M2,... Cn connected in parallel to the electric double layer capacitors C1, C2,. Mn represents a parallel monitor, and CH represents a charging device. The parallel monitors M1, M2,... Mn bypass the current applied to any one of the electric double layer capacitors C1, C2,. Then, the fact that the predetermined voltage value is reached is output to the charging device CH as a full charge signal.

並列モニタには定格電流値(耐電流上限値)があるので、電気二重層キャパシタC1、C2、・・・Cnのうちどれか一つのキャパシタが所定の電圧値となり、電流をバイパスし始めたら、充電装置CHは充電電流を並列モニタの耐電流値までを落とす。その値は例えば数A程度であり、例えば10〜60A程度である充電電流に比べてはるかに小さい。なお、並列モニタからは電流のバイパス開始に合わせて満充電信号が出力されるので、充電装置CHは満充電信号を受信したら充電電流を並列モニタの耐電流値までを落とすようにする。   Since the parallel monitor has a rated current value (current resistance upper limit value), when any one of the electric double layer capacitors C1, C2,... Cn becomes a predetermined voltage value and starts to bypass the current, The charging device CH reduces the charging current to the withstand current value of the parallel monitor. The value is, for example, about several A, and is much smaller than the charging current, for example, about 10-60A. Since the full charge signal is output from the parallel monitor in accordance with the start of current bypass, the charging device CH reduces the charge current to the withstand current value of the parallel monitor when receiving the full charge signal.

ところで、電気二重層キャパシタにはキャパシタ成分以外に内部抵抗成分があり、その成分がどれだけあるかはキャパシタ外部からはわからない。図9は、電気二重層キャパシタの内部抵抗成分を含めた等価回路を示す。キャパシタはこのような内部抵抗成分を有するため、キャパシタの端子電圧が満充電電圧になったとしても実際には内部抵抗による電圧降下分を含んでいることになり、前記のように充電電流を耐電流値までを落としたとたんに(電圧降下が小さくなることによってVrが減少するので、端子電圧であるVr+Vcは満充電電圧に達せず、)満充電信号が出力されなくなってしまうという問題点があった。この内部抵抗による電圧降下は電流値が大きいほど大きい。並列モニタからの満充電信号の出力に応じて充電電流を先の耐電流値までしぼると、見かけ上で満充電電圧に達したキャパシタに対して、通常の充電電流よりはるかに小さい並列モニタの耐電流値で少しずつ充電しなければならなくなることとなる。   By the way, the electric double layer capacitor has an internal resistance component in addition to the capacitor component, and it is not known from the outside of the capacitor how much the component is present. FIG. 9 shows an equivalent circuit including the internal resistance component of the electric double layer capacitor. Since the capacitor has such an internal resistance component, even if the terminal voltage of the capacitor reaches the full charge voltage, it actually includes a voltage drop due to the internal resistance, and as described above, the charge current is tolerated. As soon as the current value is decreased (Vr decreases as the voltage drop decreases, Vr + Vc, which is the terminal voltage, does not reach the full charge voltage), the full charge signal is not output. It was. The voltage drop due to the internal resistance increases as the current value increases. If the charge current is reduced to the previous withstand voltage value according to the output of the full charge signal from the parallel monitor, the resistance of the parallel monitor is much smaller than the normal charge current for the capacitor that has reached the full charge voltage. It will be necessary to charge little by little at the current value.

電気二重層キャパシタを急速に充電するために、電流量が大きくすることが行われるが、上記のような問題のために、大きな電流で充電すると逆に、小さい電流で充電しなければならないキャパシタの容量が多く残って結局、充電時間が短縮できないという課題があった。   In order to quickly charge the electric double layer capacitor, the amount of current is increased. However, due to the problems described above, when charging with a large current, a capacitor that must be charged with a small current is used. As a result, there was a problem that the charging time could not be shortened due to the remaining capacity.

本発明は、上記課題を解決するものであって、請求項1に係る発明は、所定の電圧で充電電流をバイパスすると共に満充電信号を出力する並列モニタを備えた複数の電気二重層キャパシタを直列接続して蓄電するキャパシタ蓄電電源に対して充電電源からパルス幅変調手段によりパルス幅変調して充電電流を制御し充電を行うように構成したキャパシタ蓄電電源用充電装置において、前記パルス幅変調手段におけるパルス幅を決める1つの要素である電流基準値は、該複数の並列モニタからの満充電信号の論理和であるF信号の頻度に応じて変化するように制御されることを特徴とする。   The present invention solves the above-mentioned problem, and the invention according to claim 1 includes a plurality of electric double layer capacitors including a parallel monitor that bypasses a charging current at a predetermined voltage and outputs a full charge signal. In the capacitor storage power supply charging device configured to perform charging by controlling the charging current by performing pulse width modulation from the charge power supply by the pulse width modulation means to the capacitor storage power supply that is connected in series and stored, the pulse width modulation means The current reference value, which is one element that determines the pulse width in, is controlled so as to change according to the frequency of the F signal that is the logical sum of the full charge signals from the plurality of parallel monitors.

また、請求項2に係る発明は、請求項1に記載のキャパシタ蓄電電源用充電装置において、該電流基準値は、F信号の頻度に応じて漸減するように制御されることを特徴とする。   According to a second aspect of the present invention, in the capacitor storage power supply charging device according to the first aspect, the current reference value is controlled so as to gradually decrease in accordance with the frequency of the F signal.

また、請求項3に係る発明は、請求項1又は請求項2に記載のキャパシタ蓄電電源用充電装置において、前記電流基準値と充電電流とを比較して誤差増幅信号を発生させる信号発生手段を備えることを特徴とする。   According to a third aspect of the present invention, there is provided the capacitor storage power supply charging device according to the first or second aspect, wherein the signal generating means for generating an error amplification signal by comparing the current reference value with a charging current. It is characterized by providing.

本発明によれば、キャパシタの内部抵抗成分によって見かけ上満充電電圧に達したキャパシタに対して、電流基準値の漸減分、満充電に達したときの充電電流よりわずかに小さい充電電流でキャパシタを充電し続けることが可能となり、キャパシタを効率的に充電することができるようになる。また、満充電に達したときの充電電流よりわずかに小さい充電電流でキャパシタを充電し続けることが可能となるので、キャパシタ充電電流よりはるかに小さい並列モニタの耐電流値Isで少しずつ充電するということを避けることができ、キャパシタを効率的に充電することができる。   According to the present invention, with respect to a capacitor that has apparently reached a full charge voltage due to the internal resistance component of the capacitor, the capacitor is connected with a charging current that is slightly smaller than the charging current when the full charge is reached by gradually decreasing the current reference value. It becomes possible to continue charging, and the capacitor can be charged efficiently. Further, since it becomes possible to continue charging the capacitor with a charging current slightly smaller than the charging current when full charge is reached, charging is performed little by little with the withstand current value Is of the parallel monitor that is much smaller than the capacitor charging current. This can be avoided and the capacitor can be charged efficiently.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ蓄電電源用充電装置の実施の形態を示す図、図2は電流逓減充電(V−I制御)を説明する図である。図中、1は定電流信号発生回路、2は電流逓減信号発生回路、3は定電圧信号発生回路、4はPWM制御回路、5は充電電源、6は充電装置、7はキャパシタ蓄電電源、D11、D21、D31はダイオード、Rは電流検出用抵抗、Vrefiは電流基準値設定回路、Vrefvは電圧基準値設定回路、Voff−setはオフセット値設定回路、Iは充電電流、Vcは充電電圧、PM1乃至PMnは並列モニタを示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a charging device for a capacitor storage power source according to the present invention, and FIG. 2 is a diagram for explaining current diminishing charging (VI control). In the figure, 1 is a constant current signal generating circuit, 2 is a current decreasing signal generating circuit, 3 is a constant voltage signal generating circuit, 4 is a PWM control circuit, 5 is a charging power supply, 6 is a charging device, 7 is a capacitor storage power supply, D11 , D21, D31 are diodes, R is a current detection resistor, Vrefi is a current reference value setting circuit, Vrefv is a voltage reference value setting circuit, Voff-set is an offset value setting circuit, I is a charging current, Vc is a charging voltage, PM1 Thru | or PMn show a parallel monitor.

図1に示す本実施形態に係るキャパシタ蓄電電源用充電装置は、充電電源5から充電装置6を通して複数の電気二重層キャパシタを直列接続したキャパシタ蓄電電源7を充電し蓄電するものである。キャパシタ蓄電電源7を構成する複数の電気二重層キャパシタのそれぞれは、充電電圧が所定の基準電圧まで増加すると充電電流をバイパスする、所謂並列モニタPM1乃至PMnが並列接続される。そして、充電時において、それぞれの電気二重層キャパシタの充電電圧が不均等に充電されていっても、所定の基準電圧まで充電された電気二重層キャパシタの並列モニタから順次バイパス動作することにより、充電電流をバイパスして充電電圧を所定の基準電圧に制限する。したがって、最終的には電気二重層キャパシタの満充電電圧を所定の基準電圧として設定すると、各電気二重層キャパシタを満充電電圧に均等に充電することができる。   The capacitor storage power supply charging device according to the present embodiment shown in FIG. 1 charges and stores a capacitor storage power supply 7 in which a plurality of electric double layer capacitors are connected in series from the charging power supply 5 through the charging device 6. Each of the plurality of electric double layer capacitors constituting the capacitor storage power source 7 is connected in parallel with so-called parallel monitors PM1 to PMn that bypass the charging current when the charging voltage increases to a predetermined reference voltage. When charging, even if the charging voltage of each electric double layer capacitor is charged unevenly, by performing bypass operation sequentially from the parallel monitor of the electric double layer capacitor charged to a predetermined reference voltage, Bypassing the current, the charging voltage is limited to a predetermined reference voltage. Therefore, finally, when the full charge voltage of the electric double layer capacitor is set as a predetermined reference voltage, each electric double layer capacitor can be evenly charged to the full charge voltage.

所定の基準電圧まで充電された電気二重層キャパシタの並列モニタPM1乃至PMnが充電電流をバイパスするとき、その並列モニタでは、所定の基準電圧と充電電流、つまり、バイパス時の電圧と電流との積からなる電力が熱消費される。このことにより、並列モニタの動作時間が長いほど、またその数が多いほどキャパシタ蓄電電源7として電力損失、熱損失が大きくなる。その結果、並列モニタは、放熱効率を上げるため容量を大きくし構造的にも大型にしなければならなくなり、電力の無駄とともにスペースの無駄も大きくキャパシタ蓄電電源7の小型化が実現しにくくなる。そのため、本実施形態に係る充電装置5では、複数の電気二重層キャパシタのいずれかの並列モニタが動作する初期段階をキャパシタ蓄電電源7の充電電圧で判断し、充電電圧の増加に逆比例して充電電流を逓減させることで、並列モニタの小容量化、小型化を可能にする。   When the parallel monitors PM1 to PMn of the electric double layer capacitors charged to a predetermined reference voltage bypass the charging current, the parallel monitor calculates the product of the predetermined reference voltage and the charging current, that is, the voltage and the current when bypassing. The power consisting of is consumed by heat. As a result, the longer the operation time of the parallel monitor and the greater the number, the greater the power loss and heat loss of the capacitor storage power supply 7. As a result, the parallel monitor has to be increased in capacity and structurally large in order to increase heat dissipation efficiency, and waste of power and waste of space are large, and it is difficult to realize downsizing of the capacitor storage power source 7. Therefore, in the charging device 5 according to the present embodiment, the initial stage in which any one of the plurality of electric double layer capacitors operates in parallel is determined based on the charging voltage of the capacitor storage power source 7, and is inversely proportional to the increase in the charging voltage. By reducing the charging current, the capacity and size of the parallel monitor can be reduced.

また、所定の基準電圧まで充電された電気二重層キャパシタの並列モニタPM1乃至PMnからは満充電信号(図7参照)が出力される。それぞれの電気二重層キャパシタから出力された満充電信号は論理和がとられ、キャパシタ蓄電電源7全体としてのF信号として出力される。このようなF信号は、電流基準値設定回路Vrefi、オフセット値設定回路Voff−setに入力されて、それぞれの基準電圧の設定のために用いられる。   Further, a full charge signal (see FIG. 7) is output from the parallel monitors PM1 to PMn of the electric double layer capacitors charged to a predetermined reference voltage. The full charge signals output from the electric double layer capacitors are logically summed and output as an F signal for the capacitor storage power supply 7 as a whole. Such an F signal is input to the current reference value setting circuit Vrefi and the offset value setting circuit Voff-set, and is used for setting the respective reference voltages.

充電装置5は、充電電流Iを検出して電流基準値設定回路で設定された所定の電流基準値Vrefiと比較し、充電電流Iが一定になり(定電流充電)、所定電圧までキャパシタ蓄電電源7が充電されると、充電電圧の増加に逆比例して充電電流を逓減させる(電流逓減制御:V−I制御)ようにPWM(Pulse Width Modulation :パルス幅変調)制御する。そのための具体的な構成として、例えばPWM制御回路4、定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3、これら信号発生回路からの誤差増幅信号をPWM制御回路4に選択切り換え入力するためのダイオードD11、D21、D31からなるオア論理回路等を備える。   The charging device 5 detects the charging current I and compares it with a predetermined current reference value Vrefi set by the current reference value setting circuit, the charging current I becomes constant (constant current charging), and the capacitor storage power supply up to a predetermined voltage When 7 is charged, PWM (Pulse Width Modulation) control is performed so that the charging current is decreased in inverse proportion to the increase of the charging voltage (current decreasing control: V-I control). For example, the PWM control circuit 4, the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, the constant voltage signal generation circuit 3, and error amplification signals from these signal generation circuits are supplied to the PWM control circuit 4 as specific configurations for that purpose. An OR logic circuit including diodes D11, D21, and D31 for selection switching input is provided.

定電流信号発生回路1は、充電回路に直列に挿入接続した電流検出用抵抗Rの端子間の電圧降下を充電電流Iの検出信号として取り出してこれを制御対象として入力し、コンパレータの基準値として電流基準値設定回路で設定されている電流基準値Vrefiと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電流信号発生回路1から出力される誤差増幅信号は、入力される制御対象の充電電流Iが電流基準値Vrefiより小さければ出力値は大きくなり、充電電流Iが電流基準値Vrefiより大きければ出力値は小さくなる。PWM制御回路4では、この誤差増幅信号を入力すると、充電電流Iが電流基準値Vrefiより小さいときは充電電流Iを大きくし、逆に充電電流Iが電流基準値Vrefiより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電流基準値Vrefiに基づき充電電流Iが一定になるように充電電流を制御する、定電流充電の制御モードCCが実行される。   The constant current signal generating circuit 1 takes out the voltage drop between the terminals of the current detection resistor R inserted and connected in series with the charging circuit as a detection signal of the charging current I, and inputs this as a control object, as a reference value for the comparator Compared with the current reference value Vrefi set by the current reference value setting circuit, the error amplification circuit outputs an error amplification signal. Therefore, the error amplification signal output from the constant current signal generation circuit 1 has a larger output value if the input charging current I to be controlled is smaller than the current reference value Vrefi, and the charging current I is larger than the current reference value Vrefi. The output value becomes smaller. When this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging current I is smaller than the current reference value Vrefi, and conversely when the charging current I is larger than the current reference value Vrefi. Since the pulse width (duty ratio) is controlled according to the magnitude of the input error amplification signal so as to decrease the charging current, the charging current is controlled so that the charging current I becomes constant based on the current reference value Vrefi as a result. The constant current charging control mode CC is executed.

定電流信号発生回路1に対し、電流逓減信号発生回路2は、図2(a)に示すようにキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例して充電電流Iを小さくする電流基準値Vref(v−i)を発生させ、この電流基準値Vref(v−i)と制御対象の充電電流Iを比較して、その誤差増幅信号を出力するものである。電流基準値Vref(v−i)は、例えば図2(a)に示すようにキャパシタ蓄電電源7の充電電圧Vcを反転させ(Vout =−Vin)、オフセット値Voff−setで正値化(=Voff−set − Vin)することにより発生させる。したがって、PWM制御回路4では、この誤差増幅信号を入力すると、キャパシタ蓄電電源7の充電電圧Vcが小さいときには充電電流Iを大きくし、キャパシタ蓄電電源7の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減(V−I)の制御モードCP′が実行される。   In contrast to the constant current signal generating circuit 1, the current diminishing signal generating circuit 2 is a current reference value that decreases the charging current I in inverse proportion to the increase in the charging voltage Vc of the capacitor storage power source 7 as shown in FIG. Vref (vi) is generated, the current reference value Vref (vi) is compared with the charging current I to be controlled, and an error amplification signal is output. For example, as shown in FIG. 2A, the current reference value Vref (vi) is inverted by charging the capacitor storage power supply 7 (Vout = −Vin), and is made positive by the offset value Voff−set (= Voff-set-Vin). Therefore, when this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging voltage Vc of the capacitor storage power supply 7 is small, and the charging voltage Vc of the capacitor storage power supply 7 increases and reverses the increase. A current diminishing (V-I) control mode CP ′ is executed in which the charging current is controlled to decrease the charging current I in proportion.

定電圧信号発生回路3は、キャパシタ蓄電電源7の充電電圧Vcを検出し、これを制御対象の充電電圧Vcとして入力し電圧基準値設定回路で予め設定される電圧基準値Vrefvと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電圧信号発生回路3から出力される誤差増幅信号は、入力される制御対象の充電電圧Vcが電圧基準値Vrefvより小さければ出力値は大きくなり、充電電圧Vcが電圧基準値Vrefvより大きければ出力値は小さくなる。PWM制御回路4は、この誤差増幅信号を入力すると、充電電圧Vcが電圧基準値Vrefvより小さいときは充電電流Iを大きくし、逆に充電電圧Vcが電圧基準値Vrefvより大きいときは充電電流Iを小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   The constant voltage signal generation circuit 3 detects the charging voltage Vc of the capacitor storage power source 7, inputs this as the charging voltage Vc to be controlled, and compares it with the voltage reference value Vrefv preset by the voltage reference value setting circuit. An error amplification circuit that outputs the error amplification signal is configured. Therefore, the error amplification signal output from the constant voltage signal generation circuit 3 has an output value that is larger if the input charging voltage Vc to be controlled is smaller than the voltage reference value Vrefv, and the charging voltage Vc is larger than the voltage reference value Vrefv. The output value becomes smaller. When this error amplification signal is input, the PWM control circuit 4 increases the charging current I when the charging voltage Vc is smaller than the voltage reference value Vrefv, and conversely, when the charging voltage Vc is larger than the voltage reference value Vrefv. The constant voltage charging control mode CV is executed to control the charging current so as to reduce the current.

ダイオードD11、D21、D31は、誤差増幅信号を出力する定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3のそれぞれから逆方向の極性でPWM制御回路4の入力に接続されているので、定電流信号発生回路1、電流逓減信号発生回路2、定電圧信号発生回路3の出力するそれぞれの誤差増幅信号のうち最も小さい誤差増幅信号をPWM制御回路4の入力とするオア論理回路を構成している。次に、図2(b)を参照しつつこのオア論理回路により行われる充電モードの切り換え制御(CC→CP′→CV)について説明する。   The diodes D11, D21, and D31 are connected to the input of the PWM control circuit 4 with opposite polarities from the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, and the constant voltage signal generation circuit 3 that output error amplification signals, respectively. Therefore, the smallest error amplification signal among the error amplification signals output from the constant current signal generation circuit 1, the current diminishing signal generation circuit 2, and the constant voltage signal generation circuit 3 is input to the PWM control circuit 4. A logic circuit is configured. Next, the charge mode switching control (CC → CP ′ → CV) performed by the OR logic circuit will be described with reference to FIG.

まず、充電を開始する初期の段階では、ダイオードD11がオン、ダイオードD21、D31がオフの状態で定電流充電の制御モードCCが実行される。すなわち、初期の段階でキャパシタ蓄電電源7の充電電圧Vcが小さく、定電流信号発生回路1の出力する誤差増幅信号に基づきPWM制御回路4が定電流充電の制御モードCCを実行しているときには、電流逓減信号発生回路2、定電圧信号発生回路3においてはいずれも制御対象が、比較する基準値より小さく、大きい値の誤差増幅信号を出力しても、充電電流Iもキャパシタ蓄電電源7の充電電圧Vcも大きくならず誤差増幅信号が上限値にはりついた状態になるから、ダイオードD21、D31が逆方向にバイアスされオフとなる。   First, in the initial stage of starting charging, the constant current charging control mode CC is executed with the diode D11 turned on and the diodes D21 and D31 turned off. That is, when the charging voltage Vc of the capacitor storage power source 7 is small in the initial stage and the PWM control circuit 4 is executing the constant current charging control mode CC based on the error amplification signal output from the constant current signal generating circuit 1, In both the current diminishing signal generating circuit 2 and the constant voltage signal generating circuit 3, even if the control target is smaller than the reference value to be compared and outputs an error amplification signal having a large value, the charging current I is charged to the capacitor storage power source 7 as well. Since the voltage Vc does not increase and the error amplification signal is stuck to the upper limit value, the diodes D21 and D31 are biased in the reverse direction and turned off.

次に、定電流充電を続けることによりキャパシタ蓄電電源7の充電電圧Vcが増加してゆき、電流逓減信号発生回路2における電流基準値Vref(v−i)が徐々に小さくなって、電流基準値Vref(v−i)が定電流信号発生回路1の電流基準値Vrefiより小さくなると、電流逓減信号発生回路2から出力される誤差増幅信号が定電流信号発生回路1から出力される誤差増幅信号より小さくなる。ここから、定電流信号発生回路1の出力に接続されたダイオードD11がオフになって、電流逓減信号発生回路2の出力に接続されたダイオードD21がオンに切り換わり、キャパシタ蓄電電源7の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減(V−I)の制御モードCP′が実行される。この切り換えポイントを図2(b)ではキャパシタ蓄電電源7の充電電圧VcがVstとなるポイントで表している。   Next, by continuing constant current charging, the charging voltage Vc of the capacitor storage power source 7 increases, and the current reference value Vref (vi) in the current diminishing signal generation circuit 2 gradually decreases, so that the current reference value When Vref (v−i) becomes smaller than the current reference value Vrefi of the constant current signal generation circuit 1, the error amplification signal output from the current diminishing signal generation circuit 2 is more than the error amplification signal output from the constant current signal generation circuit 1. Get smaller. From this point, the diode D11 connected to the output of the constant current signal generation circuit 1 is turned off, the diode D21 connected to the output of the current diminishing signal generation circuit 2 is turned on, and the charging voltage of the capacitor storage power supply 7 is switched on. A control mode CP ′ for decreasing current (VI) is executed, in which the charging current is controlled to decrease the charging current I in inverse proportion to the increase in Vc. In FIG. 2B, this switching point is represented by a point at which the charging voltage Vc of the capacitor storage power source 7 becomes Vst.

さらに、キャパシタ蓄電電源7の充電電圧Vcが増加してゆき、定電圧信号発生回路3における電圧基準値Vrefvより大きくなると、定電圧信号発生回路3から出力される誤差増幅信号が電流逓減信号発生回路2から出力される誤差増幅信号より小さくなり、電流逓減信号発生回路2の出力に接続されたダイオードD21がオフになって、定電圧信号発生回路3の出力に接続されたダイオードD31がオンに切り換わり、充電電圧Vcを電圧基準値Vrefvより小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。この切り換えポイントを図2(b)ではキャパシタ蓄電電源7の充電電圧VcがVfuとなるポイントで表している。   Further, when the charging voltage Vc of the capacitor storage power supply 7 increases and becomes larger than the voltage reference value Vrefv in the constant voltage signal generation circuit 3, the error amplification signal output from the constant voltage signal generation circuit 3 is converted into a current diminishing signal generation circuit. 2 is smaller than the error amplification signal output from 2, the diode D21 connected to the output of the current diminishing signal generation circuit 2 is turned off, and the diode D31 connected to the output of the constant voltage signal generation circuit 3 is turned on. Instead, a constant voltage charging control mode CV is executed in which the charging current is controlled so that the charging voltage Vc is smaller than the voltage reference value Vrefv. In FIG. 2B, this switching point is represented by a point at which the charging voltage Vc of the capacitor storage power source 7 becomes Vfu.

次に、具体的な信号発生回路の構成について説明する。図3は定電流信号発生回路及び電流逓減信号発生回路の実施の形態を示す図、図4は電流逓減信号発生回路の他の実施形態を示す図、図5は基準値設定回路の実施の形態を示す図であり、11、21、22は演算増幅器、23は論理処理回路、71は電気二重層キャパシタ、72は並列モニタ、AS、AS1、AS1′はアナログスイッチ、C11、C21、C31、Cr1はコンデンサ、R11、R21、R22、R23、R31、R32、R33、R34、R35、Rr1は抵抗、Rrv、Rrv′は可変抵抗、Trはトランジスタ、+Vはバイアス電源を示す。   Next, a specific configuration of the signal generation circuit will be described. 3 is a diagram showing an embodiment of a constant current signal generating circuit and a current decreasing signal generating circuit, FIG. 4 is a diagram showing another embodiment of the current decreasing signal generating circuit, and FIG. 5 is an embodiment of a reference value setting circuit. 11, 21, 22 are operational amplifiers, 23 is a logic processing circuit, 71 is an electric double layer capacitor, 72 is a parallel monitor, AS, AS1, AS1 ′ are analog switches, C11, C21, C31, Cr1 Is a capacitor, R11, R21, R22, R23, R31, R32, R33, R34, R35, Rr1 are resistors, Rrv, Rrv ′ are variable resistors, Tr is a transistor, and + V is a bias power supply.

図3において、定電流信号発生回路1は、演算増幅器11において、その反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vrefiを入力して、反転入力端子−と出力端子との間にコンデンサC11と抵抗R11との直列回路を接続することにより誤差増幅回路を構成している。同様に、電流逓減信号発生回路2は、演算増幅器21において、その反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vref(v−i)を入力して、反転入力端子−と出力端子との間にコンデンサC21と抵抗R21との直列回路を接続することにより誤差増幅回路を構成している。   In FIG. 3, the constant current signal generation circuit 1 inputs a detection signal of the charging current I to its inverting input terminal − and inputs the current reference value Vrefi to the non-inverting input terminal + in the inverting input terminal − of the operational amplifier 11. An error amplifying circuit is configured by connecting a series circuit of a capacitor C11 and a resistor R11 between the terminal-and the output terminal. Similarly, the current diminishing signal generating circuit 2 inputs the detection signal of the charging current I to its inverting input terminal − and inputs the current reference value Vref (v−i) to the non-inverting input terminal + in the operational amplifier 21. Thus, an error amplifier circuit is configured by connecting a series circuit of a capacitor C21 and a resistor R21 between the inverting input terminal − and the output terminal.

また、電流基準値Vref(v−i)は、先に述べたようにキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例する値であり、例えば図3(b)に示すように演算増幅器22において、その反転入力端子−に抵抗R22を介してキャパシタ蓄電電源7の充電電圧Vcの検出信号を入力し、非反転入力端子+にオフセット値Voff−set を入力して、反転入力端子−と出力端子との間に抵抗R23を接続することにより減算回路を構成している。この減算回路によればVoff−set +(Voff−set −Vc)R23/R22(ここで、R23=R22とすると、2Voff−set −Vc)の電流基準値Vref(v−i)が取り出され、Voff−set を図2(b)のVstと一致する値に設定すると、キャパシタ蓄電電源7の充電電圧VcがVoff−setまで増加したとき、定電流信号発生回路1と電流逓減信号発生回路2の基準値が同値となるので、ここから電流逓減の制御モードに切り換わる設定となる。   The current reference value Vref (vi) is a value that is inversely proportional to the increase in the charging voltage Vc of the capacitor storage power supply 7 as described above. For example, as shown in FIG. , The detection signal of the charging voltage Vc of the capacitor storage power supply 7 is input to the inverting input terminal − via the resistor R22, the offset value Voff-set is input to the non-inverting input terminal +, and the inverting input terminal − and the output A subtracting circuit is configured by connecting a resistor R23 between the terminals. According to this subtraction circuit, a current reference value Vref (vi) of Voff−set + (Voff−set−Vc) R23 / R22 (where R23 = R22 is 2Voff−set−Vc) is taken out. When Voff-set is set to a value that coincides with Vst in FIG. 2B, when the charging voltage Vc of the capacitor storage power supply 7 increases to Voff-set, the constant current signal generation circuit 1 and the current diminishing signal generation circuit 2 Since the reference value becomes the same value, the setting is switched from here to the current diminishing control mode.

図3に示す実施の形態は、一定になるように充電電流を制御する定電流信号発生回路1からの信号とキャパシタ蓄電電源7の充電電圧Vcの増加に逆比例して小さくなるように充電電流を制御する電流逓減信号発生回路2からの信号とをダイオードD11、D21のオア論理回路で自動切り換えするものであるが、キャパシタ蓄電電源7の各電気二重層キャパシタに接続されている並列モニタの動作を条件に制御モードを切り換えるように構成した実施の形態を示したのが図4である。   In the embodiment shown in FIG. 3, the charging current is reduced in inverse proportion to the signal from the constant current signal generation circuit 1 that controls the charging current so as to be constant and the increase in the charging voltage Vc of the capacitor storage power source 7. The operation of the parallel monitor connected to each electric double layer capacitor of the capacitor storage power source 7 is automatically switched by the OR logic circuit of the diodes D11 and D21. FIG. 4 shows an embodiment configured to switch the control mode on the condition of.

図4に示す実施の形態では、電流逓減信号発生回路2における演算増幅器21の出力とオア論理回路のダイオードD21との間にアナログスイッチASを直列に挿入し、論理処理回路23の出力によりアナログスイッチASを制御している。ここで、論理処理回路23は、キャパシタ蓄電電源7の各電気二重層キャパシタ71に接続されている並列モニタ72の満充電信号Fを論理処理するものであり、例えばオア論理処理することにより、いずれかの1つの並列モニタ72がオンになったことを条件としてアナログスイッチASをオンにする。並列モニタ72は、各キャパシタに並列に接続され、キャパシタの満充電を検出すると、充電電流をバイパスすることにより、電圧の上昇を抑えて初期化を行うと共に、満充電になると満充電電圧の判定により満充電信号Fを送出するものである。このような満充電信号Fをオア論理処理することにより、いずれか1つの並列モニタ72がオンになるまでは、定電流充電を継続し、いずれか1つの並列モニタ72がオンになった後は、図4(b)に示すように充電電流を低減させると共に、電流逓減(V−I)の制御モードに切り換えるようにする。このようにしてさらに図2(b)に示すVstのポイント(オフセット値Voff−set )を小さめに設定しておくと、キャパシタ蓄電電源7の各電気二重層キャパシタ71の充電電圧にバラツキが大きく、キャパシタ蓄電電源7の充電電圧Vcが小さめで最初の並列モニタがバイパス動作すると、図4(b)に示すイのタイミングで制御モードが切り換わり、バラツキが小さく、キャパシタ蓄電電源7の充電電圧Vcが大きくなって最初の並列モニタがバイパス動作すると、図4(b)に示すロのタイミングまで制御モードの切り換えを延ばし、充電効率を上げることができる。また、オンになった並列モニタ72が所定数であることを判断してその条件によりアナログスイッチASをオンにする論理処理回路23の構成としてもよい。   In the embodiment shown in FIG. 4, an analog switch AS is inserted in series between the output of the operational amplifier 21 in the current diminishing signal generating circuit 2 and the diode D 21 of the OR logic circuit, and the analog switch is output by the output of the logic processing circuit 23. AS is controlled. Here, the logic processing circuit 23 performs logic processing on the full charge signal F of the parallel monitor 72 connected to each electric double layer capacitor 71 of the capacitor storage power source 7, and for example, by performing OR logic processing, The analog switch AS is turned on on condition that one of the parallel monitors 72 is turned on. The parallel monitor 72 is connected in parallel to each capacitor. When the full charge of the capacitor is detected, the parallel monitor 72 bypasses the charge current to perform initialization while suppressing the voltage rise, and when full charge is reached, the full charge voltage is determined. The full charge signal F is sent out by. By performing OR logic processing on such a full charge signal F, constant current charging is continued until any one parallel monitor 72 is turned on, and after any one parallel monitor 72 is turned on, As shown in FIG. 4B, the charging current is reduced and the mode is switched to the current diminishing (V-I) control mode. If the Vst point (offset value Voff-set) shown in FIG. 2 (b) is further set in this way, the charging voltage of each electric double layer capacitor 71 of the capacitor storage power supply 7 has a large variation. When the charging voltage Vc of the capacitor storage power supply 7 is small and the first parallel monitor performs a bypass operation, the control mode is switched at the timing shown in FIG. 4B, the variation is small, and the charging voltage Vc of the capacitor storage power supply 7 is When the first parallel monitor is increased and the bypass operation is performed, the switching of the control mode can be extended to the timing shown in FIG. 4B to increase the charging efficiency. Alternatively, the logic processing circuit 23 may be configured to determine that the number of parallel monitors 72 turned on is a predetermined number and turn on the analog switch AS according to the condition.

次に各基準値設定回路について説明する。まず、図5(a)、(b)を参照して電流基準値設定回路Vrefi、オフセット値設定回路Voff−setについて説明する。電流基準値の設定回路部Vrefi、オフセット値の設定回路部Voff−setは、キャパシタ蓄電電源7全体としてのF信号が入力されると、F信号のオンデューティー比に応じて、電流基準値Vrefi、オフセット値Voff−set(以下、これらをまとめてVrefと表記することもある。)が漸減するような回路が用いられる。   Next, each reference value setting circuit will be described. First, the current reference value setting circuit Vrefi and the offset value setting circuit Voff-set will be described with reference to FIGS. The current reference value setting circuit unit Vrefi and the offset value setting circuit unit Voff-set receive the current reference value Vrefi, depending on the on-duty ratio of the F signal, when the F signal as the entire capacitor storage power supply 7 is input. A circuit is used in which the offset value Voff-set (hereinafter sometimes collectively referred to as Vref) gradually decreases.

本発明では、以上のような基準値設定回路が用いられており、F信号のオンデューティー比に応じて、電流基準値Vrefi、オフセット値Voff−setが漸減されるようになっており、これに応じて、満充電に達したときの充電電流よりわずかに小さい充電電流でキャパシタを充電し続けることが可能となる。図5(a)の電流基準値の設定回路部Vrefi(又は、オフセット値の設定回路部Voff−set)においては、スイッチング素子となるトランジスタTrのベースと入力端子との間に抵抗R36が接続されると共にそのベースと接地ラインとの間にR35が直列接続されている。トランジスタTrのエミッタが接地ラインに接続され、そのコレクタと電源+Vとの間に抵抗R31、R32、R34が接続されている。抵抗R23とコンデンサC31などによってフィルタ回路が構成されており、コンデンサC31の両端の電圧が電流基準値Vrefとして出力されるようになっている。   In the present invention, the reference value setting circuit as described above is used, and the current reference value Vrefi and the offset value Voff-set are gradually reduced according to the on-duty ratio of the F signal. Accordingly, it is possible to continue charging the capacitor with a charging current slightly smaller than the charging current when full charge is reached. In the current reference value setting circuit unit Vrefi (or the offset value setting circuit unit Voff-set) in FIG. 5A, a resistor R36 is connected between the base of the transistor Tr serving as a switching element and the input terminal. R35 is connected in series between the base and the ground line. The emitter of the transistor Tr is connected to the ground line, and resistors R31, R32, and R34 are connected between the collector and the power source + V. The resistor R23, the capacitor C31, and the like constitute a filter circuit, and the voltage across the capacitor C31 is output as the current reference value Vref.

このように構成される電流基準値設定回路Vrefiの入力端子にF信号のパルス信号が印加されると、そのパルス信号に同期してトランジスタTrがオン、オフされ、このパルス信号に同期してトランジスタTrに電流が流れる。それに応じて、コンデンサC31両端の電圧−Vref−は、図5(b)に示すようなプロフィールの電圧となる。すなわち、電流基準値設定回路Vrefiでは、F信号のオンデューティー比が大きいほど、電流基準値Vrefiが低減するような動作となる。   When the pulse signal of the F signal is applied to the input terminal of the current reference value setting circuit Vrefi configured as described above, the transistor Tr is turned on and off in synchronization with the pulse signal, and the transistor is synchronized with the pulse signal. A current flows through Tr. Accordingly, the voltage −Vref− across the capacitor C31 has a profile voltage as shown in FIG. That is, the current reference value setting circuit Vrefi operates such that the current reference value Vrefi decreases as the on-duty ratio of the F signal increases.

以上のような基準値設定回路用いることによって本発明では、キャパシタの内部抵抗成分によって見かけ上満充電電圧に達したキャパシタに対して、電流基準値の漸減分、満充電に達したときの充電電流よりわずかに小さい充電電流でキャパシタを充電し続けることが可能となり、キャパシタを効率的に充電することができるようになる。また、満充電に達したときの充電電流よりわずかに小さい充電電流でキャパシタを充電し続けることが可能となるので、キャパシタ充電電流よりはるかに小さい並列モニタの耐電流値Isで少しずつ充電するということを避けることができ、キャパシタを効率的に充電することができる。   By using the reference value setting circuit as described above, in the present invention, the charging current when the full charge is reached by the gradual decrease of the current reference value with respect to the capacitor that apparently reaches the full charge voltage due to the internal resistance component of the capacitor. The capacitor can be continuously charged with a slightly smaller charging current, and the capacitor can be efficiently charged. Further, since it becomes possible to continue charging the capacitor with a charging current slightly smaller than the charging current when full charge is reached, charging is performed little by little with the withstand current value Is of the parallel monitor that is much smaller than the capacitor charging current. This can be avoided and the capacitor can be charged efficiently.

電圧基準値設定回路Vrefvは、周知の様々な回路で構成することができるが、例えば図7に示すように構成することができる。すなわち、図5(c)に示すように安定化されたバイアス電源+Vを固定抵抗Rr1と可変抵抗Rrvとの分圧回路で分圧し、その分圧接続点から基準値Vrefを取り出し、可変抵抗Rrvにより所定の電圧に調整する。なお、コンデンサCr1はノイズ対策用として可変抵抗Rrvに並列接続しているものである。また、図5(d)に示すようにアナログスイッチAS1を介して同様の回路を並列に接続してアナログスイッチAS1のオン/オフにより基準値を切り換えられるようにしてもよいし、また、このような基準値の切り換えは、アナログスイッチAS1′を介して可変抵抗Rrvと並列に可変抵抗Rrv′を接続できるようにしてもよい。このように基準値の切り換えをアナログスイッチAS1、AS1′により行うように構成した場合には、例えばこれを電流基準値設定回路Vrefiに採用すると、所定の条件により定電流充電の値を段階的に切り換えることができるので、先に説明した論理処理回路23の出力信号を切り換え信号とすることにより、並列モニタ72の動作に応じて定電流充電の充電電流を切り換えることができる。   The voltage reference value setting circuit Vrefv can be constituted by various known circuits, for example, as shown in FIG. That is, as shown in FIG. 5C, the stabilized bias power source + V is divided by the voltage dividing circuit of the fixed resistor Rr1 and the variable resistor Rrv, the reference value Vref is taken out from the voltage dividing connection point, and the variable resistor Rrv is obtained. To adjust to a predetermined voltage. The capacitor Cr1 is connected in parallel to the variable resistor Rrv as a noise countermeasure. Further, as shown in FIG. 5D, a similar circuit may be connected in parallel via the analog switch AS1, and the reference value may be switched by turning on / off the analog switch AS1. For switching the reference value, the variable resistor Rrv ′ may be connected in parallel with the variable resistor Rrv via the analog switch AS1 ′. When the reference value is switched by the analog switches AS1 and AS1 ′ in this way, for example, when this is adopted in the current reference value setting circuit Vrefi, the constant current charging value is stepwise according to a predetermined condition. Since the switching can be performed, the charging current for constant current charging can be switched according to the operation of the parallel monitor 72 by using the output signal of the logic processing circuit 23 described above as a switching signal.

図6はPWM制御されるスイッチングコンバータを備えた充電装置の実施の形態を示す図であり、61は制御回路、62は誤差信号発生回路、C1、C2はコンデンサ、Dはダイオード、Lはコイル、Rは電流検出抵抗、SW1、SW2はスイッチ素子、Iは充電電流、Vcは充電電圧、Viは電源電圧を示す。   FIG. 6 is a diagram showing an embodiment of a charging device including a PWM-controlled switching converter, in which 61 is a control circuit, 62 is an error signal generation circuit, C1 and C2 are capacitors, D is a diode, L is a coil, R is a current detection resistor, SW1 and SW2 are switch elements, I is a charging current, Vc is a charging voltage, and Vi is a power supply voltage.

図6(a)に示す充電装置は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のスイッチ素子SWとチョークコイルLを直列に接続し、これらの直列接続点に並列にダイオードDを逆極性に接続するとともに、入力側及び出力側に並列にコンデンサC1、C2を接続して、PWM信号によりスイッチ素子SWをオン/オフして充電電流を供給する降圧タイプのスイッチングコンバータを備え、充電電流を検出するため電流検出用抵抗Rを直列に挿入接続している。また、図6(b)に示す充電装置は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のチョークコイルLとスイッチ素子SW2を直列に接続し、これらの直列接続点に並列にスイッチ素子SW1を接続するとともに、入力側及び出力側に並列にコンデンサC1、C2を接続して、PWM信号によりスイッチ素子SW1をオン/オフしスイッチ素子SW2をその逆相でオフ/オンして充電電流を供給する昇圧タイプのスイッチングコンバータを備え、充電電流を検出するため電流検出用抵抗Rを直列に挿入接続している。そして、PWM制御回路61がPWM信号をスイッチ素子SW、SW1、SW2を供給し、誤差信号発生回路62がPWM制御回路61に充電電流I、キャパシタ蓄電電源7の充電電圧Vc、基準値、オフセット値に基づき先に述べた誤差増幅信号を供給する。   In the charging device shown in FIG. 6A, a charging control switch element SW and a choke coil L are connected in series between a charging power supply 5 and a capacitor storage power supply 7, and a diode D is connected in parallel to these series connection points. Is connected to capacitors C1 and C2 in parallel on the input side and the output side, and includes a step-down type switching converter that turns on / off the switch element SW by a PWM signal and supplies a charging current, In order to detect the charging current, a current detection resistor R is inserted and connected in series. Further, in the charging device shown in FIG. 6B, a charging control choke coil L and a switch element SW2 are connected in series between the charging power source 5 and the capacitor storage power source 7, and in parallel with these series connection points. The switch element SW1 is connected, and capacitors C1 and C2 are connected in parallel to the input side and the output side. The switch element SW1 is turned on / off by the PWM signal, and the switch element SW2 is turned off / on in the opposite phase to charge. A step-up type switching converter that supplies current is provided, and a current detection resistor R is inserted and connected in series to detect a charging current. The PWM control circuit 61 supplies the PWM signal to the switch elements SW, SW1, and SW2, and the error signal generation circuit 62 supplies the PWM control circuit 61 with the charging current I, the charging voltage Vc of the capacitor storage power source 7, the reference value, and the offset value. Based on the above, the error amplification signal described above is supplied.

なお、本発明は、上記の実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、定電流充電CC、電流低減充電CP′、定電圧充電CVの各制御モードを有し、それぞれ所定の条件で切り換えるようにしたが、定電流充電CC、電流低減充電CP′の制御モードを有するだけで、電流低減充電CP′で満充電まで充電し、或いは満充電電圧で充電を停止させるようにしてもよい。また、定電流信号発生回路や電流逓減信号発生回路等も図3に示す回路に限らず同等の代替する回路で適宜設計可能であることをいうまでもない。   In addition, this invention is not limited to said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the control modes of constant current charge CC, current reduction charge CP ′, and constant voltage charge CV are provided and switched under predetermined conditions. Only by having the control mode of ′, it is possible to charge to the full charge by the current reduction charge CP ′, or to stop the charge at the full charge voltage. Further, it goes without saying that the constant current signal generation circuit, the current diminishing signal generation circuit, and the like are not limited to the circuit shown in FIG.

本発明に係るキャパシタ蓄電電源用充電装置の実施の形態を示す図である。It is a figure which shows embodiment of the charging device for capacitor electrical storage power supplies which concerns on this invention. 電流逓減充電(V−I制御)を説明する図である。It is a figure explaining electric current gradual charge (VI control). 定電流信号発生回路及び電流逓減信号発生回路の実施の形態を示す図である。It is a figure which shows embodiment of a constant current signal generation circuit and a current decreasing signal generation circuit. 電流逓減信号発生回路の他の実施形態を示す図である。It is a figure which shows other embodiment of a current decreasing signal generation circuit. 基準値設定回路の実施の形態を示す図である。It is a figure which shows embodiment of a reference value setting circuit. PWM制御されるスイッチングコンバータを備えた充電装置の実施の形態を示す図である。It is a figure which shows embodiment of the charging device provided with the switching converter by which PWM control is carried out. 並列モニタの回路構成の概略を示す図である。It is a figure which shows the outline of a circuit structure of a parallel monitor. 並列モニタを備えた複数の電気二重層キャパシタの充電装置の概略を示す図である。It is a figure which shows the outline of the charging device of the several electric double layer capacitor provided with the parallel monitor. 電気二重層キャパシタの内部抵抗成分を含めた等価回路を示す。The equivalent circuit including the internal resistance component of an electric double layer capacitor is shown.

符号の説明Explanation of symbols

1・・・定電流信号発生回路、2・・・電流逓減信号発生回路、3・・・定電圧信号発生回路、4・・・PWM制御回路、5・・・充電電源、6・・・充電装置、7・・・キャパシタ蓄電電源、D11、D21、D31・・・ダイオード、R・・・電流検出用抵抗、Vrefi・・・電流基準値設定回路、Vrefv・・・電圧基準値設定回路、Voff−set・・・オフセット値設定回路、I・・・充電電流、Vc・・・充電電圧、PM1乃至PMn・・・並列モニタ   DESCRIPTION OF SYMBOLS 1 ... Constant current signal generation circuit, 2 ... Current decreasing signal generation circuit, 3 ... Constant voltage signal generation circuit, 4 ... PWM control circuit, 5 ... Charging power supply, 6 ... Charging Device: 7 ... Capacitor storage power source, D11, D21, D31 ... Diode, R ... Current detection resistor, Vrefi ... Current reference value setting circuit, Vrefv ... Voltage reference value setting circuit, Voff -Set ... offset value setting circuit, I ... charge current, Vc ... charge voltage, PM1 to PMn ... parallel monitor

Claims (3)

所定の電圧で充電電流をバイパスすると共に満充電信号を出力する並列モニタを備えた複数の電気二重層キャパシタを直列接続して蓄電するキャパシタ蓄電電源に対して充電電源からパルス幅変調手段によりパルス幅変調して充電電流を制御し充電を行うように構成したキャパシタ蓄電電源用充電装置において、
前記パルス幅変調手段におけるパルス幅を決める1つの要素である電流基準値は、該複数の並列モニタからの満充電信号の論理和であるF信号の頻度に応じて変化するように制御されることを特徴とするキャパシタ蓄電電源用充電装置。
Pulse width modulation means by pulse width modulation means from a charging power supply to a capacitor storage power source that stores a plurality of electric double layer capacitors connected in series with a parallel monitor that bypasses the charging current at a predetermined voltage and outputs a full charge signal In the charging device for the capacitor storage power source configured to modulate and control the charging current to perform charging,
The current reference value, which is one factor that determines the pulse width in the pulse width modulation means, is controlled so as to change according to the frequency of the F signal that is the logical sum of the full charge signals from the plurality of parallel monitors. A charging device for a capacitor storage power source.
該電流基準値は、F信号の頻度に応じて漸減するように制御されることを特徴とする請求項1に記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power source according to claim 1, wherein the current reference value is controlled so as to gradually decrease in accordance with the frequency of the F signal. 前記電流基準値と充電電流とを比較して誤差増幅信号を発生させる信号発生手段を備えることを特徴とする請求項1又は請求項2に記載のキャパシタ蓄電電源用充電装置。 3. The charging device for a capacitor storage power source according to claim 1, further comprising: a signal generating unit that generates an error amplification signal by comparing the current reference value with a charging current. 4.
JP2007268907A 2007-10-16 2007-10-16 Charger for capacitor storage power supplies Pending JP2009100532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268907A JP2009100532A (en) 2007-10-16 2007-10-16 Charger for capacitor storage power supplies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268907A JP2009100532A (en) 2007-10-16 2007-10-16 Charger for capacitor storage power supplies

Publications (1)

Publication Number Publication Date
JP2009100532A true JP2009100532A (en) 2009-05-07

Family

ID=40703039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268907A Pending JP2009100532A (en) 2007-10-16 2007-10-16 Charger for capacitor storage power supplies

Country Status (1)

Country Link
JP (1) JP2009100532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188640A (en) * 2010-03-09 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Charging circuit and charging method
JP2013520154A (en) * 2010-02-17 2013-05-30 日本テキサス・インスツルメンツ株式会社 Battery protection circuit and method for energy harvester circuit
JP2014524227A (en) * 2011-06-14 2014-09-18 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Accumulator battery system with simple management means
JP2016165190A (en) * 2015-03-06 2016-09-08 ニチコン株式会社 Charge control device and charger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520154A (en) * 2010-02-17 2013-05-30 日本テキサス・インスツルメンツ株式会社 Battery protection circuit and method for energy harvester circuit
JP2011188640A (en) * 2010-03-09 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Charging circuit and charging method
JP2014524227A (en) * 2011-06-14 2014-09-18 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Accumulator battery system with simple management means
JP2016165190A (en) * 2015-03-06 2016-09-08 ニチコン株式会社 Charge control device and charger

Similar Documents

Publication Publication Date Title
JP3907123B1 (en) Charging device for capacitor storage power supply
JP3922650B1 (en) Charging device for capacitor storage power supply
JP3922649B1 (en) Charging device for capacitor storage power supply
JP5901635B2 (en) Switched mode power converter using bridge topology and switching method thereof
US7436150B2 (en) Energy storage apparatus having a power processing unit
JP3693599B2 (en) Switched capacitor type stabilized power supply
US20070139982A1 (en) Charge pump circuit and power supply apparatus
JP3945658B1 (en) Charging device for capacitor storage power supply
JP4049333B1 (en) Charge control device
US10122278B1 (en) Control circuit operating in pulse skip mode and voltage converter having the same
US7880457B2 (en) Dual-loop DC-to-DC converter apparatus
US20220069692A1 (en) High efficiency, parallel, power conversion system with adaptive dynamic efficiency optimization
JP2010004691A (en) Flashing power supply device
JP2009100532A (en) Charger for capacitor storage power supplies
JP2008243728A (en) Power supply circuit device
JP3871220B1 (en) Charging device for capacitor storage power supply
US20200161983A1 (en) Power converter and power converter control method
US10804813B2 (en) Power inverter for reducing total harmonic distortion via duty cycle control
JP2016018736A (en) Led lighting device and led luminaire
CN116961158A (en) Switching charger for fast dynamic response load conversion state
JP3886142B1 (en) Charging or discharging device for capacitor storage power supply
JP2010220373A (en) Balancing circuit of energy storage element
JP2024525932A (en) Driver for supplying current to an LED load
JP2008086173A (en) Semiconductor integrated circuit and multiple-output power supply unit using the same
JP2019068526A (en) Converter system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120125